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(57) ABSTRACT 

Storage media, systems and methods are disclosed herein for 
analyzing data streams in real time. More particularly, storage 
media, Systems and methods are presented for processing 
data streams to calculate results for prospective queries. The 
results may be advantageously computed prior to the formu 
lation of the specific query, for example, based on a pre 
established framework of potential query parameters. More 
particularly, a universe of potential queries may be extrapo 
lated from the pre-established framework of potential query 
parameters. Results for each of the potential queries may 
them be tracked in real time. For example, results for each of 
the potential queries may be continuously updated based on 
real-time processing of events in a data stream. 
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REAL-TIME ANALYTCS OF STREAMING 
DATA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. The present application claims priority to U.S. Pro 
visional Patent Application No. 61/415,279, filed Nov. 18, 
2010 (entitled “Social Genome'), and U.S. Provisional Patent 
Application No. 61/415,282, filed Nov. 18, 2010 (entitled 
“Managing Real-Time Data Streams'). This application also 
relates to U.S. Provisional Patent Application No. 61/345,252 
entitled “Content Feed,” filed May 17, 2010, U.S. patent 
application Ser. No. 13/106,706 entitled “Processing Data 
Feeds.” filed May 12, 2011, a U.S. non-provisional patent 
application titled “Processing Data Feeds.” filed Nov. 18, 
2011 (Attorney Docket No. 114826-50302), a U.S. non-pro 
visional patent application entitled “Methods Systems and 
Devices for Recommending Products and Services' filed 
Nov. 18, 2011 (Attorney Docket No. 114826-50602), and a 
U.S. non-provisional patent application entitled “Social 
Genome.” filed Nov. 18, 2011 (Attorney Docket No. 114826 
50202). The entire contents of each of the above-referenced 
applications are incorporated herein in their entirety by ref 
CCC. 

BACKGROUND 

0002. In recent years, social media services such as Twit 
terTM., DiggTM, MyspaceTM and FacebookTM have seen amete 
oric rise in popularity resulting in an ever evolving universe of 
streaming content/data which is often user/consumer gener 
ated. Thus, Social media is able to capture, better than many 
other sources, a raw and unfiltered pulse of Society. 
0003 Potential applications for data harvested from social 
media are vast. For example, from a marketing intelligence 
standpoint, a company may gather and analyze information 
relevant to the company's markets to promote accurate and 
confident decision-making in determining market opportu 
nity, market penetration strategy, market development met 
rics, etc. 

TECHNICAL FIELD 

0004. The present disclosure relates to real-time analytics 
of data streams. More particularly, the present disclosure 
relates to storage media, Systems and methods for processing 
data streams and analyzing data extracted therefrom. 

SUMMARY 

0005 Storage media, systems and methods for performing 
real time analytics on Streaming data are disclosed herein. 
0006. In exemplary embodiments a method for perform 
ing real time analytics on streaming data may include: pro 
cessing events in a data stream to extract from each event a set 
of attribute-value pairs for one or more dimension attributes 
and one or more value attributes; identifying one or more 
tuples in a multidimensional data structure implicated by the 
extracted attribute-value pairs for the one or more dimension 
attributes; and updating, for each implicated tuple, one or 
more stored aggregates associated therewith, based on the 
extracted attribute-value pairs for the one or more value 
attributes. In some embodiments, a tuple frequency may be 
tracked over an interval for each of the implicated tuples, 
wherein the updating the one or more stored aggregates 
includes discarding each implicated tuple with a low tuple 
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frequency over the interval. In other embodiments, for each 
value attribute, aggregates over an interval for a first plurality 
of implicated tuples having same attribute-value pairs for 
Zero or more ordinary dimension attributes and different 
attribute-value pairs for one or more leaderboard dimension 
attributes may be tracked, and a top-N values determined for 
the one or more leadership dimension attributes over the 
interval, for example, wherein the Top-N values are charac 
terized as resulting in the highest aggregates, the lowest 
aggregates or the aggregates closest to a selected value, over 
the interval. In yet other embodiments, the one or more 
dimension attributes may include a K-Gram for identifying 
topics of interest. Thus, for example a tuple frequency for 
each of the implicated tuples including a K-Gram may be 
tracked overan interval, wherein the updating the one or more 
stored aggregates includes discarding each implicated tuple 
with a low tuple frequency over the interval, whereby statis 
tics for trending K-Gram-value pairs are tracked. 
0007. In other exemplary embodiments, a method for 
implementing a real time analytics platform may include 
establishing an analytics platform framework characterized 
by one or more time windows, one or more dimension 
attributes, and one or more value attribute; and generating a 
first multi-dimensional data structure for maintaining, for 
each tuple of the one or more dimension attributes, an aggre 
gate of each of the one or more value attributes over each of 
the one or more time windows. 
0008. In other exemplary embodiments a method for per 
forming real-time analytics on a data stream may include: 
processing a data stream to maintain a plurality of stored 
aggregates for a universe of prospective queries extrapolated 
from a pre-established framework of possible query param 
eters; and returning one of the stored aggregates in response 
to a query. 
0009. In exemplary embodiments, a system for perform 
ing real time analytics on streaming data, may include: a 
processor for processing an event in a data stream to extract a 
set of attribute-value pairs for one or more dimension 
attributes and one or more value attributes; a mapper for 
identifying one or more tuples in a multidimensional data 
structure implicated by the extracted attribute-value pairs for 
the one or more dimension attributes; and one or more updat 
ers for updating, for each implicated tuple, one or more stored 
aggregates associated therewith, based on the extracted 
attribute-value pairs for the one or more value attributes. 
0010. In other exemplary embodiments, a system for per 
forming real-time analytics on a data stream may include: a 
processor for processing a data stream to maintain a plurality 
of stored aggregates for a universe of prospective queries 
extrapolated from a pre-established framework of possible 
query parameters; and memory for storing the plurality of 
Stored aggregates. 
0011. In exemplary embodiments, a multi-dimensional 
data structure, for implementing a real-time analytics plat 
form characterized by one or more time windows, one or 
more dimension attributes, and one or more value attributes, 
may include: a plurality of tuples associated with the one or 
more dimension attributes; and a slate associated with each 
tuple for maintaining an aggregate for each of the one or more 
value attributes over each of the one or more time windows. 
0012. In other exemplary embodiments, a multi-dimen 
sional data structure for implementing a real-time analytics 
platform may include: a plurality of stored tuples each repre 
senting a set of search query parameters for prospective que 
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ries extrapolated from a pre-established framework of pos 
sible query parameters and one or more stored aggregates 
associated with each of the stored tuples, wherein each aggre 
gate represents a result for a prospective query characterized 
by the set of search query parameters represented in the tuple 
associated with that aggregate. 
0013. In exemplary embodiments, a non-transitory com 
puter readable medium may store processor executable 
instructions for performing methods described herein. For 
example, the computer readable medium may store processor 
executable instructions for processing events in a data stream 
to extract from each event a set of attribute-value pairs for one 
or more dimension attributes and one or more value attributes; 
identifying one or more tuples in a multidimensional data 
structure implicated by the extracted attribute-value pairs for 
the one or more dimension attributes; and updating, for each 
implicated tuple, one or more stored aggregates associated 
therewith, based on the extracted attribute-value pairs for the 
one or more value attributes. In other embodiments, the com 
puter readable medium may store processor executable 
instructions for establishing an analytics platform framework 
characterized by one or more time windows, one or more 
dimension attributes, and one or more value attribute; and 
generating a first multi-dimensional data structure for main 
taining, for each tuple of the one or more dimension 
attributes, an aggregate of each of the one or more value 
attributes over each of the one or more time windows. In yet 
other embodiments, the computer readable medium may 
store processor executable instructions for processing a data 
stream to maintain a plurality of stored aggregates for a uni 
verse of prospective queries extrapolated from a pre-estab 
lished framework of possible query parameters; and returning 
one of the stored aggregates in response to a query. 
0014. The foregoing and other objects, aspects, features 
and advantages of exemplary embodiments will be more fully 
understood from the following description when read 
together with the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0015 FIG. 1 depicts an exemplary data stream, according 
to the present disclosure. 
0016 FIG. 2 depicts an exemplary query, according to the 
present disclosure. 
0017 FIG.3 depicts an exemplary data cube, according to 
the present disclosure. 
0018 FIG. 4 depicts an exemplary implementation of a 
distributed architecture for maintaining a data cube, accord 
ing to the present disclosure. 
0019 FIG. 5 depicts another exemplary implementation 
of a distributed architecture for maintaining a data cube, 
according to the present disclosure. 
0020 FIGS. 6a-g depict a sequence of events for a worked 
example using the distributed architecture of FIG. 5, accord 
ing to the present disclosure. 
0021 FIGS. 7a-c depict flowcharts for exemplary meth 
ods for performing real time analytics on streaming data, 
according to the present disclosure. 
0022 FIGS. 8a-b depict overlaying real-time social statis 

tics on a geographic map. 
0023 FIG.9 depicts an exemplary computing device for 
implementing embodiments of the present disclosure. 
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0024 FIG. 10 depicts an exemplary network environment 
for implementing a distributed architecture, according to the 
present disclosure. 

DETAILED DESCRIPTION 

0025 Storage media, systems and methods are disclosed 
herein for analyzing data streams in real time and/or pre 
computing statistics in real time with no query time compu 
tation. More particularly, storage media, Systems and meth 
ods are presented for processing data streams to calculate 
results for prospective queries. The results may be advanta 
geously computed prior to the formulation of the specific 
query, for example, based on a pre-established framework of 
potential query parameters. More particularly, a universe of 
potential queries may be extrapolated from the pre-estab 
lished framework of potential query parameters. Results for 
each of the potential queries may them be tracked in real time. 
For example results for each of the potential queries may be 
continuously updated based on real-time processing of events 
in a data stream. 
0026 Note that, as used herein the term event generally 
refers to an atomic unit in a data stream, for example, a single 
tweetTM in a TwitterTM feed or a single purchasing transaction 
in a transaction stream. In exemplary embodiments, a data 
stream may include a continuous flow of data that is not 
pre-divided into discrete events. Thus, in Some embodiments, 
an event may be inferred, for example, by identifying a set of 
one or more related attributes in the data stream. For example, 
related attributes may be identified based on temporal and/or 
Source commonalities. In some embodiments, a contextual 
analysis (for example, a semantic analysis) of attributes in a 
data steam may be used to identify a set of one or more related 
attributes. Exemplary embodiments of semantic analysis, for 
example using a doctaggerto identify and/or group topics, are 
is described herein 
0027. It is appreciated that, although exemplary embodi 
ments presented herein relate to social analytics, the storage 
media, systems and methods of the present disclosure may be 
used for real-time analysis of any type of streaming data, 
structured or unstructured. For example, the storage media, 
systems and methods of the present disclosure may be used 
for real-time analysis of purchase transactions, customer 
reviews/feedback, customer wish lists/shopping carts, etc. 
0028. In exemplary embodiments, prospective queries of 
data streams may include queries related to social statistics. 
For example: 

0029. How many events relate to product P between 10 
a.m. and 11 a.m. today? 

0.030. What percentage of events had a positive opinion 
of product Pyesterday? 

0031. How do women in Arizona feel about a limited 
time offer, based on events during the offer? 

0032. What is the average age of women in Arizona who 
purchased product Plast year? 

0033. The result for each of the above queries may be 
calculated as an aggregate of a value attribute (number of 
events, percentage of events, sentiment, and average age, 
respectively) over a specified time window (between 10 a.m. 
and 11 a.m. today, yesterday, during the limited time offer, 
and last year, respectively) for a specified set of dimension 
attributes (related to product P. positive sentiment related to 
product P. related to the limited time offer from women in 
Arizona, and related to women in Arizona who purchased 
product P, respectively). The storage media, Systems and 
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methods of the present disclosure advantageously facilitate 
identifying and maintaining time-based aggregates, such as 
described above, prior to the formulation of a queries. 
0034. In exemplary embodiments, a framework of poten 

tial query parameters may be pre-established by selecting, for 
example, via a user input, attributes of interest including one 
or more time windows, one or more dimension attributes and 
one or more value attributes. The framework may further 
include, for each of the one or more value attributes, an 
aggregate function defining how to aggregate instances of the 
value attribute. As used herein, the term dimension attribute 
refers to an identifiable attribute in a data stream which is of 
interest as pertaining to a query search parameter. By com 
parison, the term value attribute refers to an identifiable 
attribute in a data stream of interest which is of interest as 
pertaining to a query result parameter. Notably, depending on 
the particular framework of potential query parameters, a 
same attribute may be both a dimension attribute and a value 
attribute. For example, the attribute “sentiment may be used 
as both a search parameter (such as, in the query “how many 
women have a positive opinion about product P2) and a 
result parameter (Such as in the query “what is the sentiment 
of women regarding product P2). 
0035. In exemplary embodiments a pre-established frame 
work of query parameters may be used to generate a multi 
dimensional data structure for maintaining, for each tuple of 
the one or more dimension attributes; an aggregate of each of 
the one or more value attributes over each of the one or more 
time windows. As used herein the term tuple may refer to a set 
of dimension attribute-value pairs. For example, for exem 
plary dimension attributes Person (P) Location (L) and Thing 
(T), a tuple may take the form Pip, L =1, and T=t, (also 
expressed as the tuple (p. 1, t) for dimensions (P, L, T)). 
0036. In exemplary embodiments, the aggregates stored in 
the multi-dimensional data structure may be updated for each 
new event processed from a data stream. In particular, the 
event may be analyzed to extract a set of related attribute 
value pairs including for one or more dimension attributes 
and one or more value attributes. The extracted set of related 
attributes-value pairs may then be used to identify or more 
implicated tuples in the data structure for updating. Thus, 
aggregates associated with each of the implicated tuples for 
each of the one or more value attributes, may be updated by 
applying an appropriate aggregation function to each identi 
fied value attribute-value pair. In this way the multi-dimen 
sional data structure may maintain real-time analytics of the 
data stream. 

0037. In exemplary embodiments, a distributed architec 
ture, Such as Muppet (map, update), may be used to imple 
ment the storage media, systems and methods of the present 
disclosure. Exemplary implementations of Muppet are fur 
ther described hereinas well as in U.S. non-provisional patent 
application entitled “Processing Data Feeds.” filed Nov. 18, 
2011 (Attorney Docket No. 114826-50302). In general, a 
distributed architecture may be used to map an event to one or 
more implicated tuples in one or more multi-dimensional data 
structures and update, for each of the implicated tuples, one or 
more slates, for example based on one or more value attribute 
value pairs in the event. Advantageously, slates for a plurality 
of implicated tuples may be updated in parallel for example, 
using different processing nodes. 
0038. The terms “map' and “mapper, as used herein, 
relate to a stream operation performed in exemplary embodi 
ments in which events in a data stream are processed in a 
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real-time manner to generate one or more new events which 
are then published to a same or different data stream. In 
exemplary embodiments, a mapper may be used to publish 
events to one or more updaters for updating an aggregate 
value contained in a slates. 
0039. The terms “update” and “updater” refer to a stream 
operation performed in exemplary embodiments in which 
events in one or more real-time data streams are processed in 
a real-time manner to create or update one or more persistent 
static “slate' data structures that are stored in a persistent 
manner, for example, in a durable disk storage (note that, as 
used herein the terms “store.” “stored “storage' etc., imply 
persistence a non-transitory storage medium). In some exem 
plary embodiments, an updater may generate Zero, one or 
more new stream events. The generated stream events may be 
published to one or more real-time data streams. In an exem 
plary embodiments, an updater may publish stream events to 
a data stream from which it accepts stream events as input. 
0040. As used herein, the term “slate” refers to a static data 
structure that may be used to record aggregates as described 
herein. A slate may have any suitable data structure or format. 
In an exemplary format, a slate may include a collection of 
one or more attribute-value pairs. A slate may be stored cor 
responding to a unique slatekey and updater that updates the 
slate. 
0041. In exemplary embodiments, time-based aggregates 
of a given value attribute over a given time-window may be 
maintained in a multi-dimensional data structure (sometimes 
referred to herein as a data cube). The dimensions of the data 
structure generally reflect one or more dimension attributes 
selected in a pre-established framework of potential query 
parameters. 
0042. In a naive implementation of a distributed architec 
ture for maintaining the data structure, fan-out may exponen 
tially relate to the number of dimensions in the data structure. 
The term “fan-out” for a distributed architecture may refer to 
the ratio of internal events generated by the mapping function 
relative to the number of external events (e.g., tweetsTM) 
processed. 
0043. Since, handling and storing such a volume of data 
may prove impractical, alternative implementations of a dis 
tributed architecture are also presented herein that take 
advantage of various properties of data streams to consider 
ably reduce fan-out to a manageable number. 
0044) With initial reference to FIG. 1, an exemplary event 
100 in a data stream 10 is depicted. Event 100 may be pro 
cessed to identify a plurality of attribute-value pairs 110 con 
tained therin. Examples of attributes may include: 

0.045 Event ID, for example, a unique per-event iden 
tifier. 

0046) Sentiment, for example, with potential values of 
+1, 0, or -1, indicating positive, neutral, or negative 
sentiment. 

0047 Gender, for example, with potential values of 
Male, Female, and Unknown. 

0.048 Country, for example, with potential values 
drawn from an enumerated set of country codes includ 
ing unknown. 

0049 Topic, for example, with potential values detected 
via semantic analysis. 

0050 Product, for example, with potential values 
drawn from a product database. 

0051 Price, for example, with potential values in dif 
ferent currencies. 
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0.052 Timestamp, for example, based on time pub 
lished or time received. 

0053) One usefull attribute, accordingly to the present dis 
closure, is the timestamp. In exemplary embodiments, two 
assumptions may be made regarding the timestamp: first, that 
the timestamp represents actual wall-clock time in some 
appropriate timeZone; and second, that timestamps are mon 
ontonically increasing. These assumptions are generally rea 
sonable for streaming data (for example, in TwitterTM each 
tweetTM contains a timestamp that satisfies these conditions). 
One reason that timestamps are useful is that query results are 
represented as aggregates over a time window. Using times 
tamps, aggregates may be unambiguously interpreted to 
include a set of events whose timestamps fall within the 
specified time window. 
0054 With reference to FIG. 2, an exemplary query 200 is 
depicted. Query 200 may specify, for example, a time window 
210, a set of dimension attribute-value pairs 220, one or more 
value attributes of interest 230, and an aggregate function 240 
related to each value attribute 230. Exemplary instances of 
query 200 are described below: 

Example 1 
0055 Query: How many people posted about product P 
between 10 am and 11 am today? 
Time Window: 10am to 11 am today 

Dimension Attribute-Value Pair: Product=P 

0056 Value attribute: Event Id 

Aggregate Function: Count 
0057 Example 1 may be rewritten as the following SQL 
query: 

SELECT COUNT(EventId) 
0.058 FROM event E 
WHERE tiproduct=“P” 
0059 AND t.timestamp>=10 am AND t.timestamp-11 
al 

Example 2 

0060. How many women in Arizona posted about product 
P between 10am and 11 am? 
Same as last example except for additional Dimension 
Attribute-Value Pairs: 

Gender-'F', State=“AZ 
Example 3 

0061 What was the sentiment about product P among 
women in Arizona in December 2010? 

Time Window: December 2010 

Dimension Attribute-ValuePairs: Product=“P, Gender='F', 
State=AZ 

Value Attribute: Sentiment 

Aggregate Function: AggregateSentiment 
0062. In the third query example, AggregateSentiment 
represents a custom-defined aggregation function for com 
bining sentiment values. For example, the function may 
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maintain a 3-tuple of count, one each for positive, neutral, and 
negative sentiments. Alternatively, the function may be con 
figured to calculate an average sentiment. 
0063 Time Windows: 
0064. In exemplary embodiments, aggregates may be cal 
culated for each of a plurality of time windows. In some 
embodiments arbitrary time windows may be supplanted by a 
standard set of time windows, for example: 

0065. By the minute for the past 60 minutes 
0.066 By the hour for the past 24 hours 
0067. By the week for the past 4 weeks 
0068. By the month for the past 24 months (for y-o-y 
same month comparisons) 

0069. By the year for the past 10 years 
0070. In general, the standard set of time windows may 
reflect an assumption that the further back time the coarser the 
time granularity of interest. Thus, the standard set of time 
windows may include time windows of varying time granu 
larity. In exemplary embodiments, it may be sufficient to 
maintain aggregates for a finite number of progressively older 
and courser sets of time windows, such reflected above. 
0071 Aggregate Functions: 
0072. In general there are two kinds of aggregate func 
tions: Algebraic and Holistic. Roughly speaking, algebraic 
aggregates are those, like SUM, that can be computed incre 
mentally; in other words, by aggregating Subsets of the data, 
and computing the final result using those aggregates without 
going back to the base data. In contrast, Holistic aggregates 
typically require the base data when recalculating the aggre 
gate. One example of a holistic aggregate is the median. 
Suppose you divide a data set arbitrarily into two parts, and 
compute the median of the two parts; there is no way to 
compute the median of the entire data set from the medians of 
the two parts. 
0073. The systems and method of the subject disclosure 
typically utilize algebraic aggregation functions, which may 
be computed incrementally. Thus, for example, an average 
may be represented as a 2-tuple a sum and a count, wherein 
the average may be calculated by dividing the Sum by the 
count. The use of algebraic aggregations functions, advanta 
geously simplifies the update process, thereby facilitating the 
real-time data processing and analytics as described herein. In 
exemplary embodiments aggregates are assumed to be com 
mutative and associative, which makes manipulations thereof 
simpler. 
0074 Data Cubes: 
0075. As noted above, the storage media, systems and 
methods of the present disclosure may advantageously utilize 
a multi-dimensional data structure for maintaining a universe 
of aggregates for a pre-established framework of potential 
query parameters, wherein the pre-established framework of 
potential query parameters is characterized, by one or more 
time windows, one or more dimension attributes, one or more 
value attributes and one or more aggregation functions. 
0076 Suppose, for example, a framework characterized 
by time window W. dimension attributes Topic (T), State (S), 
Gender (G), a single value attribute Sentiment (Se), and an 
aggregate function f. The following are the aggregates may 
be of interest for instancest, s and g of T S and G: 
(1) T=t, S=s, G=g, f(Se), W 
(2) T=t, S=s, f(Se), W 
(3) T=t, G=g, f(Se), W 
(4) S=s, G=g, f(Se), W 
(5) T=t, f(Se), W 
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(6) S=s, f(Se), W 
(7) G=g, f(Se), W 
(8) All, f(Se), W (computed across all events in time window 
W) 
0077. The multi-dimensional data structure for storing 
aggregates f(Se), W for all potential combinations and values 
oft, S, and g, may be referred to as the data cube for aggregate 
f(Se) and time window W. The term data cube refers to the fact 
the aggregates may be arranged as the vertices of a hypercube. 
In general, given K dimension attributes, there are 2 aggre 
gates for each set of values of the dimension attributes, which 
is the number of vertices of a hypercube in K dimensions. 
0078. As describe herein, a set of dimension attribute 
value pairs. Such as Tit, G=g, may be referred to as a tuple. 
Referring to the above example, the data cube for the aggre 
gate f(Se) allows rapid lookup of the aggregate of value 
attribute Seforevery tuple over timewindow W. In exemplary 
embodiments, a data cube may store aggregates for a plurality 
of different time windows, for example for a standard set of 
time windows such as described herein. 
0079. With reference to FIG. 3, an exemplary data cube 
300 is depicted for three dimension attributes: Topic (T) 310, 
Location (L) 320 and Sentiment (S) 330. Topic (T) 310 may 
include as instances, names for various topics, for example, as 
grouped via a semantic hierarchy. Location (L) 320 may 
include as instances, names of locations, for example names 
of States in the united States. Sentiment (S) 330 may include 
instances selected from positive negative or neutral. The 
dimension attributes Topic (T) 310, Location (L) 320 and 
Sentiment (S) 33 may be reflected along the vertices of the 
data cube 300. 
0080. The data cube 300 may maintain for each tuple (t, 1, 
s) of T, L, San aggregate for a value attribute (in this case: 
event count, i.e., the number of events processed for the tuple 
(t, l, s)). In exemplary embodiments, each tuple (t, l, s) may be 
associated with a slate for storing the event count. In some 
embodiments the slate may further be associated with an 
updaterfor updating the slate for a new event and a mapper for 
mapping new events to the updater. 
0081. In exemplary embodiments, data cube 300 is 
updated based on a new event. Thus, a new event may be 
processed to identify one or more dimension attributes 
therein. For example, a new event may state “I love living in 
NYC. from which dimension attributes Person (P), Location 
(L) and Sentiment (S) may be extracted (for example P-user 
L=NYC (New York City), and S-positive may be extracted. 
The tuples of (P, L, S) implicated are as follows: 
I0082 (user, NYC, positive) 
0.083 (user, NYC.) 
0084 (user, , positive) 
I0085) (, NYC, positive) 
I0086 (user.) 
I0087 (, NYC.) 
I0088 (, positive) 
0089 (, .) 
0090 Thus, overlapping tuples of (T. L. S) implicated by 
the new event are: 
0091 (, NYC, positive) 
0092) (, NYC.) 
0093 (, , positive) and 
0094) (, .) 
0.095 Thus, the event count associated with each of the 
four implicated tuples may be updated (for example, by incre 
menting the count by one). 
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0096. Note that for an event containing L dimension 
attributes, M of which overlap with Kdimension attributes of 
a data cube, there are 2' tuples of the data cube which are 
implicated (i.e. 2' tuples which overlap between the data 
cube and the event). Thus, a mapper may be used generate the 
2. tuples for the event and map the 2 subset thereof to the 
data cube. An update may then be used update a slate associ 
ated with each of the 2' tuples received from the mapper. 
Distributed architecture implementations for maintaining a 
data cube are described in greater below 
0097. Data cube 300 advantageously maintains, in real 
time, results for any prospective query using the framework 
(T, L, S), of an event count over one or more pre-established 
time windows. FIG. 3, illustrates three examples of queries 
340a-c, the answers to which are maintained and therefore 
pre-computed in data cube 300. For example, query 340a asks 
“how many people are posting about Barack Obama in New 
York?' The result to query 340a may be obtained by returning 
the event count for the tuple (Barack Obama, New York, All), 
for example the event count stored in the slate associated with 
the tuple (Barack Obama, New York, All). As another 
example, query 340b asks “How many people in Arizona feel 
positive of the new Medicare plan?' The result to query 340b 
be obtained by returning the event count for the tuple (Medi 
care, Arizona, Positive). As another example, query 340c asks 
“How many people feel negative of Barack Obama across the 
US? The result to query 340c may obtained by returning the 
event count for the tuple (Barrack Obama, United States (e.g., 
all states), Negative). 
0098. In exemplary embodiments, it is contemplated that 
the number of the dimension of a data cube may be automati 
cally determined based on the types of attributes reflected in 
the data stream. For example, event types with the greatest 
frequencies, such as above a selected threshold, may be used 
as the dimensions for the data cube. Thus, for example the 
data stream may be analyzed to determine the best candidate 
attributes for cube dimensions. 
Naive Distributed Architecture Implementation: 
0099 Referring to FIG. 4, an exemplary implementation 
of a distributed architecture 400 for maintaining a data cube 
may include a mapper, for example, CubeMapper 410, and 
one or more updaters, for example, CubeTupleUpdaters 420. 
The mapper and/or updaters may be distributed to one or 
more processing nodes in the distributed architecture, e.g., 
via a network architecture such as described herein, for 
example with reference to FIG. 10. 
0100. The CubeMapper 410 may advantageously deter 
mine, for example based on a set of attribute-value pairs 
extracted for an event, which data cubes to maintain. In exem 
plary embodiments, a data cube may be defined by a set of 
dimension attributes (for example, Topic, Gender, State), and 
an aggregation function for a value attribute. In exemplary 
embodiments, a configuration file may list the data cubes of 
interest, and give each data cube a name. The aggregation 
function may be specified, for example, in javascript, as a 
function that takes two parameters (the current value of the 
aggregate and a new event) and returns a single value (the new 
value of the aggregate). Note that as a special case, the current 
value may be null, in which case the function may return the 
aggregate corresponding to just the one event. The value of 
the aggregate may be in any data structure/format, for 
example a JSON object. 
0101. In some embodiments, a generated data cube may 
apply only to specific kinds of topics. For example, the query 
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framework may call for a data cube specific for persons of 
interest, Such as customers, celebrities, etc., or for occasions 
Such as holidays, the Oscars, etc. Thus, in exemplary embodi 
ments the mapper may implement a selection function, based 
on selection criterion, to filter out only a subset of events from 
a data stream. The selection function may, for example, 
accept a single parameter (the event) and return either True 
(this event's data should be part of this data cube) or False. 
0102) An example of a configuration file listing data 
cube's of interest is provided below: 
Cubes.congfig: 

CubeName: SentimentCube 

(0103. Select Function: True #Hall events 

Dimensions: Topic, State, Gender 
0104 Aggregatefunction: lambda(sentiment, event) { ... 

; return sentiment 
CubeName: Oscars Votes 

0105. SelectFunction: lambda(event) { return event..event 
id-Oscars: 

Dimensions: Topic, Gender, Age 
0106) Aggregatefunction: lambda(sentiment, event) { ... 

; return sentiment 
0107 The CubeConfig file may advantageously be repli 
cated for reference at each processing node in the distributed 
architecture. 
0108. The CubeMapper 410 may processes each eventina 
data stream and determine which data cubes it is eligible for. 
Suppose an event E with Kdimension elements (for example, 
K=2 dimension elements a and b depicted in FIG. 3) is eli 
gible for a data cube. The CubeMapper 410 constructs the 2' 
tuples from the event E (for example, the 2° tuples: (a), (b). 
(a,b) and (All) depicted in FIG. 3) and generates an event E' 
for each tuple. The key for each event E is the pair (Cube 
Name, Tuple) and the value is the content event E, for 
example, including a value attribute-value pair. The generated 
events E' are sent on to the CubeTupleUpdaters 420. 
0109 Each CubeTupleUpdater 420 maintains a slate for 
every (CubeName, Tuple) pair it receives. Thus, the 
CubeTupleUpdater receives an event E' for a single tuple, 
extracts an instance of a value attribute and applies the aggre 
gation function to add the instance to its store. In exemplary 
embodiments. The updater keeps track of the aggregate value 
for a plurality of time windows for example a standard set of 
time windows such as described herein. Thus, a query for any 
tuple and any Time Window may be answered via a quick 
slate lookup. 

Alternative Distributed Architecture Implementations: 
0110. There are two potential problems with the naive 
implementation described above. First, for a data cube of K 
dimensions, the CubeMapper 410 may generate 2K events for 
each incoming event. This leads to very high fan-out for cubes 
with K-3. Second since, statistics are stored for every pos 
sible tuple that occurs in the data, The number of cube slates 
required is proportional to the number of possible combina 
tions of dimension values that actually occurs in the data. For 
example, Suppose there are 50 states, 2 genders, and 1 million 
topics. The number of slates needed may approach 50x2x1 
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million or 100 million. This may be impractical from a stor 
age perspective. Exemplary alternate implementations of a 
distributed architecture present herein may help mitigate/ 
prevent such potential problems. 
0111. A key property of data stream analytics is that events 
don't exist in a vacuum but rather often reflect and are influ 
enced by a collective pulse. Thus, events often exhibit a great 
deal of clustering, for example, of topics, products, people, 
etc. Moreover, it is expected that queries to the data cube 
involve instances of dimension elements that are of interest to 
a large number of people. Taking advantage of the forgoing 
assumptions, tuples may be advantageously filtered based on 
frequency. Frequency filtering may be implemented, for 
example, by selecting a small time window (for example 1 
minute) referred to as the delta window D. Let S be the set of 
all tuples corresponding to all social updates during a delta 
window D. A threshold 8 is applied to filter out all tuples in S 
with frequency less than 6 from being sent to updaters (for 
example, CubeTupleUpdaters 320 of FIG.3). For example, 6 
may be selected to be 1 or 2. A simple experiment with actual 
data Suggests that setting 6 to 2 may eliminate over 90% of 
tuples in a delta window of 1 minute. Moreover, a qualitative 
examination of Such tuples indicated that the eliminated 
tuples generally came from events that are not really of inter 
est (for example, spam, outliers of some sort, or just semantic 
analysis errors). Thus, filtering also a second effect of reduc 
ing noise, e.g., from semantic analysis errors. On the other 
hand, tuples that do occur frequently in a 1-minute window 
often correlate well with the global interests. Frequency fil 
tering of tuples thus both improves performance and 
improves the quality of the data cube. 
0112 FIG.5 depicts an exemplary distributed architecture 
500 for maintaining a data cube while implementing fre 
quency filtering. Thus, the distributed architecture 500 may 
include a mapper (CubeS elector 510) and 3 types of updaters 
(CubeTupleGenerators 520, the CubeTupleCollectors 530, 
and the CubeTupleUpdaters 540). 
0113 Suppose T is a current timestamp. Interval I may 
then be defined as follows: I-floor(T/D), where D is the delta 
window (e.g., 1 minute). That is, the interval I counts time in 
units of the Delta Window. The CubeTupleGenerators 520 
buffer all tuples with the same Interval, and then dispatch 
them to the CubeTupleCollectors 530. 
0114. In exemplary embodiments, an assumption may be 
made that the stream has a large number of events in each 
Delta Window—that is, the Delta Window is very large com 
pared to the average gap between events (for example, Twit 
terTM., processes approximately 100,000 tweetsTM in a Delta 
Window of 1 minute resulting in an average inter-event gap of 
less than a millisecond). Thus, in exemplary embodiments, 
one may detect when an interval has ended and the next one 
has begun based on a processing of the first event whose 
Interval is higher than the current Interval. Alternatively, 
intervals may be tracked independent of events received. 
0.115. In some embodiments, intervals may be based on 
e.g., a requisite number of events received rather than a time 
frame (for example, provided that the integration of Such 
batches over the one or more time windows being tracked 
results in an acceptable margin of error). In other embodi 
ments, the threshold Ö may be variable, e.g., based on a 
changing frequency of events in the data stream. In some 
embodiments, a different threshold may be applied depend 
ing on the number of dimension attributes-Value pairs in the 
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tuple. Thus, frequency filtering may account for variations in 
event traffic when filtering tuples. 
0116. With reference again to FIG. 5, for each data cube, 
there may be P CubeTupleCienerator slates and P CubeTuple 
Collector slates, with keys 1, ..., P. So as to ensure uniform 
distribution across the cluster, P may be selected to be a small 
multiple of the number of processing nodes in the distributed 
architecture 500. For example, if the distributed architecture 
500 includes 8 processing nodes, one might select P-32 or 64. 
0117. The CubeSelector 510 is similar to the CubeMapper 
210 in the naive implementation. It uses the config file to 
determine if the current Event E is eligible for a data cube. If 
it is, the CubeSelector 510 uses a hash function to map the 
timestamp of the event to one of P values, and emits to stream 
X an event E' whose key is (CubeName, P) and value is the 
content of the event E. 

0118. Each CubeTupleGenerator 520 (CTG) subscribes to 
stream X. A CTG generates all possible tuples from an event 
E" and maintains a table with 3 columns: Tuple, Aggregat 
eValue, and Count. Here Count is the number of events that 
have contributed to this tuple. The CTG also stores the Inter 
val I of the first event it received during this Delta Window. 
When the CTG receives a new event E", it computes its 
Interval J. If J=I, the CTG enumerates the tuples of E' and 
updates its table accordingly. On the other hand, if JDI, the 
CTG starts distributing its data as follows: 
0119 For each tuple, the CTG uses a hash function to map 
the tuple into one of Pbuckets 0.1 ..., P-1. For each bucket 
in 1, ... P-1, the CTG creates and emits to stream Yan event 
Ef whose key is the bucket number, and whose value is the set 
of rows in its table whose tuple maps to that bucket number. 
The value also indicates the Interval I. Once the CTG has sent 
out all P events, it empties its tables and stores J as the new 
Interval value. The CTG then proceeds to process a newly 
received event E'. 
0120 Each CubeTupleCollector 530 (CTC) subscribes to 
stream Y. For each interval I, a CTC slate receives Pevents, 
one from each CTG slate. The CTC maintains a table with 3 
columns: Tuple, Aggregatevalue, Count. The Aggregat 
eValue for a tuple is the aggregate of the partial Aggregat 
eValues for that tuple from each CTG, and the Count is the 
Sum of the corresponding partial counts. The CTC also keeps 
track of the current interval I and a message counter M, both 
initialized to 0. When the CTC receives an event E from the 
CTG with interval J, it first compares I and J: 
0121. If I=J, the CTC table is updated using the tuples in 
the event, and M is incremented by 1. If M=P (i.e., the CTC 
has received events from all the PCTCs), the CTC knows it 
has received all the tuples for the interval I. At this point, the 
CTG discards all infrequent tuples with count less than the 
threshold 8. Forevery frequent tuple, it creates a new event E 
whose key is the pair (CubeName, Tuple) and whose value 
contains the Aggregate and the Count. The event E is pub 
lished to stream Z, to which the CubeTupleUpdaters 540 
subscribe. The CTC then empties its table, sets its current 
interval to I--1 and resets M to 0. 

0122) If JDI, this means is that the CTC has received tuples 
for the next interval before it receives all the tuples for the 
current interval. Assuming that the aforementioned assump 
tion about the Delta Interval being much larger than the aver 
age interval between events holds true, the only real reason 
for this is a node failure, which should be relatively infre 
quent. In this case, the interval I is declared closed, the tuples 

May 24, 2012 

accumulated thus far are filtered. I is set to be equal to J. M. to 
1, and process the newly arrived event. 
I0123 Finally. If J<I, a delayed event for an interval that is 
past was received. This event is ignored. 
0.124. Each CubeTupleUpdater 540 maintains a slate for 
every (CubeName, Tuple) pair it receives. Thus, the 
CubeTupleUpdater receives an event E for a single tuple, 
extracts an instance of a value attribute and applies the aggre 
gation function to add the instance to its store. In exemplary 
embodiments. The updater keeps track of the aggregate value 
for a plurality of time windows for example a standard set of 
time windows such as described herein. Thus, a query for any 
tuple and any Time Window may be answered via a quick 
slate lookup. 
0.125 With reference to FIGS. 6a-gan exemplary worked 
example of the distributed architecture 500 is depicted, dem 
onstrating exemplary contents of CTG slates 620 and CTC 
slates 630 of a CTG and CTC such as described above with 
reference to FIG.5. For the worked example, depicted, a data 
cube C with two dimensions (A and X) is assumed. The 
aggregate is SUM and the filtering threshold 6–1. During the 
Delta Window, 4 tuples arrive. In FIG. 6a, an event E includ 
ing attribute-value pairs A=a X=x and value attribute V=5 is 
received by the Cube Selecter 610. In FIG. 6b, an event E 
including attribute-value pairs B=b Y=y and value attribute 
V=3 is received by the CubeSelecter 610. In FIG. 6c, an event 
E including attribute-value pairs A=a Y=y and value attribute 
V=2 is received by the Cube Selecter 610. In FIG. 6d an event 
E including attribute-value pairs A=aY=y and value attribute 
V-4 is received by the Cube Selector 610. In each case, Cube 
Selecter 610 uses the config file to determine if the Event E is 
eligible for a data cube, for example data cube C. If it is, the 
CubeSelector 610 uses a hash function to map the timestamp 
of the event to one of PValues and emits an event E' whose 
key is (CubeName, P) and value is the content of the event E. 
As depicted in FIGS. 6a-d CTG slates 620 buffer all tuples 
with the same interval. More particularly the CTG slates 620 
maintains a table with 3 columns: Tuple, AggregateValue, and 
Count. With reference to FIG. 6e, once the interval is closed, 
a hash function to map each from the CTG slates 620 tuple 
into one of P buckets 0.1 ..., P-1, for example buckets 625 
of FIG. 6e. For eachbucket in 1,...P-1, the creates and emits 
an event E whose key is the bucket number, and whose value 
is the set of rows in its table whose tuple maps to that bucket 
number. With reference to FIGS. 6f and 6g, for each interval 
I, CTC slates 630 receive Pevents, one from each CTG slate 
620. The CTC slates 630 maintains a table with 3 columns: 
Tuple, Agregatevalue, Count. As depicted, once the CTG 
slate has sent out its events E, it empties its tables and begins 
processing events E' for a new interval. As depicted in Figure 
g6, once the CTC slates 630 have received all the tuples for a 
given interval all infrequent tuples, for example with count 
less than the threshold 8 are discarded. Then for every fre 
quent tuple, a new event E is created whose key is the pair 
(CubeName, Tuple) and whose value contains the Aggregate 
and the Count. The event E is published to stream Z sub 
scribed to by CubeTupleUpdaters. Data cube C could then be 
updated for eligible events E. 

Leaderboard Queries: 
0.126 Exemplary implementations presented above, pri 
marily related to point aggregates—wherein a tuple (a point 
in the hypercube) is specified and the desired result of the 
query is the corresponding aggregate value. The storage 
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media, Systems and methods herein, however, are not limited 
to Such implementations. Indeed in some embodiments, the 
data cube is used tracks results for different type of queries 
for, example, leaderboard queries. 
0127. A leaderboard query specifies a tuple and a leader 
board attribute, and asks for the Top-N values of the leader 
board attribute among events that satisfy the tuple. For 
example, a leaderboard query might pose the following ques 
tion: 
What were the Top 10 most popular topics posted about by 
people in Arizona between 10 am and 11 am today? 

In SQL: 
0128 SELECT topic, count(eventid) as freq 
FROM events e 
WHERE t.state="AZ” and t.timestamp >="10 am” AND 
t.timestamp-11 am” 
GROUP BY topic 
ORDER BY freq 

LIMIT 10 

0129. Other exemplary leaderboard queries might pose 
the following question: 
What were the Top 10 least popular topics posted about by 
people in Arizona between 10 am and 11 am today? 
What were the Top 10 locations closest to New York where 
users posted about a sales event. 
0130. The data cube may easily be extended to support 
leaderboard queries. In the simple case, if the leaderboard 
attribute has a small and known set of values (e.g., state or 
gender), one can simply look up the slates corresponding to 
all possible values and pick the Top-N. The harder case occurs 
when the leaderboard attribute can take on a large number of 
values (or example, topic, product, URL, domain). In this 
case we cannot possibly examine all slates for all values of the 
attribute. 
0131. In exemplary embodiments, leaderboard queries are 
indicated by adding a line to the data cube config file to 
indicate the leaderboard dimensions for each cube and the 
value for “N (for Top-N queries; e.g., 10). For example: 

CubeName: SentimentCube 

(0132) Select Function: True #Hall events 

Dimensions: Topic, State, Gender 
Leaderboards: Topic(10) 
I0133) Aggregatefunction: lambda(sentiment, event) { ... 
; return sentiment 
0134) To simplify the present description, assume there is 
at most one leaderboard dimension in each data cube (SS 
would be appreciated by one of ordinary skill in the art, it is 
straightforward to Support more given the description for 
one). Non-leaderboard dimensions of the data cube may be 
referred to as ordinary dimensions. 
0135 Recall that in the distribution step of the CTGatuple 

is hashed into one of Pbuckets. For the purposes of a leader 
board query the hash function is applied only to the ordinary 
dimensions of each tuple. This ensures all tuples of the form: 
A=a, B=b, C=*, where C is the leaderboard attribute and A 
and B are ordinary attributes, end up at the same slate of the 
CTC. The CTC can now compute the Top-N leaderboard 
values for each tuple, and pass them on to the CTU in the 
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event it constructs for the tuple. For example, the Top-N 
values may be characterized as resulting in the highest aggre 
gates, the lowest aggregates, and the aggregates closest to a 
selected value, etc. 
0.136 Thus, the CTU may maintain the leaderboard for 
each time window. Where a time window is used for filtering 
by the CTC, the CTU may get the leaderboard directly from 
the CTC. Leaderboards for larger time windows are approxi 
mated using those for the smaller time windows. For 
example, an hourly leaderboard may be computed by looking 
at the Top 10 for each minute of the hour, and summing the 
minute-by-minute values. While it is possible to make some 
errors using this method (for example, where the most fre 
quent item during the hour was not in the top 10 for any 
minute of the hour) accurate results are generally achieved. 

K-grams 

0.137. One potential disadvantage in querying using 
dimensions requiring semantic analysis, is that the semantic 
analysis is limited by the available hierarchy. For example, a 
semantic analysis engine can only tag instances it recognizes. 
An interesting advantage the storage media, Systems and 
methods described herein is that the data cube may be used to 
maintain statistics on topics products, locations etc. (collec 
tively, referred to as interesting topics or topics of interest) 
without the help of semantic analysis. Thus in exemplary 
embodiments a "K-Gram' is added as one of the data cube 
dimensions, with a relative high threshold 6 (e.g., 50). Thus, 
a slate is automatically created and maintained for any k-gram 
that was mentioned very often in a delta time window. In 
exemplary embodiments, a TFIDF threshold may be instead 
of a pure frequency threshold to achieve better results. Thus, 
the data cube may be used to identify trending k-grams and 
automatically maintains stats for them without help from 
semantic analysis. In exemplary embodiments identified top 
ics of interest can be communicated to the semantic analysis 
engine and "candidate topics” and the maintained statistics 
relating thereto can be used by the engine to whether to 
incorporate each candidate topic into the taxonomy. 

Exemplary Methods 

0.138 FIGS. 7a-c, illustrate exemplary methods according 
to the present disclosure. 
(0.139. With reference to FIG. 7a, an exemplary method 
710 is depicted for performing real time analytics on stream 
ing data. Method 710 generally includes steps of (712) pro 
cessing events in a data stream to extract from each event a set 
of attribute-value pairs for one or more dimension attributes 
and one or more value attributes; (714) identifying one or 
more tuples in a multidimensional data structure implicated 
by the extracted attribute-value pairs for the one or more 
dimension attributes; and (716) for each implicated tuple, 
updating one or more stored aggregates associated therewith, 
based on the extracted attribute-value pairs for the one or 
more value attributes. 

0140. With reference to FIG. 7b, an exemplary method 
720 is depicted for performing real time analytics on stream 
ing data. Method 720 generally includes steps of (722) estab 
lishing an analytics platform framework characterized by one 
or more time windows, one or more dimension attributes, and 
one or more value attribute; and (724) generating a first multi 
dimensional data structure for maintaining, for each tuple of 
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the one or more dimension attributes, an aggregate of each of 
the one or more value attributes over each of the one or more 
time windows. 
0141. With reference to FIG.7can exemplary method 730 

is depicted for performing real time analytics on Streaming 
data. Method 730 generally includes steps of: (732) process 
ing a data stream to maintain a plurality of stored aggregates 
for a universe of prospective queries extrapolated from a 
pre-established framework of possible query parameters; and 
(734) returning one of the stored aggregates in response to a 
query. 
0142. It is explicitly contemplated that the storage media, 
systems and methods presented herein may include one or 
more programmable processing units having associated 
therewith executable instructions held on one or more com 
puter readable medium, RAM, ROM, hard drive, and/or hard 
ware. In exemplary embodiments, the hardware, firmware 
and/or executable code may be provided, for example, as 
upgrade module(s) for use in conjunction with existing infra 
structure (for example, existing devices/processing units). 
Hardware may, for example, include components and/or 
logic circuitry for executing the embodiments taught herein 
as a computing process. 
0143 Displays and/or other feedback means may also be 
included to convey detected/processed data, for example 
adjusted output representative of aparticle characteristic. The 
display and/or other feedback means may be stand-alone or 
may be included as one or more components/modules of the 
processing unit(s). In exemplary embodiments, the display 
and/or other feedback means may be used to facilitate query 
ing a data cube. In other embodiments, the display may be 
used to visualize, in real-time, various Social statistics main 
tained by the data cube. For example, as depicted in FIGS. 8a 
and 8b, real-time social statistics may be overlaid on a geo 
graphic map. 
0144. The actual software code or control hardware which 
may be used to implement some of the present embodiments 
is not intended to limit the scope of such embodiments. For 
example, certain aspects of the embodiments described 
herein may be implemented in code using any Suitable pro 
gramming language type Such as, for example, assembly 
code, C, C# or C++ using, for example, conventional or 
object-oriented programming techniques. Such code is stored 
or held on any type of Suitable non-transitory computer-read 
able medium or media Such as, for example, a magnetic or 
optical storage medium. 
0145 As used herein, a “processor,” “processing unit.” 
“computer or “computer system” may be, for example, a 
wireless or wire line variety of a microcomputer, minicom 
puter, server, mainframe, laptop, personal data assistant 
(PDA), wireless e-mail device (for example, “BlackBerry.” 
“Android' or “Apple trade-designated devices), cellular 
phone, pager, processor, fax machine, Scanner, or any other 
programmable device configured to transmit and receive data 
over a network. Computer systems disclosed herein may 
include memory for storing certain Software applications 
used in obtaining, processing and communicating data. It can 
be appreciated that such memory may be internal or external 
to the disclosed embodiments. The memory may also include 
non-transitory storage medium for storing Software, includ 
ing a hard disk, an optical disk, floppy disk, ROM (read only 
memory), RAM (random access memory), PROM (program 
mable ROM), EEPROM (electrically erasable PROM), flash 
memory storage devices, or the like. 

May 24, 2012 

0146 FIG. 9 depicts a block diagram representing an 
exemplary computing device 900 that may be used as a pro 
cessing node (also referred to as a worker node) for aggregat 
ing and/or storing data as described herein, for example a 
processing node in a distributed architecture as described 
herein. The computing device 900 may be any computer 
system, Such as a workstation, desktop computer, server, lap 
top, handheld computer, tablet computer (e.g., the iPadTM 
tablet computer), mobile computing or communication 
device (e.g., the iPhoneTM mobile communication device, the 
Android TM mobile communication device, and the like), or 
otherform of computing or telecommunications device that is 
capable of communication and that has sufficient processor 
power and memory capacity to perform the operations 
described herein. A distributed computational system may be 
provided comprising a plurality of Such computing devices. 
0147 The computing device 900 includes one or more 
non-transitory computer-readable media having encoded 
thereon one or more computer-executable instructions or 
Software for implementing exemplary methods described 
herein. The non-transitory computer-readable media may 
include, but are not limited to, one or more types of hardware 
memory, non-transitory tangible media (for example, one or 
more magnetic storage disks, one or more optical disks, one 
or more USB flash drives), and the like. For example, memory 
906 included in the computing device 900 may store com 
puter-readable and computer-executable instructions or soft 
ware for implementing exemplary embodiments. The com 
puting device 900 also includes processor 902 and associated 
core 904, and in some embodiments, one or more additional 
processor(s) 902' and associated core(s) 904 (for example, in 
the case of computer systems having multiple processors/ 
cores), for executing computer-readable and computer-ex 
ecutable instructions or software stored in the memory 906 
and other programs for controlling system hardware. Proces 
sor 902 and processor(s) 902' may each be a single core 
processor or multiple core (904 and 904") processor. 
0148 Virtualization may be employed in the computing 
device 900 so that infrastructure and resources in the com 
puting device may be shared dynamically. A virtual machine 
914 may be provided to handle a process running on multiple 
processors so that the process appears to be using only one 
computing resource rather than multiple computing 
resources. Multiple virtual machines may also be used with 
one processor. 
0149 Memory 906 may include a computer system 
memory or random access memory, such as DRAM, SRAM, 
EDO RAM, and the like. Memory 906 may include other 
types of memory as well, or combinations thereof. Memory 
906 may be used to store one or more slates on a temporary 
basis, for example, in cache. 
0150. A user may interact with the computing device 900 
through a visual display device 918, such as a screen or 
monitor, that may display one or more interfaces 920 that may 
be provided in accordance with exemplary embodiments. The 
visual display device 918 may also display other aspects, 
elements and/or information or data associated with exem 
plary embodiments. The computing device 900 may include 
other I/O devices for receiving input from a user, for example, 
a keyboard or any suitable multi-point touch interface 908, a 
pointing device 910 (e.g., a mouse, a user's finger interfacing 
directly with a display device, etc.). The keyboard 908 and the 
pointing device 910 may be coupled to the visual display 
device 918. The computing device 900 may include other 
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suitable conventional I/O peripherals. In exemplary embodi 
ments, the one or more of the interfaces 920 includes an 
application program interface (API). 
0151. The computing device 900 may include one or more 
audio input devices 924. Such as one or more microphones, 
that may be used by a user to provide one or more audio input 
StreamS. 

0152 The computing device 900 may include one or more 
non-transitory storage devices 924. Such as a durable disk 
storage (which may include any Suitable optical or magnetic 
durable storage device, e.g., RAM, ROM, Flash, USB drive, 
or other semiconductor-based storage medium), a hard-drive, 
CD-ROM, or other non-transitory computer readable media, 
for storing data and computer-readable instructions and/or 
Software that implement exemplary embodiments as taught 
herein. For example, the storage device 924 may provide a 
slate storage 926 for storing computer-executable instruc 
tions for implementing the Social genome data structure as 
described herein, for example for storing an updating (via one 
or more updaters) one or more slates, as described herein. The 
storage device 924 may store one or more map modules 932 
and one or more update modules 934, as described herein. 
The storage device 924 may be provided on the computing 
device 900 or provided separately or remotely from the com 
puting device 900. The storage device 924 may be used to 
store one or more slates in a durable manner. 
0153 Exemplary mappers and updaters may be program 
matically implemented by a computer process in any Suitable 
programming language, for example, a Scripting program 
ming language, an object-oriented programming language 
(e.g., Java), and the like. In an exemplary object-oriented 
implementation, a general Mapper class or interface and 
Updater class or interface may be defined by the system to 
generally specify attributes and functionality of a generic 
update operation. For each desired update operation, a Sub 
class may be created based on the Updater class. One or more 
object instances may be created from each Sub-class at a 
processor node, for example, a CubeTupleGenerator object 
may be instantiated from a CubeTupleCienerator sub-class. 
0154 The computing device 900 may include a network 
interface 912 configured to interface via one or more network 
devices 922 with one or more networks, for example, Local 
Area Network (LAN), Wide Area Network (WAN) or the 
Internet through a variety of connections including, but not 
limited to, standard telephone lines, LAN or WAN links (for 
example, 802.11, T1, T3, 56 kb, X.25), broadband connec 
tions (for example, ISDN. Frame Relay, ATM), wireless con 
nections, controller area network (CAN), or some combina 
tion of any or all of the above. The network interface 912 may 
include a built-in network adapter, network interface card, 
PCMCIA network card, card bus network adapter, wireless 
network adapter, USB network adapter, modem or any other 
device suitable for interfacing the computing device 900 to 
any type of network capable of communication and perform 
ing the operations described herein. The network device 922 
may include one or more Suitable devices for receiving and 
transmitting communications over the network including, but 
not limited to, one or more receivers, one or more transmit 
ters, one or more transceivers, one or more antennae, and the 
like. 
0155 The computing device 900 may run any operating 
system 916, such as any of the versions of the Microsoft(R) 
Windows(R) operating systems, the different releases of the 
Unix and Linux operating systems, any version of the 
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MacOSR) for Macintosh computers, any embedded operating 
system, any real-time operating system, any open Source 
operating system, any proprietary operating system, any 
operating systems for mobile computing devices, or any other 
operating system capable of running on the computing device 
and performing the operations described herein. In exemplary 
embodiments, the operating system 916 may be run in native 
mode or emulated mode. In an exemplary embodiment, the 
operating system 916 may be run on one or more cloud 
machine instances. 

0156 FIG. 10 depicts an exemplary network environment 
1000 suitable for a distributed implementation of exemplary 
embodiments. The network environment 1000 may include 
one or more servers 1002 and 1004 coupled to one or more 
clients 1006 and 1008 via a communication network 1010. 
The network interface 912 and the network device 922 of the 
computing device 900 enable the servers 1002 and 1004 to 
communicate with the clients 1006 and 1008 via the commu 
nication network 1010. The communication network 1010 
may include, but is not limited to, the Internet, an intranet, a 
LAN (Local Area Network), a WAN (Wide Area Network), a 
MAN (Metropolitan Area Network), a wireless network, an 
optical network, and the like. The communication facilities 
provided by the communication network 1010 are capable of 
Supporting distributed implementations of exemplary 
embodiments. 

0157. In an exemplary embodiment, the servers 1002 and 
1004 may provide the clients 1006 and 1008 with computer 
readable and/or computer-executable components or prod 
ucts under a particular condition, Such as a license agreement. 
In some exemplary embodiments, the computer-readable 
and/or computer-executable components or products pro 
vided by the servers may include those for providing one or 
more real-time data streams to worker processes at worker 
nodes. The clients 1006 and 1008 may process the data 
streams using the computer-readable and/or computer-ex 
ecutable components and products provided by the servers 
1002 and 1004. In some exemplary embodiments, the com 
puter-readable and/or computer-executable components or 
products provided by the servers may include those for pro 
viding and executing one or more map and/or update opera 
tions, for example using one or more mappers or updaters. 
The clients 1006 and 1008 may execute the map and update 
operations using the computer-readable and/or computer-ex 
ecutable components and products provided by the servers 
1002 and 1004. In some exemplary embodiments, the clients 
1006 and 1008 may transmit events generated by update 
operations to the servers 1002 and 1004 for publication in one 
or more data streams. In some exemplary embodiments, the 
clients 1006 and 1008 may transmit one or more slates created 
or updated by update operations to the servers 1002 and 1004 
for persistent storage on a disk storage or for storage in 
memory, e.g., in cache. 
0158 Alternatively, in another exemplary embodiment, 
the clients 1006 and 1008 may provide the servers 1002 and 
1004 with computer-readable and computer-executable com 
ponents or products under a particular condition, such as a 
license agreement. In some exemplary embodiments, the 
computer-readable and/or computer-executable components 
or products provided by the clients may include those for 
providing one or more real-time data streams to worker pro 
cesses. The servers 1002 and 1006 may process the data 
streams using the computer-readable and/or computer-ex 
ecutable components and products provided by the clients 
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1006 and 1008. In some exemplary embodiments, the com 
puter-readable and/or computer-executable components or 
products provided by the clients may include those for pro 
viding and executing one or more map and/or update opera 
tions. The servers 1002 and 1004 may execute the map and 
update operations using the computer-readable and/or com 
puter-executable components and products provided by the 
clients 1006 and 1008. In some exemplary embodiments, the 
servers 1002 and 1004 may transmit events generated by 
update operations to the clients 1006 and 1008 for publication 
in one or more data streams. In some exemplary embodi 
ments, the servers 1002 and 1004 may transmit one or more 
slates created or updated by update operations to the clients 
1006 and 1008 for persistent storage on a disk storage or for 
storage in memory, e.g., in cache. 
0159. In exemplary embodiments one or more mappers 
and one or more updaters for example map module 932 and 
update module 934 of FIG.9, may be distributed to through 
out various processing nodes of the network environment 
1000, for example nodes 1012a-d. 
0160 Although the teachings herein have been described 
with reference to exemplary embodiments and implementa 
tions thereof, the disclosed systems, methods and non-tran 
sitory storage medium are not limited to Such exemplary 
embodiments/implementations. Rather, as will be readily 
apparent to persons skilled in the art from the description 
taught herein, the disclosed storage media, Systems and meth 
ods are susceptible to modifications, alterations and enhance 
ments without departing from the spirit or scope hereof. 
Accordingly, all Such modifications, alterations and enhance 
ments within the scope hereof are encompassed herein. 
What is claimed: 
1. A method for performing real time analytics on stream 

ing data, the method comprising: 
processing events in a data stream to extract from each 

event a set of attribute-value pairs for one or more 
dimension attributes and one or more value attributes; 

identifying one or more tuples in a multidimensional data 
structure implicated by the extracted attribute-value 
pairs for the one or more dimension attributes; 

for each implicated tuple, updating one or more stored 
aggregates associated therewith, based on the extracted 
attribute-value pairs for the one or more value attributes. 

2. The method of claim 1 further comprising tracking over 
an intervala tuple frequency for each of the implicated tuples, 
wherein the updating the one or more stored aggregates 
includes discarding each implicated tuple with a low tuple 
frequency over the interval. 

3. The method of claim 1 further comprising tracking over 
an interval, for each value attribute, aggregates for a first 
plurality of implicated tuples having same attribute-value 
pairs for Zero or more ordinary dimension attributes and 
different attribute-value pairs for one or more leaderboard 
dimension attributes, and determining a top-N values for the 
one or more leadership dimension attributes over the interval. 

4. The method of claim 3, wherein the Top-N values are 
characterized as resulting in one of (i) the highest aggregates 
(ii) the lowest aggregates, and (iii) the aggregates closest to a 
selected value, over the interval. 

5. The method of claim3 further comprising determining a 
set of top-N values for each of a plurality of intervals in a time 
window and determining a top-N values for the one or more 
leadership dimensions attributes over the time window based 
on the plurality of sets of top-N values. 
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6. The method of claim 1, wherein the one or more dimen 
sion attributes include a K-Gram for identifying topics of 
interest. 

7. The method of claim 6, further comprising tracking over 
an intervala tuple frequency for each of the implicated tuples 
including a K-Gram, wherein the updating the one or more 
stored aggregates includes discarding each implicated tuple 
with a low tuple frequency over the interval, whereby statis 
tics for trending K-Gram-value pairs are tracked. 

8. A method for implementing a real time analytics plat 
form, the method comprising: 

establishing an analytics platform framework character 
ized by one or more time windows, one or more dimen 
sion attributes, and one or more value attribute; 

generating a first multi-dimensional data structure for 
maintaining, for each tuple of the one or more dimension 
attributes, an aggregate of each of the one or more value 
attributes over each of the one or more time windows. 

9. A system for performing real time analytics on streaming 
data, the system comprising: 

a processor for processing an event in a data stream to 
extract a set of attribute-value pairs for one or more 
dimension attributes and one or more value attributes; 

a mapper for identifying one or more tuples in a multidi 
mensional data structure implicated by the extracted 
attribute-value pairs for the one or more dimension 
attributes; and 

one or more updaters for updating, for each implicated 
tuple, one or more stored aggregates associated there 
with, based on the extracted attribute-value pairs for the 
one or more value attributes. 

10. The system of claim 9, wherein the system is config 
ured to track over an interval a tuple frequency for each of the 
implicated tuples, wherein the updating the one or more 
stored aggregates includes discarding each implicated tuple 
with a low tuple frequency over the interval. 

11. The system of claim 9 wherein the system is configured 
to: (i) update, over an interval, for each value attribute, aggre 
gates for a first plurality of implicated tuples having same 
attribute-value pairs for Zero or more ordinary dimension 
attributes and different attribute-value pairs for one or more 
leaderboard dimension attributes, and (ii) determine a top-N 
values for the one or more leadership dimension attributes 
over the interval. 

12. The system of claim 9, wherein the one or more dimen 
sion attributes include a K-Gram for identifying topics of 
interest, wherein the system is configured to track over an 
interval a tuple frequency for each of the implicated tuples 
including a K-Gram, wherein the updating the one or more 
stored aggregates includes discarding each implicated tuple 
with a low tuple frequency over the interval, whereby statis 
tics for trending K-Gram-value pairs are tracked. 

13. A multi-dimensional data structure for implementing a 
real-time analytics platform characterized by one or more 
time windows, one or more dimension attributes, and one or 
more value attributes, the data structure comprising: 

a plurality of tuples associated with the one or more dimen 
sion attributes; and 

a slate associated with each tuple for maintaining an aggre 
gate for each of the one or more value attributes over 
each of the one or more time windows. 

14. A method for performing real-time analytics on a data 
stream, the methods comprising: 
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processing a data stream to maintain a plurality of stored 
aggregates for a universe of prospective queries extrapo 
lated from a pre-established framework of possible 
query parameters; 

returning one of the stored aggregates in response to a 
query. 

15. A system for performing real-time analytics on a data 
stream the system comprising: 

a processor for processing a data stream to maintain a 
plurality of stored aggregates for a universe of prospec 
tive queries extrapolated from a pre-established frame 
work of possible query parameters; and 

memory for storing the plurality of stored aggregates. 
16. The system of claim 15, further comprising an interface 

for providing a query, wherein the processor is configured to 
return one of the stored aggregates in response to the query. 

17. A multi-dimensional data structure for implementing a 
real-time analytics platform, the data structure comprising: 

a plurality of stored tuples each representing a set of search 
query parameters for prospective queries extrapolated 
from a pre-established framework of possible query 
parameters; and 

one or more stored aggregates associated with each of the 
stored tuples, wherein each aggregate represents a result 
for a prospective query characterized by the set of search 
query parameters represented in the tuple associated 
with that aggregate. 

18. A non-transitory computer readable medium storing 
processor executable instructions for performing real time 
analytics on streaming data, including instructions for: 
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processing events in a data stream to extract from each 
event a set of attribute-value pairs for one or more 
dimension attributes and one or more value attributes; 

identifying one or more tuples in a multidimensional data 
structure implicated by the extracted attribute-value 
pairs for the one or more dimension attributes; 

for each implicated tuple, updating one or more stored 
aggregates associated therewith, based on the extracted 
attribute-value pairs for the one or more value attributes. 

19. A non-transitory computer readable medium storing 
processor executable instructions for performing real time 
analytics on streaming data, including instructions for: 

establishing an analytics platform framework character 
ized by one or more time windows, one or more dimen 
sion attributes, and one or more value attribute; 

generating a first multi-dimensional data structure for 
maintaining, for each tuple of the one or more dimension 
attributes, an aggregate of each of the one or more value 
attributes over each of the one or more time windows. 

20. A non-transitory computer readable medium storing 
processor executable instructions for performing real time 
analytics on streaming data, including instructions for: 

processing a data stream to maintain a plurality of stored 
aggregates for a universe of prospective queries extrapo 
lated from a pre-established framework of possible 
query parameters; and 

returning one of the stored aggregates in response to a 
query. 


