A device which is used to cool fermentation tanks and which can be used essentially in beer production, cooling and maturation, includes a vertical heat exchanger, which comprises single- or double-wall concentric cylinders and is positioned internally at the center of a tank. The length and capacity of the cylinders differ depending on the size and shape of the tank. A coolant flows through the cylinders in order to cool and to maintain a suitable temperature range. In addition, the double-wall cylinders which form the heat exchanger are interconnected by means of coolant flow and support tubes. Meanwhile, the exchanger is supported by the cone and the walls of the tank by means of tubes which are used for the passage of the coolant and the passage of signals. Moreover, the outer wall and the cone can be provided with a cooling jacket.
FIGURE 5
HEAT EXCHANGER FOR FERMENTATION TANK
RELATED U.S. APPLICATIONS
[0001] Not applicable.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
[0002] Not applicable.

REFERENCE TO MICROFICHE APPENDIX
[0003] Not applicable.

FIELD OF THE INVENTION
[0004] An accessory for cooling fermentation tanks is presented, which can be primarily used in beer production, cooling and maturing, however, it can also be used in wine production and fermentation, in fermentable alcoholic beverages or milk production and dairy products.

BACKGROUND OF THE INVENTION
[0005] Upgraded fermentation equipment is composed by a combination of a heat exchanger internally located, vertically positioned, inside a tank, which includes some double-wall concentric cylinders, whose length and capacity may feature different dimensions, depending on tank size and geometry, and through said heat exchanger a coolant will pass to cool liquid to adequate temperature for processes, coolant is supplied and recovered by distributors which may be set in upper or lower position.

[0006] Heat transmission occurs when heat exchangers are immersed within the wort and beer liquid and placed at center of fermentation tanks.

[0007] It also includes tubular supports, feasible to be used as passages for coolant supply and extraction, cleaning solutions and signals of control.

[0008] The heat exchanger of proposed invention is versatile as to be used both in new fermentation equipment and to be adapted to existent fermentation equipment remarkably improving cooling efficiency.

[0009] Therefore, this invention’s field of action may also include cooling accessories for beer maturing, and by extension to wine, whiskey, tequila, rum, vodka fermentation, generally for any kind of distilled beverages produced during wort fermentation by yeast or any microorganism, and may also be used as milk products cooler and fermenter.

INVENTION OBJECTIVES
[0010] To the best knowledge of this invention’s authors, objectives can be summarized as follows.

[0011] It is a purpose of this invention to have an internal vertical cooling equipment for fermentation tanks, which can use any kind of coolant inside beer fermentation, cooling and maturing tanks. System optimizes temperature control and distribution inside the tank during fermentation, resulting in a better quality beer, in addition to significantly shortening cooling time as compared to conventional systems.

[0012] This invention has also the purpose of being versatile equipment such as to be compatible with traditional equipment featuring external cooling jackets, so it may be used jointly with said equipment as an upgraded feature, or may be used in new fermentation tanks.

[0013] Another objective of this invention is to have a vertical heat exchanger, immersed in wort or beer inside fermentation tanks, consisting of double-metallic-wall pipes or cylinders, through which coolant will pass without getting mixed with beer wort. The heat exchanger, as it is located inside fermentation device, achieves temperature homogenization, thus optimizing cooling and fermentation process, preventing high liquid temperature differences which result from exothermal fermentation in the various liquid areas, consequently achieving a better quality beer as a controlled fermentation is attained, and at the same time, minimizing undesired heavy, volatile alcohols and sub-products formation.

[0014] This invention has also the purpose of counting on a heat exchanger which can be manufactured in any size and proper capacity according to cooling requirements, i.e., volume to be fermented and cooled. The heat exchanger arrangement inside the tank can be anyone and it can be manually or automatically operated or a combination of both. Dimensions or diameter of fermentation tank to be cooled does not involve limitations. In addition to, an extensive heat exchanger has been developed, as to be able to use concentric systems combinations having several geometry, unlike having fermentation tank external jackets as the sole cooling element as occurs in conventional fermentation tanks.

[0015] As another characteristic of this invention, it has been foreseen to remove cooling jacket installed in conic bottom of conventional fermentation tanks, due to feasibility of locating vertical heat exchanger internally, locating it close to the bottom to cause thermal movement needed to cool that portion of the fermenter, thus achieving the same temperature and fermentation control for the whole tank, and optimizing fermentation process in this way, since in such case double fermentation is avoided.

[0016] As another goal of this invention, heat exchanger geometry versatility has been foreseen by way of simple straight or concentric pipes for coolant passing and its use will depend on application and size of fermentation device. In this case, both coolant supply and extraction of heat exchanger is done from outside the fermentation tank through pipes connected to heat transference units, coolant does not have direct contact with beer wort.

[0017] Another purpose of this invention is to include high pressure and high flow turbine cleaners and spray ball installation, duly oriented for fast cleaning of fermentation tank and vertical cylindrical heat exchanger, making equipment cleaning easy before starting another production batch.

[0018] This invention is also aimed to reduce coolant travel distance inside vertical heat exchanger, therefore temperature difference between coolant and liquid to be cooled is kept high, allowing for better cooling efficiency, unlike external jackets located in conventional tanks, where travel coolant distances are higher, thus having a lower temperature difference average.

[0019] In the case of this proposed invention, by using vertical heat exchanger, coolant circulation speed is increased due to straight geometry of cylinders, through
which cooling process is optimized. Likewise, vertical heat exchanger installation in the center of tank decreases different temperature layers formation as compared to conventional systems, and at the same time thermal downstream and upstream natural speed is increased, resulting in minimum temperature differences (more controlled fermentation) and consequently resulting in better products.

[0020] Another objective of this invention is to cause wort strong movement during fermentation, which induces better contact between yeast cells and wort, thus improving the fermentation process. While having a more uniform temperature in wort layers during fermentation, undesired heavy, volatile alcohol and sub-products formation control is improved.

[0021] Another purpose of this invention is to allow for better energy exploitation and less consume since all of its surface is in contact with liquid to be cooled, unlike traditional systems in which jackets outer wall is oriented towards external environment causing environment heat losses, even if isolation is used.

[0022] This invention is also aimed to ease temperature homogeneity and liquid movement during cooling, assisting transmission coefficient improvement and, at the same time, avoiding the need to use carbon dioxide bubbling systems used in traditional systems.

BRIEF SUMMARY OF THE INVENTION

[0023] In wort fermentation tanks for production of all kinds of beer, as well as universal tanks known in the industry as unitanks, of traditional design, temperature control during fermentation, cooling and maturation is carried out through cooling jackets outside the tanks, located on their walls, where only inner side of jacket is used for wort and beer cooling.

[0024] Several jacket designs are used, in arrangements where they are installed in the vertical walls of fermentation tanks and cones, jackets can be installed in vertical or horizontal position, in one or several cooling sections but all of them are installed by welding them to external wall of fermentation tank body.

[0025] In traditional design fermentation tanks, as capacity is increased, so increases their diameter, therefore when jackets are installed outside, cooling zone distance to center of the fermenter is increased reaching distances higher than five meters, causing temperature control not being uniform and inadequate liquid movement, thus promoting layers formation and temperature differences which sometimes are higher than 3° C., preventing a controlled fermentation, causing undesired sub-products formation. This is quality detrimental for beer produced. The aforementioned situation becomes more evident as fermentation tanks capacity is increased. This forces some beer producers to limit fermentation tanks size in order to decrease such effect, which involves increasing investment costs, as more fermentation tanks have to be acquired and consequently increasing beer production costs.

[0026] Likewise, using external cooling jackets limits tank geometry design, since in order to account for a higher heat transmission area from external cooling jackets and higher cooling speed, a straight section height/tank diameter high ratio, higher than 2:1 is required, which is against technological requirements for quality beer production.

[0027] In conventional systems, it is required to locate cooling jackets in tanks conic bottom in order to control fermentation and cooling in this area, having an independent temperature control. These jackets do not always operate similarly to upper jackets, resulting in two types of fermentation, which is detrimental for quality of beer.

[0028] On the other hand, beer cooling speed at process final stage is limited by available jacket areas, therefore having longer fermentation tanks operation time, thus requiring a larger number of them in order to achieve desired breweries production capacity.

[0029] Heat transmission coefficients in conventional design featuring external cooling jackets are generally low, this factor, as well as the fact of using only one side of jacket for cooling, involves limitation of its efficiency. It is common to use carbon dioxide injection at final cooling stages, in order to accelerate beer movement and thus increase heat transmission coefficient for a faster cooling. Additionally, at jacket side, even when it is isolated, there is an energy loss by heat transmission due to the high temperature difference between external environment and coolant temperature.

[0030] Summarizing, traditional systems tend to difficult beer quality control and to induce long cooling periods, which increases production costs.

[0031] This invention, consisting of a heat exchanger located internally, vertically positioned, corrects and upgrades traditional systems performance.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0032] FIG. 1 shows a vertical view of a fermentation tank and that of a vertically positioned heat exchanger located internally;

[0033] FIG. 2 is a vertical view of a fermentation tank and that of a vertically positioned heat exchanger located internally showing thermal streams movement or flow;

[0034] FIG. 3, is a topside view of a fermentation tank where heat exchanger tightened is shown;

[0035] FIG. 4 is a lower side view of a fermentation tank where heat exchanger tightened is shown;

[0036] FIG. 5 shows a side view of two double-wall cylinders by which coolant flows;

[0037] FIG. 6 is a perspective showing detail of upper collector and concentric pipes;

[0038] FIG. 7 is a perspective showing detail of lower collector and concentric pipes;

[0039] FIGS. 8 to 19 show a side view of several possible arrangements or modalities of heat exchanger, which a cooling tank may have;

[0040] FIGS. 20 to 26 show a vertical view of several arrangements for heat exchanger double-wall cylinders, both internal and external, which may be used.
DETAILED DESCRIPTION OF THE INVENTION

[0041] As referring to said figures and following same nomenclature of reference signs shown, this invention consists of an internal vertical heat exchanger 30, to be installed inside a tank 10, three main sections are underlined from the latter: an upper, dome cap 12, whose function will be to maintain sufficient space as to store gases formed during fermentation process; a cylindrical body 14, whose function will be to contain beer wort to carry out fermentation process, whose exothermic reaction requires cooling and also to cool the beer after fermentation, to do so a cooling jacket 20 may be fitted on external wall, the whole fermentation tank is usually isolated in order to decrease heat losses toward environment and, the conic-shaped bottom 16, with variable design angle, whose function will be to receive and store deposited particles, which are finally extracted by a lower valve 18, same as wort and beer after separating deposits.

[0042] Inside fermentation tank 10, a heat exchanger 30 is located, centered and vertically positioned, whose function will be to cool wort and beer to maintain them within the desired temperature range during the various process stages.

[0043] This heat exchanger 30, comprises a set of two straight concentric cylinders forming a double-wall by which a coolant will pass, to maintain beer wort and beer within desired temperature ranges; which form the external cylinder 32, they are attached at each end to some doughnut-shaped coolant distributors, which we call, upper external collector 40 and lower external collector 42, through which coolant will be supplied, distributed and evacuated.

[0044] Similarly, there is another set of two double-wall, concentric straight cylinders, vertically positioned and concentric to external cylinder 32 forming internal cylinder 34, they are attached at each end to some coolant distributors, also doughnut-shaped, which are called upper internal collector 44 and lower internal collector 46, and through which a coolant will also pass. These external collectors 40 and 42 as well as internal collectors 44 and 46, have the function of better distributing coolant and at the same time, serving as compensation chamber for coolant supply and extraction.

[0045] Both external and internal collectors are arranged in combination with concentric cylinders forming a double wall closed at the ends, carrying multiple holes 48, for coolant distribution and extraction, located in periphery of said ends and confined by a hemispherical, doughnut-shaped cover 68 and 70.

[0046] Double-wall external cylinder 32 of heat exchanger 30 is connected at its lower end to lower external collector 42, and has piping installed on it 58, which function will be both to support heat exchangers weight 32 and 34, and to serve as passage for coolant and temperature sensors signal, and they are attached at their lower ends to conic section 16 side walls. On the other hand, piping 50 and 52, have the function of supporting heat exchanger weight 34 and additionally to serve as coolant conduction of exchanger 32 to 34. Coolant conduction of exchanger 32 to 34 can also be carried out through passage 56 at the lower side, and evacuation at the upper side of passage 50. In addition, at the upper external collector section 40, there is support piping 60, also equidistantly distributed, which is attached at its ends to body wall 14, which in addition to maintaining heat exchanger 30 positioned, will serve for coolant exhaustion, and temperature sensors signals conduction. At least three lower support piping 52 and 58, as well as upper ones 50 and 60 can be found in each section, equidistantly distributed.

[0047] Through one or various 58 piping, or through piping 74, coolant will pass to lower external collector 42, to go through jacket 32 and from there to upper external collector 40, from there it will be transferred through passages 60 to outside fermentation tank. Similarly, through passages 56 and 52, coolant will pass to lower internal collector 46, to go through jacket 34 and from there to upper internal collector 44, from there through any of the passages 60, to evacuate coolant outside fermentation tank for collection.

[0048] Through proposed heat exchanger 30, at conic section 16, a stronger wort internal stream is produced, coming from concentric space formed by sets of jackets 32 and 34, causing turbulence at the bottom (see FIG. 2), making installation of an external jacket 72 on external conic wall 16 unnecessary unlike conventional systems, since cylinders distance to the bottom can be additionally adjusted. Such movement is desired in order for most of wort to be in contact with yeast and for biological reaction to be carried out more easily to obtain beer. The above mentioned effect also applies at cooling stage, avoiding the need for carbon dioxide bubbling in traditional system, which is used to increase transmission coefficient.

[0049] Oil purging, in case of using ammonia as coolant, is external to the tank, and any of support piping 58 is used for drainage. Equipment has also been fitted with air purge lines 24, whose function will be to expel air accumulated inside heat exchanger 30 collectors, in case of using glycol as coolant.

[0050] Cleaning requirements are very important to prevent undesired biological infections, this is achieved first by manufacturing exchange systems attaining a high polish degree at exchanger surface and its parts, in order for yeast, waste, foam, beer detachment to be fast when using detergent solutions. Heat exchanger 30 mechanic design is such that during cleaning, its whole surface is in contact with cleaning liquids. A distribution system for cleaning solutions consists of a high pressure and high flow cleaning central turbine 22, and at least four auxiliaries, one of them at the lower side of exchanger 30; which cleans fermentation tank 10 internal walls, as well as heat exchanger 30 surfaces, achieving an efficient cleaning on the basis of flow, collision strength on walls, cleaning concentrations and cycles, as well as flow pattern, in addition to being a dismountable system for inspection and maintenance purposes, as well as integrating sensors detecting flow movements in turbines to ensure cleaning, said turbines 22 have been selected for self-cleaning between each other to ensure a wide spectrum cleaning.

[0051] On the other hand, temperature sensors 66 can be installed inside fermentation tank in any position in supply or evacuation pipes 58, 74 and 66, conducting signals in the inside, this allows a better temperature control, than installing them only on fermentation tank walls as in traditional systems.

[0052] As a modality of this invention, heat exchanger 30, may consist of a higher multiple of jackets as it is shown in
FIG. 8, or of a jacket cluster as shown in FIGS. 9 and 10, being possible to attach these jackets as they are shown in FIG. 14.

[0053] The usage of distribution fins 60, has also been foreseen, they consist of deflector plates to ensure a closer contact and heat exchange as it is shown in FIGS. 16 and 17, or radial intermediate jackets 68 between jackets of pipes 32 and 34.

[0054] Finally, depending on fermentation type desired to perform, heat exchanger 30, may have different dimensions for external jackets 32 and internal jackets 34 length as it is shown in FIGS. 20 a26.

[0055] That means this invention is versatile enough as to be adapted to any liquid fermentation process, and to several fermentation tanks capacity and geometry, even for upgrading existent conventional fermentation tanks, regardless they may have external jackets already installed.

BEST WAY TO CARRY OUT INVENTION

[0056] Coolant fluid can be of any type, that means, it can be a liquid with a high evaporation index, or else, a liquid not experiencing an important physical state change or liquid with solids with or without state change.

[0057] Coolant supply can be carried out indistinctly at the upper side 60, or at the lower side 58 and 56 of heat exchanger 30.

[0058] For example, for the case of ammonia, or any liquid-gas coolant, supply may be carried out at the lower side or at the upper side, while if they are liquid systems such as glycols, supply must be carried out through lower side.

[0059] Whatever supply is used, exhaustion will always be the opposite, that is, if the first is done through the upper side, the latter should be done through the lower side and vice versa. This will depend on the type of coolant used, however, regardless which coolant is used, system is not altered. Decision as to which one to use is the user’s choice.

[0060] When fermentation tank 10 is filled with wort to be fermented, coolant enters heat exchanger 30 for example, by the lower side through support pipes 58, or through side connections 74, supply may be done through one or all pipes, depending on fermentation tank size and process used, flow being controlled by valves externally located at coolant supply inlet. Information signals for temperature controls are made through sensors 66, which in the case of this invention, can be installed inside the tank in order to achieve more accurate fermentation readings and controls, unlike conventional systems, in which sensors are installed at fermentation tank wall.

[0061] Once coolant enters to distributors 42 and 46, each one will supply concentric jackets 32 and 34 and flooding will start, and as coolant evaporation is reached, this is, when energy in the form of heat from wort or beer is received, vapor will be received by upper collectors 40 and 44, which feature an internal design included as part of document herein to allow for an adequate collection of coolant used which will conduct it to tank exhaustion piping through pipes 60 also used as heat exchanger 30 support to maintain it positioned inside the tank. Liquid-gas type coolant, for example ammonia, can also be supplied through upper side, flow is inverted, and the only change is type of distributors to be used.

[0062] In case of using a liquid coolant, for example glycol, supply is made through lower side 42 and 46 and exhaustion through upper side by upper external collectors 40 and 44, accounting for a special design for this type of coolant, in this case, a venting and air purging system 24 is installed in upper collectors 40 and 44, necessary for proper operation.

[0063] On the wort and beer side, downstream and upstream as well as circular stream will occur, as shown in FIG. 2, due to wort or beer density and viscosity changes. These changes in liquid circulation are different to those produced when it is cooled only by tank walls. In the new system, higher turbulence is experienced due to internal vertical heat exchanger 30 distribution inside fermentation tank 10, allowing for a larger portion of wort or beer to be in contact with cooling surface inducing in this way a larger fermentation temperature homogenization, therefore producing less beer fermented at different temperatures and consequently a better quality control.

[0064] Exhaustion of coolant used by heat exchanger 30 is made through upper collectors 40 and 44 and from them out of fermentation tank 10 by one or more pipes 60 and 54 depending on volume to be extracted and if upper or lower supply is involved.

[0065] For the case involving usage of glycol or dynamic ice as coolant, control system is also similar to conventional ones, using fast close on-off valves for supply control and coolant exhaustion as well as calibrated safety valves and internal venting for purging 24 which are directed and operated from the dome 12, and where installed are control and vacuum valves 26.

1. Heat exchanger for a fermentation vessel, which is installed in a fermentation tank, said fermentation tank having an upper dome cap, a cylindrical body and a conic-shaped section and having a valve at an end of said fermentation tank, said fermentation tank having a fitted cooling jacket on an outer tank wall being isolated as well as the a remaining part of tank; said heat exchanger comprising:

a plurality of double-wall, concentric straight cylinders, positioned inside the tank, located at the center, vertically positioned, attached and supported to the tank by piping, said piping forming a coolant passage, by interconnection piping and venting piping, cleaning turbines and pressure control and relief valves, the cylinders forming an external cylinder attached at ends thereof to doughnut-shaped jackets, as some external collectors, located at each cylinder end, the cylinders also forming an internal cylinder, with two collectors, upper and lower, said internal cylinder being supported on said external cylinder through some piping;

wherein external and internal collectors, located in concentric pipes closed at its ends, are comprised of multiple holes located in the periphery of said ends and confined through hemispherical, doughnut-shaped covers which operate, as coolant distribution or extraction chambers, according to its location;
wherein lower and upper support piping, located laterally and attached at the ends to tank wall, and to upper and lower external collectors, maintain central positioning and as coolant and temperature sensor signals conveyor;

wherein support piping connects the concentric cylinders, also located equidistantly, supporting said internal cylinder against said external cylinder as coolant passage;

wherein interconnection piping attached the double-wall external cylinder to the double-wall internal cylinder, distributed equidistantly, being supported in turn on at least three piping also located equidistantly to better distribute weight, and being fixed on a tank cone;

wherein outlet piping extends to conic area walls starting from external collector lower side;

wherein purging lines exhaust air with glycol as coolant; and

wherein a cleaning system comprised of high pressure and high flow turbines, is properly located at an inside of a bulged cap, cleaning fermentation tank inner walls and surfaces, selected for self-cleaning between each other so as to ensure a wide spectrum cleaning.

2. Heat exchanger for fermentation vessel, according to claim 1, further comprising an upper tank cap is being bulged and having sufficient space as to store gases formed during a fermentation process.

3. Heat exchanger for fermentation vessel, according to claim 1, further comprising a body and fermentation tank cone with a cooling jacket located at outside of the tank.

4. Heat exchanger for fermentation vessel, according to claim 1, further comprising collectors located at ends of double-wall concentric straight cylinders forming a jacket, through which coolant will pass to maintain beer wort and beer within desired temperature ranges and whose function is to serve as coolant distribution or exhaustion chamber.

5. Heat exchanger for fermentation vessel, according to claim 1, further comprising safety and control valves calibrated and located outside the tank, calibrated valves installed outside the tank, and lines purging in case of using glycol as coolant and being installed between upper collectors and the tank.

6. Heat exchanger for fermentation vessel, according to claim 1, further comprising higher jackets multiple or forming a jacket cluster, the jackets being attachable between each other.

7. Heat exchanger for fermentation vessel, according to claim 1, further comprising radial fins with deflector plates to ensure a larger contact for heat exchange, or intermediate radial jackets located between the cylinders of the exchanger.

8. Heat exchanger for fermentation vessel, according to claim 1, the cylinders having different length dimensions for internal and external double-wall cylinders.

* * * * *