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SNOOP FILTER DIRECTORY MECHANISM IN
COHERENCY SHARED MEMORY SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation application of
co-pending U.S. patent application Ser. No. 10/961,749 filed
Oct. 8, 2004, which is herein incorporated by reference.

BACKGROUND OF THE INVENTION
[0002]

[0003] This application generally relates to data process-
ing systems and, more particularly, to systems in which
multiple processing devices may access the same shared
data stored in memory.

[0004] 2. Description of the Related Art

[0005] In a multiprocessor system, or any type of system
that allows more than one device to request and update
blocks of shared data concurrently, it is important that some
mechanism exists to keep the data coherent (i.e., to ensure
that each copy of data accessed by any device is the most
current copy). In many such systems, a processor has one or
more caches to provide fast access to data (including instruc-
tions) stored in relatively slow (by comparison to the cache)
external main memory. In an effort to maintain coherency,
other devices on the system (e.g., a graphics processing
unit-GPU) may include some type of coherency or “snoop”
logic to determine if a copy of data from a desired memory
location is held in the processor cache by sending commands
(snoop requests) to a processor cache directory.

1. Field of the Invention

[0006] This snoop logic is used to determine if desired
data is contained in the processor cache and if it is the most
recent (modified) copy, typically by querying the processor
cache directory. If so, in order to work with the latest copy
of the data, the device may request ownership of the
modified copy stored in a processor cache line. In a con-
ventional coherent system, devices requesting data do not
know ahead of time whether the data is in a processor cache.
As a result, each device must query (snoop) the processor
cache directory for every memory location that it wishes to
access from main memory to make sure that proper data
coherency is maintained, which can be very expensive both
in terms of both command latency and microprocessor bus
bandwidth.

[0007] Accordingly, what is needed is an efficient method
and system which would reduce the amount of latency
associated with interfacing with (snooping on) a processor
cache.

SUMMARY OF THE INVENTION

[0008] Embodiments of the present invention generally
provide methods and apparatus that may be utilized to
maintain coherency of data accessed by a remote device that
may reside in a cache of a processor.

[0009] One embodiment provides a method of maintain-
ing coherency of data accessed by a remote device. The
method generally includes maintaining, on the remote
device, a remote cache directory indicative of memory
locations residing in a cache on a processor which shares
access to some portion of a memory device and a castout
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buffer indicating cache lines that have been or will be castout
from the processor cache. Memory requests issued at the
remote device may be routed to the memory device or the
processor cache, depending on information contained in the
remote cache directory and castout buffer.

[0010] Another embodiment provides a method of main-
taining coherency of data accessed by a remote device. The
method generally includes maintaining, on the remote
device, a remote cache directory indicative of memory
locations residing in a cache on a processor which shares
access to some portion of a memory device. A memory
request issued at the remote device may be routed to the
processor cache if an address targeted by the memory
request matches an entry in the remote cache directory. An
entry in an outstanding transaction buffer residing on the
remote device may be created, the entry containing the
address targeted by the memory request routed to the pro-
cessor cache.

[0011] Another embodiment provides a device configured
to access data stored in memory and cacheable by a pro-
cessor. The device generally includes one or more process-
ing cores, a remote cache directory indicative of contents of
a cache residing on the processor, a castout buffer indicating
cache lines that have been or will be castout from the
processor cache, and coherency logic. The coherency logic
is generally configured to receive cache coherency informa-
tion indicative of changes to the contents of the processor
cache sent by the processor in bus transactions and update
the cache directory and castout buffer based on the cache
coherency information.

[0012] Another embodiment provides a coherent system
generally including a processor and a remote device. The
processor generally includes a cache for storing data
accessed from external memory, a cache directory with
entries indicating which memory locations are stored in
cache lines of the cache and corresponding coherency states
thereof, and control logic configured to detect internal bus
transactions indicating the allocation and de-allocation of
cache lines and, in response, generate bus transactions, each
containing cache coherency information indicating cache
line that has been allocated or de-allocated. The remote
device generally includes a remote cache directory indica-
tive of contents of the cache residing on the processor, a
castout buffer indicating cache lines that have been or will
be castout from the processor cache, and coherency logic
configured to update the remote cache directory, based on
cache coherency information contained in the external bus
transactions generated by the processor control logic, to
reflect allocated and de-allocated cache lines of the proces-
sor cache.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] So that the manner in which the above recited
features, advantages and objects of the present invention are
attained and can be understood in detail, a more particular
description of the invention, briefly summarized above, may
be had by reference to the embodiments thereof which are
illustrated in the appended drawings.

[0014] 1t is to be noted, however, that the appended
drawings illustrate only typical embodiments of this inven-
tion and are therefore not to be considered limiting of its
scope, for the invention may admit to other equally effective
embodiments.
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[0015] FIG. 1 illustrates an exemplary system in accor-
dance with embodiments of the present invention;

[0016] FIG. 2 illustrates an exemplary coherency (snoop)
logic configuration, in accordance with embodiments of the
present invention;

[0017] FIG. 3 is a flow diagram of exemplary operations
for maintaining a remote cache directory and castout buffer,
in accordance with embodiments of the present invention;

[0018] FIGS. 4A and 4B illustrate exemplary bits/signals
used for enhanced bus transactions used to maintain a
remote cache directory, in accordance with embodiments of
the present invention;

[0019] FIG. 5 is a flow diagram of exemplary operations
for routing remote device memory access requests, in accor-
dance with embodiments of the present invention;

[0020] FIGS. 6A-6C illustrate exemplary data patjh dia-
grams for remote device memory access requests, in accor-
dance with embodiments of the present invention;

[0021] FIG. 7 is a flow diagram of exemplary operations
for routing remote device memory access requests, in accor-
dance with embodiments of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0022] Embodiments of the present invention generally
provide methods and apparatus that may be utilized to
maintain coherency of data accessed by both a processor and
a remote device. For some embodiments, various mecha-
nisms, such as a remote cache directory, castout buffer,
and/or outstanding transaction buffer may be utilized by the
remote device to track the state of processor cache lines that
may hold data targeted by requests initiated by the remote
device. Based on the content of these mechanisms, only
those requests that target cache lines indicated to be valid in
the processor cache may be routed to the processor, thus
conserving bus bandwidth. Other requests targeting data that
is not in the processor cache may be routed directly to
memory, thus reducing overall latency.

[0023] As used herein, the term cache coherency refers to
the generally desirable property that accessing a copy of data
(a cache line) from a cache gives the same value as the
underlying data, even when the data was modified by a
different process after the data was first cached. Maintaining
cache coherency is important for consistent operation of
multiprocessor systems in which one or more processor has
a non-shared cache used to cache portions of a memory area
shared by multiple processors. As used herein, the term
virtual channel generally a data path that carries both request
and/or response information between components. Hach
virtual channel typically utilizes a different buffer, with a
virtual channel number indicating which buffer a packet
transferred on that virtual channel will use. Virtual channels
are referred to as virtual because, while multiple virtual
channels may utilize a single common physical interface
(e.g., a bus), they appear and act as separate channels.
Virtual channels may be implemented using various logic
components (e.g., switches, multiplexors, etc.) utilized to
route data, received over the common bus, from different
sources to different destinations, in effect, as if there were
separate physical channels between each source and desti-
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nation. An advantage to utilizing virtual channels is that
various processes utilizing the data streamed by the virtual
channels may operate in parallel which may improve system
performance (e.g., while one process is receiving/sending
data over the bus, another process may be manipulating data
and not need the bus).

[0024] In the following description, reference is made to
embodiments of the invention. However, it should be under-
stood that the invention is not limited to specific described
embodiments. Instead, any combination of the following
features and elements, whether related to different embodi-
ments or not, is contemplated to implement and practice the
invention. Furthermore, in various embodiments the inven-
tion provides numerous advantages over the prior art. How-
ever, although embodiments of the invention may achieve
advantages over other possible solutions and/or over the
prior art, whether or not a particular advantage is achieved
by a given embodiment is not limiting of the invention.
Thus, the following aspects, features, embodiments and
advantages are merely illustrative and, unless explicitly
present, are not considered elements or limitations of the
appended claims.

An Exemplary System

[0025] FIG. 1 schematically illustrates an exemplary
multi-processor system 100 in which a processor (illustra-
tively, a CPU 102) and a remote processor device (illustra-
tively, a GPU 104) both access a shared main memory 138.
In the illustrated embodiment, main memory 138 is near the
GPU 104 and is accessed by a memory controller 130 which,
for some embodiments, is integrated with (i.e., located on)
the GPU 104. The system 100 is merely one example of a
type of system in which embodiments of the present inven-
tion may be utilized to maintain coherency of data accessed
by multiple devices.

[0026] As shown, the CPU 102 and the GPU 104 com-
municate via a front side bus (FSB) 106. The CPU 102
illustratively includes a plurality of processor cores 108,
110, and 112 that perform tasks under the control of soft-
ware. The processor cores may each include any number of
different type function units including, but not limited to
arithmetic logic units (ALUs), floating point units (FPUs),
and single instruction multiple data (SIMD) units. Examples
of CPUs utilizing multiple processor cores include the
Power PC line of CPUs, available from IBM. Each indi-
vidual core may have a corresponding .1 cache 160 and
may communicate over a common bus 116 that connects to
a core bus interface 118. For some embodiments, the indi-
vidual cores may share an [.2 (secondary) cache memory
114.

[0027] As illustrated, the L2 cache 114 may include a
cache array 111, cache directory 115, and cache controller
113. For some embodiments, the .2 cache 114 may be an
associative cache and the cache directory 114 may include
entries indicating addresses of cache lines stored in each
“way” of an associative set, as well as an indication of a
coherency state of each line. For some embodiments, the [.2
cache 114 may be operated in accordance with the MESI
protocol (supporting Modified, Exclusive, Shared, and
Invalid states), or some variant thereof. The core bus inter-
face 118 communicates with the [.2 cache memory 114, and
carries data transferred into and out of the CPU 102 via the
FSB 106, through a front-side bus interface 120.
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[0028] The GPU 104 also includes a front-side bus inter-
face 124 that connects to the FSB 106 and that is used to pass
information between the GPU 104 and the CPU 102. The
GPU 104 is a device capable of processing large amounts of
data at very high speed using sophisticated data structures
and processing techniques. To do so, the GPU 104 includes
at least one graphics core 128 that processes data obtained
from the CPU 102 or from main memory 138 via the
memory controller 130. The memory controller 130 con-
nects to the graphics front-side bus interface 124 via a bus
interface unit (BIU) 123. Data passes between the graphics
core 128 and the memory controller 130 over a wide parallel
bus 132. The main memory 138 typically stores operating
routines, application programs, and corresponding data that
may be accessed by the CPU 102 and GPU 104.

[0029] For some embodiments, the GPU 104 may also
include an 1/O port 140 that connects to an I/O driver (master
device) 142. The I/O driver 142 passes data to and from any
number of external devices, such as a mouse, video joy stick,
computer board, and display, via an [/O slave device 141.
The I/O driver 142 properly formats data and passes data to
and from the graphic front-side bus interface 124. That data
is then passed to or from the CPU 102 or is used in the GPU
104, possibly being stored in the main memory 138 by way
of the memory controller 130. As illustrated, the graphics
cores 128, memory controller 130, and I/O driver 142 may
all communicate with the BIU 123 that provides access to
the FSB via the GPU’s FSB interface 124.

[0030] As previously described, in conventional multi-
processor systems, such as system 100, in which one or more
remote devices request access to data for memory locations
that are cached by a central processor, the remote devices
often utilize some type of coherency logic to monitor
(snoop) the contents of the processor cache. Typically, this
snoop logic interrogates the processor cache directory for
entries for every memory location the remote device wishes
to access. As a result, conventional cache snooping may
result in substantial latency and consume a significant
amount of processor bus bandwidth.

Snoop Filter Directory Mechanism

[0031] In an effort to reduce such latency and increase bus
bandwidth, embodiments of the present invention may uti-
lize coherency logic 127 on the remote device (in this
example, the GPU 104), which may include a snoop filter
125, a castout buffer 121, and an outstanding transaction
buffer 129. FIG. 2 illustrates a relational view of one system
configuration utilizing these components to maintain coher-
ency. As illustrated, the coherency logic 127 may be gen-
erally configured to route requests received by a GPU core
128 (or /O master) to the CPU 102 or directly to memory,
depending on the information contained in the snoop filter
125, castout buffer 121, and outstanding transaction buffer
129.

[0032] As will be described in greater detail below, the
castout buffer 121 may be used to track the addresses of
cache lines for which data is expected to be returned (in
some cases castout) by the CPU 102. The outstanding
transaction buffer 129 may be used to track addresses
targeted by “in-flight” requests routed from the GPU 104 to
the CPU 102, indicating data for these addresses may be
expected.

Dec. 20, 2007

[0033] As illustrated, the snoop filter 125 may maintain a
remote cache directory 126 which provides, at the GPU 104,
an indication of entries in the [.2 cache directory 115 on the
CPU 102. Accordingly, when a remote device attempts to
access data in a memory location, the snoop filter 125 may
check the remote cache directory 126 to determine if a
modified copy of the data is cached at the CPU 102 without
having to send bus commands to the CPU 102. As a result,
the snoop filter 125 may “filter out” requests to access data
that is not cached in the CPU 102 and route those requests
directly to memory 138, via the memory controller 130, thus
reducing latency and increasing bus bandwidth. As will be
described in greater detail below, the snoop filter 125 may
operate in concert with a cache controller 113 which may
generate enhanced bus transactions containing cache coher-
ency information used by the snoop filter 125 to update the
remote cache directory 126 to reflect changes to the CPU
cache directory 115.

[0034] As illustrated, the CPU 102 may include various
components (that interface with the L2 cache controller and
bus interface) to support system coherency and respond to
requests received from the GPU 104. Such components may
include memory agents 202 and 206 to route requests to and
receive responses from, respectively, memory 138, as well
as a GPU agent 204 to route requests to and receive
responses from the GPU cores 128 (or /O masters). These
agents may communicate with the GPU 104 via virtual
channels 210 established on the FSB. The virtual channels
210 include “upbound” virtual channels 216 and 218 to
handle requests and responses, respectively, from the GPU
104 and “downbound” virtual channels 212 and 214 to
handle requests and responses, respectively, from the CPU
102. Data paths through the virtual channels 210 for differ-
ent transactions under different circumstances are described
in detail below, with reference to FIGS. 6A-6C.

[0035] For some embodiments, the snoop filter 125 may
monitor requests issued from the CPU 102 in an effort to
ensure the remote cache directory 126 mirrors the CPU
cache directory 115, and accurately reflects the contents and
coherency state of the CPU cache 114. For example, FIG. 3
illustrates exemplary operations 300 that may be performed
(e.g., by the snoop filter 125) to update the remote cache
directory 126 based on requests issued by the CPU 102
indicating a new cache line is being allocated in the 1.2 cache
114.

[0036] The operations 300 begin, at step 302, by receiving
a (read allocation) request from the CPU 102. In some cases,
the request may be an enhanced bus transaction containing
additional coherency information allowing the snoop filter to
update the remote cache directory 126, as described in the
commonly owned U.S. patent application entitled
“Enhanced Bus Transactions for Efficient Support of a
Remote Cache Directory Copy” (Attorney Docket No.
ROC920040036US1). This information may include an
indication that an allocation or de-allocation transaction
occurred and, if so, a particular cache line (e.g., a “way”
within an associative set) that is being replaced. The infor-
mation may also include an indication of whether an aging
castout was or will be generated (i.e., resulting in modified
data being written back to memory). These bus transactions
may be considered enhanced because this additional coher-
ency information may be added to information already
included in a bus transaction occurring naturally. For
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example, a cache line allocation may naturally precede a bus
transaction to read requested data to fill the allocated cache
line.

[0037] At step 304, a valid bit of the old entry in the
remote cache directory 126 (being replaced by the new
entry) is examined. If the old entry is invalid, the new entry
is allocated in the remote cache directory 126, at step 306.
If the old entry is valid, however, a bit provided in the
allocation request is examined to determine if the cached
entry being replaced is to be castout, at step 308. If so, the
GPU 104 can expect this data to be transferred (castout)
from the CPU, and the old entry is copied to the castout
buffer 121, at step 310. Thus, when the GPU 104 requests
data, the castout buffer 121 may be examined to determine
if a castout is pending (as shown in FIG. 5).

[0038] Even if the aging bit is not set, a castout (or other
transfer) of the cacheline may still be pending, if the
cacheline was targeted by an outstanding read or flush issued
by the GPU 104. To determine if such requests are pending,
the old entry (being replaced by the new allocation) may be
compared against entries in the read/flush outstanding
buffer, at step 312. A match indicates there is an outstanding
read/flush request targeting the cacheline and, hence, the old
entry is copied into the castout buffer 121, at step 310, prior
to allocating the new entry in the remote directory (step
306). A mismatch indicates there is no such outstanding
request, and the new entry is allocated, without copying the
old entry into the castout buffer 121.

[0039] As described in the above-referenced application,
similar operations to those shown in FIG. 3 may be per-
formed to update the remote cache directory and castout
buffer based on de-allocation information provided by the
CPU 102. As with the allocation information, de-allocation
information may also be contained in enhanced bus trans-
actions. FIGS. 4A and 4B summarize the type of coherency
information provided upon allocation and de-allocation,
respectively.

[0040] As illustrated in FIG. 4A, for some embodiments,
the coherency information may include a valid bit (rc_way-
_alloc_v) indicating whether or not a new entry is being
allocated, set_id bits (rc_way_alloc[0:N]) indicating the way
of'the cache line being allocated, and an aging bit (rc_aging)
indicating whether an aging castout (e.g., of a modified
cache line) is being issued. If the valid bit is inactive, the
remaining bits may be ignored, since a new entry is not
being allocated (e.g., a cache line for a targeted memory
location already exists in [.2 cache). In other words, the
coherency information may be sent with each such transac-
tion, even when a new line is not being allocated, to avoid
having separate transactions for transferring coherency
information. In such embodiments, the GPU 104 may
quickly check the valid bit to determine if a new cache line
is being allocated.

[0041] If the valid bit is set, the set_id bits may be
examined to determine which cache line of an associate set
is being allocated. For example, for a 4-way associate cache
(N=1), atwo bit set_id may indicate one of 4 available cache
lines, for an 8-way associative cache (N=2), a 3-bit set_id
may indicate one of 8 available cache lines, and so on. As an
alternative, individual bits (or signals) for each of the ways
of the set may be used which, in some cases, may provide
improved timing.
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[0042] The aging bit set indicates an aging castout is being
issued, for example, since the coherency state of the aging
L2 cache line is modified (M). The aging bit cleared
indicates that the entry being replaced is not being castout,
for example, because the aging [.2 entry was invalid (I),
shared (8), or exclusive (E), and can be overwritten with this
new allocation.

[0043] Tt should be noted that, in some cases, the remote
cache directory 126 may indicate more valid cache lines are
in the L2 cache 114 than are indicated by the CPU cache
directory 115 (e.g., the valid cache lines indicated by the
remote cache directory may represent a superset of the
actual valid cache lines). This is because cache lines in the
L2 cache 114 may transition from Exclusive (E) or Shared
(S) to Invalid (I) without any corresponding bus operations
to signal these transitions. While this may result in occa-
sional additional requests sent from the GPU 104 to the CPU
102 (the CPU 102 can respond that its copy is invalid), it is
also a safe approach aimed at ensuring the CPU is always
checked if the remote cache directory 126 indicates
requested data is cached. As will be described in greater
detail below, these requests may be “reflected” back to the
GPU to be routed to memory.

[0044] When L2 cache lines are de-allocated (e.g., due to
a write with kill), enhanced bus transactions containing
coherency information related to the de-allocation may also
be generated. This coherency information may include an
indication an entry is being de-allocated and the set_id (way)
indicating which cache line within an associative set being
de-allocated. This information may be generated by “push
snoop logic” in the 1.2 cache 114 and carried in a set of
control bits/signals, as with the previously described coher-
ency information transmitted upon cache line allocation.
This coherency information will be used by the GPU snoop
filter 125 to correctly invalidate the corresponding entry in
the (L2 superset) remote cache directory 126. As illustrated
in FIG. 4B, the coherency information related to the de-
allocation may be carried in similar bits/signals (valid and
set_id) to those related to allocation shown in FIG. 4A. As
the de-allocation assumes a castout, there may be no need
for an aging bit.

Routing Remote Device Memory Requests

[0045] FIG. 5 is a flow diagram of exemplary operations
500 for routing remote device memory access requests based
on information maintained in the remote cache (snoop filter)
directory 126 and castout buffer 121, in accordance with
embodiments of the present invention. While the operations
are described with reference to requests issued by a GPU
(core), it should be understood the same or similar opera-
tions may be performed to route requests from any request-
ing entity.

[0046] The operations 500 begin, at step 502, by receiving
a request from the GPU 104. At step 504, the snoop filter
directory 126 is checked in an effort to determine if a cache
line containing data targeted by the request is in the 1.2 cache
114 of the CPU 102. A hit (an entry with a matching entry
and valid state) indicates a targeted cache line is in the [.2
cache 114, while a miss indicates one is not. However, even
in the event of a miss, it is possible that a castout of a
recently cached line is pending and modified data may be
written back to memory. Therefore, the castout buffer is
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checked, at step 516, for an indication a castout of a targeted
cache line is pending. If a castout is pending, there is a risk
that stale data might be read from memory if the request is
issued before the modified data is written back to memory,
so the GPU waits for the pending castout, at step 520.

[0047] If there is no castout pending, the request is routed
to memory, at step 518. In other words, by maintaining
coherency information in the snoop cache directory 126 and
castout buffer 121, the request may be issued directly against
memory, without having to send any time consuming snoop
requests to the CPU. This scenario is illustrated in the
exemplary data path diagram of FIG. 6A, in which various
events are enumerated (1-4). First, a GPU core issues a
request (1). Second, the request misses in the snoop filter
directory 126 and castout buffer 121 (2), indicating a tar-
geted cache line does not presently reside in the .2 cache
114. Accordingly, the request is routed to memory, via the
memory controller 130 (3). Finally, the memory controller
130 returns the requested data to the GPU core (4).

[0048] Referring back to FIG. 5, a check of the snoop filter
directory, at step 504, resulting in a hit indicates a cache line
containing data targeted by the request is in the [.2 cache
114. According to some embodiments, of the present inven-
tion, the coherency logic 127 may send a request to tell the
CPU 102 to invalidate its cached copy of the targeted
memory location (if the copy was not modified) or cast out
its copy (if it was modified). To track these pending opera-
tions, and handle subsequent accesses targeting the same
memory locations, a copy of the targeted address is stored in
the read/write outstanding buffer 129, at step 506. At step
508, a request to invalidate/castout its copy is routed to the
CPU 102. Depending on the state of the targeted data, the
CPU may respond with data (if castout) or at least some type
of response indicating the request was processed. Therefore,
at step 510, the GPU 104 may receive response data or a
reflected read (described in greater detail below). At step
512, the entry from the read/write outstanding buffer 129
may be removed.

[0049] Data paths for requests that hit in the snoop filter
directory 126 are illustrated in FIGS. 6B and 6C, in which
various events are again enumerated. FIG. 6B illustrates the
routing of a request for data that is cached in the [.2 114 in
a valid state, and returned from the CPU directly to a
requesting GPU core. First, a GPU core issues a request (1).
Second, the request hits in the snoop filter directory 126,
indicating a targeted cache line resides in the 1.2 cache 114.
Accordingly, the request is routed to the L2 114 (3). For
some embodiments, and in some instances, the 1.2 114 logic
may respond by sending a response with the requested data
directly to the GPU core (4).

[0050] This approach may reduce latency by eliminating
the need for the GPU core to generate a separate response to
read the requested memory. In some cases, if the data has
been modified, it may be marked as dirty in the response,
causing the GPU 104 to generate a write to memory. In some
cases, however, the GPU 104 may access a special set of
registers, referred to as a lock set, that does not require
backing to memory (e.g., the GPU reads, but never writes to
these registers). The concepts of utilizing such a lock set are
described in detail in the commonly owned application,
entitled “Direct Access of Cache Lock Set Data Without
Backing Memory” (Attorney Docket No.
ROC920040048U8S1), filed herewith.
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[0051] FIG. 6C illustrates the routing of a request for data
that results in a hit with the remote cache directory 126 but
the data is not cached in the L2 in a valid state. In such cases,
the [.2 cache may return NULL data, causing reflection logic
208 in the CPU 102 to respond with what may be referred
to as “reflected” read (or write) requests that are, in effect
requests reflected back to the GPU 104 to be routed to the
memory controller 130 for execution against memory (e.g.,
on behalf of the requesting GPU core 128).

[0052] FIG. 7 is a flow diagram of exemplary operations
700 for updating the snoop filter directory 126, castout
buffer 121, and/or read/write outstanding buffer 129, in
response to certain requests received from the CPU 102. The
operations 700 begin, at step 702, by receiving such a
request from the CPU 102. As illustrated, for some embodi-
ments, requests that cause a change to these coherency
mechanisms may include a write with kill, or a reflected read
or write.

[0053] If the request hits in the remote cache (snoop filter)
directory 126, as determined at step 704, the entry that
resulted in the hit is invalidated, at step 706. This is because
a write with kill indicates the corresponding data in the [.2
cache is being written out, and a reflected read or write
request indicates the data in the .2 cache is no longer valid.
As illustrated, the castout buffer 121 may be checked in
parallel, at step 708, with the remote cache directory 126. A
hit also results in the corresponding entry being invalidated,
at step 706. If the request received from the CPU is a
reflected read or write, as determined at step 710, the
corresponding entry is removed from the outstanding trans-
action buffer 129, at step 712. Removing the entry (that was
created when the coherency logic routed the request result-
ing in the reflected read/write request to the [.2, per step 506
of FIG. 5) is done because the request is no longer “in
flight.” The request is then routed to memory, at step 714.

CONCLUSION

[0054] Coherency support structures (e.g., a remote cache
directory, castout buffer, and outstanding transaction buffer)
on a remote device may be used to indicate the contents of
an L2 cache of a processor that shares memory with the
remote device and to indicate the status requests targeting
data stored in the L2 cache. Accordingly, the mechanisms
may be checked at the remote device to determine whether
to route a memory request to the L2 cache or directly to
memory, which may result in significant reductions in
latency. These mechanisms may be updated by monitoring
memory access requests issued by the processor, as well as
the remote device, avoiding unnecessary snoop requests.

[0055] While the foregoing is directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:
1. A method of maintaining coherency of data accessed by
a remote device, comprising:

maintaining, on the remote device, a remote cache direc-
tory indicative of memory locations residing in a cache
on a processor which shares access to some portion of
a memory device;
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maintaining, on the remote device, a castout buffer indi-
cating cache lines that have been or will be castout from
the processor cache; and

routing memory requests issued at the remote device to
the memory device or the processor cache, depending
on information contained in the remote cache directory
and castout buffer.
2. The method of claim 1, wherein maintaining the remote
cache directory comprises:

receiving, by the remote device, a bus transaction initiated
by the processor containing cache coherency informa-
tion indicating a change to a cache directory residing on
the processor; and

updating the remote cache directory, based on the cache
coherency information, to reflect the change to the
cache directory residing on the processor.

3. The method of claim 2, wherein maintaining, on the
remote device, a buffer indicating cache lines that have been
castout from the processor cache comprises copying an entry
from the remote cache directory to the castout buffer if the
cache coherency information indicates an aging castout is to
occur at the processor.

4. The method of claim 2, wherein the cache coherency
information comprises a set of bits indicating a way within
an associative set.

5. The method of claim 1, wherein routing memory
requests issued at the remote device to the memory device
or the processor cache, depending on information contained
in the remote cache directory and castout buffer comprises:

routing memory requests issued at the remote device to
memory if an address targeted by the memory request
does not match entries in either the remote cache
directory or castout buffer.

6. The method of claim 5, further comprising waiting for
a castout to occur if an address targeted by the memory
request matches an entry in the castout buffer.

7. The method of claim 5, wherein routing memory
requests issued at the remote device to the memory device
or the processor cache, depending on information contained
in the remote cache directory and castout buffer comprises:

routing memory requests issued at the remote device to
the processor cache if an address targeted by the
memory request matches an entry in the remote cache
directory.

8. The method of claim 7, further comprising creating an
entry in an outstanding transaction buffer containing an
address targeted by the memory request routed to the pro-
cessor cache.

9. The method of claim 8, further comprising removing
the entry from the outstanding transaction buffer after
receiving response data from the processor.

10. A method of maintaining coherency of data accessed
by a remote device, comprising:

maintaining, on the remote device, a remote cache direc-
tory indicative of memory locations residing in a cache
on a processor which shares access to some portion of
a memory device wherein maintaining the remote
cache directory comprises:

receiving, by the remote device, a bus transaction
initiated by the processor containing cache coher-
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ency information indicating a change to a cache
directory residing on the processor; and

updating the remote cache directory, based on the cache
coherency information, to reflect the change to the
cache directory residing on the processor;

routing a memory request issued at the remote device to
the processor cache if an address targeted by the
memory request matches an entry in the remote cache
directory; and

creating an entry in an outstanding transaction buffer
residing on the remote device, the entry containing the
address targeted by the memory request routed to the
processor cache.

11. The method of claim 10, wherein:

maintaining, on the remote device, a buffer indicating
cache lines that have been castout from the processor
cache comprises copying an entry from the remote
cache directory to the castout buffer if the cache coher-
ency information indicates an aging castout is to occur
at the processor; and

copying an entry from the outstanding transaction buffer
to the castout buffer in response to detecting a match
between an address of a cache line being castout and
the entry.
12. A device configured to access data stored in memory
and cacheable by a processor, comprising:

one or more pI'OCGSSiIlg cores;

a remote cache directory indicative of contents of a cache
residing on the processor;

a castout buffer indicating cache lines that have been or
will be castout from the processor cache; and

coherency logic configured to receive cache coherency
information indicative of changes to the contents of the
processor cache sent by the processor in bus transac-
tions and update the cache directory and castout buffer
based on the cache coherency information.
13. The device of claim 12, wherein the coherency logic
is configured to:

receive cache coherency information indicating a cache
line that has been de-allocated by the processor; and

in response, invalidate a corresponding entry in at least
one of the remote cache directory and the castout
buffer.
14. The device of claim 12, wherein the coherency logic
is further configured to:

receive, from the processing core, a request to access data
associated with a memory location;

examine the remote cache directory for an entry matching
an address targeted by the request with a valid coher-
ency state;

examine the castout buffer for an entry matching the
address targeted by the request with a valid coherency
state; and

if an entry matching the address targeted by the request is
not found in either the remote cache directory or
castout buffer, route the request to a memory controller
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to access the requested data from memory without
sending a request to the processor.
15. The device of claim 14, wherein:

the device further comprises a pending transaction buffer;
and

the coherency logic is further configured to route a request
to the processor if an entry matching the address
targeted by the request is found in the remote cache
directory and create an entry in the pending transaction
buffer containing the address targeted by the request.

16. The device of claim 15, wherein the memory control-

ler resides on the remote device.
17. A coherent system, comprising:

a processor having a cache for storing data accessed from
external memory, a cache directory with entries indi-
cating which memory locations are stored in cache
lines of the cache and corresponding coherency states
thereof, and control logic configured to detect internal
bus transactions indicating the allocation and de-allo-
cation of cache lines and, in response, generate bus
transactions, each containing cache coherency infor-
mation indicating cache line that has been allocated or
de-allocated; and

a remote device having a remote cache directory indica-
tive of contents of the cache residing on the processor,
a castout buffer indicating cache lines that have been or
will be castout from the processor cache, and coherency
logic configured to:
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update the remote cache directory, based on cache
coherency information contained in the external bus
transactions generated by the processor control logic,
to reflect allocated and de-allocated cache lines of
the processor cache;

receive a memory access request issued by a graphics
processing core;

search the remote cache directory and castout buffer for
entries matching an address targeted by the request;
and

if no matching entries are found, route the request to
external memory without sending a request to the
processor.
18. The system of claim 17, wherein the coherency logic
is further configured to:

if a matching entry is found, route the request to the
processor; and

create an entry in an outstanding transaction buffer con-
taining the address targeted by the request.
19. The system of claim 18, wherein the coherency logic
is further configured to:

copy an entry from the outstanding transaction buffer to
the castout buffer, in response to receiving coherency
information from the processor indicating a corre-
sponding cache line has been or will be cast out from
the cache.



