

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : A01N 25/34, 25/08 // (A01N 25/34 A01N 47/38, 47/36, 47/18 A01N 43/64, 41/06, 39/04) (A01N 25/08, 47/38, 47/36 A01N 47/18, 43/64, 41/06 A01N 39/04)		A1	(11) International Publication Number: WO 90/00007 (43) International Publication Date: 11 January 1990 (11.01.90)
(21) International Application Number: PCT/US89/02072 (22) International Filing Date: 17 May 1989 (17.05.89)			(72) Inventor; and (75) Inventor/Applicant (for US only) : MOORE, Earl, Phillip [US/US]; 2908 Cobbs Way, Anderson, SC 29621 (US).
(30) Priority data: 212,668 28 June 1988 (28.06.88)	US		(74) Agent: COSTELLO, James, A.; E.I. du Pont de Nemours and Company, 1007 Market Street, Wilmington, DE 19898 (US).
(60) Parent Application or Grant (63) Related by Continuation US 212,668 (CIP) Filed on 28 June 1988 (28.06.88)			(81) Designated States: AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CF (OAPI patent), CG (OAPI patent), CH (European patent), CM (OAPI patent), DE (European patent), DK, FI, FR (European patent), GA (OAPI patent), GB (European patent), HU, IT (European patent), JP, KR, LK, LU (European patent), MC, MG, ML (OAPI patent), MR (OAPI patent), MW, NL (European patent), NO, RO, SD, SE (European patent), SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI patent), US.
(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).			Published <i>With international search report.</i>

(54) Title: TABLET FORMULATIONS OF PESTICIDES

(57) Abstract

A tablet formulation comprising (i) a pesticide characterized by low or no water solubility, and (ii) a complementary delivery system containing an organic acid, an inorganic base, a dispersant, a disintegrant, and a wetting agent.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	ML	Mali
AU	Australia	FR	France	MR	Mauritania
BB	Barbados	GA	Gabon	MW	Malawi
BE	Belgium	GB	United Kingdom	NL	Netherlands
BF	Burkina Fasso	HU	Hungary	NO	Norway
BG	Bulgaria	IT	Italy	RO	Romania
BJ	Benin	JP	Japan	SD	Sudan
BR	Brazil	KP	Democratic People's Republic of Korea	SE	Sweden
CF	Central African Republic	KR	Republic of Korea	SN	Senegal
CG	Congo	LI	Liechtenstein	SU	Soviet Union
CH	Switzerland	LK	Sri Lanka	TD	Chad
CM	Cameroon	LU	Luxembourg	TG	Togo
DE	Germany, Federal Republic of	MC	Monaco	US	United States of America
DK	Denmark	MG	Madagascar		
ES	Spain				

TITLE
TABLET FORMULATIONS OF PESTICIDES

5

BACKGROUND OF THE INVENTION

This invention concerns specific pesticide formulations especially suited for commercial use in tablet form. Several types of tablet formulations 10 are known in the art. See, for instance, G.B. 2,139,893; G.B. 2,184,946; U.S. 4,182,620 and Kokai 51088641. However, these publications do not disclose or suggest the specific combinations of active ingredient(s) and delivery system(s) of this 15 invention. The formulations of this invention afford rapid disintegration and dispersion, even in cold water, of pesticidally active compounds that are water insoluble or of very low water solubility.

20

SUMMARY OF THE INVENTION

This invention concerns a tablet formulation consisting essentially of, by total weight of the formulated composition:

25 (i) about 20% to 75% of a pesticide characterized by a melting point of at least about 100°C and solubility in neutral water at 20°C of no more than about 5% by weight, and

30 (ii) about 25% to 80% of a delivery system characterized by a panel of components complementary to the pesticide of (i).

Typically, the delivery system (ii) will contain the following components in these amounts by weight of the total composition:

35 (a) about 5% to 20% of a dibasic or tribasic organic carboxylic acid or a mixture thereof;

5

- (b) about 7% to 50% of an ammonium or alkali metal carbonate or bicarbonate or a mixture thereof;
- (c) about 0.5% to 20% of a dispersant;
- (d) about 0.1% to 5% of water-insoluble cross-linked polyvinylpyrrolidone; and
- (e) about 0.1% to 5% of an anionic or nonionic wetting agent.

10

The delivery system is characterized by the interrelationship of components (a) to (e) in the recited ranges to effect rapid disintegration of finely dispersed pesticide particles (i).

15 By "tablet formulation" is meant the tablet made from the composition described herein, as well as the composition formulated in accordance with this disclosure but not in tablet form.

Contemplated pesticides include those selected from the following classes, including mixtures thereof: herbicides, fungicides, bactericides, insecticides, nematocides, acaricides, and growth regulators.

Preferred dibasic and tribasic organic
25 carboxylic acids include citric, fumaric, phthalic,
maleic, malic, oxalic, adipic, glutaric, 2-methyl
glutaric, succinic and tartaric, or mixtures of any
of them. Preferred carbonates and bicarbonates
30 include the lithium, sodium, and potassium salts or
mixtures of any of them.

The term "dispersants" includes sodium salts of naphthalene formaldehyde condensates; sodium, potassium and calcium salts of naphthalene sulfonic acid condensates; lithium, sodium, potassium, calcium, and ammonium salts of lignosulfonates such as Polyfon H® and Lignosol TSF®; sodium, potassium

and ammonium salts of polyacrylates and carboxylates, e.g., Tamol 731 SD; sodium salts of maleic anhydride-isobutylene copolymers; and water soluble nonionic polymers such as polyvinylpyrrolidone, polyethylene oxides and cellulose derivatives. Preferred dispersants include the sodium, potassium, ammonium and calcium salts of naphthalene sulfonic acid condensates, with the ammonium salts, specifically Lomar PWA, more preferred.

Water-insoluble, cross-linked polyvinyl-pyrrolidone disintegrant refers to any of the generic crospovidone disintegrating agents. Specifically preferred is Polyplasdone® XL 10.

The term "anionic wetting agent" includes alkylbenzene sulfonates, alkyl and dialkylnaphthalene sulfonates, alkyl and alcohol sulfates, sulfoalkyl-amides, carboxylates, alpha-olefin sulfonates and dialkyl sulfosuccinates. The term "nonionic wetting agent" includes acetylenic diols, ethylene oxide-propylene oxide copolymers, alkylphenol ethoxylates, fatty acid ethoxylates, alcohol ethoxylates, sorbitan fatty acid ester ethoxylates and castor oil ethoxylates. The preferred wetting agents are sodium dialkyl sulfosuccinates of which sodium disobutyl sulfosuccinate (Monawet MB-100), sodium diamyl sulfosuccinate and sodium dicyclohexyl sulfosuccinate are more preferred.

30

DETAILS OF THE INVENTION

Preferred pesticides are those listed in Table 1.

TABLE 1
HERBICIDES

5

Cmpd.

	<u>No.</u>	<u>Common Name</u>	<u>m.p. (°C)</u>	<u>Chemical Name</u>
10	1	acifluorfen	142-160	5-[2-chloro-4-(trifluoro methyl)phenoxy]-2-nitro- benzoic acid
15	2	asulam	142-144	methyl [(4-aminophenyl)- sulfonyl]carbamate
20	3	atrazine	175-177	6-chloro-N-ethyl-N'-(1- methylethyl)-1,3,5- triazine-2,4-diamine
25	4	bensulfuron methyl	185-188	2-[[[[4,6-dimethoxy-2- pyrimidinyl)amino]- carbonyl]amino]sulfonyl]- methyl]benzoic acid, methyl ester
30	5	bentazon	137-139	3-(1-methylethyl)-(1H)-2,1,3- benzothiadiazin-4(3H)-one, 2,2-dioxide
35	6	bromacil	158-159	5-bromo-6-methyl-3-(1-methyl- propyl)-2,4(1H,3H)pyrimi- dinedione
	7	bromoxynil	194-195	3,5-dibromo-4-hydroxybenzo- nitrile

<u>Cmpd.</u>	<u>No.</u>	<u>Common Name</u>	<u>m.p. (°C)</u>	<u>Chemical Name</u>
5	8	chloramben	200-201	3-amino-2,5-dichlorobenzoic acid
10	9	chlorimuron ethyl	>100	2-[[[[4-chloro-6-methoxy-2-pyrimidinyl)amino]carbonyl]-amino]sulfonyl]benzoic acid, ethyl ester
15	10	chloroxuron	151-152	N'-(4-(4-chlorophenoxy)-phenyl)N,N-dimethylurea
20	11	chlorsulfuron	174-178	2-chloro-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]carbonyl]benzene-sulfonamide
25	12	chlortoluron	147-148	N'-(3-chloro-4-methylphenyl)-N,N-dimethylurea
30	13	clomazone	151-152	2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone
35	14	cyanazine	166-167	2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropanenitrile
	15	dazomet	104-105	tetrahydro-3,5-dimethyl-2H-1,3,5-thiadiazine-2-thione

Cmpd.			
<u>No.</u>	<u>Common Name</u>	<u>m.p. (°C)</u>	<u>Chemical Name</u>
5			
16	desmediphan	120	ethyl [3-[(phenylamino)- carbonyl]oxy]phenyl]- carbamate
10	17 dicamba	114-116	3,6-dichloro-2-methoxybenzoic acid
18	dichlobenil	139-145	2,6-dichlorobenzonitrile
15	19 dichlorprop	117-118	(\pm)-2-(2,4-dichlorophenoxy)- propanoic acid
20	20 diphenamid	134-135	N,N-dimethyl- α -phenylbenzene- acetamide
20	21 dipropetryn	104-106	6-(ethylthio)-N,N'-bis(1-methylethyl)-1,3,5-triazine-2,4-diamine
25	22 diuron	158-159	N'-(3,4-dichlorophenyl)-N,N-dimethylurea
30	23 thiameturon	>100	3-[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]- carbonyl]amino]sulfonyl]-2-thiophenecarboxylic acid, methyl ester

Cmpd.			
No.	Common Name	m.p. (°C)	Chemical Name
5			
24	----	>100	2-[[[[N-(4-methoxy-6-methyl-1,3,5-triazine-2-yl)-N-methylamino]carbonyl]-amino]sulfonyl]benzoic acid, methyl ester
10			
25	fenac	156	2,3,6-trichlorobenzeneacetic acid
15	26 fenuron	133-134	N,N-dimethyl-N'-phenylurea
20	28 fluridone	151-154	1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone
25	29 fomesafen	220-221	5-[2-chloro-4-(trifluoromethyl)phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide
30	30 glyphosate	200	N-(phosphonomethyl)glycine
30	31 hexazinone	115-117	3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione

Cmpd.			
No.	Common Name	m.p. (°C)	Chemical Name
5			
	32 imazamethabenz	>100	6-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-m-toluic acid, methyl ester and 6-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluic acid, methyl ester
10			
	33 imazaquin	219-222	2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline-carboxylic acid
15			
	34 imazethapyr	172-175	(±)-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid
20			
	35 ioxynil	209	4-hydroxy-3,5-diiodobenzo-nitrile
25			
	36 isoproturon	155-156	N-(4-isopropylphenyl)-N',N'-dimethylurea
30			
	37 isouron	119-120	N'-(5-(1,1-dimethylethyl)-3-isoxazolyl)-N,N-dimethylurea
35			
	38 isoxaben	176-179	N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide

Cmpd.				
	<u>No.</u>	<u>Common Name</u>	<u>m.p. (°C)</u>	<u>Chemical Name</u>
5	39	karbutilate	176-178	3-[(dimethylamino)carbonyl]- amino]phenyl-(1,1-dimethyl- ethyl)carbamate
10	40	lenacil	316-317	3-cyclohexyl-6,7-dihydro-1H- cyclopentapyrimidine-2,4- (3H,5H)dione
15	41	MCPA	100-115	(4-chloro-2-methylphenoxy)- acetic acid
	42	MCPB	100	4-(4-chloro-2-methylphenoxy)- butanoic acid
20	43	mefluidide	183-185	N-[2,4-dimethyl-5-[(trifluoromethyl)sulfonyl]- amino]phenyl]acetamide
25	44	methabenz- thiazuron	119-120	1,3-dimethyl-3-(2-benzothia- zolyl)urea
30	45	methazole	123-124	2-(3,4-dichlorophenyl)-4- methyl-1,2,4-oxadiazol- idine-3,5-dione
	46	metribuzin	125-126	4-amino-6-(1,1-dimethylethyl)- 3-(methylthio)-1,2,4- triazin-5(4H)-one
35				

Cmpd.			
No.	Common Name	m.p. (°C)	Chemical Name
5			
47	metsulfuron methyl	163-166	2-[[[[[4-methoxy-6-methyl- 1,3,5-triazin-2-yl)amino]- carbonyl]amino]sulfonyl]- benzoic acid, methyl ester
10			
48	monuron	174-175	N'-(4-chlorophenyl)-N,N- dimethylurea
15			
49	naptalam	185	2-[(1-naphthalenylamino)- carbonyl]benzoic acid
20			
50	neburon	102-103	1-butyl-3-(3,4-dichloro- phenyl)-1-methylurea
25			
51	nitralin	151-152	4-(methylsulfonyl)-2,6- dinitro-N,N-dipropyl- aniline
30			
52	norflurazon	174-180	4-chloro-5-(methylamino)-2- [3-(trifluoromethyl)phenyl]- 3(2H)-pyridazinone
35			
53	oryzalin	141-142	4-(dipropylamino)-3,5-dinitro- benzenesulfonamide
40			
54	perfluidone	142-144	1,1,1-trifluoro-N-[2-methyl- 4-(phenylsulfonyl)phenyl]- methanesulfonamide
45			
55	phenmedipham	143-144	3-[(methoxycarbonyl)amino]- phenyl (3-methylphenyl)- carbamate

Cmpd.			
<u>No.</u>	<u>Common Name</u>	<u>m.p. (°C)</u>	<u>Chemical Name</u>
5			
56	picloram	>215 (DEC)	4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid
10			
57	prometryn	118-120	N,N'-bis(1-methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine
15			
58	pronamide	155-156	3,5-dichloro-N-(1,1-dimethyl-2-propynyl)benzamide
20			
60	pyrazon	205-206	5-amino-4-chloro-2-phenyl-3(2H)pyridazinone
25			
61	siduron	133-138	N-(2-methylcyclohexyl)-N'-phenylurea
30			
62	simazine	225-227	6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine
35			
63	sulfometuron methyl	182-189	2-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoic acid, methyl ester
64	tebuthiuron	161-164	N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N'-dimethylurea

Cmpd.	No.	Common Name	m.p. (°C)	Chemical Name
5	65	terbacil	175-177	5-chloro-3-(1,1-dimethyl- ethyl)-6-methyl-2,4(1H,3H)- pyrimidinedione
10	66	terbutyl- azine	177-179	2-(<i>tert</i> -butylamino)-4-chloro- 6-(ethyl-amino)-s-triazine
15	67	terbutryn	104-105	N-(1,1-dimethylethyl)-N'- ethyl-6-(methylthio)-1,3,5- triazine-2,4-diamine
	68	triclopyr	148-150	[(3,5,6-trichloro-2-pyri- dinyloxy]acetic acid
20	69	2,4-D	140	(2,4-dichlorophenoxy)acetic acid
25	70	2,4-DB	119-120	4-(2,4-dichlorophenoxy)- butanoic acid
	71	triasulfuron	>100	(3-(6-methoxy-4-methyl-1,3,5- triazin-2-yl)-1-[2-(2- chloroethoxy)phenylsulfonyl] urea
30	72	primisulfuron	>100	[2-/3-(4,6-bis(difluoro- methoxypyrimidin-2-yl- ureidosulfonyl)benzoic acid methylester]

Cmpd.				
	<u>No.</u>	<u>Common Name</u>	<u>m.p. (°C)</u>	<u>Chemical Name</u>
5	73	----	>100	[2-/3-(4,6-bis(difluoro-methoxy)-pyrimidin-2-yl)-ureidosulfonyl)-benzoic acid methylester]
10	74	NC-311	170-172	[5-pyrazolesulfonamide, N-[(4-methoxy-6-methyl-pyrimidine-2-yl)-amino-carbonyl]-4-methoxy-carbonyl-1-methyl-]
15	75	----	160-162	N-[[{(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl}-3-(ethylsulfonyl)-2-pyridinesulfonamide]
20	76	----	152-159	2-[[{[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl}-amino]sulfonyl]-N,N-dimethyl-3-pyridine-carboxamide
25	77	----	204-206	Methyl 2-[[{[(4-ethoxy-6-(methylamino)-1,3,5-triazin-2-yl]amino]carbonyl]amino]-sulfonyl]benzoate
30				
35	78	carbendazim	302-307	methyl 2-benzimidazole-carbamate

FUNGICIDES

Cmpd.	No.	Common Name	m.p. (°C)	Chemical Name
5	79	thiuram	146	tetramethylthiuram disulfide
	80	dodine	136	n-dodecylguanidine acetate
10	81	chloroneb	133-135	1,4-dichloro-2,5-dimethoxybenzene
	82	cymoxanil	160-161	2-cyano-N-ethylcarbamoyl-2-methoxyiminoacetamide
15	83	captan	178	N-trichloromethylthiotetraphthalamide
	84	folpet	177	N-trichloromethylthiophthalimide
20	85	thiophanate-methyl	195	dimethyl 4,4'-(o-phenylene)-bis(3-thioallophanate)
	86	thiabendazole	304-305	2-(thiazol-4-yl)benzimidazole
25	87	chlorothalonil	240-241	tetrachloroisophthalonitrile
	88	dichloran	195	2,6-dichloro-4-nitroaniline
30	89	captafol	160-161	cis-N-[1,1,2,2-tetrachloroethyl]thiocyclohex-4-ene-1,2-dicarboximide
35				

Cmpd.			
No.	Common Name	m.p. (°C)	Chemical Name
5			
90	iprodione	133-136	3-(3,5-dichlorophenyl)-N-(1-methylethyl)-2,4-dioxo-1-imidazolidine carboxamide
10			
91	vinclozolin	108	3-(3,5-dichlorophenyl)-5-ethenyl-5-methyl-2,4-oxazolidinedione
15	92 kasugamycin	202-204 (DEC)	kasugamycin
20	93 triadimenol	121-127	beta-(4-chlorophenoxy)-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazol-1-ethanol
25	94 flutriafol	130	+alpha-(2-fluorophenyl)-alpha-(4-fluorophenyl)-1H-1,2,4-triazole-1-ethanol
30	95 flusilazol	52-53 HCl 201-203	1-[(bis(4-fluorophenyl)-methylsilyl)methyl]-1H-1,2,4-triazole
35	96 hexaconazole	111	(+/-)-alpha-butyl-alpha-(2,4-dichlorophenyl)-1H-1,2,4-triazole-1-ethanol
	97 fenarimol	117-119	alpha-(2-chlorophenyl)-alpha-(4-chlorophenyl)-5-pyridinemethanol

	Cmpd.	No.	Common Name	m.p. (°C)	Chemical Name
5					

BACTERICIDES

10	98	oxytetracycline dihydrate	181-182 (DEC)	oxytetracycline dihydrate
----	----	------------------------------	------------------	---------------------------

ACARICIDES

15	99	hexathiazox	108-109	trans-5-(4-chlorophenyl)-N- cyclohexyl-4-methyl-2-oxo-3- thiazolidinecarboxamide
20	100	oxythioquinox	169-170	6-methyl-1,3-dithiolo- [2,3-B]quinonolin-2-one
	101	dienochlor	122-123	bis(pentachloro-2,4-cyclo- pentadien-1-yl)
25	102	cyhexatin	245	tricyclohexyltin hydroxide

INSECTICIDES

30	103	carbofuran	150-152	methylcarbamic acid, ester with 2,3-dihydro-2,2-di- methyl-7-benzofuranol
35	104	carbaryl	142	methylcarbamic acid, ester with a-naphthol

Cmpd.	No.	Common Name	m.p. (°C)	Chemical Name
5	105	thiodicarb	173-174	dimethyl N,N'-[thiobis-(N-methylimino)carbonyloxy]]-bis[ethanimido-thioate]
10	106	deltamethrin	98-101	α -cyano-3-phenoxybenzyl-cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylate
15				
20				
25				
30				
35				

The most common method for applying water insoluble pesticides is as fine aqueous dispersions which are sprayed onto the field or crop using ground or aerial spray rigs. The tablets of this invention combine a high level of physical integrity with rapid break-up in cold, hard water using minimal or no agitation while providing fine dispersions of active ingredient. Since the spray nozzles are typically protected against clogging by 50 mesh screens (U.S. mesh size), the dispersions must be fine enough to pass through this size screen without plugging it. This ability is characteristic of pesticide dispersions (i) delivered by the delivery system (ii) of this invention.

High physical integrity of the tablets is desirable so that the tablets themselves can withstand the tabletting operation and survive handling, packaging and shipping without breaking. An axial breaking strength of greater than about 2.0 kiloponds is generally necessary for a tablet to survive such treatment.

Rapid break-up in cold, hard water (greater than about 300 ppm as calcium carbonate) is desirable for the convenience of the growers who require quick turnaround times for the preparation of the dispersions. Generally the tablets of the invention disperse completely in less than 10 minutes, most in less than 5 minutes using even the very cold water drawn from wells in the early spring.

The tablets of the invention with these characteristics are obtained by the combination of the active agent with five inert ingredients: acid, base, dispersant, disintegrant and wetting agent.

It is substantially impossible to obtain rapid break-up of a tablet of substantially water-insoluble 5 active ingredient in aqueous media without the use of effervescence. The reaction of the organic acid and carbonate or bicarbonate base affords carbon dioxide gas which aids in this respect.

A dispersant is required so that the particles 10 of the active ingredient formed during the disintegration of the tablet remain separated in the cold, hard water.

The disintegrant allows the penetration of the water into the interior of the tablet through a 15 wicking or swelling action. Common starch or cellulose-based disintegrants are unsuitable in agricultural applications as they typically form gels on the 50 mesh spray nozzle screens. Hence, the use of a water insoluble cross-linked 20 polyvinylpyrrolidone.

A wetting agent is required to control the size of the carbon dioxide bubbles formed during the reaction of the acid and base. The wetting agent reduces the surface tension between the bubbles and 25 the solid tablet resulting in the formation of smaller bubbles which readily detach from the tablet surface. As a consequence, the tablet remains submerged in the water for a longer period of time, thus improving contact of the entire tablet surface 30 with water.

If a tablet floats immediately after being dropped in the water its top rapidly dries out and the reaction slows down there. This increases the time required for complete dispersion of active 35 ingredient. When a tablet sinks, water wets the entire exterior of the tablet. Then, when the tablet floats to the surface (as a result of the buoyancy of the attached carbon dioxide bubbles when the tablet

has partially dispersed and become lighter) the top remains wet so that effervescent reaction continues.

5 Dispersion times for active ingredients formulated as described herein are very much more rapid than in formulations that produce tablets designed for flotation. To ensure that the tablet will sink initially, inert ingredients are employed that 10 produce a tablet with a density greater than that of water (specific gravity greater than 1.00).

Inert ingredients up to 55% of the total weight of the composition can be employed. Inert fillers such as sugar or clay can be added as long as they do 15 not affect the chemical stability of the active ingredient(s). Materials such as glidants, anti-adherents, and lubricants can also be employed to facilitate production in the tablet press. The amounts and types of such ingredients will be readily 20 determinable by one skilled in the tabletting art, given the disclosure herein.

The formulation ingredients (all solids) should be dry before being blended, milled and compacted. Drying at 45° to 60°C for 16 hours in a vacuum oven 25 is sufficient to reduce the water content of the premix to below about 0.5%. This is important so that residual moisture does not initiate the effervescence reaction during storage. The ingredients are typically ground and mixed in a mill, e.g., an air or hammermill. The ground premix 30 is brushed through a 50 or 100 mesh (U.S.A. Standard Sieve Series) screen.

The average particle size of the ground premix should be in the range of 5 to 15 microns. If it is 35 much smaller, the tablet will be strong, but will not break up very fast. If the premix is much larger,

the dispersion will not be fine enough to pass a wet screen test used to indicate whether the dispersion
5 will clog the spray nozzle and protective screen discussed previously.

The tablets can be prepared using conventional tablet-making equipment. Their diameter can vary from about 1/2 inch or less, to 3 inches, depending
10 on the tablet weight desired. Flat-faced, beveled-edge punches, with or without a breakline, produce attractive tablets.

To keep the tablet from sticking to the die or punch faces, a lubricant such as magnesium stearate
15 or boric acid can be used. Such lubricants and anti-adherants can be brushed onto the die surface or incorporated into the formulation.

Tablets have been formed in a hydraulic press with a capacity of 40,000 pounds of force. Pressures
20 between about 5,000 and 10,000 psi will produce strong tablets that break up rapidly. Break-up times are determined by dropping a tablet, typically 7 to 14 g, into about 800 to 1000 mL of water. The "end point" of final dispersion is easy to determine
25 because the tablet floats to the surface as it loses weight shortly before it finally disperses.

The resultant dispersion is then poured through a nest of 50/100/200 mesh wet screens. A qualitative judgment is then made about the amount of material
30 that is retained on each screen. A good tablet will leave just a "trace" on the 200 mesh screen, and the larger screens will be free of residue.

The strength of the tablet can be measured by a tester such as the Erweka Model TBH 28. The tablet
35 is stood on end and the machine tip moves to the tablet along an axial path. The force to break the

tablet in two is normally recorded in kiloponds (kp). Other units such as newtons (N) or 5 Strong-cobbs (Sc) can also be used. Good tablets normally have strengths in the range of 2 to 10 kp.

The invention is illustrated by the following Examples.

10

Example 1

The following ingredients were milled for 1 min in a Tekmar A 10 analytical laboratory mill. The premix was then passed through a 50 mesh screen and blended well. A 7 g tablet, 1 3/8 in (3.49 cm) 15 diameter, was made with a hand-operated precision hydraulic press.

	<u>Ingredients</u>	<u>Concentration</u> <u>Weight Percent</u>
20	<i>trans</i> -5-(4-chlorophenyl)-N-cyclohexyl-4-methyl-2-oxothiazolidine-3-carboxamide (insecticide)	50
25	Citric Acid	12
	Sodium Bicarbonate	25
	Lomar PWA	10
	Polyplasdone XL-10	2
	Monawet MB-100	1
30		

5 The tablet broke up completely in 25°C, hard water (420 ppm as CaCO₃) in 4 min, 11 sec. There was only a trace of residue on the 50 mesh wet screen and a trace on the 100 and 200 mesh screens.

Example 2

10 A tablet was prepared from the following ingredients in the same manner as described in Example 1.

	<u>Ingredients</u>	<u>Concentration</u> <u>Weight Percent</u>
15	MBC (fungicide)	52.1
	Citric Acid	10.0
	Sodium Bicarbonate	25.6
	Lomar PWA	5.0
20	Polyplasdone XL-10	1.0
	Monawet MB-100	1.0
	Boric Acid	5.0
	Magnesium Stearate	0.3

25 The tablet dispersed completely in 25°C tap water in 3 min, 23 sec. There was no residue on the 50 mesh wet screen and only a trace on the 100 and 200 mesh screens. Its density was 1.25 g/cc.

30 Example 3

The following ingredients were blended and hammermilled one time through a 0.032 in round-hole screen. A 7 g tablet, 1 3/8 in diameter, was prepared on a hand-operated hydraulic press.

	<u>Ingredients</u>	Concentration <u>Weight Percent</u>
5	3[[[(4-methoxy-6-methyl- 1,3,5-triazin-2-yl)amino]- carbonyl]amino]sulfonyl]-	52.1
10	2-thiophene carboxylic acid, methyl ester	
	Citric Acid	10.0
	Sodium Bicarbonate	25.6
	Lomar PWA	5.0
15	Polyplasdone XL-10	1.0
	Monawet MP-100	1.0
	Boric Acid	5.0
	Magnesium Stearate	0.3

20 The tablet dispersed complete in 25°C tap water in 2 min, 24 sec. There was no residue on the 50 mesh wet screen and only a trace on the 100 and 200 mesh screens. It remained submerged for 16 sec.

25 Examples 4 to 11

30 The following formulations were each milled for 1 min in a Tekmar A-10 analytical laboratory mill. A 7 g tablet, 1 3/8 in (3.49 cm) diameter, was made from each premix with a hand-operated hydraulic press. The formulation used is shown below:

	<u>Ingredients</u>	<u>Concentration</u>
		<u>Weight Percent</u>
5	Active Ingredient	52.1
	Citric Acid	10.0
	Sodium Bicarbonate	25.6
	Lomar PWA	5.0
10	Polyplasdone XL-10	1.0
	Monawet MP-100	1.0
	Boric Acid	5.0
	Magnesium Stearate	0.3
15	The density, strength, submerged and break up times are shown in Table 2 for eight active ingredients given by Compound number in Table 1. The times are shown as min:sec.	

20

Table 2

	<u>Ex.</u>	<u>Active Compound</u>	<u>Density g/cc</u>	<u>Strength kp</u>	<u>Time Submerged</u>	<u>Break-up Time</u>
25	4	23	1.29	3.56	:34	2:32
	5	75	1.28	3.26	:30	2:17
	6	76	1.23	3.16	:27	3:31
	7	24	1.27	4.58	:52	2:17
30	8	4	1.30	3.97	1:10	3:09
	9	11	1.28	3.16	:26	2:13
	10	77	1.31	4.68	1:32	3:20
	11	63	1.28	3.56	:38	2:23

Example 12

5 The following ingredients were milled for 1 min and
 a 7 g tablet, 1 3/8 in (3.49 cm) diameter, was prepared
 as described in Example 1.

	<u>Ingredients</u>	Concentration <u>Weight percent</u>
10	methyl 2-[[[(4-methoxy-6-	
	methyl-1,3,5-triazin-2-yl)-	50
	amino]carbonyl]amino]-	
	sulfonyl]benzoate	
15	Citric Acid	11
	Sodium Bicarbonate	32
	Lomar PWA	5
	Polyplasdone XL-10	1
	Monawet MB-100	1
20		

25 The tablet dispersed completely in 0°C, hard
 water (420 ppm as CaCO₃) in 3 min, 15 sec. The
 resultant dispersion passed through a wet 200 mesh
 screen with only a trace of residue.

25

Example 13

A tablet from the following formulation was
 prepared as in Example 12.

	<u>Ingredients</u>	Concentration <u>Weight percent</u>
30	methyl 2-[[[(4-methoxy-6-	
	methyl-1,3,5-triazin-2-yl)-	50
	amino]carbonyl]amino]-	
	sulfonyl]benzoate	
35		

	Phthalic Acid	14
	Sodium Bicarbonate	22
5	Lomar PWA	10
	Polyplasdone XL-10	2
	Monawet MB-100	2

10 The tablet broke up completely in 25°C tap water in 2 min, 35 sec. Its strength was 5.70 kiloponds and it left only a trace of material on a wet 200 mesh screen.

Example 14

15 A tablet was prepared from the following formulation using the same procedure as in Example 12.

	<u>Ingredients</u>	<u>Concentration</u> <u>Weight percent</u>
20	methyl 2-[[[[4-methoxy-6-	50
	methyl-1,3,5-triazin-2-yl)-	
	amino]carbonyl]amino]-	
	sulfonyl]benzoate	
25	Succinic Acid	12
	Sodium Carbonate	24
	Lomar PWA	10
	Polyplasdone XL-10	2
	Monawet MB-100	2

30 The 7 g tablet broke up in 25°C tap water in 1 min, 26 sec. It left no residue on a wet 200 mesh screen.

Example 15

5 The following ingredients were blended and
 hammermilled twice through a 0.032 in round hole
 screen. A 7.2 g tablet, 1 3/8 in (3.49 cm) diameter
 was prepared in a hand-operated Preco hydraulic press.

	<u>Ingredients</u>	<u>Concentration</u> <u>Weight percent</u>
10	ethyl 2-[[[[4-chloro-6- methoxy-2-pyrimidinyl)amino]- carbonyl]amino]sulfonyl]- benzoate	51.0
15	Fumaric Acid	7.0
	Sodium Bicarbonate	12.5
	Polyfon H	7.5
	Polyplasdone XL-10	2.0
20	Monawet MB-100	1.75
	Sipernat 50-S (precipitated silica)	1.25
	Diluex FG (attapulgite clay)	12.0
	Avicel PH 101 (microcrys- talline cellulose)	5.0
25		

30 The tablet broke up in 50 sec in room
 temperature water when stirred gently with a
 spatula. It gave no residue on a wet 60 mesh screen
 and only a trace on a 200 mesh screen.

Examples 16 to 33

35 By the general procedure of Example 1, tablet
 formulations can be made whereby the active
 ingredient pesticide is as described hereafter and
 the complementary delivery system components are
 within the following ranges:

29

5

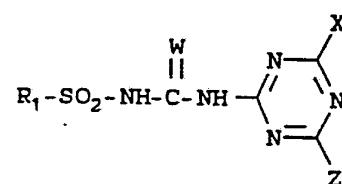
- (a) about 5% to 20% of a dibasic or tribasic organic carboxylic acid or a mixture thereof;
- (b) about 7% to 50% of an ammonium or alkali metal carbonate or bicarbonate or a mixture thereof;
- 10 (c) about 0.5% to 20% of a dispersant;
- (d) about 0.1% to 5% of water insoluble cross-linked polyvinylpyrrolidone; and
- (e) about 0.1% to 5% of an anionic or nonionic wetting agent.

15

20

25

30

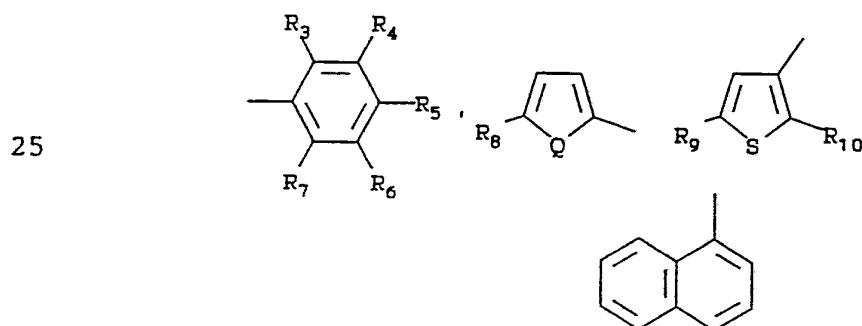

35

30

Example 16

The pesticide, described in more detail in U.S. Patent 4,127,405, is a compound of the formula:

10



15

wherein

R₁ is

20

30

35

R₃ and R₆ are independently hydrogen, fluorine, chlorine, bromine, iodine, alkyl of 1-4 carbon atoms, alkoxy of 1-4 carbon atoms, nitro, trifluoromethyl, cyano, CH₃S(O)_n⁻ or CH₃CH₂S(O)_n⁻;

5 R₄ is hydrogen, fluorine, chlorine, bromine or methyl;

10 R₅ is hydrogen, fluorine, chlorine, bromine, methyl or methoxy;

R₇ is hydrogen, fluorine, chlorine, bromine, alkyl of 1-2 carbon atoms or alkoxy of 1-2 carbon atoms;

15 R₈ is hydrogen, methyl, chlorine or bromine;

R₉ and R₁₀ are independently hydrogen, methyl, chlorine or bromine;

W and Q are independently oxygen or sulfur;

n is 0, 1 or 2;

20 X is hydrogen, chlorine, bromine, methyl, ethyl, alkoxy of 1-3 carbon atoms, trifluoromethyl, CH₃S- or CH₃OCH₂-; and

Z is methyl or methoxy, or their agriculturally suitable salts.

25

32

Example 17

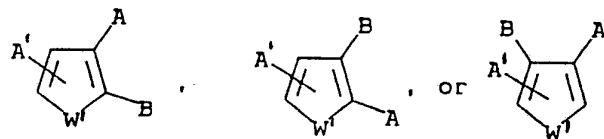
The pesticide, described in more detail in U.S. 5 Patent 4,394,506, is a compound of the formula:

N-(heterocyclicaminocarbonyl)arylsulfonamides
in which the aryl radical is substituted in the
2-position by a carboxy radical, ester,
10 thioester, or amide thereof; e.g.,
N-[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]-
methoxycarbonyl]benzenesulfonamide or N-[(4,6-
dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]-2-
methoxycarbonylbenzenesulfonamide.

15

20

25


30

35

Example 18

The pesticide, described in more detail in U.S. Patent 4,481,029, is a compound of the formula:

10

15

wherein

W' is O or S;

A' is H, Cl, Br, C₁-C₄ alkyl, OCH₃, NO₂ or CF₃;

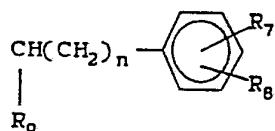
20

A is $\begin{array}{c} \text{O} \\ \parallel \\ -\text{C}-\text{Q}-\text{R}^{\text{I}} \end{array}$ or $\begin{array}{c} \text{T} \\ \parallel \\ -\text{C}-\text{R}^{\text{II}} \end{array}$ where

Q is O, S or $\begin{array}{c} \text{N} \\ | \\ \text{R}_4 \end{array}$;

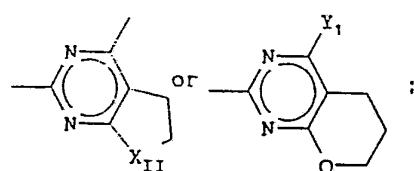
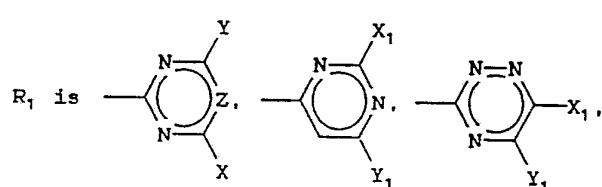
25

T is O or $\begin{array}{c} \text{OR}^{\text{III}} \\ \diagdown \end{array}$


where

30

R^{III} is H, C₁-C₄ alkyl or C₃-C₄ alkenyl; when Q is O or S then



35

5 R^I is C_1-C_6 alkyl C_3-C_6 alkenyl; C_3-C_6 alkynyl; C_2-C_6 alkyl substituted with 1-3 Cl, F or Br, or one of CN or OCH_3 ; C_3-C_6 alkenyl substituted with 1-3 Cl; C_3-C_6 alkynyl substituted with Cl; C_5-C_6 cycloalkyl; cyclohexenyl; cyclohexyl substituted with 1-3 CH_3 ; C_4-C_7 cycloalkylalkyl or

20 where

R₇ and R₈ are independently H, Cl, CH₃ or OCH₃;
n is 0 or 1; and
R₉ is H or CH₃;

where

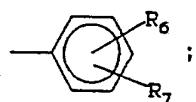
Z is N, CH or C-F;
5 X=H, Cl, -CH₃, -OCH₃ or -OCH₂CH₃;
Y=H, Cl, C₁-C₄ substituted alkyl;
with the proviso that when X and Y are both
H, then
R^I and R^{II} are less than 5 carbons;
10 X₁=H, Cl, OCH₃, OCH₂CH₃ or CH₃;
Y₁=H, OCH₃ or CH₃; and
X_{II}=O or CH₂ and further provided that when A
contains greater than 5 carbon atoms, then Y
contains \leq 4 carbon atoms, and their
15 agriculturally suitable salts;
all other substituents being as defined in U.S.
4,481,029.

Example 19

The pesticide, described in more detail in U.S. Patent 4,435,205, is a compound of the formula:

10

15 where


W is O or S;

Q is O or NR₅;

R₁ is C₁-C₄ alkyl, C₁-C₄ alkyl substituted with 1-3 atoms of F, Cl or Br, CH₂CH₂OCH₃, CH₂CH₂CH₂OCH₃ or

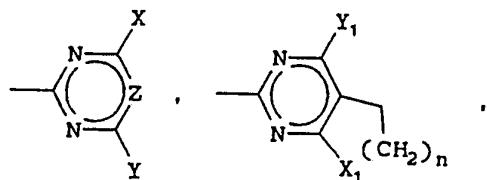
20

25

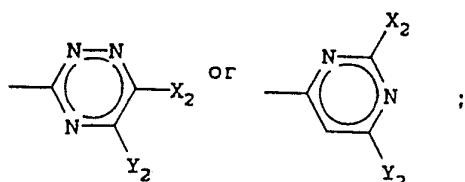
30

R₂ is H, F, Cl, Br, OCH₃, NO₂, CF₃ or C₁-C₂ alkyl;

R₃ is H, F, Cl, Br or CH₃;R₄ is H, CH₃ or OCH₃;R₅ is C₁-C₄ alkyl;


R₆ and R₇ are independently H, F, Cl, Br, CH₃, CF₃, NO₂ or OCH₃;

35


A is

5

10

15

20

25

X is NH_2 , $\text{N}(\text{CH}_3)_2$, NHCH_3 , $\text{C}_1\text{-C}_4$ alkyl, $\text{C}_1\text{-C}_4$ alkyl substituted with 1-3 atoms of F, Cl or Br, CH_2OCH_3 , $\text{CH}_2\text{OCH}_2\text{CH}_3$, $\text{C}_1\text{-C}_4$ alkoxy, $\text{C}_1\text{-C}_2$ alkylthio, $\text{C}_3\text{-C}_4$ alkenyloxy, $\text{C}_3\text{-C}_4$ alkynyloxy, $\text{OCH}_2\text{CH}_2\text{OCH}_3$ or $\text{C}_2\text{-C}_4$ alkoxy substituted with 1-3 atoms of F, Cl or Br; n is 1 or 2;

Y is H, CH_3 , OCH_3 or Cl;

X_1 is O or CH_2 ;

30

Y_1 is H, CH_3 , OCH_3 or Cl;

X_2 and Y_2 are independently CH_3 or OCH_3 ; and


Z is CH, N, CCH_3 , CBr , CCl , CF , Cl , CC_2H_5 , $\text{CCH}_2\text{CH}_2\text{Cl}$ or $\text{CCH}_2\text{CH}=\text{CH}_2$.

35

Example 20

The pesticide, described in more detail in U.S. Patent 4,420,325, is a compound of the formula:

10

15 wherein

R₁ is F, Cl, Br, CF₃, C₁-C₃ alkoxy, C₁-C₃ alkyl, NO₂, CO₂R₄, SO₂R₅, SO₂NR₆R₇, SO₂N(OCH₃)CH₃, SO₂OCH₂CF₃, OSO₂R₅ or CH₂L; L is SO₂NR₆R₇, OCH₃, OC₂H₅, CO₂CH₃ or CO₂C₂H₅;

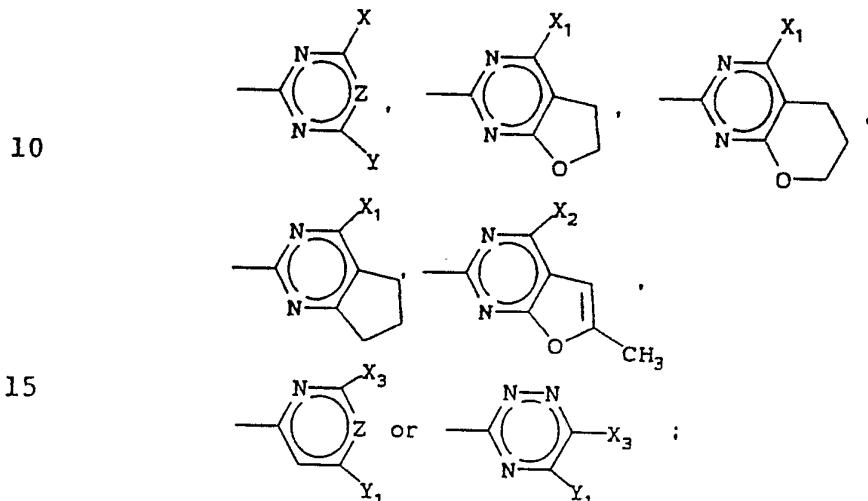
20 R₂ is H, Cl, Br, F, CF₃ or OCH₃;

R₄ is C₁-C₃ alkyl, CH₂CH=CH₂, CH₂CH₂Cl, or CH₂CH₂OCH₃;

R₅ is C₁-C₃ alkyl or CF₃;

R₆ and R₇ are independently C₁-C₃ alkyl;

25 R₈ is H or CH₃;


R₉ is H or C₁-C₃ alkyl;

R₃ is

30

35

5

20

W is O or S;

25 X is CH_3 , OCH_3 or Cl ;

Y is CH_3 , C_2H_5 , OCH_3 , OC_2H_5 , CH_2OCH_3 , NH_2 ,
25 NHCH_3 or $\text{N}(\text{CH}_3)_2$;

Z is CH or N;

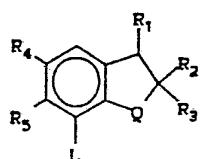
30 X_1 is H, Cl, CH_3 , OCH_3 or OC_2H_5 ;

X_2 is CH_3 , C_2H_5 , OCH_3 or OC_2H_5 ;

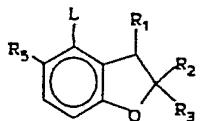
X_3 is CH_3 or OCH_3 ; and

Y_1 is CH_3 or OCH_3 ;

and their agriculturally suitable salts;

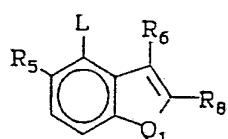
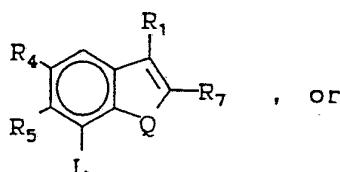

35

40


Example 21

The pesticide, described in more detail in U.S. Patent 4,514,211, is a compound of the formula:

10

15

20

25

30

wherein

Q is O, S, SO or SO₂;35 Q₁ is O, S or SO₂;

5 L is $\text{SO}_2^{\text{W}}\text{NH}\overset{\text{R}}{\underset{\text{R}_{12}}{\text{CNA}}};$

0 R_1 is H or $\text{C}_1\text{-C}_4$ alkyl;

0 R_2 is H or $\text{C}_1\text{-C}_4$ alkyl;

0 R_3 is H or CH_3 ;

0 R_4 is H, Cl, CH_3 , CF_3 , OCH_3 , Br, F, SCH_3 or OCF_2H ;

5 R_5 is H, CH_3 , OCH_3 , Cl, Br, NO_2 , CO_2R_7 , SO_2R_8 , OSO_2R_9 , $\text{SO}_2\text{NR}_{10}\text{R}_{11}$, F, CF_3 , SCH_3 , OCF_2H or $\text{SO}_2\text{N}(\text{OCH}_3)\text{CH}_3$;

5 R_6 is H, Cl, Br or $\text{C}_1\text{-C}_4$ alkyl;

0 R'_6 is H, CH_3 , Cl or Br;

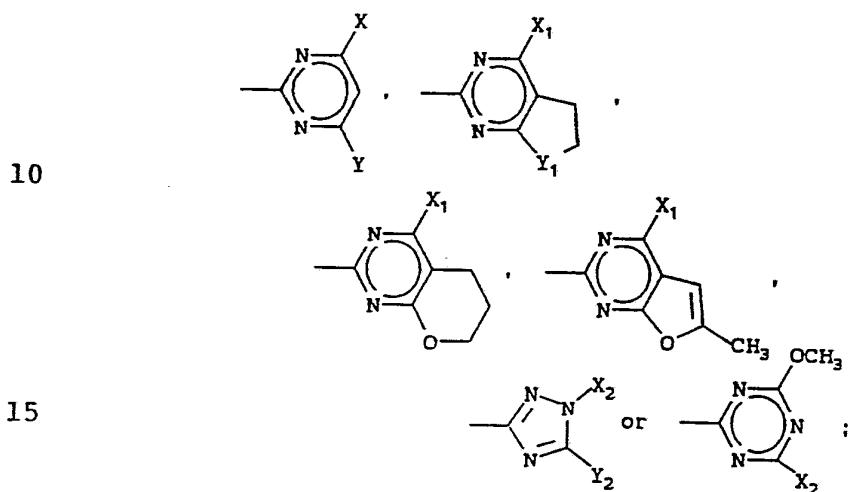
0 R_7 is $\text{C}_1\text{-C}_3$ alkyl, $\text{CH}_2\text{CH}=\text{CH}_2$, $\text{CH}_2\text{CH}_2\text{OCH}_3$ or $\text{CH}_2\text{CH}_2\text{Cl}$;

0 R_8 is $\text{C}_1\text{-C}_3$ alkyl;

0 R_9 is $\text{C}_1\text{-C}_3$ alkyl or CF_3 ;

0 R_{10} and R_{11} are independently $\text{C}_1\text{-C}_2$ alkyl;

0 R_{12} is H or CH_3 ;


5 W is O or S;

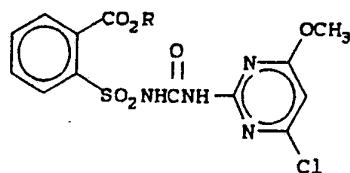
5 A is

30

35

5

20


X is H, CH₃, OCH₃, Cl, F, OCF₂H or SCF₂H;
 Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, NH₂, NHCH₃,
 N(CH₃)₂, CH(OCH₃)₂, CH(OCH₂CH₃)₂, C₂H₅, CF₃,
 25 CH₂=CHCH₂O, CH≡CCH₂O, CF₃CH₂O, OCH₂CH₂Cl,
 OCH₂CH₂Br, OCH₂CH₂F, CN, CH₂OCH₂CH₃,
 OCH₂CH₂OCH₃ or GCF₂T wherein G is O or S and
 T is H, CHClF, CHBrF, CF₂H or CHFCF₃;
 Z is CH, N, CCH₃, CC₂H₅, CCl or CBr;
 30 Y₁ is O or CH₂;
 X₁ is CH₃, OCH₃, OC₂H₅ or OCF₂H;
 X₂ is CH₃, C₂H₅ or CH₂CF₃;
 Y₂ is C₂H₅, CH₃, OCH₃, OC₂H₅, SCH₃ or SC₂H₅; and
 X₃ is CH₃ or OCH₃;

35

Example 22

5 The pesticide, described in more detail in U.S. Patent 4,547,215, is a compound of the formula:

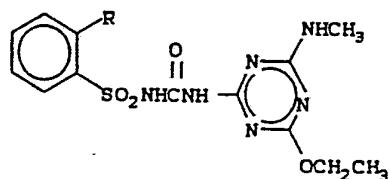
10

15 wherein

R is C_2H_5 or $CH(CH_3)_2$;
and their agriculturally suitable salts.

20

25


30

35

Example 23

5 The pesticide, described in more detail in U.S. Patent 4,548,638, is a compound of the formula:

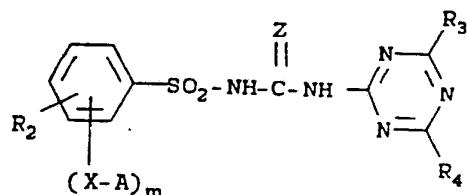
10

15 wherein

R is CO_2CH_3 , $\text{CO}_2\text{CH}_2\text{CH}_3$, $\text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_3$, $\text{CO}_2\text{CH}_2\text{CH}=\text{CH}_2$, $\text{CO}_2\text{CH}(\text{CH}_3)$, $\text{CO}_2\text{CH}_2\text{CH}_2\text{Cl}$, $\text{SO}_2\text{N}(\text{CH}_3)_2$ or OSO_2CH_3 .

20

25


30

35

Example 24

5 The pesticide, described in more detail in U.S. Patent 4,479,821, is a compound of the formula:

10

15

wherein

A is a C₁-C₆ alkyl radical which is substituted by C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl or C₁-C₄ alkylsulfonyl;

20 X is oxygen, sulfur, a sulfinyl or sulfonyl bridge;

Z is oxygen or sulfur;

m is 1 or 2;

25 R₂ is hydrogen, halogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₁-C₄ haloalkyl, or a radical -Y-R₅, -COOR₆, -NO₂ or -CO-NR₇R₈;

R₃ and R₄, each independently of the other, are hydrogen, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkyl, halogen or alkoxyalkyl of at most 4 carbon atoms;

30 R₅ and R₆, each independently of the other, are C₁-C₅ alkyl, C₂-C₅ alkenyl or C₂-C₆ alkynyl;

46

R₇ and R₈, each independently of the other, are
hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl or
C₂-C₆ alkynyl; and

5
Y is oxygen, sulfur, a sulfinyl or sulfonyl
bridge, and salts of these compounds.

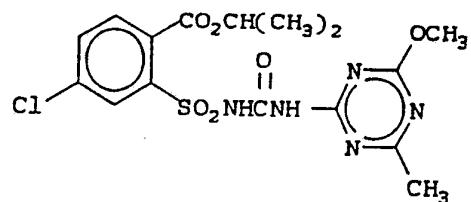
10

15

20

25

30


35

47

Example 25

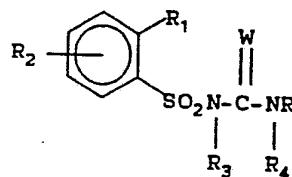
The pesticide, described in more detail in U.S. Patent 4,566,898, is a compound of the formula:

10

15

20

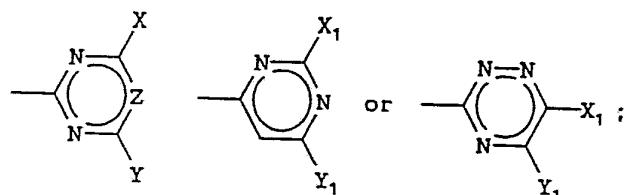
25


30

35

Example 26

The pesticide, described in more detail in U.S. Patent 4,435,206, is a compound of the formula:


10

15 wherein

R is

20

25

R₁ is H, Cl, Br, F, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, NO₂, CF₃, COOR₅ or SO₂NR₆R₇;

R₂ is H, Cl, Br or CH₃;

30 R₃ and R₄ are independently H or CH₃;

R₅ is C₁-C₆ alkyl, C₃-C₆ alkenyl, CH₂CH₂OCH₃, CH₂CH₂OCH₂CH₃, CH₂CH₂CH₂OCH₃ or CH₂CH₂Cl;

R₆ and R₇ are independently CH₃ or CH₃CH₂;

W is oxygen or sulfur;

35 X is CH₃, -OCH₃ or -OCH₂CH₃;

49

Y is H, Cl, CH₃, CF₃, -NHCH₃, -N(CH₃)₂-,
-CH₂OR₈, -CH₂CH₂OR₈, -OCH₂CF₃ or VR₆;

5 Z is CH or N;

V is oxygen or sulfur;

R₈ is CH₃, CH₃CH₂-, CH₂CO₂R₈, -CH₂CH₂OR⁶,
C(CH₃)HCO₂R₈ or CH₂CH₂CO₂R₈;

Y₁ is H, CH₃ or OCH₃; and

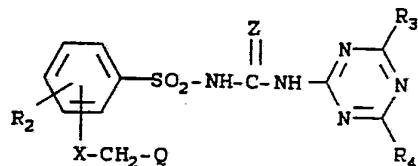
10 X₁ is H, Cl, -OCH₃, -OCH₂CH₃ or CH₃;

and agricultural salts thereof.

15

20

25


30

35

Example 27

The pesticide, described in more detail in U.S. Patent 4,514,212, is a compound of the formula:

10

15 and the salts thereof with amines, alkali metal or alkaline earth metal bases or with quaternary ammonium bases wherein:

20 Q is fluorine, fluoromethyl, chloromethyl, trichloromethyl, 1,2-dichloroethyl, 1,2-dibromoethyl, 1,2-dichloropropyl, 1,2-dibromopropyl, 1,2-dibromoisobutyl, 1,2-dichloro-1-methyl-ethyl or 1,2-dibromo-1-methylethyl;

25 X is oxygen, sulfur, a sulfinyl or sulfonyl bridge;

Z is oxygen or sulfur;

30 R₂ is hydrogen, halogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₁-C₄ haloalkyl, or a radical -Y-R₅, -COOR₆, -NO₂ or -CO-NR₇-R₈;

35 R₃ and R₄, each independently of the other, are hydrogen, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkyl, halogen or alkoxyalkyl of at most 4 carbon atoms;

R₅ and R₆, each independently of the other, are C₁-C₅ alkyl, C₂-C₅ alkenyl or C₂-C₆ alkynyl;

51

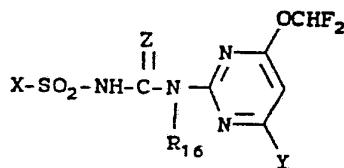
R₇ and R₈, each independently of the other, are
hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl or
C₂-C₆ alkynyl; and
Y is oxygen, sulfur, a sulfinyl or sulfonyl
bridge.

10

15

20

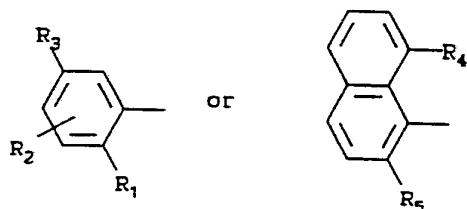
25


30

35

Example 28

5 The pesticide, described in more detail in U.S. Patent 4,478,635, is a compound of the formula:


10

15 wherein

X is a radical of the formula:

20

25

Y is C_1-C_3 alkyl, C_1-C_3 haloalkyl, C_1-C_3 alkoxy, C_1-C_3 haloalkoxy, C_2-C_3 alkoxyalkyl, C_1-C_3 alkylthio, halogen or $-NR_{16}R_{17}$;

30 Z is oxygen or sulfur;

R_1 is hydrogen, halogen, cyano, nitro, C_1-C_4 haloalkyl, C_1-C_4 alkyl, C_1-C_4 alkoxy, $-CO-R_6$, $-NR_7R_8$, $-S(O)_m-C_1-C_4$ alkyl or $-SO_2R_9$;

35 R_2 is hydrogen, fluorine, chlorine, bromine, nitro, trifluoromethyl, $-NR_{20}R_{21}$, methyl, ethyl, methoxy, ethoxy or $-S(O)_m-C_1-C_4$ alkyl;

R₃ is hydrogen, fluorine, chlorine, bromine, amino, nitro or methoxy;

5 R₆ is hydrogen, C₁-C₄ alkyl, C₁-C₃ alkenyloxy, C₃-C₅ alkynyloxy, C₁-C₄ haloalkyl, C₁-C₅ alkylthio, phenoxy, benzyloxy, -NR₁₀R₁₁ or C₁-C₅ alkoxy which is unsubstituted or substituted by 1 to 3 halogen atoms or C₁-C₃ alkoxy;

10 R₇ is hydrogen, methoxy, ethoxy, C₁-C₄ alkyl or -CO-R₁₂;

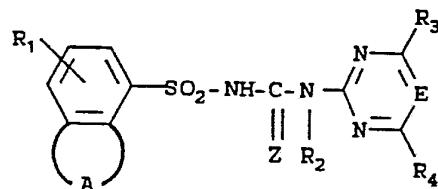
R₈ is hydrogen or -CO-R₁₂;

15 R₉ is an -O-R₁₃ or -NR₁₄R₁₅ group;

R₁₁ is C₁-C₄ alkyl which is unsubstituted or substituted by 1 to 3 halogen atoms, or is phenyl or benzyl;

R₁₂ is hydrogen, C₁-C₄ alkyl or C₁-C₄ alkoxy; and

20 m is 0, 1 or 2;


and R₄ has the same meaning as R₂; R₅ has the same meaning as R₁; R₁₀, R₁₁, R₁₄ and R₂₀ each have the same meaning as R₇; and R₁₂, R₁₅, R₁₆, R₁₇ and R₂₁ each have the same meaning as R₈.

25

Example 29

The pesticide, described in more detail in U.S. Patent 4,634,465, is a compound of the formula:

10

15

wherein

Z is oxygen or sulfur;

E is nitrogen or =C-;

R₁ is hydrogen, halogen, nitro, C₁-C₄ alkyl,20 C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkoxy carbonyl, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl or C₂-C₅ alkoxyalkoxy;R₂ is hydrogen, C₁-C₄ alkyl or C₁-C₃ alkoxy;25 R₃ and R₄, each independently of the other, are hydrogen, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ haloalkylthio, C₁-C₄ alkylthio, halogen, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy or -NR₅R₆, wherein R₅ and R₄ are hydrogen or C₁-C₄ alkyl; and

30 A is an unsubstituted or substituted bridge of 3 or 4 atoms which contains 1 or 2 oxygen, sulfur or nitrogen atoms and, together with the linking carbon atom, forms a non-aromatic 5- or 6-membered heterocyclic

35

ring system, with the proviso that two
oxygen atoms are separated by at least one
5 carbon atom and that oxygen and sulfur atoms
are only linked to each other if the sulfur
atom takes the form of the -SO- or -SO₂-
group.

10

15

20

25

30

35

56

Example 30

5 The pesticide, described in more detail in
EPA-202,830, is:

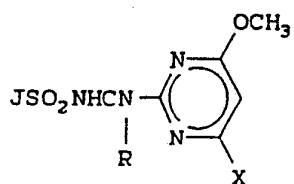
2-[[N-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-N-methylaminocarbonyl]aminosulfonyl]-benzoic acid, methyl ester.

10

15

20

25

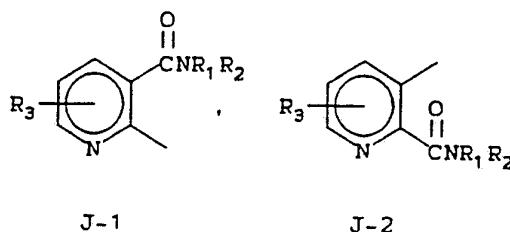

30

35

Example 31

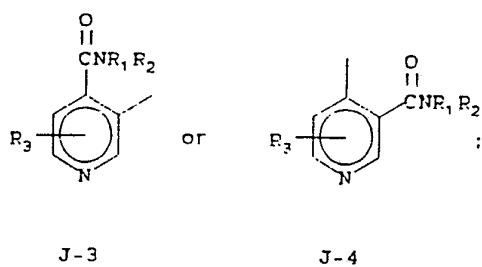
5 The pesticide, described in more detail in
EPA-237,292, is a compound of the formula:

10


15

wherein

J is


20

25

30

35

R is H or CH₃;

5 R₁ is H or C₁-C₃ alkyl;

R₂ is C₁-C₃ alkyl or C₁-C₂ alkoxy; or

R₁ and R₂ may be taken together to form
-(CH₂)_n-, wherein n is 2, 3 or 4;

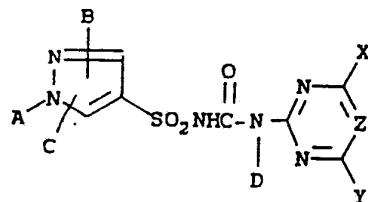
10 R₃ is H, Cl, F, Br, CH₃, CF₃, OCH₃ or
OCF₂H; and

X is CH₃, CH₂F, CH₂CH₃, OCH₃, OCH₂CH₃, Cl,
OCF₂H or CH₂OCH₃.

15

20

25


30

35

Example 32

5 The pesticide, described in more detail in
 5 EPA-87,780, is a compound of the formula:

10

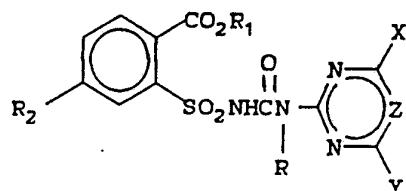
15

wherein

20 A represents a hydrogen atom, a C₁-C₈ alkyl group or a phenyl group which may be substituted with C₁-C₈ alkyl groups, halogen atoms or nitro groups; B and C represent independently hydrogen atoms, halogen atoms, nitro groups, C₁-C₈ alkyl groups, arylalkyl groups, C₁-C₈ alkoxy groups, haloalkyl groups, -CO₂R [where R is a hydrogen atom, a C₁-C₈ alkyl group, an allyl group or a propargyl group], -CONR₁R₂ (where R₁ is a hydrogen atom, a C₁-C₈ alkyl group or a phenyl group, R₂ is a hydrogen atom or a C₁-C₈ alkyl group, or R₁ and R₂ taken together may represent -(CH₂)_m- (m is 4, 5 or 6), -CH₂CH₂OCH₂CH₂- or -CH₂CH₂N(CH₃)CH₂CH₂-], -S(O)_nR₃ (where R₃ is a C₁-C₈ alkyl group, a phenyl group or an arylalkyl group and n is 0, 1 or 2), -SO₂NR₄R₅ [where R₄ is a C₁-C₈ alkyl group, R₅ is a hydrogen atom or a C₁-C₈ alkyl group, or R₄

60

and R₅ taken together may represent -(CH₂)_p-
(p is 4, 5 or 6), -CH₂CH₂OCH₂CH₂- or
5 -CH₂CH₂N(CH₃)CH₂CH₂-] or a phenyl group which
may be substituted with C₁-C₈ alkyl groups,
halogen atoms or nitro groups; D represents
10 a hydrogen atom or a C₁-C₈ alkyl group; X and
Y represent independently hydrogen atoms,
halogen atoms, C₁-C₈ alkyl groups, C₁-C₈
alkoxy groups, C₁-C₈ alkoxyalkyl groups,
-CF₃ groups, C₁-C₈ haloalkoxy groups,
alkylamino groups, dialkylamino groups,
15 R
-OCHCO₂R₇ (where R₆ and R₇ each represent
hydrogen atoms or C₁-C₈ alkyl groups) or
either X or Y may form a five-membered ring
containing an oxygen atom together with X;
20 and X represents a nitrogen atom or C-R₈
(where R₈ represents a hydrogen atom, a
haloalkyl group or may form a five-membered
ring containing an oxygen atom together with
X or Y).
25


30

35

Example 33

The pesticide, described in more detail in U.S. Patent 4,710,221, is a compound of the formula:

10

15

wherein

R is H or CH₃;R₁ is C₁-C₃ alkyl, C₃-C₄ alkoxyalkyl, C₂-C₄ haloalkyl, C₃-C₄ alkenyl or C₃-C₄ alkynyl;20 R₂ is C₂-C₆ alkoxy, C₃-C₆ cycloalkoxy, C₄-C₆ cycloalkylalkoxy, C₁-C₆ haloalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₄ alkoxyalkoxy, C₂-C₄ haloalkoxyalkoxy, C₂-C₄25 alkylthioalkoxy, C₂-C₄ haloalkylthioalkoxy, C₂-C₄ alkylsulfinylalkoxy, C₂-C₄ haloalkylsulfinylalkoxy, C₂-C₄ alkylsulfonylalkoxy, C₂-C₄ haloalkylsulfonylalkoxy, C₂-C₄ cyanoalkoxy, OCH₂C(O)CH₃, OCH₂CH₂C(O)CH₃,30 C₂-C₄ aminoalkoxy, C₁-C₈ alkylthio, C₃-C₆ cycloalkylthio, C₄-C₆ cycloalkylalkylthio,C₁-C₈ haloalkylthio, C₂-C₆ alkenylthio,C₂-C₆ haloalkenylthio, C₃-C₆ alkynylthio,C₃-C₆ haloalkynylthio, C₂-C₄ alkoxy-35 alkylthio, C₂-C₄ haloalkoxyalkylthio, C₂-C₄ alkylthioalkylthio, C₂-C₄ haloalkylthio-

alkylthio, C_2 - C_4 cyanoalkylthio,
 $SCH_2C(O)CH_3$, $SCH_2CH_2C(O)CH_3$, C_2 - C_4
 5 aminoalkylthio, SC_6H_5 , $SCH_2C_6H_5$, C_1 - C_8
 alkylsulfinyl, C_3 - C_6 cycloalkylsulfinyl,
 C_4 - C_6 cycloalkylalkylsulfinyl, C_1 - C_8
 haloalkylsulfinyl, C_2 - C_6 alkenylsulfinyl,
 C_2 - C_6 haloalkenylsulfinyl, C_3 - C_6
 10 alkynylsulfinyl, C_3 - C_6 haloalkynylsulfinyl,
 C_2 - C_4 alkoxyalkylsulfinyl, C_2 - C_4
 haloalkoxyalkylsulfinyl, C_2 - C_4 cyanoalkyl-
 sulfinyl, $S(O)CH_2C(O)CH_3$, $S(O)CH_2CH_2C(O)CH_3$,
 C_2 - C_4 aminoalkylsulfinyl, C_2 - C_8 alkyl-
 15 sulfonyl, C_3 - C_6 cycloalkylsulfonyl, C_4 - C_6
 cycloalkylalkylsulfonyl, C_1 - C_8 halo-
 alkylsulfonyl, C_2 - C_6 alkenylsulfonyl, C_2 - C_6
 haloalkenylsulfonyl, C_3 - C_6 alkynylsulfonyl,
 C_3 - C_6 haloalkynylsulfonyl, C_2 - C_4 alkoxy-
 20 alkylsulfonyl, C_2 - C_4 haloalkoxy-
 alkylsulfonyl, C_2 - C_4 cyanoalkylsulfonyl,
 $SO_2CH_2C(O)CH_3$, $SO_2CH_2CH_2C(O)CH_3$, C_2 - C_4 amino-
 alkylsulfonyl, CH_2F , CHF_2 , CH_2Cl , $CHCl_2$,
 CH_2Br , $CHBr_2$, C_2 - C_6 alkyl substituted with
 25 1-3 atoms of F, Cl or Br, C_2 - C_6 alkenyl,
 C_2 - C_6 haloalkenyl, $C\equiv CH$, C_2 - C_6 haloalkynyl,
 $OC(O)C_1$ - C_4 alkyl, $CH_2C(O)NR_aR_b$, $NHCH_3$, NR_bR_c
 or C_1 - C_4 alkyl substituted with C_1 - C_4
 alkoxy, C_3 - C_4 cycloalkoxy, cyclopropyl-
 30 methoxy, C_1 - C_4 haloalkoxy, C_2 - C_4 alkenyloxy,
 C_2 - C_4 haloalkenyloxy, C_3 - C_4 alkynyloxy,
 C_3 - C_4 haloalkynyloxy, C_2 - C_4 alkoxy-
 alkoxy, C_2 - C_4 aminoalkoxy, C_1 - C_4
 alkylcarbonyloxy, C_1 - C_4 haloalkyl-
 carbonyloxy, C_1 - C_4 carbamoyloxy, C_1 - C_4
 35 alkoxycarbonyloxy, OH, $OP(O)(OC_1$ - C_2

alkyl)₂, C₁-C₄ alkylsulfonyloxy, C₁-C₂ halo-alkylsulfonyloxy, OSi(CH₃)₃,
5 OSi(CH₃)₂C(CH₃)₃, C₁-C₄ alkylthio, C₃-C₄ cycloalkylthio, cyclopropylmethylthio, C₁-C₄ haloalkylthio, C₂-C₄ alkenylthio, C₂-C₄ haloalkenylthio, C₃-C₄ alkynylthio, C₃-C₄ haloalkynylthio, C₂-C₄ alkoxyalkylthio,
10 C₂-C₄ aminoalkylthio, SH, SP(O)(OC₁-C₂ alkyl)₂, C₁-C₄ alkylsulfinyl, C₃-C₄ cycloalkylsulfonyl, cyclopropylmethylsulfinyl, C₁-C₄ haloalkylsulfinyl, C₂-C₄ alkenylsulfinyl, C₂-C₄ haloalkenylsulfinyl, C₃-C₄ alkynylsulfinyl, C₃-C₄ haloalkynylsulfinyl, C₂-C₄ alkoxyalkylsulfinyl, C₂-C₄ aminoalkylsulfinyl, C₁-C₄ alkylsulfonyl,
15 C₃-C₄ cycloalkylsulfonyl, cyclopropylmethylsulfonyl, C₁-C₄ haloalkylsulfonyl, C₂-C₄ alkenylsulfonyl, C₂-C₄ haloalkenylsulfonyl, C₃-C₄ alkynylsulfonyl, C₃-C₄ haloalkynylsulfonyl, C₂-C₄ aminoalkylsulfonyl, C₁-C₄ alkylsulfonyl,
20 C₃-C₄ cycloalkylsulfonyl, cyclopropylmethylsulfonyl, C₁-C₄ haloalkylsulfonyl, C₂-C₄ alkenylsulfonyl, C₂-C₄ haloalkenylsulfonyl, C₃-C₄ alkynylsulfonyl, C₃-C₄ haloalkynylsulfonyl, C₂-C₄ alkoxyalkylsulfonyl or C₂-C₄ aminoalkylsulfonyl;
25 R_a and R_b are independently H or C₁-C₃ alkyl; R_C is C₂-C₄ alkyl, cyclopropylmethyl, C₂-C₄ cyanoalkyl, CH₂C(O)CH₃, CH₂CH₂C(O)CH₃, C₁-C₄ haloalkyl, C₃-C₄ alkenyl, C₃-C₄ haloalkenyl, C₃-C₄ alkynyl, C₃-C₄ haloalkynyl, C₁-C₄ alkyl substituted with C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, OH, NH₂, NHCH₃ or N(CH₃)₂;
30 X is CH₃, OCH₃, OC₂H₅, Cl or Br; Y is C₁-C₂ alkyl, C₁-C₂ alkoxy, OCH₂CH₂F, OCH₂CHF₂, OCH₂CF₃, NHCH₃ or N(CH₃)₂; and
35 Z is CH or N; and
their agriculturally suitable salts.

CLAIMS

What is claimed is:

5 1. A tablet formulation consisting
essentially of, by total weight of the formulated
composition:

10 (i) about 20% to 75% of a pesticide having a
melting point of at least about 100°C and
a water solubility at 20°C of no more
than about 5% by weight, and

15 (ii) about 25% to 80% of a delivery system
characterized by a panel of components
complementary to the pesticide of (i)
that consists essentially of the
following components:

20 (a) about 5% to 20% of a dibasic or tribasic
organic carboxylic acid or a mixture
thereof;

25 (b) about 7% to 50% of an ammonium or alkali
metal carbonate or bicarbonate or a
mixture thereof;

25 (c) about 0.5% to 20% of a dispersant,
(d) about 0.1% to 5% of water-insoluble
25 cross-linked polyvinylpyrrolidone, and
(e) about 0.1% to 5% of an anionic or
nonionic wetting agent;

30 the formulation characterized in that dispersion of
the pesticide in water is fine enough to pass a 50
mesh screen without clogging it.

35 2. A tablet formulation according to Claim 1
wherein the pesticide is a herbicide.

35 3. A tablet formulation according to Claim 1
wherein the pesticide is a fungicide.

4. A tablet formulation according to Claim 1
5 wherein the pesticide is an insecticide.

5. A tablet formulation according to Claim 1
wherein the pesticide is a nematocide.

10 6. A tablet formulation according to Claim 1
wherein the pesticide is an acaricide.

7. A tablet formulation according to Claim 1
wherein the pesticide is a bactericide.

15 8. A tablet formulation according to Claim 1
wherein the pesticide is a growth regulant.

9. A tablet formulation according to Claim 2
20 wherein the herbicide is 3-cyclohexyl-6-dimethylamino-
1-methyl-1,3,5-triazine-2,4(1H, 3H)-dione.

10. A tablet formulation according to Claim 2
wherein the herbicide is (2,4-dichlorophenoxy)
25 acetic acid.

11. A tablet formulation according to Claim 2
wherein the herbicide is a sulfonamide.

30 12. A tablet formulation according to Claim
11 wherein the sulfonamide is 3-[[[[(4-methoxy-6-
methyl-1,3,5-triazin-2-yl)amino]carbonyl]amino]-
sulfonyl]-2-thiophene carboxylic acid, methyl ester.

35 13. A tablet formulation according to Claim
11 wherein the sulfonamide is methyl 2-[[[[(4-
methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]carbonyl]-
amino]sulfonyl]benzoate.

14. A tablet formulation according to Claim
5 11 wherein the sulfonamide is ethyl 2-[[[[4-chloro-6-
methoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-
benzoate.

15. A tablet formulation according to Claim
10 12 comprising about 52% of said sulfonamide, about
10% of citric acid, about 26% of sodium bicarbonate,
about 5% of a condensate of naphthalene sulfonic acid
salt and ammonium salt, about 1% of cross-linked
polyvinylpyrrolidone, about 1% of sodium dialkyl
15 sulfosuccinates, and about 5% of boric acid.

16. A tablet formulation according to Claim
15 comprising 52.1% of said sulfonamide, 25.6% of
sodium bicarbonate and about 0.3% of magnesium
20 stearate.

17. A tablet formulation according to Claim 3
wherein the fungicide is MBC.

25 18. A tablet formulation according to Claim 4
wherein the insecticide is trans-5-(4-chlorophenyl)-N-
cyclohexyl-4-methyl-2-oxothiazolidine-3-carboxamide.

30 19. A tablet formulation according to Claim 6
wherein the acaricide is (4RS, 5RS)-5-(4-chloro-
phenyl)-N-cyclohexyl-4-methyl-2-oxo-1,3-thiazolidine-
3-carboxamide.

35 20. A tablet formulation according to any one
of Claims 1 to 19 in the form of a tablet.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 89/02072

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC
IPC : 5 A 01 N 25/34, 25/08, // (A 01 N 25/34, 47:38, 47:36, 47:18,
IPC : 43:64, 41:06, 39:04) (A 01 N 25/08, 47:38, 47:36 47:18,

II. FIELDS SEARCHED

Minimum Documentation Searched?

Classification System	Classification Symbols
IPC 5	A 01 N

**Documentation Searched other than Minimum Documentation
to the Extent that such Documents are included in the Fields Searched***

III. DOCUMENTS CONSIDERED TO BE RELEVANT*

Category *	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
A	GB, A, 2139893 (WELLCOME FOUNDATION LTD) 21 November 1984, see the whole document	1-20
	(cited in the application)	--
A	GB, A, 2184946 (NOVO INDUSTRI A/S) 8 July 1987, see page 1, lines 98-129; examples 1,8; claims (cited in the application)	1-20
	--	
A	DE, A, 3017639 (NORDDEUTSCHE AFFINERIE) 12 November 1981, see claims; page 3, line 29 - page 5, line 37; examples	1-20
	--	
A	EP, A, 0228164 (BOOTS CO. PLC) 8 July 1987, see page 2, line 10 - page 3, line 4; page 4, lines 15-20; examples; claims	1-20

- **Special categories of cited documents:** 10
 - “A” document defining the general state of the art which is not considered to be of particular relevance
 - “E” earlier document but published on or after the international filing date
 - “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - “O” document referring to an oral disclosure, use, exhibition or other means
 - “P” document published prior to the international filing date but later than the priority date claimed

- “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- “Z” document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

Date of Mailing of this International Search Report

24th August 1989

21 SEP 1989

International Searching Authority

Signature of Authorized Officer

EUROPEAN PATENT OFFICE

T.K. WILLIS

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 89/02072 -2-

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

5
IPC : 43:64, 41:06, 39:04)

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
5 IPC	

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³

* Special categories of cited documents: ¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search	Date of Mailing of this International Search Report
International Searching Authority EUROPEAN PATENT OFFICE	Signature of Authorized Officer

ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.

US 8902072
SA 28930

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 15/09/89. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
GB-A- 2139893	21-11-84	AU-A-	2714284	08-11-84
		EP-A-	0127773	12-12-84
		JP-A-	59206301	22-11-84
-----	-----	-----	-----	-----
GB-A- 2184946	08-07-87	AU-A-	6714587	09-07-87
		EP-A-	0235875	09-09-87
		OA-A-	8457	30-06-88
-----	-----	-----	-----	-----
DE-A- 3017639	12-11-81	None		-----
-----	-----	-----	-----	-----
EP-A- 0228164	08-07-87	AU-A-	6509186	21-05-87
		JP-A-	62135418	18-06-87
		US-A-	4806358	21-02-89
-----	-----	-----	-----	-----