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(57) ABSTRACT 
Methods and apparatus that may be utilized to maintain 
coherency of data accessed by both a processor and a remote 
device are provided. Various mechanisms, such as a remote 
cache directory, castout buffer, and/or outstanding transac 
tion buffer may be utilized by the remote device to track the 
state of processor cache lines that may hold data targeted by 
requests initiated by the remote device. Based on the content 
of these mechanisms, requests targeting data that is not in the 
processor cache may be routed directly to memory, thus 
reducing overall latency. 
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SNOOP FILTER DIRECTORY MECHANISMN 
COHERENCY SHARED MEMORY SYSTEM 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation application of 
co-pending U.S. patent application Ser. No. 10/961,749 filed 
Oct. 8, 2004, which is herein incorporated by reference. 

BACKGROUND OF THE INVENTION 

0002) 
0003. This application generally relates to data process 
ing systems and, more particularly, to systems in which 
multiple processing devices may access the same shared 
data stored in memory. 
0004 2. Description of the Related Art 
0005. In a multiprocessor system, or any type of system 
that allows more than one device to request and update 
blocks of shared data concurrently, it is important that some 
mechanism exists to keep the data coherent (i.e., to ensure 
that each copy of data accessed by any device is the most 
current copy). In many Such systems, a processor has one or 
more caches to provide fast access to data (including instruc 
tions) stored in relatively slow (by comparison to the cache) 
external main memory. In an effort to maintain coherency, 
other devices on the system (e.g., a graphics processing 
unit-GPU) may include some type of coherency or "snoop' 
logic to determine if a copy of data from a desired memory 
location is held in the processor cache by sending commands 
(Snoop requests) to a processor cache directory. 

1. Field of the Invention 

0006. This Snoop logic is used to determine if desired 
data is contained in the processor cache and if it is the most 
recent (modified) copy, typically by querying the processor 
cache directory. If so, in order to work with the latest copy 
of the data, the device may request ownership of the 
modified copy stored in a processor cache line. In a con 
ventional coherent system, devices requesting data do not 
know ahead of time whether the data is in a processor cache. 
As a result, each device must query (Snoop) the processor 
cache directory for every memory location that it wishes to 
access from main memory to make Sure that proper data 
coherency is maintained, which can be very expensive both 
in terms of both command latency and microprocessor bus 
bandwidth. 

0007 Accordingly, what is needed is an efficient method 
and system which would reduce the amount of latency 
associated with interfacing with (Snooping on) a processor 
cache. 

SUMMARY OF THE INVENTION 

0008 Embodiments of the present invention generally 
provide methods and apparatus that may be utilized to 
maintain coherency of data accessed by a remote device that 
may reside in a cache of a processor. 
0009. One embodiment provides a method of maintain 
ing coherency of data accessed by a remote device. The 
method generally includes maintaining, on the remote 
device, a remote cache directory indicative of memory 
locations residing in a cache on a processor which shares 
access to Some portion of a memory device and a castout 
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buffer indicating cache lines that have been or will be castout 
from the processor cache. Memory requests issued at the 
remote device may be routed to the memory device or the 
processor cache, depending on information contained in the 
remote cache directory and castout buffer. 
0010 Another embodiment provides a method of main 
taining coherency of data accessed by a remote device. The 
method generally includes maintaining, on the remote 
device, a remote cache directory indicative of memory 
locations residing in a cache on a processor which shares 
access to some portion of a memory device. A memory 
request issued at the remote device may be routed to the 
processor cache if an address targeted by the memory 
request matches an entry in the remote cache directory. An 
entry in an outstanding transaction buffer residing on the 
remote device may be created, the entry containing the 
address targeted by the memory request routed to the pro 
cessor cache. 

0011) Another embodiment provides a device configured 
to access data stored in memory and cacheable by a pro 
cessor. The device generally includes one or more process 
ing cores, a remote cache directory indicative of contents of 
a cache residing on the processor, a castout buffer indicating 
cache lines that have been or will be castout from the 
processor cache, and coherency logic. The coherency logic 
is generally configured to receive cache coherency informa 
tion indicative of changes to the contents of the processor 
cache sent by the processor in bus transactions and update 
the cache directory and castout buffer based on the cache 
coherency information. 
0012 Another embodiment provides a coherent system 
generally including a processor and a remote device. The 
processor generally includes a cache for storing data 
accessed from external memory, a cache directory with 
entries indicating which memory locations are stored in 
cache lines of the cache and corresponding coherency states 
thereof, and control logic configured to detect internal bus 
transactions indicating the allocation and de-allocation of 
cache lines and, in response, generate bus transactions, each 
containing cache coherency information indicating cache 
line that has been allocated or de-allocated. The remote 
device generally includes a remote cache directory indica 
tive of contents of the cache residing on the processor, a 
castout buffer indicating cache lines that have been or will 
be castout from the processor cache, and coherency logic 
configured to update the remote cache directory, based on 
cache coherency information contained in the external bus 
transactions generated by the processor control logic, to 
reflect allocated and de-allocated cache lines of the proces 
Sor cache. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0013 So that the manner in which the above recited 
features, advantages and objects of the present invention are 
attained and can be understood in detail, a more particular 
description of the invention, briefly summarized above, may 
be had by reference to the embodiments thereof which are 
illustrated in the appended drawings. 
0014. It is to be noted, however, that the appended 
drawings illustrate only typical embodiments of this inven 
tion and are therefore not to be considered limiting of its 
Scope, for the invention may admit to other equally effective 
embodiments. 
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0.015 FIG. 1 illustrates an exemplary system in accor 
dance with embodiments of the present invention; 
0016 FIG. 2 illustrates an exemplary coherency (snoop) 
logic configuration, in accordance with embodiments of the 
present invention; 
0017 FIG. 3 is a flow diagram of exemplary operations 
for maintaining a remote cache directory and castout buffer, 
in accordance with embodiments of the present invention; 
0018 FIGS. 4A and 4B illustrate exemplary bits/signals 
used for enhanced bus transactions used to maintain a 
remote cache directory, in accordance with embodiments of 
the present invention; 
0.019 FIG. 5 is a flow diagram of exemplary operations 
for routing remote device memory access requests, in accor 
dance with embodiments of the present invention; 
0020 FIGS. 6A-6C illustrate exemplary data path dia 
grams for remote device memory access requests, in accor 
dance with embodiments of the present invention; 
0021 FIG. 7 is a flow diagram of exemplary operations 
for routing remote device memory access requests, in accor 
dance with embodiments of the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

0022. Embodiments of the present invention generally 
provide methods and apparatus that may be utilized to 
maintain coherency of data accessed by both a processor and 
a remote device. For Some embodiments, various mecha 
nisms, such as a remote cache directory, castout buffer, 
and/or outstanding transaction buffer may be utilized by the 
remote device to track the State of processor cache lines that 
may hold data targeted by requests initiated by the remote 
device. Based on the content of these mechanisms, only 
those requests that target cache lines indicated to be valid in 
the processor cache may be routed to the processor, thus 
conserving bus bandwidth. Other requests targeting data that 
is not in the processor cache may be routed directly to 
memory, thus reducing overall latency. 

0023. As used herein, the term cache coherency refers to 
the generally desirable property that accessing a copy of data 
(a cache line) from a cache gives the same value as the 
underlying data, even when the data was modified by a 
different process after the data was first cached. Maintaining 
cache coherency is important for consistent operation of 
multiprocessor systems in which one or more processor has 
a non-shared cache used to cache portions of a memory area 
shared by multiple processors. As used herein, the term 
virtual channel generally a data path that carries both request 
and/or response information between components. Each 
virtual channel typically utilizes a different buffer, with a 
virtual channel number indicating which buffer a packet 
transferred on that virtual channel will use. Virtual channels 
are referred to as virtual because, while multiple virtual 
channels may utilize a single common physical interface 
(e.g., a bus), they appear and act as separate channels. 
Virtual channels may be implemented using various logic 
components (e.g., Switches, multiplexors, etc.) utilized to 
route data, received over the common bus, from different 
sources to different destinations, in effect, as if there were 
separate physical channels between each source and desti 
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nation. An advantage to utilizing virtual channels is that 
various processes utilizing the data streamed by the virtual 
channels may operate in parallel which may improve system 
performance (e.g., while one process is receiving/sending 
data over the bus, another process may be manipulating data 
and not need the bus). 
0024. In the following description, reference is made to 
embodiments of the invention. However, it should be under 
stood that the invention is not limited to specific described 
embodiments. Instead, any combination of the following 
features and elements, whether related to different embodi 
ments or not, is contemplated to implement and practice the 
invention. Furthermore, in various embodiments the inven 
tion provides numerous advantages over the prior art. How 
ever, although embodiments of the invention may achieve 
advantages over other possible solutions and/or over the 
prior art, whether or not a particular advantage is achieved 
by a given embodiment is not limiting of the invention. 
Thus, the following aspects, features, embodiments and 
advantages are merely illustrative and, unless explicitly 
present, are not considered elements or limitations of the 
appended claims. 

An Exemplary System 
0025 FIG. 1 schematically illustrates an exemplary 
multi-processor system 100 in which a processor (illustra 
tively, a CPU 102) and a remote processor device (illustra 
tively, a GPU 104) both access a shared main memory 138. 
In the illustrated embodiment, main memory 138 is near the 
GPU 104 and is accessed by a memory controller 130 which, 
for Some embodiments, is integrated with (i.e., located on) 
the GPU 104. The system 100 is merely one example of a 
type of system in which embodiments of the present inven 
tion may be utilized to maintain coherency of data accessed 
by multiple devices. 
0026. As shown, the CPU 102 and the GPU 104 com 
municate via a front side bus (FSB) 106. The CPU 102 
illustratively includes a plurality of processor cores 108, 
110, and 112 that perform tasks under the control of soft 
ware. The processor cores may each include any number of 
different type function units including, but not limited to 
arithmetic logic units (ALUs), floating point units (FPUs), 
and single instruction multiple data (SIMD) units. Examples 
of CPUs utilizing multiple processor cores include the 
Power PC line of CPUs, available from IBM. Each indi 
vidual core may have a corresponding L1 cache 160 and 
may communicate over a common bus 116 that connects to 
a core bus interface 118. For some embodiments, the indi 
vidual cores may share an L2 (secondary) cache memory 
114. 

0027. As illustrated, the L2 cache 114 may include a 
cache array 111, cache directory 115, and cache controller 
113. For some embodiments, the L2 cache 114 may be an 
associative cache and the cache directory 114 may include 
entries indicating addresses of cache lines stored in each 
“way' of an associative set, as well as an indication of a 
coherency state of each line. For some embodiments, the L2 
cache 114 may be operated in accordance with the MESI 
protocol (supporting Modified, Exclusive, Shared, and 
Invalid states), or some variant thereof. The core bus inter 
face 118 communicates with the L2 cache memory 114, and 
carries data transferred into and out of the CPU 102 via the 
FSB 106, through a front-side bus interface 120. 
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0028. The GPU 104 also includes a front-side bus inter 
face 124 that connects to the FSB 106 and that is used to pass 
information between the GPU 104 and the CPU 102. The 
GPU 104 is a device capable of processing large amounts of 
data at very high speed using Sophisticated data structures 
and processing techniques. To do so, the GPU 104 includes 
at least one graphics core 128 that processes data obtained 
from the CPU 102 or from main memory 138 via the 
memory controller 130. The memory controller 130 con 
nects to the graphics front-side bus interface 124 via a bus 
interface unit (BIU) 123. Data passes between the graphics 
core 128 and the memory controller 130 over a wide parallel 
bus 132. The main memory 138 typically stores operating 
routines, application programs, and corresponding data that 
may be accessed by the CPU 102 and GPU 104. 
0029. For some embodiments, the GPU 104 may also 
include an I/O port 140 that connects to an I/O driver (master 
device) 142. The I/O driver 142 passes data to and from any 
number of external devices, such as a mouse, video joystick, 
computer board, and display, via an I/O slave device 141. 
The I/O driver 142 properly formats data and passes data to 
and from the graphic front-side bus interface 124. That data 
is then passed to or from the CPU 102 or is used in the GPU 
104, possibly being stored in the main memory 138 by way 
of the memory controller 130. As illustrated, the graphics 
cores 128, memory controller 130, and I/O driver 142 may 
all communicate with the BIU 123 that provides access to 
the FSB via the GPUs FSB interface 124. 

0030. As previously described, in conventional multi 
processor systems, such as System 100, in which one or more 
remote devices request access to data for memory locations 
that are cached by a central processor, the remote devices 
often utilize some type of coherency logic to monitor 
(Snoop) the contents of the processor cache. Typically, this 
Snoop logic interrogates the processor cache directory for 
entries for every memory location the remote device wishes 
to access. As a result, conventional cache Snooping may 
result in Substantial latency and consume a significant 
amount of processor bus bandwidth. 

Snoop Filter Directory Mechanism 

0031. In an effort to reduce such latency and increase bus 
bandwidth, embodiments of the present invention may uti 
lize coherency logic 127 on the remote device (in this 
example, the GPU 104), which may include a snoop filter 
125, a castout buffer 121, and an outstanding transaction 
buffer 129. FIG. 2 illustrates a relational view of one system 
configuration utilizing these components to maintain coher 
ency. As illustrated, the coherency logic 127 may be gen 
erally configured to route requests received by a GPU core 
128 (or I/O master) to the CPU 102 or directly to memory, 
depending on the information contained in the Snoop filter 
125, castout buffer 121, and outstanding transaction buffer 
129. 

0032. As will be described in greater detail below, the 
castout buffer 121 may be used to track the addresses of 
cache lines for which data is expected to be returned (in 
some cases castout) by the CPU 102. The outstanding 
transaction buffer 129 may be used to track addresses 
targeted by “in-flight” requests routed from the GPU 104 to 
the CPU 102, indicating data for these addresses may be 
expected. 
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0033. As illustrated, the Snoop filter 125 may maintain a 
remote cache directory 126 which provides, at the GPU 104, 
an indication of entries in the L2 cache directory 115 on the 
CPU 102. Accordingly, when a remote device attempts to 
access data in a memory location, the Snoop filter 125 may 
check the remote cache directory 126 to determine if a 
modified copy of the data is cached at the CPU 102 without 
having to send bus commands to the CPU 102. As a result, 
the Snoop filter 125 may “filter out” requests to access data 
that is not cached in the CPU 102 and route those requests 
directly to memory 138, via the memory controller 130, thus 
reducing latency and increasing bus bandwidth. As will be 
described in greater detail below, the Snoop filter 125 may 
operate in concert with a cache controller 113 which may 
generate enhanced bus transactions containing cache coher 
ency information used by the snoop filter 125 to update the 
remote cache directory 126 to reflect changes to the CPU 
cache directory 115. 
0034). As illustrated, the CPU 102 may include various 
components (that interface with the L2 cache controller and 
bus interface) to Support system coherency and respond to 
requests received from the GPU 104. Such components may 
include memory agents 202 and 206 to route requests to and 
receive responses from, respectively, memory 138, as well 
as a GPU agent 204 to route requests to and receive 
responses from the GPU cores 128 (or I/O masters). These 
agents may communicate with the GPU 104 via virtual 
channels 210 established on the FSB. The virtual channels 
210 include "upbound' virtual channels 216 and 218 to 
handle requests and responses, respectively, from the GPU 
104 and "downbound virtual channels 212 and 214 to 
handle requests and responses, respectively, from the CPU 
102. Data paths through the virtual channels 210 for differ 
ent transactions under different circumstances are described 
in detail below, with reference to FIGS. 6A-6C. 

0035. For some embodiments, the Snoop filter 125 may 
monitor requests issued from the CPU 102 in an effort to 
ensure the remote cache directory 126 mirrors the CPU 
cache directory 115, and accurately reflects the contents and 
coherency state of the CPU cache 114. For example, FIG. 3 
illustrates exemplary operations 300 that may be performed 
(e.g., by the snoop filter 125) to update the remote cache 
directory 126 based on requests issued by the CPU 102 
indicating a new cache line is being allocated in the L2 cache 
114. 

0036) The operations 300 begin, at step 302, by receiving 
a (read allocation) request from the CPU 102. In some cases, 
the request may be an enhanced bus transaction containing 
additional coherency information allowing the Snoop filter to 
update the remote cache directory 126, as described in the 
commonly owned U.S. patent application entitled 
“Enhanced Bus Transactions for Efficient Support of a 
Remote Cache Directory Copy’ (Attorney Docket No. 
ROC92004.0036US1). This information may include an 
indication that an allocation or de-allocation transaction 
occurred and, if so, a particular cache line (e.g., a “way’ 
within an associative set) that is being replaced. The infor 
mation may also include an indication of whether an aging 
castout was or will be generated (i.e., resulting in modified 
data being written back to memory). These bus transactions 
may be considered enhanced because this additional coher 
ency information may be added to information already 
included in a bus transaction occurring naturally. For 
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example, a cache line allocation may naturally precede a bus 
transaction to read requested data to fill the allocated cache 
line. 

0037. At step 304, a valid bit of the old entry in the 
remote cache directory 126 (being replaced by the new 
entry) is examined. If the old entry is invalid, the new entry 
is allocated in the remote cache directory 126, at step 306. 
If the old entry is valid, however, a bit provided in the 
allocation request is examined to determine if the cached 
entry being replaced is to be castout, at step 308. If so, the 
GPU 104 can expect this data to be transferred (castout) 
from the CPU, and the old entry is copied to the castout 
buffer 121, at step 310. Thus, when the GPU 104 requests 
data, the castout buffer 121 may be examined to determine 
if a castout is pending (as shown in FIG. 5). 
0038 Even if the aging bit is not set, a castout (or other 
transfer) of the cacheline may still be pending, if the 
cacheline was targeted by an outstanding read or flush issued 
by the GPU 104. To determine if such requests are pending, 
the old entry (being replaced by the new allocation) may be 
compared against entries in the read/flush outstanding 
buffer, at Step 312. A match indicates there is an outstanding 
read/flush request targeting the cacheline and, hence, the old 
entry is copied into the castout buffer 121, at step 310, prior 
to allocating the new entry in the remote directory (step 
306). A mismatch indicates there is no Such outstanding 
request, and the new entry is allocated, without copying the 
old entry into the castout buffer 121. 
0039. As described in the above-referenced application, 
similar operations to those shown in FIG. 3 may be per 
formed to update the remote cache directory and castout 
buffer based on de-allocation information provided by the 
CPU 102. As with the allocation information, de-allocation 
information may also be contained in enhanced bus trans 
actions. FIGS. 4A and 4B summarize the type of coherency 
information provided upon allocation and de-allocation, 
respectively. 

0040. As illustrated in FIG. 4A, for some embodiments, 
the coherency information may include a valid bit (rc way 
alloc V) indicating whether or not a new entry is being 

allocated, set idbits (rc way allocO:N) indicating the way 
of the cache line being allocated, and an aging bit (rc aging) 
indicating whether an aging castout (e.g., of a modified 
cache line) is being issued. If the valid bit is inactive, the 
remaining bits may be ignored, since a new entry is not 
being allocated (e.g., a cache line for a targeted memory 
location already exists in L2 cache). In other words, the 
coherency information may be sent with each Such transac 
tion, even when a new line is not being allocated, to avoid 
having separate transactions for transferring coherency 
information. In such embodiments, the GPU 104 may 
quickly check the valid bit to determine if a new cache line 
is being allocated. 
0041) If the valid bit is set, the set id bits may be 
examined to determine which cache line of an associate set 
is being allocated. For example, for a 4-way associate cache 
(N=1), a two bit set id may indicate one of 4 available cache 
lines, for an 8-way associative cache (N=2), a 3-bit set id 
may indicate one of 8 available cache lines, and so on. As an 
alternative, individual bits (or signals) for each of the ways 
of the set may be used which, in some cases, may provide 
improved timing. 
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0042. The aging bit set indicates an aging castout is being 
issued, for example, since the coherency state of the aging 
L2 cache line is modified (M). The aging bit cleared 
indicates that the entry being replaced is not being castout, 
for example, because the aging L2 entry was invalid (I), 
shared (S), or exclusive (E), and can be overwritten with this 
new allocation. 

0043. It should be noted that, in some cases, the remote 
cache directory 126 may indicate more valid cache lines are 
in the L2 cache 114 than are indicated by the CPU cache 
directory 115 (e.g., the valid cache lines indicated by the 
remote cache directory may represent a Superset of the 
actual valid cache lines). This is because cache lines in the 
L2 cache 114 may transition from Exclusive (E) or Shared 
(S) to Invalid (I) without any corresponding bus operations 
to signal these transitions. While this may result in occa 
sional additional requests sent from the GPU 104 to the CPU 
102 (the CPU 102 can respond that its copy is invalid), it is 
also a safe approach aimed at ensuring the CPU is always 
checked if the remote cache directory 126 indicates 
requested data is cached. As will be described in greater 
detail below, these requests may be “reflected back to the 
GPU to be routed to memory. 

0044) When L2 cache lines are de-allocated (e.g., due to 
a write with kill), enhanced bus transactions containing 
coherency information related to the de-allocation may also 
be generated. This coherency information may include an 
indication an entry is being de-allocated and the set id (way) 
indicating which cache line within an associative set being 
de-allocated. This information may be generated by “push 
Snoop logic' in the L2 cache 114 and carried in a set of 
control bits/signals, as with the previously described coher 
ency information transmitted upon cache line allocation. 
This coherency information will be used by the GPU Snoop 
filter 125 to correctly invalidate the corresponding entry in 
the (L2 Superset) remote cache directory 126. As illustrated 
in FIG. 4B, the coherency information related to the de 
allocation may be carried in similar bits/signals (valid and 
set id) to those related to allocation shown in FIG. 4A. As 
the de-allocation assumes a castout, there may be no need 
for an aging bit. 

Routing Remote Device Memory Requests 

0045 FIG. 5 is a flow diagram of exemplary operations 
500 for routing remote device memory access requests based 
on information maintained in the remote cache (Snoop filter) 
directory 126 and castout buffer 121, in accordance with 
embodiments of the present invention. While the operations 
are described with reference to requests issued by a GPU 
(core), it should be understood the same or similar opera 
tions may be performed to route requests from any request 
ing entity. 

0046) The operations 500 begin, at step 502, by receiving 
a request from the GPU 104. At step 504, the Snoop filter 
directory 126 is checked in an effort to determine if a cache 
line containing data targeted by the request is in the L2 cache 
114 of the CPU 102. A hit (an entry with a matching entry 
and valid state) indicates a targeted cache line is in the L2 
cache 114, while a miss indicates one is not. However, even 
in the event of a miss, it is possible that a castout of a 
recently cached line is pending and modified data may be 
written back to memory. Therefore, the castout buffer is 
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checked, at step 516, for an indication a castout of a targeted 
cache line is pending. If a castout is pending, there is a risk 
that stale data might be read from memory if the request is 
issued before the modified data is written back to memory, 
so the GPU waits for the pending castout, at step 520. 
0047. If there is no castout pending, the request is routed 
to memory, at step 518. In other words, by maintaining 
coherency information in the Snoop cache directory 126 and 
castout buffer 121, the request may be issued directly against 
memory, without having to send any time consuming Snoop 
requests to the CPU. This scenario is illustrated in the 
exemplary data path diagram of FIG. 6A, in which various 
events are enumerated (1-4). First, a GPU core issues a 
request (1). Second, the request misses in the Snoop filter 
directory 126 and castout buffer 121 (2), indicating a tar 
geted cache line does not presently reside in the L2 cache 
114. Accordingly, the request is routed to memory, via the 
memory controller 130 (3). Finally, the memory controller 
130 returns the requested data to the GPU core (4). 
0.048 Referring back to FIG. 5, a check of the snoop filter 
directory, at step 504, resulting in a hit indicates a cache line 
containing data targeted by the request is in the L2 cache 
114. According to some embodiments, of the present inven 
tion, the coherency logic 127 may send a request to tell the 
CPU 102 to invalidate its cached copy of the targeted 
memory location (if the copy was not modified) or cast out 
its copy (if it was modified). To track these pending opera 
tions, and handle Subsequent accesses targeting the same 
memory locations, a copy of the targeted address is stored in 
the read/write outstanding buffer 129, at step 506. At step 
508, a request to invalidate/castout its copy is routed to the 
CPU 102. Depending on the state of the targeted data, the 
CPU may respond with data (if castout) or at least some type 
of response indicating the request was processed. Therefore, 
at step 510, the GPU 104 may receive response data or a 
reflected read (described in greater detail below). At step 
512, the entry from the read/write outstanding buffer 129 
may be removed. 
0049 Data paths for requests that hit in the snoop filter 
directory 126 are illustrated in FIGS. 6B and 6C, in which 
various events are again enumerated. FIG. 6B illustrates the 
routing of a request for data that is cached in the L2 114 in 
a valid state, and returned from the CPU directly to a 
requesting GPU core. First, a GPU core issues a request (1). 
Second, the request hits in the Snoop filter directory 126, 
indicating a targeted cache line resides in the L2 cache 114. 
Accordingly, the request is routed to the L2 114 (3). For 
Some embodiments, and in some instances, the L2 114 logic 
may respond by sending a response with the requested data 
directly to the GPU core (4). 
0050. This approach may reduce latency by eliminating 
the need for the GPU core to generate a separate response to 
read the requested memory. In some cases, if the data has 
been modified, it may be marked as dirty in the response, 
causing the GPU 104 to generate a write to memory. In some 
cases, however, the GPU 104 may access a special set of 
registers, referred to as a lock set, that does not require 
backing to memory (e.g., the GPU reads, but never writes to 
these registers). The concepts of utilizing Such a lock set are 
described in detail in the commonly owned application, 
entitled “Direct Access of Cache Lock Set Data Without 
Backing Memory” (Attorney Docket No. 
ROC920040048US1), filed herewith. 
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0051 FIG. 6C illustrates the routing of a request for data 
that results in a hit with the remote cache directory 126 but 
the data is not cached in the L2 in a valid state. In Such cases, 
the L2 cache may return NULL data, causing reflection logic 
208 in the CPU 102 to respond with what may be referred 
to as “reflected read (or write) requests that are, in effect 
requests reflected back to the GPU 104 to be routed to the 
memory controller 130 for execution against memory (e.g., 
on behalf of the requesting GPU core 128). 
0052 FIG. 7 is a flow diagram of exemplary operations 
700 for updating the Snoop filter directory 126, castout 
buffer 121, and/or read/write outstanding buffer 129, in 
response to certain requests received from the CPU 102. The 
operations 700 begin, at step 702, by receiving such a 
request from the CPU 102. As illustrated, for some embodi 
ments, requests that cause a change to these coherency 
mechanisms may include a write with kill, or a reflected read 
or write. 

0053 If the request hits in the remote cache (snoop filter) 
directory 126, as determined at step 704, the entry that 
resulted in the hit is invalidated, at step 706. This is because 
a write with kill indicates the corresponding data in the L2 
cache is being written out, and a reflected read or write 
request indicates the data in the L2 cache is no longer valid. 
As illustrated, the castout buffer 121 may be checked in 
parallel, at step 708, with the remote cache directory 126. A 
hit also results in the corresponding entry being invalidated, 
at step 706. If the request received from the CPU is a 
reflected read or write, as determined at step 710, the 
corresponding entry is removed from the outstanding trans 
action buffer 129, at step 712. Removing the entry (that was 
created when the coherency logic routed the request result 
ing in the reflected read/write request to the L2, per step 506 
of FIG. 5) is done because the request is no longer “in 
flight.” The request is then routed to memory, at step 714. 

CONCLUSION 

0054 Coherency support structures (e.g., a remote cache 
directory, castout buffer, and outstanding transaction buffer) 
on a remote device may be used to indicate the contents of 
an L2 cache of a processor that shares memory with the 
remote device and to indicate the status requests targeting 
data stored in the L2 cache. Accordingly, the mechanisms 
may be checked at the remote device to determine whether 
to route a memory request to the L2 cache or directly to 
memory, which may result in significant reductions in 
latency. These mechanisms may be updated by monitoring 
memory access requests issued by the processor, as well as 
the remote device, avoiding unnecessary Snoop requests. 
0055 While the foregoing is directed to embodiments of 
the present invention, other and further embodiments of the 
invention may be devised without departing from the basic 
scope thereof, and the scope thereof is determined by the 
claims that follow. 

What is claimed is: 
1. A method of maintaining coherency of data accessed by 

a remote device, comprising: 
maintaining, on the remote device, a remote cache direc 

tory indicative of memory locations residing in a cache 
on a processor which shares access to some portion of 
a memory device; 
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maintaining, on the remote device, a castout buffer indi 
cating cache lines that have been or will be castout from 
the processor cache; and 

routing memory requests issued at the remote device to 
the memory device or the processor cache, depending 
on information contained in the remote cache directory 
and castout buffer. 

2. The method of claim 1, wherein maintaining the remote 
cache directory comprises: 

receiving, by the remote device, a bus transaction initiated 
by the processor containing cache coherency informa 
tion indicating a change to a cache directory residing on 
the processor, and 

updating the remote cache directory, based on the cache 
coherency information, to reflect the change to the 
cache directory residing on the processor. 

3. The method of claim 2, wherein maintaining, on the 
remote device, a buffer indicating cache lines that have been 
castout from the processor cache comprises copying an entry 
from the remote cache directory to the castout buffer if the 
cache coherency information indicates an aging castout is to 
occur at the processor. 

4. The method of claim 2, wherein the cache coherency 
information comprises a set of bits indicating a way within 
an associative set. 

5. The method of claim 1, wherein routing memory 
requests issued at the remote device to the memory device 
or the processor cache, depending on information contained 
in the remote cache directory and castout buffer comprises: 

routing memory requests issued at the remote device to 
memory if an address targeted by the memory request 
does not match entries in either the remote cache 
directory or castout buffer. 

6. The method of claim 5, further comprising waiting for 
a castout to occur if an address targeted by the memory 
request matches an entry in the castout buffer. 

7. The method of claim 5, wherein routing memory 
requests issued at the remote device to the memory device 
or the processor cache, depending on information contained 
in the remote cache directory and castout buffer comprises: 

routing memory requests issued at the remote device to 
the processor cache if an address targeted by the 
memory request matches an entry in the remote cache 
directory. 

8. The method of claim 7, further comprising creating an 
entry in an outstanding transaction buffer containing an 
address targeted by the memory request routed to the pro 
cessor cache. 

9. The method of claim 8, further comprising removing 
the entry from the outstanding transaction buffer after 
receiving response data from the processor. 

10. A method of maintaining coherency of data accessed 
by a remote device, comprising: 

maintaining, on the remote device, a remote cache direc 
tory indicative of memory locations residing in a cache 
on a processor which shares access to some portion of 
a memory device wherein maintaining the remote 
cache directory comprises: 

receiving, by the remote device, a bus transaction 
initiated by the processor containing cache coher 
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ency information indicating a change to a cache 
directory residing on the processor, and 

updating the remote cache directory, based on the cache 
coherency information, to reflect the change to the 
cache directory residing on the processor; 

routing a memory request issued at the remote device to 
the processor cache if an address targeted by the 
memory request matches an entry in the remote cache 
directory; and 

creating an entry in an outstanding transaction buffer 
residing on the remote device, the entry containing the 
address targeted by the memory request routed to the 
processor cache. 

11. The method of claim 10, wherein: 
maintaining, on the remote device, a buffer indicating 

cache lines that have been castout from the processor 
cache comprises copying an entry from the remote 
cache directory to the castout buffer if the cache coher 
ency information indicates an aging castout is to occur 
at the processor; and 

copying an entry from the outstanding transaction buffer 
to the castout buffer in response to detecting a match 
between an address of a cache line being castout and 
the entry. 

12. A device configured to access data stored in memory 
and cacheable by a processor, comprising: 

Ole O. O. processing cores; 

a remote cache directory indicative of contents of a cache 
residing on the processor, 

a castout buffer indicating cache lines that have been or 
will be castout from the processor cache; and 

coherency logic configured to receive cache coherency 
information indicative of changes to the contents of the 
processor cache sent by the processor in bus transac 
tions and update the cache directory and castout buffer 
based on the cache coherency information. 

13. The device of claim 12, wherein the coherency logic 
is configured to: 

receive cache coherency information indicating a cache 
line that has been de-allocated by the processor; and 

in response, invalidate a corresponding entry in at least 
one of the remote cache directory and the castout 
buffer. 

14. The device of claim 12, wherein the coherency logic 
is further configured to: 

receive, from the processing core, a request to access data 
associated with a memory location; 

examine the remote cache directory for an entry matching 
an address targeted by the request with a valid coher 
ency state; 

examine the castout buffer for an entry matching the 
address targeted by the request with a valid coherency 
state; and 

if an entry matching the address targeted by the request is 
not found in either the remote cache directory or 
castout buffer, route the request to a memory controller 
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to access the requested data from memory without 
sending a request to the processor. 

15. The device of claim 14, wherein: 
the device further comprises a pending transaction buffer; 

and 

the coherency logic is further configured to route a request 
to the processor if an entry matching the address 
targeted by the request is found in the remote cache 
directory and create an entry in the pending transaction 
buffer containing the address targeted by the request. 

16. The device of claim 15, wherein the memory control 
ler resides on the remote device. 

17. A coherent system, comprising: 
a processor having a cache for storing data accessed from 

external memory, a cache directory with entries indi 
cating which memory locations are stored in cache 
lines of the cache and corresponding coherency states 
thereof, and control logic configured to detect internal 
bus transactions indicating the allocation and de-allo 
cation of cache lines and, in response, generate bus 
transactions, each containing cache coherency infor 
mation indicating cache line that has been allocated or 
de-allocated; and 

a remote device having a remote cache directory indica 
tive of contents of the cache residing on the processor, 
a castout buffer indicating cache lines that have been or 
will be castout from the processor cache, and coherency 
logic configured to: 
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update the remote cache directory, based on cache 
coherency information contained in the external bus 
transactions generated by the processor control logic, 
to reflect allocated and de-allocated cache lines of 
the processor cache; 

receive a memory access request issued by a graphics 
processing core; 

search the remote cache directory and castout buffer for 
entries matching an address targeted by the request; 
and 

if no matching entries are found, route the request to 
external memory without sending a request to the 
processor. 

18. The system of claim 17, wherein the coherency logic 
is further configured to: 

if a matching entry is found, route the request to the 
processor, and 

create an entry in an outstanding transaction buffer con 
taining the address targeted by the request. 

19. The system of claim 18, wherein the coherency logic 
is further configured to: 

copy an entry from the outstanding transaction buffer to 
the castout buffer, in response to receiving coherency 
information from the processor indicating a corre 
sponding cache line has been or will be cast out from 
the cache. 


