US 20120130940A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2012/0130940 A1

Gattani et al.

43) Pub. Date: May 24, 2012

(54)

(735)

(73)

@

(22)

(60)

REAL-TIME ANALYTICS OF STREAMING

DATA

Inventors: Abhishek Gattani, Sunnyvale, CA
(US); Anand Rajaraman, Palo
Alto, CA (US)

Assignee: WAL-MART STORES, INC.,
Bentonville, AR (US)

Appl. No.: 13/300,523

Filed: Nov. 18, 2011

Related U.S. Application Data

Provisional application No. 61/415,279, filed on Nov.
18, 2010, provisional application No. 61/415,282,
filed on Nov. 18, 2010.

Publication Classification

(51) Int.CL
GOGF 17/30 (2006.01)

(52) US.Cl ccoooonon.. 707/600; 707/791: 707/E17.056
(57) ABSTRACT

Storage media, systems and methods are disclosed herein for
analyzing data streams in real time. More particularly, storage
media, systems and methods are presented for processing
data streams to calculate results for prospective queries. The
results may be advantageously computed prior to the formu-
lation of the specific query, for example, based on a pre-
established framework of potential query parameters. More
particularly, a universe of potential queries may be extrapo-
lated from the pre-established framework of potential query
parameters. Results for each of the potential queries may
them be tracked in real time. For example, results for each of
the potential queries may be continuously updated based on
real-time processing of events in a data stream.

Patent Application Publication

May 24,2012 Sheet 1 of 10 US 2012/0130940 A1

ELE 0

ﬂ?f‘

Er bl —

56 v Wi

Bt a,k Gm;m it M """ Ymk

Figrach

Flgure |

i

I8 i

Hro o 240

T 05 8

P N .
Frdave S

#ss'wmm iw% m}\ t *sése,é £
e nee Borfioare plan?

sy

&

sty

Fositive

o d s

B smany peopis ol
regative of Barack ﬁh&t’ﬁ@
auross e S

Patent Application Publication = May 24, 2012 Sheet 2 of 10 US 2012/0130940 A1

B et

Srpam X

iy

i

Sream Y

L

Sypan ¥

Patent Application Publication = May 24, 2012 Sheet 3 of 10 US 2012/0130940 A1

: A
Sl Tupls Cube Tuple
Grrriarabir Codbaitor
Hhutes Bl

Figure 6

St i

Figwe &b

=

Patent Application Publication = May 24, 2012 Sheet 4 of 10 US 2012/0130940 A1

e tugte
PRI I
Hatay

s] T | B Do Cmaer gy

.o
gL
o Ly
s
%
4
%
%:.s
£
&

£
£
Ak las gl

L2
4%

2

il ¥

R R 2
it

2 R

43
g 3 B T o

Patent Application Publication = May 24, 2012 Sheet 5 of 10 US 2012/0130940 A1

: S

Wb

3
Tupie | Seen | Cews e 4 45 &% § Tapde |
%

o
e

v L
:
%3

A

™,
i

>§ Tugle | Suy | Cwund T 0H

By
#i

BB e e i e i i

.
£
X3

Patent Application Publication = May 24, 2012 Sheet 6 of 10 US 2012/0130940 A1

SubeYuple SubaFide Te o
Sumwdey feiitterd Sl
Siutan Hiadey Hises

ple | Sien | Gmed | b |

i
I
B

2

k2t
s
il S g

o 3 o R Y

Figure by

Patent Application Publication = May 24, 2012 Sheet 7 of 10 US 2012/0130940 A1

EET B9 5

iguee T

Patent Application Publication = May 24, 2012 Sheet 8 of 10 US 2012/0130940 A1

Patent Application Publication

May 24,2012 Sheet 9 of 10

Visual Display
Drevice, B8

Lispr
Smterface

Nepwork
Davios, 823

A WM

Computing Device

Proosss, 392
Cormis), 2

US 2012/0130940 A1

Motk
Interfoce, $12

Virtusl Machine

Tipesating
Systen, 218

A A A P S

£))

H]
g%&gx&&&m{s}* b 7
i

Storuge, 934

Blute Stonge

Map Modale
93

Update Module
933

Patent Application Publication = May 24, 2012 Sheet 10 of 10 US 2012/0130940 A1

B

HH B \ ¥

{hiend,

Network.

1

X5
g { e 48

i {}{3{3 Hiimd
Server.

Wtk

Figure 10

US 2012/0130940 A1

REAL-TIME ANALYTICS OF STREAMING
DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims priority to U.S. Pro-
visional Patent Application No. 61/415,279, filed Nov. 18,
2010 (entitled “Social Genome™), and U.S. Provisional Patent
Application No. 61/415,282, filed Nov. 18, 2010 (entitled
“Managing Real-Time Data Streams”). This application also
relates to U.S. Provisional Patent Application No. 61/345,252
entitled “Content Feed,” filed May 17, 2010, U.S. patent
application Ser. No. 13/106,706 entitled “Processing Data
Feeds,” filed May 12, 2011, a U.S. non-provisional patent
application titled “Processing Data Feeds,” filed Nov. 18,
2011 (Attorney Docket No. 114826-50302), a U.S. non-pro-
visional patent application entitled “Methods Systems and
Devices for Recommending Products and Services” filed
Now. 18, 2011 (Attorney Docket No. 114826-50602), and a
U.S. non-provisional patent application entitled “Social
Genome,” filed Nov. 18, 2011 (Attorney Docket No. 114826-
50202). The entire contents of each of the above-referenced
applications are incorporated herein in their entirety by ref-
erence.

BACKGROUND

[0002] Inrecent years, social media services such as Twit-
ter™, Digg™, Myspace™ and Facebook™ have seen a mete-
oricrise in popularity resulting in an ever evolving universe of
streaming content/data which is often user/consumer gener-
ated. Thus, social media is able to capture, better than many
other sources, a raw and unfiltered pulse of society.

[0003] Potential applications for data harvested from social
media are vast. For example, from a marketing intelligence
standpoint, a company may gather and analyze information
relevant to the company’s markets to promote accurate and
confident decision-making in determining market opportu-
nity, market penetration strategy, market development met-
rics, etc.

TECHNICAL FIELD

[0004] The present disclosure relates to real-time analytics
of data streams. More particularly, the present disclosure
relates to storage media, systems and methods for processing
data streams and analyzing data extracted therefrom.

SUMMARY

[0005] Storage media, systems and methods for performing
real time analytics on streaming data are disclosed herein.

[0006] In exemplary embodiments a method for perform-
ing real time analytics on streaming data may include: pro-
cessing events in a data stream to extract from each event a set
of attribute-value pairs for one or more dimension attributes
and one or more value attributes; identifying one or more
tuples in a multidimensional data structure implicated by the
extracted attribute-value pairs for the one or more dimension
attributes; and updating, for each implicated tuple, one or
more stored aggregates associated therewith, based on the
extracted attribute-value pairs for the one or more value
attributes. In some embodiments, a tuple frequency may be
tracked over an interval for each of the implicated tuples,
wherein the updating the one or more stored aggregates
includes discarding each implicated tuple with a low tuple

May 24, 2012

frequency over the interval. In other embodiments, for each
value attribute, aggregates over an interval for a first plurality
of implicated tuples having same attribute-value pairs for
zero or more ordinary dimension attributes and different
attribute-value pairs for one or more leaderboard dimension
attributes may be tracked, and a top-N values determined for
the one or more leadership dimension attributes over the
interval, for example, wherein the Top-N values are charac-
terized as resulting in the highest aggregates, the lowest
aggregates or the aggregates closest to a selected value, over
the interval. In yet other embodiments, the one or more
dimension attributes may include a K-Gram for identifying
topics of interest. Thus, for example a tuple frequency for
each of the implicated tuples including a K-Gram may be
tracked over an interval, wherein the updating the one or more
stored aggregates includes discarding each implicated tuple
with a low tuple frequency over the interval, whereby statis-
tics for trending K-Gram-value pairs are tracked.

[0007] In other exemplary embodiments, a method for
implementing a real time analytics platform may include
establishing an analytics platform framework characterized
by one or more time windows, one or more dimension
attributes, and one or more value attribute; and generating a
first multi-dimensional data structure for maintaining, for
each tuple of the one or more dimension attributes, an aggre-
gate of each of the one or more value attributes over each of
the one or more time windows.

[0008] In other exemplary embodiments a method for per-
forming real-time analytics on a data stream may include:
processing a data stream to maintain a plurality of stored
aggregates for a universe of prospective queries extrapolated
from a pre-established framework of possible query param-
eters; and returning one of the stored aggregates in response
to a query.

[0009] In exemplary embodiments, a system for perform-
ing real time analytics on streaming data, may include: a
processor for processing an event in a data stream to extract a
set of attribute-value pairs for one or more dimension
attributes and one or more value attributes; a mapper for
identifying one or more tuples in a multidimensional data
structure implicated by the extracted attribute-value pairs for
the one or more dimension attributes; and one or more updat-
ers for updating, for each implicated tuple, one or more stored
aggregates associated therewith, based on the extracted
attribute-value pairs for the one or more value attributes.
[0010] In other exemplary embodiments, a system for per-
forming real-time analytics on a data stream may include: a
processor for processing a data stream to maintain a plurality
of stored aggregates for a universe of prospective queries
extrapolated from a pre-established framework of possible
query parameters; and memory for storing the plurality of
stored aggregates.

[0011] In exemplary embodiments, a multi-dimensional
data structure, for implementing a real-time analytics plat-
form characterized by one or more time windows, one or
more dimension attributes, and one or more value attributes,
may include: a plurality of tuples associated with the one or
more dimension attributes; and a slate associated with each
tuple for maintaining an aggregate for each of the one or more
value attributes over each of the one or more time windows.
[0012] In other exemplary embodiments, a multi-dimen-
sional data structure for implementing a real-time analytics
platform may include: a plurality of stored tuples each repre-
senting a set of search query parameters for prospective que-

US 2012/0130940 A1

ries extrapolated from a pre-established framework of pos-
sible query parameters and one or more stored aggregates
associated with each of the stored tuples, wherein each aggre-
gate represents a result for a prospective query characterized
by the set of search query parameters represented in the tuple
associated with that aggregate.

[0013] In exemplary embodiments, a non-transitory com-
puter readable medium may store processor executable
instructions for performing methods described herein. For
example, the computer readable medium may store processor
executable instructions for processing events in a data stream
to extract from each event a set of attribute-value pairs for one
or more dimension attributes and one or more value attributes;
identifying one or more tuples in a multidimensional data
structure implicated by the extracted attribute-value pairs for
the one or more dimension attributes; and updating, for each
implicated tuple, one or more stored aggregates associated
therewith, based on the extracted attribute-value pairs for the
one or more value attributes. In other embodiments, the com-
puter readable medium may store processor executable
instructions for establishing an analytics platform framework
characterized by one or more time windows, one or more
dimension attributes, and one or more value attribute; and
generating a first multi-dimensional data structure for main-
taining, for each tuple of the one or more dimension
attributes, an aggregate of each of the one or more value
attributes over each of the one or more time windows. In yet
other embodiments, the computer readable medium may
store processor executable instructions for processing a data
stream to maintain a plurality of stored aggregates for a uni-
verse of prospective queries extrapolated from a pre-estab-
lished framework of possible query parameters; and returning
one of the stored aggregates in response to a query.

[0014] The foregoing and other objects, aspects, features
and advantages of exemplary embodiments will be more fully
understood from the following description when read
together with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 depicts an exemplary data stream, according
to the present disclosure.

[0016] FIG.2 depicts an exemplary query, according to the
present disclosure.

[0017] FIG. 3 depicts an exemplary data cube, according to
the present disclosure.

[0018] FIG. 4 depicts an exemplary implementation of a
distributed architecture for maintaining a data cube, accord-
ing to the present disclosure.

[0019] FIG. 5 depicts another exemplary implementation
of a distributed architecture for maintaining a data cube,
according to the present disclosure.

[0020] FIGS. 6a-g depict a sequence of events for a worked
example using the distributed architecture of FIG. 5, accord-
ing to the present disclosure.

[0021] FIGS. 7a-c depict flowcharts for exemplary meth-
ods for performing real time analytics on streaming data,
according to the present disclosure.

[0022] FIGS. 8a-b depict overlaying real-time social statis-
tics on a geographic map.

[0023] FIG. 9 depicts an exemplary computing device for
implementing embodiments of the present disclosure.

May 24, 2012

[0024] FIG. 10 depicts an exemplary network environment
for implementing a distributed architecture, according to the
present disclosure.

DETAILED DESCRIPTION

[0025] Storage media, systems and methods are disclosed
herein for analyzing data streams in real time and/or pre-
computing statistics in real time with no query time compu-
tation. More particularly, storage media, systems and meth-
ods are presented for processing data streams to calculate
results for prospective queries. The results may be advanta-
geously computed prior to the formulation of the specific
query, for example, based on a pre-established framework of
potential query parameters. More particularly, a universe of
potential queries may be extrapolated from the pre-estab-
lished framework of potential query parameters. Results for
each of the potential queries may them be tracked in real time.
For example results for each of the potential queries may be
continuously updated based on real-time processing of events
in a data stream.
[0026] Note that, as used herein the term event generally
refers to an atomic unit in a data stream, for example, a single
tweet™ in a Twitter™ feed or a single purchasing transaction
in a transaction stream. In exemplary embodiments, a data
stream may include a continuous flow of data that is not
pre-divided into discrete events. Thus, in some embodiments,
an event may be inferred, for example, by identifying a set of
one or more related attributes in the data stream. For example,
related attributes may be identified based on temporal and/or
source commonalities. In some embodiments, a contextual
analysis (for example, a semantic analysis) of attributes in a
data steam may be used to identify a set of one or more related
attributes. Exemplary embodiments of semantic analysis, for
example using a doctagger to identify and/or group topics, are
is described herein
[0027] It is appreciated that, although exemplary embodi-
ments presented herein relate to social analytics, the storage
media, systems and methods of the present disclosure may be
used for real-time analysis of any type of streaming data,
structured or unstructured. For example, the storage media,
systems and methods of the present disclosure may be used
for real-time analysis of purchase transactions, customer
reviews/feedback, customer wish lists/shopping carts, etc.
[0028] In exemplary embodiments, prospective queries of
data streams may include queries related to social statistics.
For example:
[0029] How many events relate to product P between 10
a.m. and 11 a.m. today?
[0030] What percentage of events had a positive opinion
of product P yesterday?
[0031] How do women in Arizona feel about a limited
time offer, based on events during the offer?
[0032] Whatisthe average age of women in Arizona who
purchased product P last year?
[0033] The result for each of the above queries may be
calculated as an aggregate of a value attribute (number of
events, percentage of events, sentiment, and average age,
respectively) over a specified time window (between 10 a.m.
and 11 a.m. today, yesterday, during the limited time offer,
and last year, respectively) for a specified set of dimension
attributes (related to product P, positive sentiment related to
product P, related to the limited time offer from women in
Arizona, and related to women in Arizona who purchased
product P, respectively). The storage media, systems and

US 2012/0130940 A1

methods of the present disclosure advantageously facilitate
identifying and maintaining time-based aggregates, such as
described above, prior to the formulation of a queries.
[0034] In exemplary embodiments, a framework of poten-
tial query parameters may be pre-established by selecting, for
example, via a user input, attributes of interest including one
or more time windows, one or more dimension attributes and
one or more value attributes. The framework may further
include, for each of the one or more value attributes, an
aggregate function defining how to aggregate instances of the
value attribute. As used herein, the term dimension attribute
refers to an identifiable attribute in a data stream which is of
interest as pertaining to a query search parameter. By com-
parison, the term value attribute refers to an identifiable
attribute in a data stream of interest which is of interest as
pertaining to a query result parameter. Notably, depending on
the particular framework of potential query parameters, a
same attribute may be both a dimension attribute and a value
attribute. For example, the attribute “sentiment” may be used
as both a search parameter (such as, in the query “how many
women have a positive opinion about product P?”) and a
result parameter (such as in the query “what is the sentiment
of women regarding product P?”).

[0035] Inexemplary embodiments a pre-established frame-
work of query parameters may be used to generate a multi-
dimensional data structure for maintaining, for each tuple of
the one or more dimension attributes; an aggregate of each of
the one or more value attributes over each of the one or more
time windows. As used herein the term tuple may refer to a set
of dimension attribute-value pairs. For example, for exem-
plary dimension attributes Person (P) Location (L) and Thing
(1), a tuple may take the form P=p, L =1, and T=t, (also
expressed as the tuple (p, 1, t) for dimensions (P, L, T)).
[0036] Inexemplary embodiments, the aggregates stored in
the multi-dimensional data structure may be updated for each
new event processed from a data stream. In particular, the
event may be analyzed to extract a set of related attribute-
value pairs including for one or more dimension attributes
and one or more value attributes. The extracted set of related
attributes-value pairs may then be used to identify or more
implicated tuples in the data structure for updating. Thus,
aggregates associated with each of the implicated tuples for
each of the one or more value attributes, may be updated by
applying an appropriate aggregation function to each identi-
fied value attribute-value pair. In this way the multi-dimen-
sional data structure may maintain real-time analytics of the
data stream.

[0037] In exemplary embodiments, a distributed architec-
ture, such as Muppet (map, update), may be used to imple-
ment the storage media, systems and methods of the present
disclosure. Exemplary implementations of Muppet are fur-
ther described herein as well as in U.S. non-provisional patent
application entitled “Processing Data Feeds,” filed Nov. 18,
2011 (Attorney Docket No. 114826-50302). In general, a
distributed architecture may be used to map an event to one or
more implicated tuples in one or more multi-dimensional data
structures and update, for each of the implicated tuples, one or
more slates, for example based on one or more value attribute-
value pairs in the event. Advantageously, slates for a plurality
of implicated tuples may be updated in parallel for example,
using different processing nodes.

[0038] The terms “map” and “mapper,” as used herein,
relate to a stream operation performed in exemplary embodi-
ments in which events in a data stream are processed in a

May 24, 2012

real-time manner to generate one or more new events which
are then published to a same or different data stream. In
exemplary embodiments, a mapper may be used to publish
events to one or more updaters for updating an aggregate
value contained in a slates.

[0039] The terms “update” and “updater” refer to a stream
operation performed in exemplary embodiments in which
events in one or more real-time data streams are processed in
a real-time manner to create or update one or more persistent
static “slate” data structures that are stored in a persistent
manner, for example, in a durable disk storage (note that, as
used herein the terms “store,” “stored” “storage” etc., imply
persistence a non-transitory storage medium). In some exem-
plary embodiments, an updater may generate zero, one or
more new stream events. The generated stream events may be
published to one or more real-time data streams. In an exem-
plary embodiments, an updater may publish stream events to
a data stream from which it accepts stream events as input.
[0040] As usedherein, the term “slate” refers to a static data
structure that may be used to record aggregates as described
herein. A slate may have any suitable data structure or format.
In an exemplary format, a slate may include a collection of
one or more attribute-value pairs. A slate may be stored cor-
responding to a unique slatekey and updater that updates the
slate.

[0041] In exemplary embodiments, time-based aggregates
of'a given value attribute over a given time-window may be
maintained in a multi-dimensional data structure (sometimes
referred to herein as a data cube). The dimensions of the data
structure generally reflect one or more dimension attributes
selected in a pre-established framework of potential query
parameters.

[0042] In anaive implementation of a distributed architec-
ture for maintaining the data structure, fan-out may exponen-
tially relate to the number of dimensions in the data structure.
The term “fan-out™ for a distributed architecture may refer to
the ratio of internal events generated by the mapping function
relative to the number of external events (e.g., tweets™)
processed.

[0043] Since, handling and storing such a volume of data
may prove impractical, alternative implementations of a dis-
tributed architecture are also presented herein that take
advantage of various properties of data streams to consider-
ably reduce fan-out to a manageable number.

[0044] With initial reference to FIG. 1, an exemplary event
100 in a data stream 10 is depicted. Event 100 may be pro-
cessed to identify a plurality of attribute-value pairs 110 con-
tained therin. Examples of attributes may include:

[0045] Event ID, for example, a unique per-event iden-
tifier.

[0046] Sentiment, for example, with potential values of
+1, 0, or -1, indicating positive, neutral, or negative
sentiment.

[0047] Gender, for example, with potential values of
Male, Female, and Unknown.

[0048] Country, for example, with potential values
drawn from an enumerated set of country codes includ-
ing unknown.

[0049] Topic, for example, with potential values detected
via semantic analysis.

[0050] Product, for example, with potential values
drawn from a product database.

[0051] Price, for example, with potential values in dif-
ferent currencies.

US 2012/0130940 A1

[0052] Timestamp, for example, based on time pub-
lished or time received.

[0053] Oneusefull attribute, accordingly to the present dis-
closure, is the timestamp. In exemplary embodiments, two
assumptions may be made regarding the timestamp: first, that
the timestamp represents actual wall-clock time in some
appropriate timezone; and second, that timestamps are mon-
ontonically increasing. These assumptions are generally rea-
sonable for streaming data (for example, in Twitter™ each
tweet™ contains a timestamp that satisfies these conditions).
One reason that timestamps are useful is that query results are
represented as aggregates over a time window. Using times-
tamps, aggregates may be unambiguously interpreted to
include a set of events whose timestamps fall within the
specified time window.
[0054] With reference to FIG. 2, an exemplary query 200 is
depicted. Query 200 may specify, for example, a time window
210, a set of dimension attribute-value pairs 220, one or more
value attributes of interest 230, and an aggregate function 240
related to each value attribute 230. Exemplary instances of
query 200 are described below:

Example 1
[0055] Query: How many people posted about product P

between 10 am and 11 am today?
Time Window: 10 am to 11 am today

Dimension Attribute-Value Pair: Product=P

[0056] Value attribute: Event Id

Aggregate Function: Count

[0057] Example 1 may be rewritten as the following SQL
query:

SELECT COUNT(EventId)

[0058] FROM event E

WHERE t.product="P”

[0059] AND t.timestamp>=10 am AND t.timestamp<=11
am

Example 2
[0060] How many women in Arizona posted about product

P between 10 am and 11 am?
Same as last example except for additional Dimension
Attribute-Value Pairs:

Gender="F", State="AZ"
Example 3

[0061] What was the sentiment about product P among
women in Arizona in December 2010?

Time Window: December 2010

Dimension Attribute-Value Pairs: Product="P”, Gender="F",
State="“AZ”

Value Attribute: Sentiment
Aggregate Function: AggregateSentiment

[0062] In the third query example, AggregateSentiment
represents a custom-defined aggregation function for com-
bining sentiment values. For example, the function may

May 24, 2012

maintain a 3-tuple of count, one each for positive, neutral, and
negative sentiments. Alternatively, the function may be con-
figured to calculate an average sentiment.

[0063] Time Windows:

[0064] Inexemplary embodiments, aggregates may be cal-
culated for each of a plurality of time windows. In some
embodiments arbitrary time windows may be supplanted by a
standard set of time windows, for example:

[0065] By the minute for the past 60 minutes

[0066] By the hour for the past 24 hours

[0067] By the week for the past 4 weeks

[0068] By the month for the past 24 months (for y-o-y

same month comparisons)

[0069] By the year for the past 10 years
[0070] In general, the standard set of time windows may
reflect an assumption that the further back time the coarser the
time granularity of interest. Thus, the standard set of time
windows may include time windows of varying time granu-
larity. In exemplary embodiments, it may be sufficient to
maintain aggregates for a finite number of progressively older
and courser sets of time windows, such reflected above.
[0071] Aggregate Functions:
[0072] In general there are two kinds of aggregate func-
tions: Algebraic and Holistic. Roughly speaking, algebraic
aggregates are those, like SUM, that can be computed incre-
mentally; in other words, by aggregating subsets of the data,
and computing the final result using those aggregates without
going back to the base data. In contrast, Holistic aggregates
typically require the base data when recalculating the aggre-
gate. One example of a holistic aggregate is the median.
Suppose you divide a data set arbitrarily into two parts, and
compute the median of the two parts; there is no way to
compute the median of the entire data set from the medians of
the two parts.
[0073] The systems and method of the subject disclosure
typically utilize algebraic aggregation functions, which may
be computed incrementally. Thus, for example, an average
may be represented as a 2-tuple a sum and a count, wherein
the average may be calculated by dividing the sum by the
count. The use of algebraic aggregations functions, advanta-
geously simplifies the update process, thereby facilitating the
real-time data processing and analytics as described herein. In
exemplary embodiments aggregates are assumed to be com-
mutative and associative, which makes manipulations thereof
simpler.
[0074] Data Cubes:
[0075] As noted above, the storage media, systems and
methods of the present disclosure may advantageously utilize
a multi-dimensional data structure for maintaining a universe
of aggregates for a pre-established framework of potential
query parameters, wherein the pre-established framework of
potential query parameters is characterized, by one or more
time windows, one or more dimension attributes, one or more
value attributes and one or more aggregation functions.
[0076] Suppose, for example, a framework characterized
by time window W, dimension attributes Topic (T), State (S),
Gender (G), a single value attribute Sentiment (Se), and an
aggregate function f. The following are the aggregates may
be of interest for instances t, s and g of T, S and G:
(1) T=t, S=s, G=g, {(Se), W
(2) T=t, S=s, f(Se), W
(3) T=t, G=g, f(Se), W
(4) S=s, G=g, f(Se), W
(5) T=t, 1(Se), W

US 2012/0130940 A1

(6) S=s, {(Se), W

(7) G=g, {(Se), W

(8) All, {(Se), W (computed across all events in time window
W)

[0077] The multi-dimensional data structure for storing
aggregates f(Se), W for all potential combinations and values
of't, s, and g, may be referred to as the data cube for aggregate
f(Se) and time window W. The term data cube refers to the fact
the aggregates may be arranged as the vertices of a hypercube.
In general, given K dimension attributes, there are 2% aggre-
gates for each set of values of the dimension attributes, which
is the number of vertices of a hypercube in K dimensions.
[0078] As describe herein, a set of dimension attribute-
value pairs, such as T=t, G=g, may be referred to as a tuple.
Referring to the above example, the data cube for the aggre-
gate f(Se) allows rapid lookup of the aggregate of value
attribute Se for every tuple over timewindow W. In exemplary
embodiments, a data cube may store aggregates for a plurality
of different time windows, for example for a standard set of
time windows such as described herein.

[0079] With reference to FIG. 3, an exemplary data cube
300 is depicted for three dimension attributes: Topic (T) 310,
Location (L) 320 and Sentiment (S) 330. Topic (T) 310 may
include as instances, names for various topics, for example, as
grouped via a semantic hierarchy. Location (L) 320 may
include as instances, names of locations, for example names
of States in the united States. Sentiment (S) 330 may include
instances selected from positive negative or neutral. The
dimension attributes Topic (T) 310, Location (L) 320 and
Sentiment (S) 33 may be reflected along the vertices of the
data cube 300.

[0080] The data cube 300 may maintain for each tuple (t, 1,
s) of T, L, S an aggregate for a value attribute (in this case:
event count, i.e., the number of events processed for the tuple
(1,1, 5)). In exemplary embodiments, each tuple (t, 1, s) may be
associated with a slate for storing the event count. In some
embodiments the slate may further be associated with an
updater for updating the slate for anew event and a mapper for
mapping new events to the updater.

[0081] In exemplary embodiments, data cube 300 is
updated based on a new event. Thus, a new event may be
processed to identify one or more dimension attributes
therein. For example, a new event may state “I love living in
NYC,” from which dimension attributes Person (P), Location
(L) and Sentiment (S) may be extracted (for example P=user
L=NYC (New York City), and S=positive may be extracted.
The tuples of (P, L, S) implicated are as follows:

[0082] (user, NYC, positive)

[0083] (user, NYC,)

[0084] (user, , positive)

[0085] (, NYC, positive)

[0086] (user,)

[0087] (,NYC,)

[0088] (, positive)

[0089] (..)

[0090] Thus, overlapping tuples of (T, L, S) implicated by

the new event are:

[0091] (, NYC, positive)

[0092] (,NYC))

[0093] (., positive) and

[0094] (..)

[0095] Thus, the event count associated with each of the

four implicated tuples may be updated (for example, by incre-
menting the count by one).

May 24, 2012

[0096] Note that for an event containing [. dimension
attributes, M of which overlap with K dimension attributes of
a data cube, there are 2 tuples of the data cube which are
implicated (i.e. 2* tuples which overlap between the data
cube and the event). Thus, a mapper may be used generate the
2% tuples for the event and map the 2* subset thereof to the
data cube. An update may then be used update a slate associ-
ated with each of the 2* tuples received from the mapper.
Distributed architecture implementations for maintaining a
data cube are described in greater below

[0097] Data cube 300 advantageously maintains, in real
time, results for any prospective query using the framework
(T, L, S), of an event count over one or more pre-established
time windows. FIG. 3, illustrates three examples of queries
340a-c, the answers to which are maintained and therefore
pre-computed in data cube 300. For example, query 340a asks
“how many people are posting about Barack Obama in New
York?” The result to query 340a may be obtained by returning
the event count for the tuple (Barack Obama, New York, All),
for example the event count stored in the slate associated with
the tuple (Barack Obama, New York, All). As another
example, query 3405 asks “How many people in Arizona feel
positive of the new Medicare plan?”’ The result to query 3405
be obtained by returning the event count for the tuple (Medi-
care, Arizona, Positive). As another example, query 340c¢ asks
“How many people feel negative of Barack Obama across the
US?” The result to query 340¢ may obtained by returning the
event count for the tuple (Barrack Obama, United States (e.g.,
all states), Negative).

[0098] In exemplary embodiments, it is contemplated that
the number of the dimension of a data cube may be automati-
cally determined based on the types of attributes reflected in
the data stream. For example, event types with the greatest
frequencies, such as above a selected threshold, may be used
as the dimensions for the data cube. Thus, for example the
data stream may be analyzed to determine the best candidate
attributes for cube dimensions.

Naive Distributed Architecture Implementation:

[0099] Referring to FIG. 4, an exemplary implementation
of a distributed architecture 400 for maintaining a data cube
may include a mapper, for example, CubeMapper 410, and
one or more updaters, for example, CubeTupleUpdaters 420.
The mapper and/or updaters may be distributed to one or
more processing nodes in the distributed architecture, e.g.,
via a network architecture such as described herein, for
example with reference to FIG. 10.

[0100] The CubeMapper 410 may advantageously deter-
mine, for example based on a set of attribute-value pairs
extracted for an event, which data cubes to maintain. In exem-
plary embodiments, a data cube may be defined by a set of
dimension attributes (for example, Topic, Gender, State), and
an aggregation function for a value attribute. In exemplary
embodiments, a configuration file may list the data cubes of
interest, and give each data cube a name. The aggregation
function may be specified, for example, in javascript, as a
function that takes two parameters (the current value of the
aggregate and a new event) and returns a single value (the new
value of the aggregate). Note that as a special case, the current
value may be null, in which case the function may return the
aggregate corresponding to just the one event. The value of
the aggregate may be in any data structure/format, for
example a JSON object.

[0101] In some embodiments, a generated data cube may
apply only to specific kinds of topics. For example, the query

US 2012/0130940 A1

framework may call for a data cube specific for persons of
interest, such as customers, celebrities, etc., or for occasions
such as holidays, the Oscars, etc. Thus, in exemplary embodi-
ments the mapper may implement a selection function, based
on selection criterion, to filter out only a subset of events from
a data stream. The selection function may, for example,
accept a single parameter (the event) and return either True
(this event’s data should be part of this data cube) or False.
[0102] An example of a configuration file listing data
cube’s of interest is provided below:

Cubes.congfig:

CubeName: SentimentCube

[0103] Select Function: True ##all events

Dimensions: Topic, State, Gender

[0104] AggregateFunction: lambda(sentiment, event) { . ..
; return sentiment}

CubeName: OscarsVotes

[0105] SelectFunction: lambda(event) {return event.event_
id=oscars;}

Dimensions: Topic, Gender, Age

[0106] AggregateFunction: lambda(sentiment, event) { . . .
; return sentiment}

[0107] The CubeConfig file may advantageously be repli-
cated for reference at each processing node in the distributed
architecture.

[0108] The CubeMapper 410 may processes each eventina
data stream and determine which data cubes it is eligible for.
Suppose an event E with K dimension elements (for example,
K=2 dimension elements a and b depicted in FIG. 3) is eli-
gible for a data cube. The CubeMapper 410 constructs the 2
tuples from the event E (for example, the 22 tuples: (a), (b),
(a,b) and (All) depicted in FIG. 3) and generates an event E'
for each tuple. The key for each event E' is the pair (Cube-
Name, Tuple) and the value is the content event E, for
example, including a value attribute-value pair. The generated
events E* are sent on to the CubeTupleUpdaters 420.

[0109] Each CubeTupleUpdater 420 maintains a slate for
every (CubeName, Tuple) pair it receives. Thus, the
CubeTupleUpdater receives an event E' for a single tuple,
extracts an instance of a value attribute and applies the aggre-
gation function to add the instance to its store. In exemplary
embodiments, The updater keeps track of the aggregate value
for a plurality of time windows for example a standard set of
time windows such as described herein. Thus, a query for any
tuple and any Time Window may be answered via a quick
slate lookup.

Alternative Distributed Architecture Implementations:

[0110] There are two potential problems with the naive
implementation described above. First, for a data cube of K
dimensions, the CubeMapper 410 may generate 2K events for
each incoming event. This leads to very high fan-out for cubes
with K>3. Second since, statistics are stored for every pos-
sible tuple that occurs in the data, The number of cube slates
required is proportional to the number of possible combina-
tions of dimension values that actually occurs in the data. For
example, suppose there are 50 states, 2 genders, and 1 million
topics. The number of slates needed may approach 50x2x1

May 24, 2012

million or 100 million. This may be impractical from a stor-
age perspective. Exemplary alternate implementations of a
distributed architecture present herein may help mitigate/
prevent such potential problems.

[0111] Akey property of data stream analytics is that events
don’t exist in a vacuum but rather often reflect and are influ-
enced by a collective pulse. Thus, events often exhibit a great
deal of clustering, for example, of topics, products, people,
etc. Moreover, it is expected that queries to the data cube
involve instances of dimension elements that are of interest to
a large number of people. Taking advantage of the forgoing
assumptions, tuples may be advantageously filtered based on
frequency. Frequency filtering may be implemented, for
example, by selecting a small time window (for example 1
minute) referred to as the delta window D. Let S be the set of
all tuples corresponding to all social updates during a delta
window D. A threshold d is applied to filter out all tuples in S
with frequency less than § from being sent to updaters (for
example, CubeTupleUpdaters 320 of FIG. 3). For example, &
may be selected to be 1 or 2. A simple experiment with actual
data suggests that setting 0 to 2 may eliminate over 90% of
tuples in a delta window of 1 minute. Moreover, a qualitative
examination of such tuples indicated that the eliminated
tuples generally came from events that are not really of inter-
est (for example, spam, outliers of some sort, or just semantic
analysis errors). Thus, filtering also a second effect of reduc-
ing noise, e.g., from semantic analysis errors. On the other
hand, tuples that do occur frequently in a 1-minute window
often correlate well with the global interests. Frequency fil-
tering of tuples thus both improves performance and
improves the quality of the data cube.

[0112] FIG. 5 depicts an exemplary distributed architecture
500 for maintaining a data cube while implementing fre-
quency filtering. Thus, the distributed architecture 500 may
include a mapper (CubeS elector 510) and 3 types of updaters
(CubeTupleGenerators 520, the CubeTupleCollectors 530,
and the CubeTupleUpdaters 540).

[0113] Suppose T is a current timestamp. Interval 1 may
then be defined as follows: I=floor(T/D), where D is the delta
window (e.g., 1 minute). That is, the interval [counts time in
units of the Delta Window. The CubeTupleGenerators 520
buffer all tuples with the same Interval, and then dispatch
them to the CubeTupleCollectors 530.

[0114] In exemplary embodiments, an assumption may be
made that the stream has a large number of events in each
Delta Window—that is, the Delta Window is very large com-
pared to the average gap between events (for example, Twit-
ter™, processes approximately 100,000 tweets™ in a Delta
Window of 1 minute resulting in an average inter-event gap of
less than a millisecond). Thus, in exemplary embodiments,
one may detect when an interval has ended and the next one
has begun based on a processing of the first event whose
Interval is higher than the current Interval. Alternatively,
intervals may be tracked independent of events received.

[0115] In some embodiments, intervals may be based on
e.g., a requisite number of events received rather than a time
frame (for example, provided that the integration of such
batches over the one or more time windows being tracked
results in an acceptable margin of error). In other embodi-
ments, the threshold & may be variable, e.g., based on a
changing frequency of events in the data stream. In some
embodiments, a different threshold may be applied depend-
ing on the number of dimension attributes-value pairs in the

US 2012/0130940 A1

tuple. Thus, frequency filtering may account for variations in
event traffic when filtering tuples.

[0116] With reference again to FIG. 5, for each data cube,
there may be P CubeTupleGenerator slates and P CubeTuple-
Collector slates, with keys 1, . . ., P. So as to ensure uniform
distribution across the cluster, P may be selected to be a small
multiple of the number of processing nodes in the distributed
architecture 500. For example, if the distributed architecture
500 includes 8 processing nodes, one might select P=32 or 64.

[0117] The CubeSelector 510 is similar to the CubeMapper
210 in the naive implementation. It uses the config file to
determine if the current Event E is eligible for a data cube. If
it is, the CubeSelector 510 uses a hash function to map the
timestamp of the event to one of P values, and emits to stream
X an event E' whose key is (CubeName, P) and value is the
content of the event E.

[0118] Each CubeTupleGenerator 520 (CTG) subscribes to
stream X. A CTG generates all possible tuples from an event
E' and maintains a table with 3 columns: Tuple, Aggregat-
eValue, and Count. Here Count is the number of events that
have contributed to this tuple. The CTG also stores the Inter-
val I of the first event it received during this Delta Window.
When the CTG receives a new event E', it computes its
Interval J. If J=1, the CTG enumerates the tuples of E* and
updates its table accordingly. On the other hand, if J>I, the
CTG starts distributing its data as follows:

[0119] For each tuple, the CTG uses a hash function to map
the tuple into one of P buckets 0,1 . . ., P-1. For each bucket
in1,...P-1, the CTG creates and emits to stream Y an event
E? whose key is the bucket number, and whose value is the set
of rows in its table whose tuple maps to that bucket number.
The value also indicates the Interval I. Once the CTG has sent
out all P events, it empties its tables and stores J as the new
Interval value. The CTG then proceeds to process a newly
received event E*.

[0120] Each CubeTupleCollector 530 (CTC) subscribes to
stream Y. For each interval I, a CTC slate receives P events ,
one from each CTG slate. The CTC maintains a table with 3
columns: Tuple, AggregateValue, Count. The Aggregat-
eValue for a tuple is the aggregate of the partial Aggregat-
eValues for that tuple from each CTG, and the Count is the
sum of the corresponding partial counts. The CTC also keeps
track of the current interval | and a message counter M, both
initialized to 0. When the CTC receives an event E* from the
CTG with interval J, it first compares I and J:

[0121] IfI=], the CTC table is updated using the tuples in
the event, and M is incremented by 1. If M=P (i.e., the CTC
has received events from all the P CTCs), the CTC knows it
has received all the tuples for the interval 1. At this point, the
CTG discards all infrequent tuples with count less than the
threshold 8. For every frequent tuple, it creates a new event E>
whose key is the pair (CubeName, Tuple) and whose value
contains the Aggregate and the Count. The event E* is pub-
lished to stream Z, to which the CubeTupleUpdaters 540
subscribe. The CTC then empties its table, sets its current
interval to I+1 and resets M to 0.

[0122] IfJ>I, this means is that the CTC has received tuples
for the next interval before it receives all the tuples for the
current interval. Assuming that the aforementioned assump-
tion about the Delta Interval being much larger than the aver-
age interval between events holds true, the only real reason
for this is a node failure, which should be relatively infre-
quent. In this case, the interval I is declared closed, the tuples

May 24, 2012

accumulated thus far are filtered. [is set to be equal to J, M to
1, and process the newly arrived event.

[0123] Finally, If J<I, a delayed event for an interval that is
past was received. This event is ignored.

[0124] Each CubeTupleUpdater 540 maintains a slate for
every (CubeName, Tuple) pair it receives. Thus, the
CubeTupleUpdater receives an event E> for a single tuple,
extracts an instance of a value attribute and applies the aggre-
gation function to add the instance to its store. In exemplary
embodiments, The updater keeps track of the aggregate value
for a plurality of time windows for example a standard set of
time windows such as described herein. Thus, a query for any
tuple and any Time Window may be answered via a quick
slate lookup.

[0125] With reference to FIGS. 6a-g an exemplary worked
example of the distributed architecture 500 is depicted, dem-
onstrating exemplary contents of CTG slates 620 and CTC
slates 630 of a CTG and CTC such as described above with
reference to FI1G. 5. For the worked example, depicted , a data
cube C with two dimensions (A and X) is assumed. The
aggregate is SUM and the filtering threshold d=1. During the
Delta Window, 4 tuples arrive. In FIG. 64, an event E includ-
ing attribute-value pairs A=a X=x and value attribute V=5 is
received by the Cube Selecter 610. In FIG. 65, an event E
including attribute-value pairs B=b Y=y and value attribute
V=3 is received by the Cube Selecter 610. In FIG. 6¢, an event
E including attribute-value pairs A=a Y=y and value attribute
V=2 is received by the Cube Selecter 610. In FIG. 6d an event
E including attribute-value pairs A=a Y=y and value attribute
V=4 is received by the Cube Selector 610. In each case, Cube
Selecter 610 uses the config file to determine if the Event E is
eligible for a data cube, for example data cube C. If it is, the
CubeSelector 610 uses a hash function to map the timestamp
of the event to one of P Values and emits an event E' whose
key is (CubeName, P) and value is the content of the event E.
As depicted in FIGS. 6a-d CTG slates 620 buffer all tuples
with the same interval. More particularly the CTG slates 620
maintains a table with 3 columns: Tuple, AggregateValue, and
Count. With reference to FIG. 6e, once the interval is closed,
a hash function to map each from the CTG slates 620 tuple
into one of P buckets 0,1 . . ., P-1, for example buckets 625
of FIG. 6e. For each bucket in 1,. . . P-1, the creates and emits
an event E* whose key is the bucket number, and whose value
is the set of rows in its table whose tuple maps to that bucket
number. With reference to FIGS. 6f'and 6g, for each interval
I, CTC slates 630 receive P events, one from each CTG slate
620. The CTC slates 630 maintains a table with 3 columns:
Tuple, AgregateValue, Count. As depicted, once the CTG
slate has sent out its events E?, it empties its tables and begins
processing events E' for a new interval. As depicted in Figure
g6, once the CTC slates 630 have received all the tuples for a
given interval all infrequent tuples, for example with count
less than the threshold d are discarded. Then for every fre-
quent tuple, a new event E? is created whose key is the pair
(CubeName, Tuple) and whose value contains the Aggregate
and the Count. The event E? is published to stream Z sub-
scribed to by CubeTupleUpdaters. Data cube C could then be
updated for eligible events E>.

Leaderboard Queries:

[0126] Exemplary implementations presented above, pri-
marily related to point aggregates—wherein a tuple (a point
in the hypercube) is specified and the desired result of the
query is the corresponding aggregate value. The storage

US 2012/0130940 A1

media, systems and methods herein, however, are not limited
to such implementations. Indeed in some embodiments, the
data cube is used tracks results for different type of queries
for, example, leaderboard queries.

[0127] A leaderboard query specifies a tuple and a leader-
board attribute, and asks for the Top-N values of the leader
board attribute among events that satisfy the tuple. For
example, a leaderboard query might pose the following ques-
tion:

What were the Top 10 most popular topics posted about by
people in Arizona between 10 am and 11 am today?

In SQL:

[0128] SELECT topic, count(eventid) as freq

FROM events e

WHERE t.state="AZ” and t.timestamp >=“10 am” AND
t.timestamp<“11 am”

GROUP BY topic

ORDER BY freq

LIMIT 10

[0129] Other exemplary leaderboard queries might pose
the following question:

What were the Top 10 least popular topics posted about by
people in Arizona between 10 am and 11 am today?

What were the Top 10 locations closest to New York where
users posted about a sales event.

[0130] The data cube may easily be extended to support
leaderboard queries. In the simple case, if the leaderboard
attribute has a small and known set of values (e.g., state or
gender), one can simply look up the slates corresponding to
all possible values and pick the Top-N. The harder case occurs
when the leaderboard attribute can take on a large number of
values (or example, topic, product, URL, domain). In this
case we cannot possibly examine all slates for all values of the
attribute.

[0131] Inexemplary embodiments,leaderboard queries are
indicated by adding a line to the data cube config file to
indicate the leaderboard dimensions for each cube and the
value for “N” (for Top-N queries; e.g., 10). For example:

CubeName: SentimentCube

[0132] Select Function: True ##all events

Dimensions: Topic, State, Gender
Leaderboards: Topic(10)

[0133] AggregateFunction: lambda(sentiment, event) { . ..
; return sentiment}

[0134] To simplify the present description, assume there is
at most one leaderboard dimension in each data cube (ss
would be appreciated by one of ordinary skill in the art, it is
straightforward to support more given the description for
one). Non-leaderboard dimensions of the data cube may be
referred to as ordinary dimensions.

[0135] Recall that in the distribution step of the CTG atuple
is hashed into one of P buckets. For the purposes of a leader-
board query the hash function is applied only to the ordinary
dimensions of each tuple. This ensures all tuples of the form:
A=a, B=b, C=*, where C is the leaderboard attribute and A
and B are ordinary attributes, end up at the same slate of the
CTC. The CTC can now compute the Top-N leaderboard
values for each tuple, and pass them on to the CTU in the

May 24, 2012

event it constructs for the tuple. For example, the Top-N
values may be characterized as resulting in the highest aggre-
gates, the lowest aggregates, and the aggregates closest to a
selected value, etc.

[0136] Thus, the CTU may maintain the leaderboard for
each time window. Where a time window is used for filtering
by the CTC, the CTU may get the leaderboard directly from
the CTC. Leaderboards for larger time windows are approxi-
mated using those for the smaller time windows. For
example, an hourly leaderboard may be computed by looking
at the Top 10 for each minute of the hour, and summing the
minute-by-minute values. While it is possible to make some
errors using this method (for example, where the most fre-
quent item during the hour was not in the top 10 for any
minute of the hour) accurate results are generally achieved.

K-grams

[0137] One potential disadvantage in querying using
dimensions requiring semantic analysis, is that the semantic
analysis is limited by the available hierarchy. For example, a
semantic analysis engine can only tag instances it recognizes.
An interesting advantage the storage media, systems and
methods described herein is that the data cube may be used to
maintain statistics on topics products, locations etc. (collec-
tively, referred to as interesting topics or topics of interest)
without the help of semantic analysis. Thus in exemplary
embodiments a “K-Gram” is added as one of the data cube
dimensions, with a relative high threshold 6 (e.g., 50). Thus,
aslateis automatically created and maintained for any k-gram
that was mentioned very often in a delta time window. In
exemplary embodiments, a TF.IDF threshold may be instead
of a pure frequency threshold to achieve better results. Thus,
the data cube may be used to identify trending k-grams and
automatically maintains stats for them without help from
semantic analysis. In exemplary embodiments identified top-
ics of interest can be communicated to the semantic analysis
engine and “candidate topics” and the maintained statistics
relating thereto can be used by the engine to whether to
incorporate each candidate topic into the taxonomy.

Exemplary Methods

[0138] FIGS. 7a-c, illustrate exemplary methods according
to the present disclosure.

[0139] With reference to FIG. 7a, an exemplary method
710 is depicted for performing real time analytics on stream-
ing data. Method 710 generally includes steps of: (712) pro-
cessing events in a data stream to extract from each event a set
of attribute-value pairs for one or more dimension attributes
and one or more value attributes; (714) identifying one or
more tuples in a multidimensional data structure implicated
by the extracted attribute-value pairs for the one or more
dimension attributes; and (716) for each implicated tuple,
updating one or more stored aggregates associated therewith,
based on the extracted attribute-value pairs for the one or
more value attributes.

[0140] With reference to FIG. 7b, an exemplary method
720 is depicted for performing real time analytics on stream-
ing data. Method 720 generally includes steps of (722) estab-
lishing an analytics platform framework characterized by one
or more time windows, one or more dimension attributes, and
one or more value attribute; and (724) generating a first multi-
dimensional data structure for maintaining, for each tuple of

US 2012/0130940 A1

the one or more dimension attributes, an aggregate of each of
the one or more value attributes over each of the one or more
time windows.

[0141] Withreference to FIG. 7¢ an exemplary method 730
is depicted for performing real time analytics on streaming
data. Method 730 generally includes steps of: (732) process-
ing a data stream to maintain a plurality of stored aggregates
for a universe of prospective queries extrapolated from a
pre-established framework of possible query parameters; and
(734) returning one of the stored aggregates in response to a
query.

[0142] Tt is explicitly contemplated that the storage media,
systems and methods presented herein may include one or
more programmable processing units having associated
therewith executable instructions held on one or more com-
puter readable medium, RAM, ROM, hard drive, and/or hard-
ware. In exemplary embodiments, the hardware, firmware
and/or executable code may be provided, for example, as
upgrade module(s) for use in conjunction with existing infra-
structure (for example, existing devices/processing units).
Hardware may, for example, include components and/or
logic circuitry for executing the embodiments taught herein
as a computing process.

[0143] Displays and/or other feedback means may also be
included to convey detected/processed data, for example
adjusted output representative of a particle characteristic. The
display and/or other feedback means may be stand-alone or
may be included as one or more components/modules of the
processing unit(s). In exemplary embodiments, the display
and/or other feedback means may be used to facilitate query-
ing a data cube. In other embodiments, the display may be
used to visualize, in real-time, various social statistics main-
tained by the data cube. For example, as depicted in FIGS. 8a
and 84, real-time social statistics may be overlaid on a geo-
graphic map.

[0144] The actual software code or control hardware which
may be used to implement some of the present embodiments
is not intended to limit the scope of such embodiments. For
example, certain aspects of the embodiments described
herein may be implemented in code using any suitable pro-
gramming language type such as, for example, assembly
code, C, C# or C++ using, for example, conventional or
object-oriented programming techniques. Such code is stored
or held on any type of suitable non-transitory computer-read-
able medium or media such as, for example, a magnetic or
optical storage medium.

[0145] As used herein, a “processor,” “processing unit,”
“computer” or “computer system” may be, for example, a
wireless or wire line variety of a microcomputer, minicom-
puter, server, mainframe, laptop, personal data assistant
(PDA), wireless e-mail device (for example, “BlackBerry,”
“Android” or “Apple,” trade-designated devices), cellular
phone, pager, processor, fax machine, scanner, or any other
programmable device configured to transmit and receive data
over a network. Computer systems disclosed herein may
include memory for storing certain software applications
used in obtaining, processing and communicating data. It can
be appreciated that such memory may be internal or external
to the disclosed embodiments. The memory may also include
non-transitory storage medium for storing software, includ-
ing a hard disk, an optical disk, floppy disk, ROM (read only
memory), RAM (random access memory), PROM (program-
mable ROM), EEPROM (electrically erasable PROM), flash
memory storage devices, or the like.

2 <

May 24, 2012

[0146] FIG. 9 depicts a block diagram representing an
exemplary computing device 900 that may be used as a pro-
cessing node (also referred to as a worker node) for aggregat-
ing and/or storing data as described herein, for example a
processing node in a distributed architecture as described
herein. The computing device 900 may be any computer
system, such as a workstation, desktop computer, server, lap-
top, handheld computer, tablet computer (e.g., the iPad™
tablet computer), mobile computing or communication
device (e.g., the iPhone™ mobile communication device, the
Android™ mobile communication device, and the like), or
other form of computing or telecommunications device that is
capable of communication and that has sufficient processor
power and memory capacity to perform the operations
described herein. A distributed computational system may be
provided comprising a plurality of such computing devices.
[0147] The computing device 900 includes one or more
non-transitory computer-readable media having encoded
thereon one or more computer-executable instructions or
software for implementing exemplary methods described
herein. The non-transitory computer-readable media may
include, but are not limited to, one or more types of hardware
memory, non-transitory tangible media (for example, one or
more magnetic storage disks, one or more optical disks, one
ormore USB flash drives), and the like. For example, memory
906 included in the computing device 900 may store com-
puter-readable and computer-executable instructions or soft-
ware for implementing exemplary embodiments. The com-
puting device 900 also includes processor 902 and associated
core 904, and in some embodiments, one or more additional
processor(s) 902' and associated core(s) 904' (for example, in
the case of computer systems having multiple processors/
cores), for executing computer-readable and computer-ex-
ecutable instructions or software stored in the memory 906
and other programs for controlling system hardware. Proces-
sor 902 and processor(s) 902' may each be a single core
processor or multiple core (904 and 904') processor.

[0148] Virtualization may be employed in the computing
device 900 so that infrastructure and resources in the com-
puting device may be shared dynamically. A virtual machine
914 may be provided to handle a process running on multiple
processors so that the process appears to be using only one
computing resource rather than multiple computing
resources. Multiple virtual machines may also be used with
one processor.

[0149] Memory 906 may include a computer system
memory or random access memory, such as DRAM, SRAM,
EDO RAM, and the like. Memory 906 may include other
types of memory as well, or combinations thereof. Memory
906 may be used to store one or more slates on a temporary
basis, for example, in cache.

[0150] A user may interact with the computing device 900
through a visual display device 918, such as a screen or
monitor, that may display one or more interfaces 920 that may
be provided in accordance with exemplary embodiments. The
visual display device 918 may also display other aspects,
elements and/or information or data associated with exem-
plary embodiments. The computing device 900 may include
other I/O devices for receiving input from a user, for example,
a keyboard or any suitable multi-point touch interface 908, a
pointing device 910 (e.g., a mouse, a user’s finger interfacing
directly with a display device, etc.). The keyboard 908 and the
pointing device 910 may be coupled to the visual display
device 918. The computing device 900 may include other

US 2012/0130940 A1

suitable conventional I/O peripherals. In exemplary embodi-
ments, the one or more of the interfaces 920 includes an
application program interface (API).

[0151] The computing device 900 may include one or more
audio input devices 924, such as one or more microphones,
that may be used by a user to provide one or more audio input
streams.

[0152] The computing device 900 may include one or more
non-transitory storage devices 924, such as a durable disk
storage (which may include any suitable optical or magnetic
durable storage device, e.g., RAM, ROM, Flash, USB drive,
or other semiconductor-based storage medium), a hard-drive,
CD-ROM,; or other non-transitory computer readable media,
for storing data and computer-readable instructions and/or
software that implement exemplary embodiments as taught
herein. For example, the storage device 924 may provide a
slate storage 926 for storing computer-executable instruc-
tions for implementing the social genome data structure as
described herein, for example for storing an updating (via one
ormore updaters) one or more slates, as described herein. The
storage device 924 may store one or more map modules 932
and one or more update modules 934, as described herein.
The storage device 924 may be provided on the computing
device 900 or provided separately or remotely from the com-
puting device 900. The storage device 924 may be used to
store one or more slates in a durable manner.

[0153] Exemplary mappers and updaters may be program-
matically implemented by a computer process in any suitable
programming language, for example, a scripting program-
ming language, an object-oriented programming language
(e.g., Java), and the like. In an exemplary object-oriented
implementation, a general Mapper class or interface and
Updater class or interface may be defined by the system to
generally specify attributes and functionality of a generic
update operation. For each desired update operation, a sub-
class may be created based on the Updater class. One or more
object instances may be created from each sub-class at a
processor node, for example, a CubeTupleGenerator object
may be instantiated from a CubeTupleGenerator sub-class.
[0154] The computing device 900 may include a network
interface 912 configured to interface via one or more network
devices 922 with one or more networks, for example, Local
Area Network (LAN), Wide Area Network (WAN) or the
Internet through a variety of connections including, but not
limited to, standard telephone lines, LAN or WAN links (for
example, 802.11, T1, T3, 56 kb, X.25), broadband connec-
tions (for example, ISDN, Frame Relay, ATM), wireless con-
nections, controller area network (CAN), or some combina-
tion of any or all of the above. The network interface 912 may
include a built-in network adapter, network interface card,
PCMCIA network card, card bus network adapter, wireless
network adapter, USB network adapter, modem or any other
device suitable for interfacing the computing device 900 to
any type of network capable of communication and perform-
ing the operations described herein. The network device 922
may include one or more suitable devices for receiving and
transmitting communications over the network including, but
not limited to, one or more receivers, one or more transmit-
ters, one or more transceivers, one or more antennae, and the
like.

[0155] The computing device 900 may run any operating
system 916, such as any of the versions of the Microsoft®
Windows® operating systems, the different releases of the
Unix and Linux operating systems, any version of the

May 24, 2012

MacOS® for Macintosh computers, any embedded operating
system, any real-time operating system, any open source
operating system, any proprietary operating system, any
operating systems for mobile computing devices, or any other
operating system capable of running on the computing device
and performing the operations described herein. In exemplary
embodiments, the operating system 916 may be run in native
mode or emulated mode. In an exemplary embodiment, the
operating system 916 may be run on one or more cloud
machine instances.

[0156] FIG. 10 depicts an exemplary network environment
1000 suitable for a distributed implementation of exemplary
embodiments. The network environment 1000 may include
one or more servers 1002 and 1004 coupled to one or more
clients 1006 and 1008 via a communication network 1010.
The network interface 912 and the network device 922 of the
computing device 900 enable the servers 1002 and 1004 to
communicate with the clients 1006 and 1008 via the commu-
nication network 1010. The communication network 1010
may include, but is not limited to, the Internet, an intranet, a
LAN (Local Area Network), a WAN (Wide Area Network), a
MAN (Metropolitan Area Network), a wireless network, an
optical network, and the like. The communication facilities
provided by the communication network 1010 are capable of
supporting distributed implementations of exemplary
embodiments.

[0157] Inan exemplary embodiment, the servers 1002 and
1004 may provide the clients 1006 and 1008 with computer-
readable and/or computer-executable components or prod-
ucts under a particular condition, such as a license agreement.
In some exemplary embodiments, the computer-readable
and/or computer-executable components or products pro-
vided by the servers may include those for providing one or
more real-time data streams to worker processes at worker
nodes. The clients 1006 and 1008 may process the data
streams using the computer-readable and/or computer-ex-
ecutable components and products provided by the servers
1002 and 1004. In some exemplary embodiments, the com-
puter-readable and/or computer-executable components or
products provided by the servers may include those for pro-
viding and executing one or more map and/or update opera-
tions, for example using one or more mappers or updaters.
The clients 1006 and 1008 may execute the map and update
operations using the computer-readable and/or computer-ex-
ecutable components and products provided by the servers
1002 and 1004. In some exemplary embodiments, the clients
1006 and 1008 may transmit events generated by update
operations to the servers 1002 and 1004 for publication in one
or more data streams. In some exemplary embodiments, the
clients 1006 and 1008 may transmit one or more slates created
orupdated by update operations to the servers 1002 and 1004
for persistent storage on a disk storage or for storage in
memory, e.g., in cache.

[0158] Alternatively, in another exemplary embodiment,
the clients 1006 and 1008 may provide the servers 1002 and
1004 with computer-readable and computer-executable com-
ponents or products under a particular condition, such as a
license agreement. In some exemplary embodiments, the
computer-readable and/or computer-executable components
or products provided by the clients may include those for
providing one or more real-time data streams to worker pro-
cesses. The servers 1002 and 1006 may process the data
streams using the computer-readable and/or computer-ex-
ecutable components and products provided by the clients

US 2012/0130940 A1

1006 and 1008. In some exemplary embodiments, the com-
puter-readable and/or computer-executable components or
products provided by the clients may include those for pro-
viding and executing one or more map and/or update opera-
tions. The servers 1002 and 1004 may execute the map and
update operations using the computer-readable and/or com-
puter-executable components and products provided by the
clients 1006 and 1008. In some exemplary embodiments, the
servers 1002 and 1004 may transmit events generated by
update operations to the clients 1006 and 1008 for publication
in one or more data streams. In some exemplary embodi-
ments, the servers 1002 and 1004 may transmit one or more
slates created or updated by update operations to the clients
1006 and 1008 for persistent storage on a disk storage or for
storage in memory, e.g., in cache.

[0159] In exemplary embodiments one or more mappers
and one or more updaters for example map module 932 and
update module 934 of FIG. 9, may be distributed to through-
out various processing nodes of the network environment
1000, for example nodes 10124a-d.

[0160] Although the teachings herein have been described
with reference to exemplary embodiments and implementa-
tions thereof, the disclosed systems, methods and non-tran-
sitory storage medium are not limited to such exemplary
embodiments/implementations. Rather, as will be readily
apparent to persons skilled in the art from the description
taught herein, the disclosed storage media, systems and meth-
ods are susceptible to modifications, alterations and enhance-
ments without departing from the spirit or scope hereof.
Accordingly, all such modifications, alterations and enhance-
ments within the scope hereof are encompassed herein.

What is claimed:
1. A method for performing real time analytics on stream-
ing data, the method comprising:
processing events in a data stream to extract from each
event a set of attribute-value pairs for one or more
dimension attributes and one or more value attributes;

identifying one or more tuples in a multidimensional data
structure implicated by the extracted attribute-value
pairs for the one or more dimension attributes;

for each implicated tuple, updating one or more stored

aggregates associated therewith, based on the extracted
attribute-value pairs for the one or more value attributes.

2. The method of claim 1 further comprising tracking over
an interval a tuple frequency for each of the implicated tuples,
wherein the updating the one or more stored aggregates
includes discarding each implicated tuple with a low tuple
frequency over the interval.

3. The method of claim 1 further comprising tracking over
an interval, for each value attribute, aggregates for a first
plurality of implicated tuples having same attribute-value
pairs for zero or more ordinary dimension attributes and
different attribute-value pairs for one or more leaderboard
dimension attributes, and determining a top-N values for the
one or more leadership dimension attributes over the interval.

4. The method of claim 3, wherein the Top-N values are
characterized as resulting in one of (i) the highest aggregates
(i1) the lowest aggregates, and (iii) the aggregates closest to a
selected value, over the interval.

5. The method of claim 3 further comprising determining a
set of top-N values for each of a plurality of intervals in a time
window and determining a top-N values for the one or more
leadership dimensions attributes over the time window based
on the plurality of sets of top-N values.

May 24, 2012

6. The method of claim 1, wherein the one or more dimen-
sion attributes include a K-Gram for identifying topics of
interest.

7. The method of claim 6, further comprising tracking over
an interval a tuple frequency for each of the implicated tuples
including a K-Gram, wherein the updating the one or more
stored aggregates includes discarding each implicated tuple
with a low tuple frequency over the interval, whereby statis-
tics for trending K-Gram-value pairs are tracked.

8. A method for implementing a real time analytics plat-
form, the method comprising:

establishing an analytics platform framework character-
ized by one or more time windows, one or more dimen-
sion attributes, and one or more value attribute;

generating a first multi-dimensional data structure for
maintaining, for each tuple of the one or more dimension
attributes, an aggregate of each of the one or more value
attributes over each of the one or more time windows.

9. A system for performing real time analytics on streaming
data, the system comprising:

a processor for processing an event in a data stream to
extract a set of attribute-value pairs for one or more
dimension attributes and one or more value attributes;

a mapper for identifying one or more tuples in a multidi-
mensional data structure implicated by the extracted
attribute-value pairs for the one or more dimension
attributes; and

one or more updaters for updating, for each implicated
tuple, one or more stored aggregates associated there-
with, based on the extracted attribute-value pairs for the
one or more value attributes.

10. The system of claim 9, wherein the system is config-
ured to track over an interval a tuple frequency for each of the
implicated tuples, wherein the updating the one or more
stored aggregates includes discarding each implicated tuple
with a low tuple frequency over the interval.

11. The system of claim 9 wherein the system is configured
to: (i) update, over an interval, for each value attribute, aggre-
gates for a first plurality of implicated tuples having same
attribute-value pairs for zero or more ordinary dimension
attributes and different attribute-value pairs for one or more
leaderboard dimension attributes, and (ii) determine a top-N
values for the one or more leadership dimension attributes
over the interval.

12. The system of claim 9, wherein the one or more dimen-
sion attributes include a K-Gram for identifying topics of
interest, wherein the system is configured to track over an
interval a tuple frequency for each of the implicated tuples
including a K-Gram, wherein the updating the one or more
stored aggregates includes discarding each implicated tuple
with a low tuple frequency over the interval, whereby statis-
tics for trending K-Gram-value pairs are tracked.

13. A multi-dimensional data structure for implementing a
real-time analytics platform characterized by one or more
time windows, one or more dimension attributes, and one or
more value attributes, the data structure comprising:

aplurality of tuples associated with the one or more dimen-
sion attributes; and

a slate associated with each tuple for maintaining an aggre-
gate for each of the one or more value attributes over
each of the one or more time windows.

14. A method for performing real-time analytics on a data

stream, the methods comprising:

US 2012/0130940 A1

processing a data stream to maintain a plurality of stored
aggregates for a universe of prospective queries extrapo-
lated from a pre-established framework of possible
query parameters;

returning one of the stored aggregates in response to a
query.

15. A system for performing real-time analytics on a data

stream the system comprising:

a processor for processing a data stream to maintain a
plurality of stored aggregates for a universe of prospec-
tive queries extrapolated from a pre-established frame-
work of possible query parameters; and

memory for storing the plurality of stored aggregates.

16. The system of claim 15, further comprising an interface
for providing a query, wherein the processor is configured to
return one of the stored aggregates in response to the query.

17. A multi-dimensional data structure for implementing a
real-time analytics platform, the data structure comprising:

aplurality of stored tuples each representing a set of search
query parameters for prospective queries extrapolated
from a pre-established framework of possible query
parameters; and

one or more stored aggregates associated with each of the
stored tuples, wherein each aggregate represents a result
for a prospective query characterized by the set of search
query parameters represented in the tuple associated
with that aggregate.

18. A non-transitory computer readable medium storing

processor executable instructions for performing real time
analytics on streaming data, including instructions for:

May 24, 2012

processing events in a data stream to extract from each
event a set of attribute-value pairs for one or more
dimension attributes and one or more value attributes;
identifying one or more tuples in a multidimensional data
structure implicated by the extracted attribute-value
pairs for the one or more dimension attributes;
for each implicated tuple, updating one or more stored
aggregates associated therewith, based on the extracted
attribute-value pairs for the one or more value attributes.
19. A non-transitory computer readable medium storing
processor executable instructions for performing real time
analytics on streaming data, including instructions for:
establishing an analytics platform framework character-
ized by one or more time windows, one or more dimen-
sion attributes, and one or more value attribute;
generating a first multi-dimensional data structure for
maintaining, for each tuple of the one or more dimension
attributes, an aggregate of each of the one or more value
attributes over each of the one or more time windows.
20. A non-transitory computer readable medium storing
processor executable instructions for performing real time
analytics on streaming data, including instructions for:
processing a data stream to maintain a plurality of stored
aggregates for a universe of prospective queries extrapo-
lated from a pre-established framework of possible
query parameters; and
returning one of the stored aggregates in response to a

query.

