
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/013094.0 A1

Gattani et al.

US 2012013 0940A1

(43) Pub. Date: May 24, 2012

(54)

(75)

(73)

(21)

(22)

(60)

REAL-TIME ANALYTICS OF STREAMING
DATA

Inventors: Abhishek Gattani, Sunnyvale, CA
(US); Anand Rajaraman, Palo
Alto, CA (US)

Assignee: WAL-MART STORES, INC.,
Bentonville, AR (US)

Appl. No.: 13/300,523

Filed: Nov. 18, 2011

Related U.S. Application Data

Provisional application No. 61/415,279, filed on Nov.
18, 2010, provisional application No. 61/415,282,
filed on Nov. 18, 2010.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/600; 707/791; 707/E17.056
(57) ABSTRACT

Storage media, systems and methods are disclosed herein for
analyzing data streams in real time. More particularly, storage
media, Systems and methods are presented for processing
data streams to calculate results for prospective queries. The
results may be advantageously computed prior to the formu
lation of the specific query, for example, based on a pre
established framework of potential query parameters. More
particularly, a universe of potential queries may be extrapo
lated from the pre-established framework of potential query
parameters. Results for each of the potential queries may
them be tracked in real time. For example, results for each of
the potential queries may be continuously updated based on
real-time processing of events in a data stream.

Patent Application Publication May 24, 2012 Sheet 2 of 10 US 2012/013094.0 A1

3.333

/

Patent Application Publication May 24, 2012 Sheet 3 of 10 US 2012/013094.0 A1

:3:

: 8 s

s

Patent Application Publication May 24, 2012 Sheet 4 of 10 US 2012/013094.0 A1

Patent Application Publication May 24, 2012 Sheet 5 of 10 US 2012/013094.0 A1

&

Patent Application Publication May 24, 2012 Sheet 6 of 10 US 2012/013094.0 A1

8:8 (xxxx
8 {x
& &

Patent Application Publication May 24, 2012 Sheet 7 of 10 US 2012/013094.0 A1

XX

:::::::
& 3 :

Patent Application Publication May 24, 2012 Sheet 8 of 10 US 2012/013094.0 A1

Patent Application Publication May 24, 2012 Sheet 9 of 10 US 2012/013094.0 A1

{xxxxstiagxxixx:

*{xxx:8:t. i2.

Corets, it Six::ge, 8.3:

Wistiai ispiay Sixte: Sixxage
38wice, st

&::::::::

is:
- -: Xixiii-xxii: t:ki. it:8:3xx

888&::
interix:e. Si

&:xxx
&isig Mixiaie

3:

pxiste Xixiaie
s:

{xati:
Sysis:.

Patent Application Publication May 24, 2012 Sheet 10 of 10 US 2012/013094.0 A1

xxxxix.

::::::

too

*igate is

US 2012/013 094.0 A1

REAL-TIME ANALYTCS OF STREAMING
DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application claims priority to U.S. Pro
visional Patent Application No. 61/415,279, filed Nov. 18,
2010 (entitled “Social Genome'), and U.S. Provisional Patent
Application No. 61/415,282, filed Nov. 18, 2010 (entitled
“Managing Real-Time Data Streams'). This application also
relates to U.S. Provisional Patent Application No. 61/345,252
entitled “Content Feed,” filed May 17, 2010, U.S. patent
application Ser. No. 13/106,706 entitled “Processing Data
Feeds.” filed May 12, 2011, a U.S. non-provisional patent
application titled “Processing Data Feeds.” filed Nov. 18,
2011 (Attorney Docket No. 114826-50302), a U.S. non-pro
visional patent application entitled “Methods Systems and
Devices for Recommending Products and Services' filed
Nov. 18, 2011 (Attorney Docket No. 114826-50602), and a
U.S. non-provisional patent application entitled “Social
Genome.” filed Nov. 18, 2011 (Attorney Docket No. 114826
50202). The entire contents of each of the above-referenced
applications are incorporated herein in their entirety by ref
CCC.

BACKGROUND

0002. In recent years, social media services such as Twit
terTM., DiggTM, MyspaceTM and FacebookTM have seen amete
oric rise in popularity resulting in an ever evolving universe of
streaming content/data which is often user/consumer gener
ated. Thus, Social media is able to capture, better than many
other sources, a raw and unfiltered pulse of Society.
0003 Potential applications for data harvested from social
media are vast. For example, from a marketing intelligence
standpoint, a company may gather and analyze information
relevant to the company's markets to promote accurate and
confident decision-making in determining market opportu
nity, market penetration strategy, market development met
rics, etc.

TECHNICAL FIELD

0004. The present disclosure relates to real-time analytics
of data streams. More particularly, the present disclosure
relates to storage media, Systems and methods for processing
data streams and analyzing data extracted therefrom.

SUMMARY

0005 Storage media, systems and methods for performing
real time analytics on Streaming data are disclosed herein.
0006. In exemplary embodiments a method for perform
ing real time analytics on streaming data may include: pro
cessing events in a data stream to extract from each event a set
of attribute-value pairs for one or more dimension attributes
and one or more value attributes; identifying one or more
tuples in a multidimensional data structure implicated by the
extracted attribute-value pairs for the one or more dimension
attributes; and updating, for each implicated tuple, one or
more stored aggregates associated therewith, based on the
extracted attribute-value pairs for the one or more value
attributes. In some embodiments, a tuple frequency may be
tracked over an interval for each of the implicated tuples,
wherein the updating the one or more stored aggregates
includes discarding each implicated tuple with a low tuple

May 24, 2012

frequency over the interval. In other embodiments, for each
value attribute, aggregates over an interval for a first plurality
of implicated tuples having same attribute-value pairs for
Zero or more ordinary dimension attributes and different
attribute-value pairs for one or more leaderboard dimension
attributes may be tracked, and a top-N values determined for
the one or more leadership dimension attributes over the
interval, for example, wherein the Top-N values are charac
terized as resulting in the highest aggregates, the lowest
aggregates or the aggregates closest to a selected value, over
the interval. In yet other embodiments, the one or more
dimension attributes may include a K-Gram for identifying
topics of interest. Thus, for example a tuple frequency for
each of the implicated tuples including a K-Gram may be
tracked overan interval, wherein the updating the one or more
stored aggregates includes discarding each implicated tuple
with a low tuple frequency over the interval, whereby statis
tics for trending K-Gram-value pairs are tracked.
0007. In other exemplary embodiments, a method for
implementing a real time analytics platform may include
establishing an analytics platform framework characterized
by one or more time windows, one or more dimension
attributes, and one or more value attribute; and generating a
first multi-dimensional data structure for maintaining, for
each tuple of the one or more dimension attributes, an aggre
gate of each of the one or more value attributes over each of
the one or more time windows.
0008. In other exemplary embodiments a method for per
forming real-time analytics on a data stream may include:
processing a data stream to maintain a plurality of stored
aggregates for a universe of prospective queries extrapolated
from a pre-established framework of possible query param
eters; and returning one of the stored aggregates in response
to a query.
0009. In exemplary embodiments, a system for perform
ing real time analytics on streaming data, may include: a
processor for processing an event in a data stream to extract a
set of attribute-value pairs for one or more dimension
attributes and one or more value attributes; a mapper for
identifying one or more tuples in a multidimensional data
structure implicated by the extracted attribute-value pairs for
the one or more dimension attributes; and one or more updat
ers for updating, for each implicated tuple, one or more stored
aggregates associated therewith, based on the extracted
attribute-value pairs for the one or more value attributes.
0010. In other exemplary embodiments, a system for per
forming real-time analytics on a data stream may include: a
processor for processing a data stream to maintain a plurality
of stored aggregates for a universe of prospective queries
extrapolated from a pre-established framework of possible
query parameters; and memory for storing the plurality of
Stored aggregates.
0011. In exemplary embodiments, a multi-dimensional
data structure, for implementing a real-time analytics plat
form characterized by one or more time windows, one or
more dimension attributes, and one or more value attributes,
may include: a plurality of tuples associated with the one or
more dimension attributes; and a slate associated with each
tuple for maintaining an aggregate for each of the one or more
value attributes over each of the one or more time windows.
0012. In other exemplary embodiments, a multi-dimen
sional data structure for implementing a real-time analytics
platform may include: a plurality of stored tuples each repre
senting a set of search query parameters for prospective que

US 2012/013 094.0 A1

ries extrapolated from a pre-established framework of pos
sible query parameters and one or more stored aggregates
associated with each of the stored tuples, wherein each aggre
gate represents a result for a prospective query characterized
by the set of search query parameters represented in the tuple
associated with that aggregate.
0013. In exemplary embodiments, a non-transitory com
puter readable medium may store processor executable
instructions for performing methods described herein. For
example, the computer readable medium may store processor
executable instructions for processing events in a data stream
to extract from each event a set of attribute-value pairs for one
or more dimension attributes and one or more value attributes;
identifying one or more tuples in a multidimensional data
structure implicated by the extracted attribute-value pairs for
the one or more dimension attributes; and updating, for each
implicated tuple, one or more stored aggregates associated
therewith, based on the extracted attribute-value pairs for the
one or more value attributes. In other embodiments, the com
puter readable medium may store processor executable
instructions for establishing an analytics platform framework
characterized by one or more time windows, one or more
dimension attributes, and one or more value attribute; and
generating a first multi-dimensional data structure for main
taining, for each tuple of the one or more dimension
attributes, an aggregate of each of the one or more value
attributes over each of the one or more time windows. In yet
other embodiments, the computer readable medium may
store processor executable instructions for processing a data
stream to maintain a plurality of stored aggregates for a uni
verse of prospective queries extrapolated from a pre-estab
lished framework of possible query parameters; and returning
one of the stored aggregates in response to a query.
0014. The foregoing and other objects, aspects, features
and advantages of exemplary embodiments will be more fully
understood from the following description when read
together with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 FIG. 1 depicts an exemplary data stream, according
to the present disclosure.
0016 FIG. 2 depicts an exemplary query, according to the
present disclosure.
0017 FIG.3 depicts an exemplary data cube, according to
the present disclosure.
0018 FIG. 4 depicts an exemplary implementation of a
distributed architecture for maintaining a data cube, accord
ing to the present disclosure.
0019 FIG. 5 depicts another exemplary implementation
of a distributed architecture for maintaining a data cube,
according to the present disclosure.
0020 FIGS. 6a-g depict a sequence of events for a worked
example using the distributed architecture of FIG. 5, accord
ing to the present disclosure.
0021 FIGS. 7a-c depict flowcharts for exemplary meth
ods for performing real time analytics on streaming data,
according to the present disclosure.
0022 FIGS. 8a-b depict overlaying real-time social statis

tics on a geographic map.
0023 FIG.9 depicts an exemplary computing device for
implementing embodiments of the present disclosure.

May 24, 2012

0024 FIG. 10 depicts an exemplary network environment
for implementing a distributed architecture, according to the
present disclosure.

DETAILED DESCRIPTION

0025 Storage media, systems and methods are disclosed
herein for analyzing data streams in real time and/or pre
computing statistics in real time with no query time compu
tation. More particularly, storage media, Systems and meth
ods are presented for processing data streams to calculate
results for prospective queries. The results may be advanta
geously computed prior to the formulation of the specific
query, for example, based on a pre-established framework of
potential query parameters. More particularly, a universe of
potential queries may be extrapolated from the pre-estab
lished framework of potential query parameters. Results for
each of the potential queries may them be tracked in real time.
For example results for each of the potential queries may be
continuously updated based on real-time processing of events
in a data stream.
0026 Note that, as used herein the term event generally
refers to an atomic unit in a data stream, for example, a single
tweetTM in a TwitterTM feed or a single purchasing transaction
in a transaction stream. In exemplary embodiments, a data
stream may include a continuous flow of data that is not
pre-divided into discrete events. Thus, in Some embodiments,
an event may be inferred, for example, by identifying a set of
one or more related attributes in the data stream. For example,
related attributes may be identified based on temporal and/or
Source commonalities. In some embodiments, a contextual
analysis (for example, a semantic analysis) of attributes in a
data steam may be used to identify a set of one or more related
attributes. Exemplary embodiments of semantic analysis, for
example using a doctaggerto identify and/or group topics, are
is described herein
0027. It is appreciated that, although exemplary embodi
ments presented herein relate to social analytics, the storage
media, systems and methods of the present disclosure may be
used for real-time analysis of any type of streaming data,
structured or unstructured. For example, the storage media,
systems and methods of the present disclosure may be used
for real-time analysis of purchase transactions, customer
reviews/feedback, customer wish lists/shopping carts, etc.
0028. In exemplary embodiments, prospective queries of
data streams may include queries related to social statistics.
For example:

0029. How many events relate to product P between 10
a.m. and 11 a.m. today?

0.030. What percentage of events had a positive opinion
of product Pyesterday?

0031. How do women in Arizona feel about a limited
time offer, based on events during the offer?

0032. What is the average age of women in Arizona who
purchased product Plast year?

0033. The result for each of the above queries may be
calculated as an aggregate of a value attribute (number of
events, percentage of events, sentiment, and average age,
respectively) over a specified time window (between 10 a.m.
and 11 a.m. today, yesterday, during the limited time offer,
and last year, respectively) for a specified set of dimension
attributes (related to product P. positive sentiment related to
product P. related to the limited time offer from women in
Arizona, and related to women in Arizona who purchased
product P, respectively). The storage media, Systems and

US 2012/013 094.0 A1

methods of the present disclosure advantageously facilitate
identifying and maintaining time-based aggregates, such as
described above, prior to the formulation of a queries.
0034. In exemplary embodiments, a framework of poten

tial query parameters may be pre-established by selecting, for
example, via a user input, attributes of interest including one
or more time windows, one or more dimension attributes and
one or more value attributes. The framework may further
include, for each of the one or more value attributes, an
aggregate function defining how to aggregate instances of the
value attribute. As used herein, the term dimension attribute
refers to an identifiable attribute in a data stream which is of
interest as pertaining to a query search parameter. By com
parison, the term value attribute refers to an identifiable
attribute in a data stream of interest which is of interest as
pertaining to a query result parameter. Notably, depending on
the particular framework of potential query parameters, a
same attribute may be both a dimension attribute and a value
attribute. For example, the attribute “sentiment may be used
as both a search parameter (such as, in the query “how many
women have a positive opinion about product P2) and a
result parameter (Such as in the query “what is the sentiment
of women regarding product P2).
0035. In exemplary embodiments a pre-established frame
work of query parameters may be used to generate a multi
dimensional data structure for maintaining, for each tuple of
the one or more dimension attributes; an aggregate of each of
the one or more value attributes over each of the one or more
time windows. As used herein the term tuple may refer to a set
of dimension attribute-value pairs. For example, for exem
plary dimension attributes Person (P) Location (L) and Thing
(T), a tuple may take the form Pip, L =1, and T=t, (also
expressed as the tuple (p. 1, t) for dimensions (P, L, T)).
0036. In exemplary embodiments, the aggregates stored in
the multi-dimensional data structure may be updated for each
new event processed from a data stream. In particular, the
event may be analyzed to extract a set of related attribute
value pairs including for one or more dimension attributes
and one or more value attributes. The extracted set of related
attributes-value pairs may then be used to identify or more
implicated tuples in the data structure for updating. Thus,
aggregates associated with each of the implicated tuples for
each of the one or more value attributes, may be updated by
applying an appropriate aggregation function to each identi
fied value attribute-value pair. In this way the multi-dimen
sional data structure may maintain real-time analytics of the
data stream.

0037. In exemplary embodiments, a distributed architec
ture, Such as Muppet (map, update), may be used to imple
ment the storage media, systems and methods of the present
disclosure. Exemplary implementations of Muppet are fur
ther described hereinas well as in U.S. non-provisional patent
application entitled “Processing Data Feeds.” filed Nov. 18,
2011 (Attorney Docket No. 114826-50302). In general, a
distributed architecture may be used to map an event to one or
more implicated tuples in one or more multi-dimensional data
structures and update, for each of the implicated tuples, one or
more slates, for example based on one or more value attribute
value pairs in the event. Advantageously, slates for a plurality
of implicated tuples may be updated in parallel for example,
using different processing nodes.
0038. The terms “map' and “mapper, as used herein,
relate to a stream operation performed in exemplary embodi
ments in which events in a data stream are processed in a

May 24, 2012

real-time manner to generate one or more new events which
are then published to a same or different data stream. In
exemplary embodiments, a mapper may be used to publish
events to one or more updaters for updating an aggregate
value contained in a slates.
0039. The terms “update” and “updater” refer to a stream
operation performed in exemplary embodiments in which
events in one or more real-time data streams are processed in
a real-time manner to create or update one or more persistent
static “slate' data structures that are stored in a persistent
manner, for example, in a durable disk storage (note that, as
used herein the terms “store.” “stored “storage' etc., imply
persistence a non-transitory storage medium). In some exem
plary embodiments, an updater may generate Zero, one or
more new stream events. The generated stream events may be
published to one or more real-time data streams. In an exem
plary embodiments, an updater may publish stream events to
a data stream from which it accepts stream events as input.
0040. As used herein, the term “slate” refers to a static data
structure that may be used to record aggregates as described
herein. A slate may have any suitable data structure or format.
In an exemplary format, a slate may include a collection of
one or more attribute-value pairs. A slate may be stored cor
responding to a unique slatekey and updater that updates the
slate.
0041. In exemplary embodiments, time-based aggregates
of a given value attribute over a given time-window may be
maintained in a multi-dimensional data structure (sometimes
referred to herein as a data cube). The dimensions of the data
structure generally reflect one or more dimension attributes
selected in a pre-established framework of potential query
parameters.
0042. In a naive implementation of a distributed architec
ture for maintaining the data structure, fan-out may exponen
tially relate to the number of dimensions in the data structure.
The term “fan-out” for a distributed architecture may refer to
the ratio of internal events generated by the mapping function
relative to the number of external events (e.g., tweetsTM)
processed.
0043. Since, handling and storing such a volume of data
may prove impractical, alternative implementations of a dis
tributed architecture are also presented herein that take
advantage of various properties of data streams to consider
ably reduce fan-out to a manageable number.
0044) With initial reference to FIG. 1, an exemplary event
100 in a data stream 10 is depicted. Event 100 may be pro
cessed to identify a plurality of attribute-value pairs 110 con
tained therin. Examples of attributes may include:

0.045 Event ID, for example, a unique per-event iden
tifier.

0046) Sentiment, for example, with potential values of
+1, 0, or -1, indicating positive, neutral, or negative
sentiment.

0047 Gender, for example, with potential values of
Male, Female, and Unknown.

0.048 Country, for example, with potential values
drawn from an enumerated set of country codes includ
ing unknown.

0049 Topic, for example, with potential values detected
via semantic analysis.

0050 Product, for example, with potential values
drawn from a product database.

0051 Price, for example, with potential values in dif
ferent currencies.

US 2012/013 094.0 A1

0.052 Timestamp, for example, based on time pub
lished or time received.

0053) One usefull attribute, accordingly to the present dis
closure, is the timestamp. In exemplary embodiments, two
assumptions may be made regarding the timestamp: first, that
the timestamp represents actual wall-clock time in some
appropriate timeZone; and second, that timestamps are mon
ontonically increasing. These assumptions are generally rea
sonable for streaming data (for example, in TwitterTM each
tweetTM contains a timestamp that satisfies these conditions).
One reason that timestamps are useful is that query results are
represented as aggregates over a time window. Using times
tamps, aggregates may be unambiguously interpreted to
include a set of events whose timestamps fall within the
specified time window.
0054 With reference to FIG. 2, an exemplary query 200 is
depicted. Query 200 may specify, for example, a time window
210, a set of dimension attribute-value pairs 220, one or more
value attributes of interest 230, and an aggregate function 240
related to each value attribute 230. Exemplary instances of
query 200 are described below:

Example 1
0055 Query: How many people posted about product P
between 10 am and 11 am today?
Time Window: 10am to 11 am today

Dimension Attribute-Value Pair: Product=P

0056 Value attribute: Event Id

Aggregate Function: Count
0057 Example 1 may be rewritten as the following SQL
query:

SELECT COUNT(EventId)
0.058 FROM event E
WHERE tiproduct=“P”
0059 AND t.timestamp>=10 am AND t.timestamp-11
al

Example 2

0060. How many women in Arizona posted about product
P between 10am and 11 am?
Same as last example except for additional Dimension
Attribute-Value Pairs:

Gender-'F', State=“AZ
Example 3

0061 What was the sentiment about product P among
women in Arizona in December 2010?

Time Window: December 2010

Dimension Attribute-ValuePairs: Product=“P, Gender='F',
State=AZ

Value Attribute: Sentiment

Aggregate Function: AggregateSentiment
0062. In the third query example, AggregateSentiment
represents a custom-defined aggregation function for com
bining sentiment values. For example, the function may

May 24, 2012

maintain a 3-tuple of count, one each for positive, neutral, and
negative sentiments. Alternatively, the function may be con
figured to calculate an average sentiment.
0063 Time Windows:
0064. In exemplary embodiments, aggregates may be cal
culated for each of a plurality of time windows. In some
embodiments arbitrary time windows may be supplanted by a
standard set of time windows, for example:

0065. By the minute for the past 60 minutes
0.066 By the hour for the past 24 hours
0067. By the week for the past 4 weeks
0068. By the month for the past 24 months (for y-o-y
same month comparisons)

0069. By the year for the past 10 years
0070. In general, the standard set of time windows may
reflect an assumption that the further back time the coarser the
time granularity of interest. Thus, the standard set of time
windows may include time windows of varying time granu
larity. In exemplary embodiments, it may be sufficient to
maintain aggregates for a finite number of progressively older
and courser sets of time windows, such reflected above.
0071 Aggregate Functions:
0072. In general there are two kinds of aggregate func
tions: Algebraic and Holistic. Roughly speaking, algebraic
aggregates are those, like SUM, that can be computed incre
mentally; in other words, by aggregating Subsets of the data,
and computing the final result using those aggregates without
going back to the base data. In contrast, Holistic aggregates
typically require the base data when recalculating the aggre
gate. One example of a holistic aggregate is the median.
Suppose you divide a data set arbitrarily into two parts, and
compute the median of the two parts; there is no way to
compute the median of the entire data set from the medians of
the two parts.
0073. The systems and method of the subject disclosure
typically utilize algebraic aggregation functions, which may
be computed incrementally. Thus, for example, an average
may be represented as a 2-tuple a sum and a count, wherein
the average may be calculated by dividing the Sum by the
count. The use of algebraic aggregations functions, advanta
geously simplifies the update process, thereby facilitating the
real-time data processing and analytics as described herein. In
exemplary embodiments aggregates are assumed to be com
mutative and associative, which makes manipulations thereof
simpler.
0074 Data Cubes:
0075. As noted above, the storage media, systems and
methods of the present disclosure may advantageously utilize
a multi-dimensional data structure for maintaining a universe
of aggregates for a pre-established framework of potential
query parameters, wherein the pre-established framework of
potential query parameters is characterized, by one or more
time windows, one or more dimension attributes, one or more
value attributes and one or more aggregation functions.
0076 Suppose, for example, a framework characterized
by time window W. dimension attributes Topic (T), State (S),
Gender (G), a single value attribute Sentiment (Se), and an
aggregate function f. The following are the aggregates may
be of interest for instancest, s and g of T S and G:
(1) T=t, S=s, G=g, f(Se), W
(2) T=t, S=s, f(Se), W
(3) T=t, G=g, f(Se), W
(4) S=s, G=g, f(Se), W
(5) T=t, f(Se), W

US 2012/013 094.0 A1

(6) S=s, f(Se), W
(7) G=g, f(Se), W
(8) All, f(Se), W (computed across all events in time window
W)
0077. The multi-dimensional data structure for storing
aggregates f(Se), W for all potential combinations and values
oft, S, and g, may be referred to as the data cube for aggregate
f(Se) and time window W. The term data cube refers to the fact
the aggregates may be arranged as the vertices of a hypercube.
In general, given K dimension attributes, there are 2 aggre
gates for each set of values of the dimension attributes, which
is the number of vertices of a hypercube in K dimensions.
0078. As describe herein, a set of dimension attribute
value pairs. Such as Tit, G=g, may be referred to as a tuple.
Referring to the above example, the data cube for the aggre
gate f(Se) allows rapid lookup of the aggregate of value
attribute Seforevery tuple over timewindow W. In exemplary
embodiments, a data cube may store aggregates for a plurality
of different time windows, for example for a standard set of
time windows such as described herein.
0079. With reference to FIG. 3, an exemplary data cube
300 is depicted for three dimension attributes: Topic (T) 310,
Location (L) 320 and Sentiment (S) 330. Topic (T) 310 may
include as instances, names for various topics, for example, as
grouped via a semantic hierarchy. Location (L) 320 may
include as instances, names of locations, for example names
of States in the united States. Sentiment (S) 330 may include
instances selected from positive negative or neutral. The
dimension attributes Topic (T) 310, Location (L) 320 and
Sentiment (S) 33 may be reflected along the vertices of the
data cube 300.
0080. The data cube 300 may maintain for each tuple (t, 1,
s) of T, L, San aggregate for a value attribute (in this case:
event count, i.e., the number of events processed for the tuple
(t, l, s)). In exemplary embodiments, each tuple (t, l, s) may be
associated with a slate for storing the event count. In some
embodiments the slate may further be associated with an
updaterfor updating the slate for a new event and a mapper for
mapping new events to the updater.
0081. In exemplary embodiments, data cube 300 is
updated based on a new event. Thus, a new event may be
processed to identify one or more dimension attributes
therein. For example, a new event may state “I love living in
NYC. from which dimension attributes Person (P), Location
(L) and Sentiment (S) may be extracted (for example P-user
L=NYC (New York City), and S-positive may be extracted.
The tuples of (P, L, S) implicated are as follows:
I0082 (user, NYC, positive)
0.083 (user, NYC.)
0084 (user, , positive)
I0085) (, NYC, positive)
I0086 (user.)
I0087 (, NYC.)
I0088 (, positive)
0089 (, .)
0090 Thus, overlapping tuples of (T. L. S) implicated by
the new event are:
0091 (, NYC, positive)
0092) (, NYC.)
0093 (, , positive) and
0094) (, .)
0.095 Thus, the event count associated with each of the
four implicated tuples may be updated (for example, by incre
menting the count by one).

May 24, 2012

0096. Note that for an event containing L dimension
attributes, M of which overlap with Kdimension attributes of
a data cube, there are 2' tuples of the data cube which are
implicated (i.e. 2' tuples which overlap between the data
cube and the event). Thus, a mapper may be used generate the
2. tuples for the event and map the 2 subset thereof to the
data cube. An update may then be used update a slate associ
ated with each of the 2' tuples received from the mapper.
Distributed architecture implementations for maintaining a
data cube are described in greater below
0097. Data cube 300 advantageously maintains, in real
time, results for any prospective query using the framework
(T, L, S), of an event count over one or more pre-established
time windows. FIG. 3, illustrates three examples of queries
340a-c, the answers to which are maintained and therefore
pre-computed in data cube 300. For example, query 340a asks
“how many people are posting about Barack Obama in New
York?' The result to query 340a may be obtained by returning
the event count for the tuple (Barack Obama, New York, All),
for example the event count stored in the slate associated with
the tuple (Barack Obama, New York, All). As another
example, query 340b asks “How many people in Arizona feel
positive of the new Medicare plan?' The result to query 340b
be obtained by returning the event count for the tuple (Medi
care, Arizona, Positive). As another example, query 340c asks
“How many people feel negative of Barack Obama across the
US? The result to query 340c may obtained by returning the
event count for the tuple (Barrack Obama, United States (e.g.,
all states), Negative).
0098. In exemplary embodiments, it is contemplated that
the number of the dimension of a data cube may be automati
cally determined based on the types of attributes reflected in
the data stream. For example, event types with the greatest
frequencies, such as above a selected threshold, may be used
as the dimensions for the data cube. Thus, for example the
data stream may be analyzed to determine the best candidate
attributes for cube dimensions.
Naive Distributed Architecture Implementation:
0099 Referring to FIG. 4, an exemplary implementation
of a distributed architecture 400 for maintaining a data cube
may include a mapper, for example, CubeMapper 410, and
one or more updaters, for example, CubeTupleUpdaters 420.
The mapper and/or updaters may be distributed to one or
more processing nodes in the distributed architecture, e.g.,
via a network architecture such as described herein, for
example with reference to FIG. 10.
0100. The CubeMapper 410 may advantageously deter
mine, for example based on a set of attribute-value pairs
extracted for an event, which data cubes to maintain. In exem
plary embodiments, a data cube may be defined by a set of
dimension attributes (for example, Topic, Gender, State), and
an aggregation function for a value attribute. In exemplary
embodiments, a configuration file may list the data cubes of
interest, and give each data cube a name. The aggregation
function may be specified, for example, in javascript, as a
function that takes two parameters (the current value of the
aggregate and a new event) and returns a single value (the new
value of the aggregate). Note that as a special case, the current
value may be null, in which case the function may return the
aggregate corresponding to just the one event. The value of
the aggregate may be in any data structure/format, for
example a JSON object.
0101. In some embodiments, a generated data cube may
apply only to specific kinds of topics. For example, the query

US 2012/013 094.0 A1

framework may call for a data cube specific for persons of
interest, Such as customers, celebrities, etc., or for occasions
Such as holidays, the Oscars, etc. Thus, in exemplary embodi
ments the mapper may implement a selection function, based
on selection criterion, to filter out only a subset of events from
a data stream. The selection function may, for example,
accept a single parameter (the event) and return either True
(this event's data should be part of this data cube) or False.
0102) An example of a configuration file listing data
cube's of interest is provided below:
Cubes.congfig:

CubeName: SentimentCube

(0103. Select Function: True #Hall events

Dimensions: Topic, State, Gender
0104 Aggregatefunction: lambda(sentiment, event) { ...

; return sentiment
CubeName: Oscars Votes

0105. SelectFunction: lambda(event) { return event..event
id-Oscars:

Dimensions: Topic, Gender, Age
0106) Aggregatefunction: lambda(sentiment, event) { ...

; return sentiment
0107 The CubeConfig file may advantageously be repli
cated for reference at each processing node in the distributed
architecture.
0108. The CubeMapper 410 may processes each eventina
data stream and determine which data cubes it is eligible for.
Suppose an event E with Kdimension elements (for example,
K=2 dimension elements a and b depicted in FIG. 3) is eli
gible for a data cube. The CubeMapper 410 constructs the 2'
tuples from the event E (for example, the 2° tuples: (a), (b).
(a,b) and (All) depicted in FIG. 3) and generates an event E'
for each tuple. The key for each event E is the pair (Cube
Name, Tuple) and the value is the content event E, for
example, including a value attribute-value pair. The generated
events E' are sent on to the CubeTupleUpdaters 420.
0109 Each CubeTupleUpdater 420 maintains a slate for
every (CubeName, Tuple) pair it receives. Thus, the
CubeTupleUpdater receives an event E' for a single tuple,
extracts an instance of a value attribute and applies the aggre
gation function to add the instance to its store. In exemplary
embodiments. The updater keeps track of the aggregate value
for a plurality of time windows for example a standard set of
time windows such as described herein. Thus, a query for any
tuple and any Time Window may be answered via a quick
slate lookup.

Alternative Distributed Architecture Implementations:
0110. There are two potential problems with the naive
implementation described above. First, for a data cube of K
dimensions, the CubeMapper 410 may generate 2K events for
each incoming event. This leads to very high fan-out for cubes
with K-3. Second since, statistics are stored for every pos
sible tuple that occurs in the data, The number of cube slates
required is proportional to the number of possible combina
tions of dimension values that actually occurs in the data. For
example, Suppose there are 50 states, 2 genders, and 1 million
topics. The number of slates needed may approach 50x2x1

May 24, 2012

million or 100 million. This may be impractical from a stor
age perspective. Exemplary alternate implementations of a
distributed architecture present herein may help mitigate/
prevent such potential problems.
0111. A key property of data stream analytics is that events
don't exist in a vacuum but rather often reflect and are influ
enced by a collective pulse. Thus, events often exhibit a great
deal of clustering, for example, of topics, products, people,
etc. Moreover, it is expected that queries to the data cube
involve instances of dimension elements that are of interest to
a large number of people. Taking advantage of the forgoing
assumptions, tuples may be advantageously filtered based on
frequency. Frequency filtering may be implemented, for
example, by selecting a small time window (for example 1
minute) referred to as the delta window D. Let S be the set of
all tuples corresponding to all social updates during a delta
window D. A threshold 8 is applied to filter out all tuples in S
with frequency less than 6 from being sent to updaters (for
example, CubeTupleUpdaters 320 of FIG.3). For example, 6
may be selected to be 1 or 2. A simple experiment with actual
data Suggests that setting 6 to 2 may eliminate over 90% of
tuples in a delta window of 1 minute. Moreover, a qualitative
examination of Such tuples indicated that the eliminated
tuples generally came from events that are not really of inter
est (for example, spam, outliers of some sort, or just semantic
analysis errors). Thus, filtering also a second effect of reduc
ing noise, e.g., from semantic analysis errors. On the other
hand, tuples that do occur frequently in a 1-minute window
often correlate well with the global interests. Frequency fil
tering of tuples thus both improves performance and
improves the quality of the data cube.
0112 FIG.5 depicts an exemplary distributed architecture
500 for maintaining a data cube while implementing fre
quency filtering. Thus, the distributed architecture 500 may
include a mapper (CubeS elector 510) and 3 types of updaters
(CubeTupleGenerators 520, the CubeTupleCollectors 530,
and the CubeTupleUpdaters 540).
0113 Suppose T is a current timestamp. Interval I may
then be defined as follows: I-floor(T/D), where D is the delta
window (e.g., 1 minute). That is, the interval I counts time in
units of the Delta Window. The CubeTupleGenerators 520
buffer all tuples with the same Interval, and then dispatch
them to the CubeTupleCollectors 530.
0114. In exemplary embodiments, an assumption may be
made that the stream has a large number of events in each
Delta Window—that is, the Delta Window is very large com
pared to the average gap between events (for example, Twit
terTM., processes approximately 100,000 tweetsTM in a Delta
Window of 1 minute resulting in an average inter-event gap of
less than a millisecond). Thus, in exemplary embodiments,
one may detect when an interval has ended and the next one
has begun based on a processing of the first event whose
Interval is higher than the current Interval. Alternatively,
intervals may be tracked independent of events received.
0.115. In some embodiments, intervals may be based on
e.g., a requisite number of events received rather than a time
frame (for example, provided that the integration of Such
batches over the one or more time windows being tracked
results in an acceptable margin of error). In other embodi
ments, the threshold Ö may be variable, e.g., based on a
changing frequency of events in the data stream. In some
embodiments, a different threshold may be applied depend
ing on the number of dimension attributes-Value pairs in the

US 2012/013 094.0 A1

tuple. Thus, frequency filtering may account for variations in
event traffic when filtering tuples.
0116. With reference again to FIG. 5, for each data cube,
there may be P CubeTupleCienerator slates and P CubeTuple
Collector slates, with keys 1, ..., P. So as to ensure uniform
distribution across the cluster, P may be selected to be a small
multiple of the number of processing nodes in the distributed
architecture 500. For example, if the distributed architecture
500 includes 8 processing nodes, one might select P-32 or 64.
0117. The CubeSelector 510 is similar to the CubeMapper
210 in the naive implementation. It uses the config file to
determine if the current Event E is eligible for a data cube. If
it is, the CubeSelector 510 uses a hash function to map the
timestamp of the event to one of P values, and emits to stream
X an event E' whose key is (CubeName, P) and value is the
content of the event E.

0118. Each CubeTupleGenerator 520 (CTG) subscribes to
stream X. A CTG generates all possible tuples from an event
E" and maintains a table with 3 columns: Tuple, Aggregat
eValue, and Count. Here Count is the number of events that
have contributed to this tuple. The CTG also stores the Inter
val I of the first event it received during this Delta Window.
When the CTG receives a new event E", it computes its
Interval J. If J=I, the CTG enumerates the tuples of E' and
updates its table accordingly. On the other hand, if JDI, the
CTG starts distributing its data as follows:
0119 For each tuple, the CTG uses a hash function to map
the tuple into one of Pbuckets 0.1 ..., P-1. For each bucket
in 1, ... P-1, the CTG creates and emits to stream Yan event
Ef whose key is the bucket number, and whose value is the set
of rows in its table whose tuple maps to that bucket number.
The value also indicates the Interval I. Once the CTG has sent
out all P events, it empties its tables and stores J as the new
Interval value. The CTG then proceeds to process a newly
received event E'.
0120 Each CubeTupleCollector 530 (CTC) subscribes to
stream Y. For each interval I, a CTC slate receives Pevents,
one from each CTG slate. The CTC maintains a table with 3
columns: Tuple, Aggregatevalue, Count. The Aggregat
eValue for a tuple is the aggregate of the partial Aggregat
eValues for that tuple from each CTG, and the Count is the
Sum of the corresponding partial counts. The CTC also keeps
track of the current interval I and a message counter M, both
initialized to 0. When the CTC receives an event E from the
CTG with interval J, it first compares I and J:
0121. If I=J, the CTC table is updated using the tuples in
the event, and M is incremented by 1. If M=P (i.e., the CTC
has received events from all the PCTCs), the CTC knows it
has received all the tuples for the interval I. At this point, the
CTG discards all infrequent tuples with count less than the
threshold 8. Forevery frequent tuple, it creates a new event E
whose key is the pair (CubeName, Tuple) and whose value
contains the Aggregate and the Count. The event E is pub
lished to stream Z, to which the CubeTupleUpdaters 540
subscribe. The CTC then empties its table, sets its current
interval to I--1 and resets M to 0.

0122) If JDI, this means is that the CTC has received tuples
for the next interval before it receives all the tuples for the
current interval. Assuming that the aforementioned assump
tion about the Delta Interval being much larger than the aver
age interval between events holds true, the only real reason
for this is a node failure, which should be relatively infre
quent. In this case, the interval I is declared closed, the tuples

May 24, 2012

accumulated thus far are filtered. I is set to be equal to J. M. to
1, and process the newly arrived event.
I0123 Finally. If J<I, a delayed event for an interval that is
past was received. This event is ignored.
0.124. Each CubeTupleUpdater 540 maintains a slate for
every (CubeName, Tuple) pair it receives. Thus, the
CubeTupleUpdater receives an event E for a single tuple,
extracts an instance of a value attribute and applies the aggre
gation function to add the instance to its store. In exemplary
embodiments. The updater keeps track of the aggregate value
for a plurality of time windows for example a standard set of
time windows such as described herein. Thus, a query for any
tuple and any Time Window may be answered via a quick
slate lookup.
0.125 With reference to FIGS. 6a-gan exemplary worked
example of the distributed architecture 500 is depicted, dem
onstrating exemplary contents of CTG slates 620 and CTC
slates 630 of a CTG and CTC such as described above with
reference to FIG.5. For the worked example, depicted, a data
cube C with two dimensions (A and X) is assumed. The
aggregate is SUM and the filtering threshold 6–1. During the
Delta Window, 4 tuples arrive. In FIG. 6a, an event E includ
ing attribute-value pairs A=a X=x and value attribute V=5 is
received by the Cube Selecter 610. In FIG. 6b, an event E
including attribute-value pairs B=b Y=y and value attribute
V=3 is received by the CubeSelecter 610. In FIG. 6c, an event
E including attribute-value pairs A=a Y=y and value attribute
V=2 is received by the Cube Selecter 610. In FIG. 6d an event
E including attribute-value pairs A=aY=y and value attribute
V-4 is received by the Cube Selector 610. In each case, Cube
Selecter 610 uses the config file to determine if the Event E is
eligible for a data cube, for example data cube C. If it is, the
CubeSelector 610 uses a hash function to map the timestamp
of the event to one of PValues and emits an event E' whose
key is (CubeName, P) and value is the content of the event E.
As depicted in FIGS. 6a-d CTG slates 620 buffer all tuples
with the same interval. More particularly the CTG slates 620
maintains a table with 3 columns: Tuple, AggregateValue, and
Count. With reference to FIG. 6e, once the interval is closed,
a hash function to map each from the CTG slates 620 tuple
into one of P buckets 0.1 ..., P-1, for example buckets 625
of FIG. 6e. For eachbucket in 1,...P-1, the creates and emits
an event E whose key is the bucket number, and whose value
is the set of rows in its table whose tuple maps to that bucket
number. With reference to FIGS. 6f and 6g, for each interval
I, CTC slates 630 receive Pevents, one from each CTG slate
620. The CTC slates 630 maintains a table with 3 columns:
Tuple, Agregatevalue, Count. As depicted, once the CTG
slate has sent out its events E, it empties its tables and begins
processing events E' for a new interval. As depicted in Figure
g6, once the CTC slates 630 have received all the tuples for a
given interval all infrequent tuples, for example with count
less than the threshold 8 are discarded. Then for every fre
quent tuple, a new event E is created whose key is the pair
(CubeName, Tuple) and whose value contains the Aggregate
and the Count. The event E is published to stream Z sub
scribed to by CubeTupleUpdaters. Data cube C could then be
updated for eligible events E.

Leaderboard Queries:
0.126 Exemplary implementations presented above, pri
marily related to point aggregates—wherein a tuple (a point
in the hypercube) is specified and the desired result of the
query is the corresponding aggregate value. The storage

US 2012/013 094.0 A1

media, Systems and methods herein, however, are not limited
to Such implementations. Indeed in some embodiments, the
data cube is used tracks results for different type of queries
for, example, leaderboard queries.
0127. A leaderboard query specifies a tuple and a leader
board attribute, and asks for the Top-N values of the leader
board attribute among events that satisfy the tuple. For
example, a leaderboard query might pose the following ques
tion:
What were the Top 10 most popular topics posted about by
people in Arizona between 10 am and 11 am today?

In SQL:
0128 SELECT topic, count(eventid) as freq
FROM events e
WHERE t.state="AZ” and t.timestamp >="10 am” AND
t.timestamp-11 am”
GROUP BY topic
ORDER BY freq

LIMIT 10

0129. Other exemplary leaderboard queries might pose
the following question:
What were the Top 10 least popular topics posted about by
people in Arizona between 10 am and 11 am today?
What were the Top 10 locations closest to New York where
users posted about a sales event.
0130. The data cube may easily be extended to support
leaderboard queries. In the simple case, if the leaderboard
attribute has a small and known set of values (e.g., state or
gender), one can simply look up the slates corresponding to
all possible values and pick the Top-N. The harder case occurs
when the leaderboard attribute can take on a large number of
values (or example, topic, product, URL, domain). In this
case we cannot possibly examine all slates for all values of the
attribute.
0131. In exemplary embodiments, leaderboard queries are
indicated by adding a line to the data cube config file to
indicate the leaderboard dimensions for each cube and the
value for “N (for Top-N queries; e.g., 10). For example:

CubeName: SentimentCube

(0132) Select Function: True #Hall events

Dimensions: Topic, State, Gender
Leaderboards: Topic(10)
I0133) Aggregatefunction: lambda(sentiment, event) { ...
; return sentiment
0134) To simplify the present description, assume there is
at most one leaderboard dimension in each data cube (SS
would be appreciated by one of ordinary skill in the art, it is
straightforward to Support more given the description for
one). Non-leaderboard dimensions of the data cube may be
referred to as ordinary dimensions.
0135 Recall that in the distribution step of the CTGatuple

is hashed into one of Pbuckets. For the purposes of a leader
board query the hash function is applied only to the ordinary
dimensions of each tuple. This ensures all tuples of the form:
A=a, B=b, C=*, where C is the leaderboard attribute and A
and B are ordinary attributes, end up at the same slate of the
CTC. The CTC can now compute the Top-N leaderboard
values for each tuple, and pass them on to the CTU in the

May 24, 2012

event it constructs for the tuple. For example, the Top-N
values may be characterized as resulting in the highest aggre
gates, the lowest aggregates, and the aggregates closest to a
selected value, etc.
0.136 Thus, the CTU may maintain the leaderboard for
each time window. Where a time window is used for filtering
by the CTC, the CTU may get the leaderboard directly from
the CTC. Leaderboards for larger time windows are approxi
mated using those for the smaller time windows. For
example, an hourly leaderboard may be computed by looking
at the Top 10 for each minute of the hour, and summing the
minute-by-minute values. While it is possible to make some
errors using this method (for example, where the most fre
quent item during the hour was not in the top 10 for any
minute of the hour) accurate results are generally achieved.

K-grams

0.137. One potential disadvantage in querying using
dimensions requiring semantic analysis, is that the semantic
analysis is limited by the available hierarchy. For example, a
semantic analysis engine can only tag instances it recognizes.
An interesting advantage the storage media, Systems and
methods described herein is that the data cube may be used to
maintain statistics on topics products, locations etc. (collec
tively, referred to as interesting topics or topics of interest)
without the help of semantic analysis. Thus in exemplary
embodiments a "K-Gram' is added as one of the data cube
dimensions, with a relative high threshold 6 (e.g., 50). Thus,
a slate is automatically created and maintained for any k-gram
that was mentioned very often in a delta time window. In
exemplary embodiments, a TFIDF threshold may be instead
of a pure frequency threshold to achieve better results. Thus,
the data cube may be used to identify trending k-grams and
automatically maintains stats for them without help from
semantic analysis. In exemplary embodiments identified top
ics of interest can be communicated to the semantic analysis
engine and "candidate topics” and the maintained statistics
relating thereto can be used by the engine to whether to
incorporate each candidate topic into the taxonomy.

Exemplary Methods

0.138 FIGS. 7a-c, illustrate exemplary methods according
to the present disclosure.
(0.139. With reference to FIG. 7a, an exemplary method
710 is depicted for performing real time analytics on stream
ing data. Method 710 generally includes steps of (712) pro
cessing events in a data stream to extract from each event a set
of attribute-value pairs for one or more dimension attributes
and one or more value attributes; (714) identifying one or
more tuples in a multidimensional data structure implicated
by the extracted attribute-value pairs for the one or more
dimension attributes; and (716) for each implicated tuple,
updating one or more stored aggregates associated therewith,
based on the extracted attribute-value pairs for the one or
more value attributes.

0140. With reference to FIG. 7b, an exemplary method
720 is depicted for performing real time analytics on stream
ing data. Method 720 generally includes steps of (722) estab
lishing an analytics platform framework characterized by one
or more time windows, one or more dimension attributes, and
one or more value attribute; and (724) generating a first multi
dimensional data structure for maintaining, for each tuple of

US 2012/013 094.0 A1

the one or more dimension attributes, an aggregate of each of
the one or more value attributes over each of the one or more
time windows.
0141. With reference to FIG.7can exemplary method 730

is depicted for performing real time analytics on Streaming
data. Method 730 generally includes steps of: (732) process
ing a data stream to maintain a plurality of stored aggregates
for a universe of prospective queries extrapolated from a
pre-established framework of possible query parameters; and
(734) returning one of the stored aggregates in response to a
query.
0142. It is explicitly contemplated that the storage media,
systems and methods presented herein may include one or
more programmable processing units having associated
therewith executable instructions held on one or more com
puter readable medium, RAM, ROM, hard drive, and/or hard
ware. In exemplary embodiments, the hardware, firmware
and/or executable code may be provided, for example, as
upgrade module(s) for use in conjunction with existing infra
structure (for example, existing devices/processing units).
Hardware may, for example, include components and/or
logic circuitry for executing the embodiments taught herein
as a computing process.
0143 Displays and/or other feedback means may also be
included to convey detected/processed data, for example
adjusted output representative of aparticle characteristic. The
display and/or other feedback means may be stand-alone or
may be included as one or more components/modules of the
processing unit(s). In exemplary embodiments, the display
and/or other feedback means may be used to facilitate query
ing a data cube. In other embodiments, the display may be
used to visualize, in real-time, various Social statistics main
tained by the data cube. For example, as depicted in FIGS. 8a
and 8b, real-time social statistics may be overlaid on a geo
graphic map.
0144. The actual software code or control hardware which
may be used to implement some of the present embodiments
is not intended to limit the scope of such embodiments. For
example, certain aspects of the embodiments described
herein may be implemented in code using any Suitable pro
gramming language type Such as, for example, assembly
code, C, C# or C++ using, for example, conventional or
object-oriented programming techniques. Such code is stored
or held on any type of Suitable non-transitory computer-read
able medium or media Such as, for example, a magnetic or
optical storage medium.
0145 As used herein, a “processor,” “processing unit.”
“computer or “computer system” may be, for example, a
wireless or wire line variety of a microcomputer, minicom
puter, server, mainframe, laptop, personal data assistant
(PDA), wireless e-mail device (for example, “BlackBerry.”
“Android' or “Apple trade-designated devices), cellular
phone, pager, processor, fax machine, Scanner, or any other
programmable device configured to transmit and receive data
over a network. Computer systems disclosed herein may
include memory for storing certain Software applications
used in obtaining, processing and communicating data. It can
be appreciated that such memory may be internal or external
to the disclosed embodiments. The memory may also include
non-transitory storage medium for storing Software, includ
ing a hard disk, an optical disk, floppy disk, ROM (read only
memory), RAM (random access memory), PROM (program
mable ROM), EEPROM (electrically erasable PROM), flash
memory storage devices, or the like.

May 24, 2012

0146 FIG. 9 depicts a block diagram representing an
exemplary computing device 900 that may be used as a pro
cessing node (also referred to as a worker node) for aggregat
ing and/or storing data as described herein, for example a
processing node in a distributed architecture as described
herein. The computing device 900 may be any computer
system, Such as a workstation, desktop computer, server, lap
top, handheld computer, tablet computer (e.g., the iPadTM
tablet computer), mobile computing or communication
device (e.g., the iPhoneTM mobile communication device, the
Android TM mobile communication device, and the like), or
otherform of computing or telecommunications device that is
capable of communication and that has sufficient processor
power and memory capacity to perform the operations
described herein. A distributed computational system may be
provided comprising a plurality of Such computing devices.
0147 The computing device 900 includes one or more
non-transitory computer-readable media having encoded
thereon one or more computer-executable instructions or
Software for implementing exemplary methods described
herein. The non-transitory computer-readable media may
include, but are not limited to, one or more types of hardware
memory, non-transitory tangible media (for example, one or
more magnetic storage disks, one or more optical disks, one
or more USB flash drives), and the like. For example, memory
906 included in the computing device 900 may store com
puter-readable and computer-executable instructions or soft
ware for implementing exemplary embodiments. The com
puting device 900 also includes processor 902 and associated
core 904, and in some embodiments, one or more additional
processor(s) 902' and associated core(s) 904 (for example, in
the case of computer systems having multiple processors/
cores), for executing computer-readable and computer-ex
ecutable instructions or software stored in the memory 906
and other programs for controlling system hardware. Proces
sor 902 and processor(s) 902' may each be a single core
processor or multiple core (904 and 904") processor.
0148 Virtualization may be employed in the computing
device 900 so that infrastructure and resources in the com
puting device may be shared dynamically. A virtual machine
914 may be provided to handle a process running on multiple
processors so that the process appears to be using only one
computing resource rather than multiple computing
resources. Multiple virtual machines may also be used with
one processor.
0149 Memory 906 may include a computer system
memory or random access memory, such as DRAM, SRAM,
EDO RAM, and the like. Memory 906 may include other
types of memory as well, or combinations thereof. Memory
906 may be used to store one or more slates on a temporary
basis, for example, in cache.
0150. A user may interact with the computing device 900
through a visual display device 918, such as a screen or
monitor, that may display one or more interfaces 920 that may
be provided in accordance with exemplary embodiments. The
visual display device 918 may also display other aspects,
elements and/or information or data associated with exem
plary embodiments. The computing device 900 may include
other I/O devices for receiving input from a user, for example,
a keyboard or any suitable multi-point touch interface 908, a
pointing device 910 (e.g., a mouse, a user's finger interfacing
directly with a display device, etc.). The keyboard 908 and the
pointing device 910 may be coupled to the visual display
device 918. The computing device 900 may include other

US 2012/013 094.0 A1

suitable conventional I/O peripherals. In exemplary embodi
ments, the one or more of the interfaces 920 includes an
application program interface (API).
0151. The computing device 900 may include one or more
audio input devices 924. Such as one or more microphones,
that may be used by a user to provide one or more audio input
StreamS.

0152 The computing device 900 may include one or more
non-transitory storage devices 924. Such as a durable disk
storage (which may include any Suitable optical or magnetic
durable storage device, e.g., RAM, ROM, Flash, USB drive,
or other semiconductor-based storage medium), a hard-drive,
CD-ROM, or other non-transitory computer readable media,
for storing data and computer-readable instructions and/or
Software that implement exemplary embodiments as taught
herein. For example, the storage device 924 may provide a
slate storage 926 for storing computer-executable instruc
tions for implementing the Social genome data structure as
described herein, for example for storing an updating (via one
or more updaters) one or more slates, as described herein. The
storage device 924 may store one or more map modules 932
and one or more update modules 934, as described herein.
The storage device 924 may be provided on the computing
device 900 or provided separately or remotely from the com
puting device 900. The storage device 924 may be used to
store one or more slates in a durable manner.
0153 Exemplary mappers and updaters may be program
matically implemented by a computer process in any Suitable
programming language, for example, a Scripting program
ming language, an object-oriented programming language
(e.g., Java), and the like. In an exemplary object-oriented
implementation, a general Mapper class or interface and
Updater class or interface may be defined by the system to
generally specify attributes and functionality of a generic
update operation. For each desired update operation, a Sub
class may be created based on the Updater class. One or more
object instances may be created from each Sub-class at a
processor node, for example, a CubeTupleGenerator object
may be instantiated from a CubeTupleCienerator sub-class.
0154 The computing device 900 may include a network
interface 912 configured to interface via one or more network
devices 922 with one or more networks, for example, Local
Area Network (LAN), Wide Area Network (WAN) or the
Internet through a variety of connections including, but not
limited to, standard telephone lines, LAN or WAN links (for
example, 802.11, T1, T3, 56 kb, X.25), broadband connec
tions (for example, ISDN. Frame Relay, ATM), wireless con
nections, controller area network (CAN), or some combina
tion of any or all of the above. The network interface 912 may
include a built-in network adapter, network interface card,
PCMCIA network card, card bus network adapter, wireless
network adapter, USB network adapter, modem or any other
device suitable for interfacing the computing device 900 to
any type of network capable of communication and perform
ing the operations described herein. The network device 922
may include one or more Suitable devices for receiving and
transmitting communications over the network including, but
not limited to, one or more receivers, one or more transmit
ters, one or more transceivers, one or more antennae, and the
like.
0155 The computing device 900 may run any operating
system 916, such as any of the versions of the Microsoft(R)
Windows(R) operating systems, the different releases of the
Unix and Linux operating systems, any version of the

May 24, 2012

MacOSR) for Macintosh computers, any embedded operating
system, any real-time operating system, any open Source
operating system, any proprietary operating system, any
operating systems for mobile computing devices, or any other
operating system capable of running on the computing device
and performing the operations described herein. In exemplary
embodiments, the operating system 916 may be run in native
mode or emulated mode. In an exemplary embodiment, the
operating system 916 may be run on one or more cloud
machine instances.

0156 FIG. 10 depicts an exemplary network environment
1000 suitable for a distributed implementation of exemplary
embodiments. The network environment 1000 may include
one or more servers 1002 and 1004 coupled to one or more
clients 1006 and 1008 via a communication network 1010.
The network interface 912 and the network device 922 of the
computing device 900 enable the servers 1002 and 1004 to
communicate with the clients 1006 and 1008 via the commu
nication network 1010. The communication network 1010
may include, but is not limited to, the Internet, an intranet, a
LAN (Local Area Network), a WAN (Wide Area Network), a
MAN (Metropolitan Area Network), a wireless network, an
optical network, and the like. The communication facilities
provided by the communication network 1010 are capable of
Supporting distributed implementations of exemplary
embodiments.

0157. In an exemplary embodiment, the servers 1002 and
1004 may provide the clients 1006 and 1008 with computer
readable and/or computer-executable components or prod
ucts under a particular condition, Such as a license agreement.
In some exemplary embodiments, the computer-readable
and/or computer-executable components or products pro
vided by the servers may include those for providing one or
more real-time data streams to worker processes at worker
nodes. The clients 1006 and 1008 may process the data
streams using the computer-readable and/or computer-ex
ecutable components and products provided by the servers
1002 and 1004. In some exemplary embodiments, the com
puter-readable and/or computer-executable components or
products provided by the servers may include those for pro
viding and executing one or more map and/or update opera
tions, for example using one or more mappers or updaters.
The clients 1006 and 1008 may execute the map and update
operations using the computer-readable and/or computer-ex
ecutable components and products provided by the servers
1002 and 1004. In some exemplary embodiments, the clients
1006 and 1008 may transmit events generated by update
operations to the servers 1002 and 1004 for publication in one
or more data streams. In some exemplary embodiments, the
clients 1006 and 1008 may transmit one or more slates created
or updated by update operations to the servers 1002 and 1004
for persistent storage on a disk storage or for storage in
memory, e.g., in cache.
0158 Alternatively, in another exemplary embodiment,
the clients 1006 and 1008 may provide the servers 1002 and
1004 with computer-readable and computer-executable com
ponents or products under a particular condition, such as a
license agreement. In some exemplary embodiments, the
computer-readable and/or computer-executable components
or products provided by the clients may include those for
providing one or more real-time data streams to worker pro
cesses. The servers 1002 and 1006 may process the data
streams using the computer-readable and/or computer-ex
ecutable components and products provided by the clients

US 2012/013 094.0 A1

1006 and 1008. In some exemplary embodiments, the com
puter-readable and/or computer-executable components or
products provided by the clients may include those for pro
viding and executing one or more map and/or update opera
tions. The servers 1002 and 1004 may execute the map and
update operations using the computer-readable and/or com
puter-executable components and products provided by the
clients 1006 and 1008. In some exemplary embodiments, the
servers 1002 and 1004 may transmit events generated by
update operations to the clients 1006 and 1008 for publication
in one or more data streams. In some exemplary embodi
ments, the servers 1002 and 1004 may transmit one or more
slates created or updated by update operations to the clients
1006 and 1008 for persistent storage on a disk storage or for
storage in memory, e.g., in cache.
0159. In exemplary embodiments one or more mappers
and one or more updaters for example map module 932 and
update module 934 of FIG.9, may be distributed to through
out various processing nodes of the network environment
1000, for example nodes 1012a-d.
0160 Although the teachings herein have been described
with reference to exemplary embodiments and implementa
tions thereof, the disclosed systems, methods and non-tran
sitory storage medium are not limited to Such exemplary
embodiments/implementations. Rather, as will be readily
apparent to persons skilled in the art from the description
taught herein, the disclosed storage media, Systems and meth
ods are susceptible to modifications, alterations and enhance
ments without departing from the spirit or scope hereof.
Accordingly, all Such modifications, alterations and enhance
ments within the scope hereof are encompassed herein.
What is claimed:
1. A method for performing real time analytics on stream

ing data, the method comprising:
processing events in a data stream to extract from each

event a set of attribute-value pairs for one or more
dimension attributes and one or more value attributes;

identifying one or more tuples in a multidimensional data
structure implicated by the extracted attribute-value
pairs for the one or more dimension attributes;

for each implicated tuple, updating one or more stored
aggregates associated therewith, based on the extracted
attribute-value pairs for the one or more value attributes.

2. The method of claim 1 further comprising tracking over
an intervala tuple frequency for each of the implicated tuples,
wherein the updating the one or more stored aggregates
includes discarding each implicated tuple with a low tuple
frequency over the interval.

3. The method of claim 1 further comprising tracking over
an interval, for each value attribute, aggregates for a first
plurality of implicated tuples having same attribute-value
pairs for Zero or more ordinary dimension attributes and
different attribute-value pairs for one or more leaderboard
dimension attributes, and determining a top-N values for the
one or more leadership dimension attributes over the interval.

4. The method of claim 3, wherein the Top-N values are
characterized as resulting in one of (i) the highest aggregates
(ii) the lowest aggregates, and (iii) the aggregates closest to a
selected value, over the interval.

5. The method of claim3 further comprising determining a
set of top-N values for each of a plurality of intervals in a time
window and determining a top-N values for the one or more
leadership dimensions attributes over the time window based
on the plurality of sets of top-N values.

May 24, 2012

6. The method of claim 1, wherein the one or more dimen
sion attributes include a K-Gram for identifying topics of
interest.

7. The method of claim 6, further comprising tracking over
an intervala tuple frequency for each of the implicated tuples
including a K-Gram, wherein the updating the one or more
stored aggregates includes discarding each implicated tuple
with a low tuple frequency over the interval, whereby statis
tics for trending K-Gram-value pairs are tracked.

8. A method for implementing a real time analytics plat
form, the method comprising:

establishing an analytics platform framework character
ized by one or more time windows, one or more dimen
sion attributes, and one or more value attribute;

generating a first multi-dimensional data structure for
maintaining, for each tuple of the one or more dimension
attributes, an aggregate of each of the one or more value
attributes over each of the one or more time windows.

9. A system for performing real time analytics on streaming
data, the system comprising:

a processor for processing an event in a data stream to
extract a set of attribute-value pairs for one or more
dimension attributes and one or more value attributes;

a mapper for identifying one or more tuples in a multidi
mensional data structure implicated by the extracted
attribute-value pairs for the one or more dimension
attributes; and

one or more updaters for updating, for each implicated
tuple, one or more stored aggregates associated there
with, based on the extracted attribute-value pairs for the
one or more value attributes.

10. The system of claim 9, wherein the system is config
ured to track over an interval a tuple frequency for each of the
implicated tuples, wherein the updating the one or more
stored aggregates includes discarding each implicated tuple
with a low tuple frequency over the interval.

11. The system of claim 9 wherein the system is configured
to: (i) update, over an interval, for each value attribute, aggre
gates for a first plurality of implicated tuples having same
attribute-value pairs for Zero or more ordinary dimension
attributes and different attribute-value pairs for one or more
leaderboard dimension attributes, and (ii) determine a top-N
values for the one or more leadership dimension attributes
over the interval.

12. The system of claim 9, wherein the one or more dimen
sion attributes include a K-Gram for identifying topics of
interest, wherein the system is configured to track over an
interval a tuple frequency for each of the implicated tuples
including a K-Gram, wherein the updating the one or more
stored aggregates includes discarding each implicated tuple
with a low tuple frequency over the interval, whereby statis
tics for trending K-Gram-value pairs are tracked.

13. A multi-dimensional data structure for implementing a
real-time analytics platform characterized by one or more
time windows, one or more dimension attributes, and one or
more value attributes, the data structure comprising:

a plurality of tuples associated with the one or more dimen
sion attributes; and

a slate associated with each tuple for maintaining an aggre
gate for each of the one or more value attributes over
each of the one or more time windows.

14. A method for performing real-time analytics on a data
stream, the methods comprising:

US 2012/013 094.0 A1

processing a data stream to maintain a plurality of stored
aggregates for a universe of prospective queries extrapo
lated from a pre-established framework of possible
query parameters;

returning one of the stored aggregates in response to a
query.

15. A system for performing real-time analytics on a data
stream the system comprising:

a processor for processing a data stream to maintain a
plurality of stored aggregates for a universe of prospec
tive queries extrapolated from a pre-established frame
work of possible query parameters; and

memory for storing the plurality of stored aggregates.
16. The system of claim 15, further comprising an interface

for providing a query, wherein the processor is configured to
return one of the stored aggregates in response to the query.

17. A multi-dimensional data structure for implementing a
real-time analytics platform, the data structure comprising:

a plurality of stored tuples each representing a set of search
query parameters for prospective queries extrapolated
from a pre-established framework of possible query
parameters; and

one or more stored aggregates associated with each of the
stored tuples, wherein each aggregate represents a result
for a prospective query characterized by the set of search
query parameters represented in the tuple associated
with that aggregate.

18. A non-transitory computer readable medium storing
processor executable instructions for performing real time
analytics on streaming data, including instructions for:

May 24, 2012

processing events in a data stream to extract from each
event a set of attribute-value pairs for one or more
dimension attributes and one or more value attributes;

identifying one or more tuples in a multidimensional data
structure implicated by the extracted attribute-value
pairs for the one or more dimension attributes;

for each implicated tuple, updating one or more stored
aggregates associated therewith, based on the extracted
attribute-value pairs for the one or more value attributes.

19. A non-transitory computer readable medium storing
processor executable instructions for performing real time
analytics on streaming data, including instructions for:

establishing an analytics platform framework character
ized by one or more time windows, one or more dimen
sion attributes, and one or more value attribute;

generating a first multi-dimensional data structure for
maintaining, for each tuple of the one or more dimension
attributes, an aggregate of each of the one or more value
attributes over each of the one or more time windows.

20. A non-transitory computer readable medium storing
processor executable instructions for performing real time
analytics on streaming data, including instructions for:

processing a data stream to maintain a plurality of stored
aggregates for a universe of prospective queries extrapo
lated from a pre-established framework of possible
query parameters; and

returning one of the stored aggregates in response to a
query.

