A machine for preparing and dispensing espresso coffee or the like is described, said machine comprising: a first device for measuring the mass of an amount of ground coffee to be used for preparing an espresso coffee, a second device for measuring the mass of the brewed espresso coffee, a processing device for calculating a degree of concentration corresponding to a ratio between said mass of the amount of ground coffee and said mass of the brewed espresso coffee.

Fig. 1
"MACHINE FOR PREPARING A BEVERAGE WITH REPEATABLE CHARACTERISTICS"

DESCRIPTION

The present invention relates in general to the sector of machines for preparing beverages. More particularly, it relates to a machine able to dispense espresso coffee with a same characteristic property, typically a desired degree of concentration.

Many machines for preparing beverages are known. In particular many machines for preparing espresso coffee from coffee powder, pods, capsules or the like are known.

Typically, in a machine for preparing coffee, a puck of ground coffee is passed through by a stream of water, at a certain pressure and a certain temperature. In some known machines it is possible to adjust precisely the pressure and/or the temperature of the water which passes through the puck of coffee. In some known machines, it is possible to modify the pressure and/or the temperature of the water during dispensing. All of the aforementioned features have been adopted by some coffee machine manufacturers in order to improve the quality of the beverage, attempting to extract from the ground coffee the substances and the essences in the best possible manner. The aforementioned features, along with other features, have also been employed in order to compensate, for example, for different coffee mixtures, different processing, different particle sizes, different degrees of compactness of the ground coffee and different percentages of moisture.

In some cases, the manufacturers of coffee machines have also attempted to find solutions which could result in the preparation of coffee with the same characteristics. For example, EP 2,701,563 describes a weighing device for an espresso coffee machine. The
device comprises a weighing platform which can be positioned in the
drip area of the machine, underneath its dispensing unit, a control unit
connected to the weighing platform, a start/stop pushbutton, a timer unit
and a display, all connected to the control unit in such a way that,
during use, the weight of a dose of coffee is measured by the weighing
platform and the time taken to dispense it is measured by the timer unit,
and in such a way that the result is displayed on the display.

The solution according to EP 2,701,563 is very efficient and is able to
obtain a dose of espresso coffee having a mass corresponding (less the
tolerance of the measuring instruments) to a set mass. Therefore, by
setting a certain desired mass, the machine prepares a certain dose of
espresso coffee and stops once the desired mass has been reached.
The mass of espresso coffee is measured immediately underneath the
dispensing unit.

It is known that, in order to ensure a repeatability of the
characteristics of the beverage, it is necessary to have a repeatability of
the flow understood as being the ratio between the mass of beverage
dispensed and the time taken for dispensing of said beverage.

The Applicant has noted that control of mass of the espresso coffee
dispensed is important and allows cups of coffee containing a
predetermined amount of espresso coffee to be obtained, but it is not
sufficient to ensure that, over time, the beverage has the same
characteristics. In fact, for example, for the same mass it may happen
that a beverage which is very concentrated or less concentrated is
obtained, depending also only on the degree of grinding of the coffee.

The Applicant has noticed that a characteristic which characterizes
espresso coffee is the degree of concentration of the beverage.

The predefined object of the Applicant is to provide a machine able to
dispense espresso coffee with a desired concentration which may be
also optionally set by an operator. By controlling the concentration of
the espresso coffee dispensed, the machine is able to prepare espresso coffee with the characteristics desired by the consumer in a manner highly repeatable over time.

For the purpose of the present description and the accompanying claims, the expression "brew ratio" (i.e. degree of concentration, or degree of concentration of a beverage) or "brewing ratio" is understood as meaning the ratio between the mass of ground coffee used and the mass of the final beverage dispensed.

For the purpose of the present description and the accompanying claims, two beverages have the same brew ratio when the aforementioned ratio is identical or differs by a percentage amount (in absolute terms) less than about 10%, preferably less than about 5% and even more preferably less than about 2-3%.

According to a first aspect, the present provides a machine for espresso coffee comprising: a first device for measuring the mass of an amount of ground coffee to be used for preparing an espresso coffee, a second device for measuring the mass of the brewed espresso coffee, a processing device for calculating a brew ratio corresponding to a ratio between said mass of the amount of ground coffee and said mass of the brewed espresso coffee. The machine may further comprise a device for notifying said calculated brew ratio to an operator.

Preferably the second device operates in a substantially continuous manner during dispensing of the espresso coffee.

Preferably the machine further comprises a memory for storing the value of one or more brew ratios.

The machine may also comprise a device for selecting one or more memorized brew ratio values.

The machine may further comprise a comparison device for comparing the value of current brew ratio with a value of memorized brew ratio and a stop device for stopping dispensing of the espresso
coffee when the comparison device detects that the current value of brew ratio corresponds to a value of a desired stored brew ratio value.

The first weighing device may comprise a weighing device with load cells.

The second weighing device may comprise a weighing device with load cells.

In one embodiment the first device and the second device are a single device.

In one embodiment the first device for measuring the mass of an amount of ground coffee to be used comprises a code reader.

According to another aspect the present invention relates to a method for preparing and dispensing a beverage comprising: providing an amount of ground coffee powder; measuring the mass of the powder; starting the brewing of espresso coffee, selecting the value of the desired brew ratio; while the beverage is brewed, measuring the mass of the beverage and calculating the current brew ratio. The method could also comprise the step of notifying reaching of a predetermined brew ratio and/or stopping the brewing of the beverage upon reaching a predetermined brew ratio.

The step of measuring the mass of the powder may comprise identifying the filter and filter holder assembly and corresponding mass thereof and, subsequently, measuring the mass of the assembly comprising filter, filter holder and powder loaded in the filter.

The present invention will become clearer from the following description, provided by way of a non-limiting example, to be read with reference to the accompanying drawings, in which:

- Figure 1 shows in schematic form an espresso coffee machine according to an embodiment of the present invention;
- Figure 2 shows, in schematic form, an advantageous feature which can be adopted in the machine according to Figure 1;
- Figure 3 is a schematic illustration of an example of a brew ratio example;
- Figure 4 is a flow diagram which schematically illustrates the operation of a machine according to an embodiment of the present invention;
- Figure 5 is a flow diagram relating to calculation of the mass of the coffee powder;
- Figure 6 is a flow diagram relating to calculation of the mass of the brewed beverage; and
- Figure 7 is a flow diagram relating to operation based on a set brew ratio.

The description which follows is provided, solely for the sake of convenience, with reference in particular to a machine for espresso coffee, but the present invention is not limited to these machines and is applicable to machines for dispensing other beverages, typically prepared by means of infusion.

Since some components of the machine are substantially uninfluential for the purposes of the present invention, said machine will not be described in detail. In very general terms the machine to which the present invention is applicable comprises a pump for dispensing water under pressure from a water source (typically mains water) and a system for heating the water to a suitable temperature. As mentioned above, at present some known machines are provided with devices for adjusting parameters such as the water temperature and/or pressure, in some cases also during brewing of the beverage. All of this ensures that the beverage is extracted in the best possible manner from the ground coffee.

Typically, the ground coffee for preparing an espresso coffee is contained inside a substantially cup-shaped container with a bottom having suitably arranged holes of a certain shape and size. This
container is referred to by the term "filter". A filter containing ground coffee which is pressed (manually or mechanically) is inserted inside a special cavity of a filter holder, typically provided with a one or two spouts and a lever, which is removably engaged (for example by means of bayonet-type connection) with a diffuser of a dispensing unit. Typically engagement is performed by rotating the filter holder in one direction. Disengagement, after dispensing of the coffee, is performed by rotating the filter holder in the opposite direction.

Each machine is typically provided with one, two or three dispensing units. A surface for supporting cups is present underneath the dispensing units. The support surface typically comprises a flat grille, underneath which a tray is arranged for collecting any coffee dripping from the filter holder, but not collected inside the cup, and/or the washing water of the dispensing units.

Each machine is typically provided with pushbuttons for performing switching-on and/or dispensing and optionally with devices for displaying dispensing parameters (for example, pressure and/or temperature).

Purely by way of example, the machine 10 shown in Figure 1 comprises two dispensing units 20. However, the present invention is applicable to machines with a single dispensing unit or with more than two dispensing units.

The machine 10 according to the present invention is characterized in that it comprises means for calculating the brew ratio between the mass of an amount of ground coffee used to brew an espresso coffee and the mass of the espresso coffee actually brewed. As is known, consumers require espresso coffee in different amounts and/or with a different degree of dilution depending on their habits, personal tastes and/or the customary practices of the location where they are. Thus, a consumer may require a ristretto (short) coffee, a normal coffee, a long
coffee, a *caffe crema* (cafe creme) or a "drip coffee" (filter coffee). The consumer may also require an espresso coffee which is single, double, triple, etc.

Table 1 shows, by way of example, a number of characteristics of some types of espresso coffee which are generally served in bars, coffee shops, or the like.

| Table 1. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Type** | **No. of shots** | **Dry ground coffee [g]** | **Beverage [g]** | **Brew ratio %** | **Volume of froth incl. [ml]** |
| Ristretto (short) | single | 6 | 7 | 8 | 4 | 7 | 13 | 9 | 17 |
| | double | 12 | 16 | 18 | 9 | 16 | 30 | 60 | 140 | 100 |
| | triple | 19 | 21 | 23 | 14 | 21 | 38 | 26 | 50 |
| Normal | single | 6 | 7 | 8 | 10 | 14 | 20 | 17 | 33 |
| | double | 12 | 16 | 18 | 20 | 32 | 45 | 40 | 60 | 50 |
| | triple | 19 | 21 | 24 | 32 | 42 | 60 | 56 | 99 |
| Long | single | 6 | 7 | 8 | 15 | 21 | 30 | 25 | 43 |
| | double | 12 | 16 | 18 | 30 | 48 | 67 | 27 | 40 | 33 |
| | triple | 19 | 21 | 24 | 48 | 63 | 89 | 74 | 130 |
| Caffè crema | single | 6 | 7 | 8 | 38 | 50 | 67 | 52 | 89 |
| | double | 12 | 16 | 18 | 75 | 114 | 150 | 12 | 16 | 14 |
| | triple | 19 | 21 | 24 | 119 | 150 | 200 | 155 | 266 |
| Drip coffee | SCAA standard | 66 | 1000 | | 5 | 6 | 5.5 |

* volume of espresso coffee obtained with coffee beans (not fresh), filter holder with spouts; 100% Arabica mixture; lever-operated machine
** volume of espresso coffee obtained with fresh coffee beans, open
filter holder; "strong" mixture, pump at about 9 bar pressure.
I = low; m = medium; h = high; s = small; lar. = large; typ. = typical

5 With reference therefore to the values shown in Table 1, the average
mass of an amount of ground coffee used to prepare a normal single
espresso coffee is about 7 g (the mass of ground coffee varies between
6g and 8g). A single normal espresso coffee served has an average
mass of about 14g (the mass varies between a minimum of 10g and a
maximum of 20g). The relative brew ratio of the mass of the amount of
ground coffee and single normal espresso coffee is, typically, 50%
(varies between about 40% and about 60%).

As shown in Table 1, typically the aforementioned brew ratio is
- about 100% (varies between about 60% and about 140%) for a
ristretto (short) espresso coffee,
- about 50% (varies between about 40% and about 60%) for a
normal espresso coffee,
- about 33% (varies between about 27% and 40%) for a long
espresso coffee,
- about 14% (varies between about 12% and about 16%) for a _caffe crema_ and,
- about 5.5% (varies between 5% and 6%) for a drip coffee.

Said means for calculating the brew ratio comprise a first weighing
device 40 for measuring the mass of the ground coffee, a second
weighing device 50 for measuring the mass of the brewed espresso
coffee and a processing device (CPU) configured at least to receive the
measured value of the ground coffee mass and the measured value of
the mass of the brewed espresso coffee and obtain said brew ratio from
the two measured mass values.

30 Figure 4 shows in schematic form the flow diagram for preparation of
an espresso coffee according to the present invention.

The first step (100) is that of preparing an amount of ground coffee powder (or other substance, depending on the beverage which is to be obtained). The mass of powder is measured (110). Subsequently (120) the desired brew ratio value is selected and brewing of the espresso coffee (or other beverage) is started. While the beverage is being prepared, the mass of the said beverage (130) is measured and the current brew ratio (140) is calculated. Reaching of a predetermined brew ratio is notified (150). Preparation of the beverage is stopped (manually or automatically) when a predetermined brew ratio (160) is reached.

As already briefly mentioned above, the ground coffee is typically loaded into a filter 61, which in turn is placed inside the cavity of a filter holder 62. According to a first option, the mass of ground coffee may be measured before being loaded into the filter. Alternatively, according to a second option, the ground coffee mass may be measured after it has been loaded into the filter. Preferably, according to a third option, the mass of ground coffee may be measured after the filter (together with the ground coffee loaded inside it) has been placed inside the cavity of the filter holder.

The first weighing device 40 is preferably configured to measure the mass of ground coffee according to the third option. This also to achieve the aim of ensuring that the operations that the barman usually performs remain unchanged as far as possible. Therefore, preferably, the first weighing device 40 measures the mass of the assembly comprising ground coffee, filter and filter holder.

The flow diagram in Figure 5 shows, by way of example, a number of options for obtaining the mass value of the ground coffee. According to a first option, the mass of a filter empty, i.e. without powder (111'a), and the mass of a filter holder without filter (111'b) are measured separately.
According to a second option, the overall mass of an empty filter and a filter holder (11") are measured. According to a third option, the filter and filter holder assembly and their corresponding mass (11’”) are identified (manually, visually or automatically).

Subsequently (112) the mass of the assembly consisting of filter, filter holder and powder (loaded in the filter) is measured.

The mass of the ground filter (113) may be obtained by subtracting the mass of the filter 61 and the filter holder 62 from the overall mass.

However, it is possible for a barman to use, also during the course of the same working day, filters and/or filter holders made by different manufacturers and therefore shaped differently. Each filter and/or filter holder could have a different mass.

The mass of a plurality of different filters and filter holders (or of different filter and corresponding filter holder assemblies) could be measured by the barman or supplied by the manufacturer. The values could be shown in a table or in a list and, preferably, stored so that it can be selected by the barman. In any case, the barman must be able to determine the precise tare weight in order to obtain in a precise manner the powder mass.

As mentioned above, some embodiments envisage a device for identifying each filter + filter holder assembly and associating with it a mass stored in a memory. Identification of the assembly may be performed by means of an optical reader which reads a symbol engraved, printed, applied or in any case impressed/fixed on the filter holder (or on any part of the assembly). The symbol may comprise one or more alphanumerical characters, a bar code, a QR code (or equivalent code) or an RFID (Radio-Frequency Identification) code. Figure 2 illustrates recognition of the characteristics (for example mass) by means of a code reader.

The first weighing device 40 may be incorporated in the machine 10.
or may be external thereto. The first weighing device may comprise digital load cells using load cells containing dedicated analog converters.

When incorporated in the machine, the first weighing device could be arranged underneath the coffee dispensing units, for example on the grille of the drip tray or in the vicinity thereof. The patent EP 2,701,563 describes a possible implementation of a weighing device in an espresso coffee machine or the like. The weighing device may comprise a weighing platform arranged inside a housing. The weighing platform can be preferably accessed through an opening in the top plate of the housing.

The second weighing device 50 is preferably arranged underneath the coffee dispensing units, on the grille of the drip tray. The patent EP 2,701,563, as already mentioned above, describes a possible implementation of a weighing device in an espresso coffee machine or the like.

The second weighing device 50 preferably operates as illustrated in the flow diagram of Figure 6. Initially (step 131) the mass of the cup (or other container) for holding the brewed beverage is measured. If the second weighing device is configured to detect the mass of an object placed on the grille of the drip tray, it is sufficient to place the empty cup on the grille. Alternatively, the mass of the cup could be stored in a machine memory and selected by the barman before starting dispensing of the beverage.

Once dispensing of the beverage has started, the second weighing device 50 measures the mass of the cup, while it is being filled with the brewed beverage. The mass of the brewed beverage is then calculated (for example by the CPU) in real time by subtracting the tare weight (mass of the cup) from the aforementioned measured value. Step 133 in Figure 6.
At this point, from the measured mass values of the brewed beverage and the powder, the machine according to the present invention calculates the brew ratio, determining the relative ratio thereof.

The machine 10 according to the present invention may be configured to show, preferably in real time, the brew ratio value calculated. For example a display especially designed to display only the brew ratio value may be provided or the brew ratio value may be displayed on a display on which other values or information are also displayed.

Dispensing of the beverage may be stopped manually by the barman when a desired brew ratio value is reached or stopping of dispensing may be performed automatically when the set brew ratio value is reached.

As shown in the flow diagram of Figure 7, one or more brew ratio values may be stored (MEM). Memorization may be performed at the factory or may be performed by the barman, if necessary by importing data from an external memory device or manually setting the desired values.

Before starting dispensing of the beverage the barman may select (SEL) one of the brew ratio values stored or set a new one should a particular request be received from a client. Figures 1 and 2 show the machine 10 with three buttons 31a, 31b and 31c. The first button 31a may be pressed in order to select a brew ratio of 33% (for dispensing a long coffee), the second button 31b may be pressed to select a brew ratio of 50% (for dispensing a normal coffee) and the third button 31c may be pressed to select a brew ratio of 75% (for dispensing a ristretto (short) coffee). Each button may be a normal pushbutton, a keypad or a touch screen. As an alternative to the buttons with fixed values, a graduated bar could also be provided, said bar having a scale from 0%
to 100% and for example a cursor so that the barman may set in a varying manner the desired brew ratio.

Dispensing of the beverage may then be automatically stopped (160, Figure 7) when the set/selected brew ratio is reached.

Fig. 1 shows the buttons 31a, 31b and 31c which perform the manual start & stop function. Preferably, all the buttons 31a, 31b and 31c (including those which show in some form a brew ratio value) have the start & stop function associated with a programmed brew ratio value which may be modified.

According to the present invention, as mentioned above, a processing unit (CPU) may be preferably provided, said unit being connected at least to the first weighing device, the second weighing device, the brew ratio selection device and the electronics of the machine for starting and stopping operation of the machine in accordance with the procedure described above.

The first device for measuring the mass of an amount of ground coffee to be used for preparing an espresso coffee, the second device for measuring the mass of the brewed espresso coffee, the processing device for calculating the brew ratio corresponding to a ratio between said mass of the amount of ground coffee and said mass of the brewed espresso coffee and the device (display or the like) for notifying said calculated brew ratio to an operator may be all (or partly) incorporated in a coffee machine. Alternatively, all the aforementioned devices may be incorporated in a separate machine.
CLAMS

1. A machine (10) for preparing and dispensing espresso coffee or the like, comprising: a first device (40, 20) for measuring a mass of an amount of ground coffee to be used for preparing an espresso coffee, a second device (50) for measuring a mass of the brewed espresso coffee, a processing device (CPU) for calculating a brew ratio corresponding to a ratio between said mass of the amount of ground coffee and said mass of the brewed espresso coffee.

2. The machine (10) according to claim 1, further comprising a device for notifying said calculated brew ratio to an operator.

3. The machine (10) according to claim 1 or 2, wherein said second device (50) operates in a substantially continuous manner during dispensing of espresso coffee.

4. The machine (10) according to any one of the preceding claims, further comprising a memory for storing the value of one or more brew ratios.

5. The machine (10) according to claim 4, further comprising a device (30) for selecting one or more memorized brew ratio values.

6. The machine (10) according to claim 4 or 5, further comprising a comparison device (CPU) for comparing the value of current brew ratio with a value of memorized brew ratio and a stop device (CPU, 31a, 31b, 31c) for stopping the dispensing of espresso coffee when the comparison device detects that the current value of brew ratio corresponds to a value of a selected stored value of brew ratio.

7. The machine (10) according to any one of the preceding claims, wherein the first weighing device comprises a weighing device with load cells.

8. The machine (10) according to any one of the preceding claims, wherein the second weighing device (50) comprises a weighing device with load cells.
9. The machine (10) according to any one of the preceding claims, wherein the first device and the second device are a single device.

10. The machine (10) according to any one of the preceding claims, wherein the first device (40, 20) for measuring the mass of an amount of ground coffee to be used comprises a code reader.

11. A method for preparing and dispensing an espresso coffee or the like comprising: providing (100) an amount of ground coffee powder; measuring (110) the mass of the powder; starting (120) the brewing of espresso coffee, selecting the value of the desired brew ratio; while the espresso coffee is brewed, measuring (130) the mass of the beverage and calculating the value of the current brew ratio (140).

12. The method of claim 11, further comprising notifying (150) reaching of a predetermined brew ratio to an operator.

13. The method of claim 11 or 12, further comprising stopping brewing of the beverage upon reaching a predetermined brew ratio (160).

14. The method of claim 11 or 12, wherein the step of measuring (110) the mass of the powder comprises, by said first device (40, 20), identifying the filter and filter holder assembly and corresponding mass thereof (111') and, subsequently, (112), measuring the mass of the assembly comprising filter, filter holder and coffee powder loaded in the filter.
100. Provide an amount of ground coffee powder or the like

110. Measure the mass of the powder

120. Start brewing of the beverage (espresso coffee or the like) by selecting the desired ratio

130. Measure the mass of the beverage while it is being prepared

140. Calculate the current brew ratio value

150. Notify operator upon reaching a predetermined brew ratio

160. Stop preparation of the beverage upon reaching the predetermined brew ratio

Fig. 4
Fig. 5

1. Measure the mass of an empty filter (without powder)
2. Measure the mass of a filter holder (without filter)
3. Measure the mass of an empty filter (without powder) and a filter holder
4. Identify a filter and a filter holder and their corresponding mass
5. Measure the mass of the filter, filter holder and powder assembly
6. Calculate the mass of the powder by means of difference

Fig. 6

1. Measure the mass of an empty cup (or other container)
2. Measure the mass of the cup (or other container) while it is being filled with brewed beverage
3. Calculate the mass of the beverage by means of difference
Store one or more brew ratios

Select a stored brew ratio

Stop the preparation of the beverage when the predetermined brew ratio is reached

Fig. 7

CPU

40
50
30
10

Fig. 8
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. A47J31/44 A47J31/52
ADD.

According to International Patent Classification (IPC) and both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A47J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on prior claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a skilled person
 Z document member of the same patent family

Date of the actual completion of the international search
5 June 2015

Date of mailing of the international search report
15/06/2015

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer
De Terlizzi, Mariano
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>"WEIGHING ESPRESSO - HOW IT WORKS - Coffee Brewers</td>
<td>11, 14</td>
</tr>
</tbody>
</table>
| | Water Boilers | Marco Beverage Systems" ,
<p>| A | wo 2012/146641 Al (BIANCHI ROBERTO [IT] ; MARZOCCO SRL [IT] ; MORAN SEAN MARTIN [IE] ; PEARS) 1 November 2012 (2012-11-01) page 10, line 5 - page 14, line 10; figures |</p>
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2012146641 A1</td>
<td>01-11-2012</td>
<td>AU 2012247561 A1</td>
<td>14-11-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2833595 A1</td>
<td>01-11-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103619222 A</td>
<td>05-03-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2701563 A1</td>
<td>05-03-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 86237 B1</td>
<td>31-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014518661 A</td>
<td>07-08-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140052999 A</td>
<td>07-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014137746 A1</td>
<td>22-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012146641 A1</td>
<td>01-11-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007193452 A1</td>
<td>23-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014123857 A1</td>
<td>08-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012138327 A1</td>
<td>11-10-2012</td>
</tr>
<tr>
<td>WO 2015006244 A1</td>
<td>15-01-2015</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>