wo 2013/148466 A1 || I} NN OT OO0 OO0 A AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/148466 A1l

3 October 2013 (03.10.2013) WIRPOIPCT
(51) International Patent Classification: (US). KARCZEWICZ, Marta; 5775 Morehouse Drive,
HO4N 7/26 (2006.01) San Diego, California 92121-1714 (US).
(21) International Application Number: (74) Agent: EVANS, Matthew, J.; Shumaker & Sieffert, P.A.,
PCT/US2013/033325 1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
(22) International Filing Date: (US).
21 March 2013 (21.03.2013) (81) Designated States (unless otherwise indicated, for every
.] . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
L. DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(30) Priority Data: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
61/616,998 28 March 2012 (28.03.2012) us KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
61/662,218 20 June 2012 (20.06.2012) us ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
13/829,774 14 March 2013 (14.03.2013) us NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
ATTN: International IP Administration, 5775 Morehouse IM, IN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
Drive, San Diego, California 92121-1714 (US). IM, ZW.
(72) Inventors: CHONG, In Suk; 5775 Morehouse Drive, San (84) Designated States (unless otherwise indicated, for every

Diego, California 92121-1714 (US). CHON, Jaehong;
5775 Morehouse Drive, San Diego, California 92121-1714

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

[Continued on next page]

(54) Title: MERGE SIGNALING AND LOOP FILTER ON/OFF SIGNALING

(57) Abstract: Systems, methods, and devices are disclosed that encode video,
decode video, or both. These systems, methods, and devices generate and/or re-

RECEIVE AN ENABLE SYNTAX
ELEMENT THAT INDICATES
WHETHER A LOOP FILTER IS
TURNED ON OR TURNED OFF FOR A
GROUP OF VIDEO BLOCKS

l

RECEIVE ONE OR MORE ADDITIONAL
SYNTAX ELEMENTS IDENTIFYING
PARAMETERS FOR THE LOOP
FILTER FOR THE GROUP OF VIDEO
BLOCKS IN RESPONSE TO THE
ENABLE SYNTAX ELEMENT
INDICATING THE LOOP FILTER IS
TURNED ON FOR THE GROUP OF
VIDEO BLOCKS

l

PERFORMING THE LOOP FILTER FOR
THE GROUP OF VIDEO BLOCKS
BASED ON THE RECEIVED ENABLE
SYNTAX ELEMENT

/— 800

/— 802

/ 804

FIG. 8

ceive an enable syntax element in an encoded bitstream, wherein the enable
syntax element indicates whether a loop filter is turned on or turned off for a
group of video blocks. They also generate or receive one or more additional
syntax elements identifying parameters for the loop filter for the group of video
blocks in response to the enable syntax element indicating the loop filter is
turned on for the group of video blocks. These systems, methods, and devices
also perform the loop filter for the group of video blocks based on the received
enable syntax element.

WO 2013/148466 A1 |IIIWAT 00TV AV 0 0 AR

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Published:
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

WO 2013/148466 PCT/US2013/033325

MERGE SIGNALING AND LOOP FILTER ON/OFF SIGNALING

RELATED APPLICATIONS
[0001] This application claims the benefit of:
U.S. Provisional Application No. 61/616,998, filed March 28, 2012 and
U.S. Provisional Application No. 61/662,218, filed June 20, 2012,

the entire content of each is incorporated herein by reference.

TECHNICAL FIELD
[0002] This disclosure relates to video coding and more particularly to techniques for

signaling loop filter parameters.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency
Video Coding (HEVC) standard presently under development, and extensions of such
standards. The video devices may transmit, receive, encode, decode, and/or store digital
video information more efficiently by implementing such video compression
techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded ()
slice of a picture are encoded using spatial prediction with respect to reference samples

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice

WO 2013/148466 PCT/US2013/033325

of a picture may use spatial prediction with respect to reference samples in neighboring
blocks in the same picture or temporal prediction with respect to reference samples in
other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY

[0006] This disclosure relates to video coding and more particularly to techniques for
signaling sample adaptive offset (SAO) parameters and adaptive loop filter (ALF)
parameters. One example of the disclosure relates to the introduction of an SAO on/off
flag that is signaled before other SAO parameters (e.g., at the LCU level) to indicate
whether SAQO is used for any blocks in the LCU. Another example of the disclosure is
related to the introduction of an ALF on/off flag that is signaled before other ALF
parameters (e.g., at the LCU level) to indicate whether ALF is used for any blocks in the
LCU.

[0007] In one example, the disclosure describes a method including generating, for
inclusion in an encoded bitstream, an enable syntax element, wherein the enable syntax
element indicates whether a loop filter is turned on or turned off for a group of video
blocks; and in response to the enable syntax element indicating the loop filter is turned
on for the group of video blocks, generating one or more additional syntax elements

identifying parameters for the loop filter for the group of video blocks.

WO 2013/148466 PCT/US2013/033325

[0008] In another example, the disclosure describes a device for encoding video
including a processor configured to generate, for inclusion in an encoded bitstream, an
enable syntax element, wherein the enable syntax element indicates whether a loop filter
is turned on or turned off for a group of video blocks and to generate one or more
additional syntax elements identifying parameters for the loop filter for the group of
video blocks in response to the enable syntax element indicating the loop filter is turned
on for the group of video blocks.

[0009] In another example, the disclosure describes a device for encoding video, the
device including means for generating, for inclusion in an encoded bitstream, an enable
syntax element, wherein the enable syntax element indicates whether a loop filter is
turned on or turned off for a group of video blocks, and means for generating one or
more additional syntax elements identifying parameters for the loop filter for the group
of video blocks in response to the enable syntax element indicating the loop filter is
turned on for the group of video blocks.

[0010] In another example, the disclosure describes a computer-readable storage
medium. The computer-readable storage medium having stored thereon instructions
that upon execution cause one or more processors to generate, for inclusion in an
encoded bitstream, an enable syntax element, wherein the enable syntax element
indicates whether a loop filter is turned on or turned off for a group of video blocks and
generating one or more additional syntax elements identifying parameters for the loop
filter for the group of video blocks in response to the enable syntax element indicating
the loop filter is turned on for the group of video blocks.

[0011] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0012] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize the techniques described in this disclosure.

[0013] FIGS. 2A and 2B are conceptual diagrams illustrating an example of quadtree
partitioning applied to a largest coding unit (LCU).

WO 2013/148466 PCT/US2013/033325

[0014] FIGS. 2C and 2D are conceptual diagrams illustrating an example of a filter map
for a series of video blocks corresponding to the example quadtree partitioning of FIGS.
2A and 2B.

[0015] FIG. 3 is a conceptual diagram showing four possible edge offset types for SAO
coding.

[0016] FIG. 4 is a conceptual diagram showing example band offset types for SAO
coding.

[0017] FIG. 5 is a block diagram illustrating an example video encoder that may
implement the techniques described in this disclosure.

[0018] FIG. 6 is a block diagram illustrating an example video decoder that may
implement the techniques described in this disclosure.

[0019] FIG. 7 is a flowchart illustrating an example method for a video encoder in
accordance with one or more examples of this disclosure.

[0020] FIG. 8 is a flowchart illustrating an example method for a video decoder in

accordance with one or more examples of this disclosure.

DETAILED DESCRIPTION
[0021] This disclosure relates to video coding, and more particularly to techniques for
signaling loop filter parameters. Some examples relate to techniques for signaling
sample adaptive offset (SAO) parameters and adaptive loop filter (ALF) parameters.
One example of the disclosure relates to the introduction of an SAO on/off flag that is
signaled before other SAO parameters (e.g., at the LCU level) to indicate whether SAO
is used for any blocks in the LCU. Another example of the disclosure is related to the
introduction of an ALF on/off flag that is signaled before other ALF parameters (e.g., at
the LCU level) to indicate whether ALF is used for any blocks in the LCU.
[0022] In various examples, the disclosure describes systems and methods that may
generate, for inclusion in an encoded bitstream, an enable syntax element, wherein the
enable syntax element indicates whether a loop filter is turned on or turned off for a
group of video blocks. In response to the enable syntax element indicating the loop
filter is turned on for the group of video blocks, the techniques of this disclosure may
further include generating one or more additional syntax elements identifying
parameters for the loop filter for the group of video blocks.
[0023] In the SAO and ALF a merge signal (e.g., merge left or merge up) may be

used. A merge_left syntax element may, for example, indicate if the filter parameters

WO 2013/148466 PCT/US2013/033325

for a current group of video blocks are to be borrowed from the filter parameters for a
previously coded group of video blocks to the left of the current group, while a

merge up syntax element can indicate if the filter parameters for the current group of
video blocks are to be borrowed from the filter parameters for a previously coded group
of video blocks located above the current group. If one of the merge types is not chosen
(i.e., the current parameters are to be borrowed from the parameters for the left or upper
already coded group of video blocks), then loop filter on/off indicators and
offsets/coefficients are subsequently signaled.

[0024] If merge is not chosen, filter (or offset) on/off signaling and filter (offset)
coefficients may be followed. This may result in redundant signaling of merge signals
when all or many blocks within an LCU or partition are not applying SAO and/or ALF.
[0025] This disclosure relates to video coding and more particularly to techniques for
signaling sample adaptive offset (SAO) parameters and adaptive loop filter (ALF)
parameters. One example of the disclosure relates to the introduction of an SAO on/off
flag that is signaled before other SAO parameters (e.g., at the LCU level) to indicate
whether SAQO is used for any blocks in the LCU. Another example of the disclosure
relates to the introduction of an ALF on/off flag that is signaled before other ALF
parameters (e.g., at the LCU level) to indicate whether ALF is used for any blocks in the
LCU.

[0026] According to techniques of the present disclosure, a syntax element indicating if
a loop filter (e.g., SAO or ALF) is enabled can be signaled in the encoded video
bitstream prior to the other loop filter parameters (e.g., merge syntax elements). In an
example, an sao_enable flag indicating whether or not SAO is enabled for a group of
video blocks (e.g., an LCU or a partition) is first signaled for use by a decoder. If the
sao_cnable flagindicates SAO filtering is enabled, then one or more merge syntax
clements (e.g. merge left and merge up) can be transmitted. If merge left and
merge up flags indicate that the SAO filter parameters are not the same as the filter
parameters for a left video block or an upper video block, then the filter parameters may
be signaled as described herein. In some examples, because the sao_enable flag
already indicates whether or not SAQ filtering is turned on or off, the sao_type idx
syntax element does not need to include a “filtering off” indicator, thus potentially
allowing for a bit savings when transmitting the sao_type idx syntax element. The
specific techniques of this disclosure for SAO and ALF signaling will be described in

more detail below.

WO 2013/148466 PCT/US2013/033325

[0027] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize the techniques described in this disclosure. As shown in
FIG. 1, system 10 includes a source device 12 that generates encoded video data to be
decoded at a later time by a destination device 14. Source device 12 and destination
device 14 may comprise any of a wide range of devices, including desktop computers,
notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone handsets
such as so-called “smart” phones, so-called “smart” pads, televisions, cameras, display
devices, digital media players, video gaming consoles, video streaming device, or the
like. In some cases, source device 12 and destination device 14 may be equipped for
wireless communication.

[0028] Destination device 14 may receive the encoded video data to be decoded via a
link 16. Link 16 may comprise any type of medium or device capable of moving the
encoded video data from source device 12 to destination device 14. In one example,
link 16 may comprise a communication medium to enable source device 12 to transmit
encoded video data directly to destination device 14 in real-time. The encoded video
data may be modulated according to a communication standard, such as a wireless
communication protocol, and transmitted to destination device 14. The communication
medium may comprise any wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local arca
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 12 to
destination device 14.

[0029] Alternatively, encoded data may be output from output interface 22 to a storage
device 34. Similarly, encoded data may be accessed from storage device 34 by input
interface. Storage device 34 may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, storage device 34 may
correspond to a file server or another intermediate storage device that may hold the
encoded video generated by source device 12. Destination device 14 may access stored
video data from storage device 34 via streaming or download. The file server may be

any type of server capable of storing encoded video data and transmitting that encoded

WO 2013/148466 PCT/US2013/033325

video data to destination device 14. Example file servers include a web server (e.g., for
a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from storage device 34 may be a
streaming transmission, a download transmission, or a combination of both.

[0030] In the example of FIG. 1, source device 12 includes a video source 18, video
encoder 20 and an output interface 22. In some cases, output interface 22 may include a
modulator/demodulator (modem) and/or a transmitter. In source device 12, video
source 18 may include a source such as a video capture device, ¢.g., a video camera, a
video archive containing previously captured video, a video feed interface to receive
video from a video content provider, and/or a computer graphics system for generating
computer graphics data as the source video, or a combination of such sources. As one
example, if video source 18 is a video camera, source device 12 and destination device
14 may form so-called camera phones or video phones. However, the techniques
described in this disclosure may be applicable to video coding in general, and may be
applied to wireless and/or wired applications.

[0031] The captured, pre-captured, or computer-generated video may be encoded by
source device 12, e.g., in video encoder 20. The encoded video data may be transmitted
directly to destination device 14 via output interface 22 of source device 12. The
encoded video data may also (or alternatively) be stored onto storage device 34 for later
access by destination device 14 or other devices, for decoding and/or playback.

[0032] Destination device 14 includes an input interface 28, a video decoder 30, and a
display device 32. In some cases, input interface 28 may include a receiver and/or a
modem. Input interface 28 of destination device 14 receives the encoded video data
over link 16. The encoded video data communicated over link 16, or provided on
storage device 34, may include a variety of syntax elements generated by video encoder
20 for use by a video decoder, such as video decoder 30, in decoding the video data.
Such syntax elements may be included with the encoded video data transmitted on a
communication medium, stored on a storage medium, or stored a file server.

[0033] Display device 32 may be integrated with, or external to, destination device 14.

In some examples, destination device 14 may include an integrated display device and

WO 2013/148466 PCT/US2013/033325

also be configured to interface with an external display device. In other examples,
destination device 14 may be a display device. In general, display device 32 displays
the decoded video data to a user, and may comprise any of a variety of display devices
such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

[0034] Video encoder 20 and video decoder 30 may operate according to a video
compression standard, such as the High Efficiency Video Coding (HEVC) standard
presently under development, and may conform to the HEVC Test Model (HM).
Alternatively, video encoder 20 and video decoder 30 may operate according to other
proprietary or industry standards, such as the ITU-T H.264 standard, alternatively
referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), or extensions of such
standards. The techniques of this disclosure, however, are not limited to any particular
coding standard. Other examples of video compression standards include MPEG-2 and
ITU-T H.263.

[0035] Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0036] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, streaming video
transmissions, ¢.g., via the Internet, encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data storage medium, or other
applications. In some examples, system 10 may be configured to support one-way or
two-way video transmission to support applications such as video streaming, video
playback, video broadcasting, and/or video telephony.

[0037] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations

thereof. When the techniques are implemented partially in software, a device may store

WO 2013/148466 PCT/US2013/033325

instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0038] According to techniques of the present disclosure, a syntax element indicating if
a loop filter (e.g., SAO or ALF) is enabled can be transmitted from video encoder 20 to
video decoder 30 prior to other elements. In an example, an sao_enable flag indicating
whether or not SAO is enabled for a group of video blocks (e.g. an LCU or a partition)
is first transmitted by encoder 20 and received by decoder 30. If the sao_enable flag
indicates SAQ filtering is enabled, then one or more merge syntax elements (e.g.
merge_left and merge up) can be transmitted. If merge left and merge up flags
indicate that the SAOQ filter parameters are not the same as the filter parameters for a left
video block or an upper video block, then the filter parameters can be signaled. In an
example, because the sao _enable flag already indicates whether or not SAO filtering is
turned on or off, the sao_type idx syntax element does not need to include a “filtering
off” indicator, thus potentially allowing for a bit savings when transmitting the
sao_type idx syntax element.

[0039] One example of the techniques described in this disclosure relates to the
introduction of an SAO on/off flag that may be signaled first by source device 12 (e.g.,
at the LCU level) to indicate whether SAO is used for any blocks in the LCU. Another
example of the techniques described in this disclosure relates to the introduction of an
ALF on/off flag that is signaled first by source device 12 (e.g., at the LCU level) to
indicate whether SAO is used for any blocks in the LCU.

[0040] In one example SAO implementation, each partition (which may include one or
more LCUs) can have one of three offset types (also called pixel classification): no
offset, band classification based offset type 0/1, and edge classification based type
0/1/2/3. Each band classification offset type has 16 possible offset values, while each
edge classification based type has four possible offset values. If one of these offset
types is chosen to be used for the partition, information indicating the corresponding
offset type and the offset values are sent to the decoder.

[0041] SAO with LCU-based syntax has been proposed. This technique supports
picture-based SAO encoding for higher coding efficiency (bottom-up merge picture

quadtree) and LCU-based encoding for lower complexity or sub-picture latency. Each

WO 2013/148466 PCT/US2013/033325
10

LCU is allowed to change SAO parameters by sending its own SAO type and offsets.

In some examples of LCU-based SAO encoding, each LCU may only use causal data to
derive SAQO parameters. For example, LCUs to the right and bottom cannot be utilized
and neither can the last four pixel rows of each LCU due to deblocking.

[0042] HEVC is being developed by the Joint Collaboration Team on Video Coding
(JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Motion Picture
Experts Group (MPEG) is described in various working drafts. A recent draft of the
HEVC standard, referred to as “HEVC Working Draft 9” or “WD9,” is described in
document JCTVC-K1003v13, Bross et al., “High efficiency video coding (HEVC) text
specification draft 9,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 11th Meeting: Shanghai, CN, 10-19
October, 2012, which, as of December 27, 2012, is downloadable from http://phenix.int-
evry.fr/jct/doc_end_user/documents/11_Shanghai/wgl 1/JCTVC-K1003-v13.zip, the

entire content of which is incorporated herein by reference. The JCT-VC is working on
development of the HEVC standard. The HEVC standardization efforts are based on an
evolving model of a video coding device referred to as the HEVC Test Model (HM).
The HM presumes several additional capabilities of video coding devices relative to
existing devices according to, e.g., ITU-T H.264/AVC. For example, whereas H.264
provides nine intra-prediction encoding modes, the HM may provide as many as thirty-
three intra-prediction encoding modes.
[0043] Data for nodes of quadtree 250 may describe whether the CU corresponding to
the node is split. If the CU is split, four additional nodes may be present in quadtree
250. In some examples, a node of a quadtree may be implemented similar to the
following pseudocode:
quadtree node {
boolean split_flag(1);
// signaling data
if (split_flag) {
quadtree node childl;
quadtree node child2;
quadtree_node child3;
quadtree node child4;

WO 2013/148466 PCT/US2013/033325
11

The split_flag value may be a one-bit value representative of whether the CU
corresponding to the current node is split. If the CU is not split, the split_flag value
may be ‘0°, while if the CU is split, the split_flag value may be ‘1°. With respect to the
example of quadtree 250, an array of split flag values may be 101000000.

[0044] In general, the working model of the HM describes that a video frame or picture
may be divided into a sequence of treeblocks or largest coding units (LCU) that include
both luma and chroma samples. A treeblock has a similar purpose as a macroblock of
the H.264 standard. A slice includes a number of consecutive treeblocks in coding
order. A video frame or picture may be partitioned into one or more slices. Each
treeblock may be split into coding units (CUs) according to a quadtree. For example, a
treeblock, as a root node of the quadtree, may be split into four child nodes, and each
child node may in turn be a parent node and be split into another four child nodes. A
final, unsplit child node, as a leaf node of the quadtree, comprises a coding node, i.e., a
coded video block. Syntax data associated with a coded bitstream may define a
maximum number of times a treeblock may be split, and may also define a minimum
size of the coding nodes.

[0045] FIGS. 2A and 2B are conceptual diagrams illustrating an example quadtree
structure 250 and a corresponding LCU 272. FIG. 2A depicts an example quadtree 250,
which includes nodes arranged in a hierarchical fashion. Each node in a quadtree, such
as quadtree 250, may be a leaf node with no children, or have four child nodes. In the
example of FIG. 2A, quadtree 250 includes root node 252. Root node 252 has four child
nodes, including leaf nodes 256 A-256C (leaf nodes 256) and node 254. Because node
254 is not a leaf node, node 254 includes four child nodes, which in this example, are
leaf nodes 258 A-258D (leaf nodes 258).

[0046] Quadtree 250 may include data describing characteristics of a corresponding
LCU, such as LCU 272 in this example. For example, quadtree 250, by its structure,
may describe splitting of the LCU into sub-CUs. Assume that LCU 272 has a size of
2Nx2N. LCU 272, in this example, has four sub-CUs 276 A-276C (sub-CUs 276) and
274, each of size NxN. Sub-CU 274 is further split into four sub-CUs 278 A-278D
(sub-CUs 278), each of size N/2xN/2. The structure of quadtree 250 corresponds to the
splitting of LCU 272, in this example. That is, root node 252 corresponds to LCU 272,
leaf nodes 256 correspond to sub-CUs 276, node 254 corresponds to sub-CU 274, and
leaf nodes 258 correspond to sub-CUs 278.

WO 2013/148466 PCT/US2013/033325
12

[0047] A slice may be divided into video blocks (or LCUs) and each video block may
be partitioned according to the quadtree structure described in relation to FIGS. 2A-B.
Additionally, as shown in FIG. 2C, the quadtree sub-blocks indicated by “ON” may be
filtered by loop filters described herein, while quadtree sub-blocks indicated by “OFF”
may not be filtered. The decision of whether or not to filter a given block or sub-block
may be determined at the encoder by comparing the filtered result and the non-filtered
result relative to the original block being coded. FIG. 2D is a decision tree representing
partitioning decisions that results in the quadtree partitioning shown in FIG. 2C. The
actual filtering applied to any pixels for “ON” blocks, may be determined based on the
metrics discussed herein.

[0048] In particular, FIG. 2C may represent a relatively large video block that is
partitioned according to a quadtree portioning scheme into smaller video blocks of
varying sizes. Each video block is labelled (on or off) in FIG.2C, to illustrate whether
filtering should be applied or avoided for that video block. The video encoder may
define this filter map by comparing filtered and unfiltered versions of each video block
to the original video block being coded.

[0049] Again, FIG. 2D is a decision tree corresponding to partitioning decisions that
result in the quadtree partitioning shown in FIG. 2C. In FIG. 2D, each circle may
correspond to a CU. If the circle includes a “1” flag, then that CU is further partitioned
into four more CUs, but if the circle includes a “0” flag, then that CU is not partitioned
any further. Each circle (e.g., corresponding to CUs) also includes an associated
diamond. If the flag in the diamond for a given CU is set to 1, then filtering is turned
“ON” for that CU, but if the flag in the diamond for a given CU is set to 0, then filtering
is turned off. In this manner, FIGS. 2C and 2D may be individually or collectively
viewed as a filter map that can be generated at an encoder and communicated to a
decoder at least once per slice of encoded video data in order to communicate the level
of quadtree partitioning for a given video block (e.g., an LCU) whether or not to apply
filtering to each partitioned video block (e.g., each CU within the LCU).

[0050] A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. A size of the CU corresponds to a size of the
coding node and must be square in shape. The size of the CU may range from 8x8
pixels up to the size of the treeblock with a maximum of 64x64 pixels or greater. Each
CU may contain one or more PUs and one or more TUs. Syntax data associated with a

CU may describe, for example, partitioning of the CU into one or more PUs.

WO 2013/148466 PCT/US2013/033325
13

Partitioning modes may differ between whether the CU is skip or direct mode encoded,
intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be
partitioned to be non-square in shape. Syntax data associated with a CU may also
describe, for example, partitioning of the CU into one or more TUs according to a
quadtree. A TU can be square or non-square in shape.

[0051] The HEVC standard allows for transformations according to TUs, which may be
different for different CUs. The TUs are typically sized based on the size of PUs within
a given CU defined for a partitioned LCU, although this may not always be the case.
The TUs are typically the same size or smaller than the PUs. In some examples,
residual samples corresponding to a CU may be subdivided into smaller units using a
quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT
may be referred to as transform units (TUs). Pixel difference values associated with the
TUs may be transformed to produce transform coefficients, which may be quantized.
[0052] In general, a PU includes data related to the prediction process. For example,
when the PU is intra-mode encoded, the PU may include data describing an intra-
prediction mode for the PU. As another example, when the PU is inter-mode encoded,
the PU may include data defining a motion vector for the PU. The data defining the
motion vector for a PU may describe, for example, a horizontal component of the
motion vector, a vertical component of the motion vector, a resolution for the motion
vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a reference
picture to which the motion vector points, and/or a reference picture list (e.g., List 0,
List 1, or List C) for the motion vector.

[0053] In general, a TU is used for the transform and quantization processes. A given
CU having one or more PUs may also include one or more transform units (TUs).
Following prediction, video encoder 20 may calculate residual values corresponding to
the PU. The residual values comprise pixel difference values that may be transformed
into transform coefficients, quantized, and scanned using the TUs to produce serialized
transform coefficients for entropy coding. This disclosure typically uses the term
“video block” to refer to a coding node of a CU. In some specific cases, this disclosure
may also use the term “video block”™ to refer to a treeblock, i.e., LCU, or a CU, which
includes a coding node and PUs and TUs.

[0054] A video sequence typically includes a series of video frames or pictures. A
group of pictures (GOP) generally comprises a series of one or more of the video

pictures. A GOP may include syntax data in a header of the GOP, a header of one or

WO 2013/148466 PCT/US2013/033325
14

more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the respective slice. Video encoder 20 typically operates on video blocks
within individual video slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks may have fixed or varying
sizes, and may differ in size according to a specified coding standard.

[0055] As an example, the HM supports prediction in various PU sizes. Assuming that
the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of
2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or
NxN. The HM also supports asymmetric partitioning for inter-prediction in PU sizes of
2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU
is not partitioned, while the other direction is partitioned into 25% and 75%. The
portion of the CU corresponding to the 25% partition is indicated by an “n” followed by
an indication of “Up”, “Down,” “Left,” or “Right.” Thus, for example, “2NxnU” refers
to a 2Nx2N CU that is partitioned horizontally with a 2Nx0.5N PU on top and a
2Nx1.5N PU on bottom.

[0056] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,
e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a
vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0057] Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data for the TUs of the CU. The PUs may
comprise pixel data in the spatial domain (also referred to as the pixel domain) and the
TUs may comprise coefficients in the transform domain following application of a
transform, e.g., a discrete cosine transform (DCT), an integer transform, a wavelet
transform, or a conceptually similar transform to residual video data. The residual data
may correspond to pixel differences between pixels of the unencoded picture and

prediction values corresponding to the PUs. Video encoder 20 may form the TUs

WO 2013/148466 PCT/US2013/033325
15

including the residual data for the CU, and then transform the TUSs to produce transform
coefficients for the CU.

[0058] Following any transforms to produce transform coefficients, video encoder 20
may perform quantization of the transform coefficients. Quantization generally refers to
a process in which transform coefficients are quantized to possibly reduce the amount of
data used to represent the coefficients, providing further compression. The quantization
process may reduce the bit depth associated with some or all of the coefficients. For
example, an n-bit value may be rounded down to an m-bit value during quantization,
where # 1s greater than m.

[0059] In some examples, video encoder 20 may utilize a predefined scan order to scan
the quantized transform coefficients to produce a serialized vector that can be entropy
encoded. In other examples, video encoder 20 may perform an adaptive scan. After
scanning the quantized transform coefficients to form a one-dimensional vector, video
encoder 20 may entropy encode the one-dimensional vector, e.g., according to context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), Probability
Interval Partitioning Entropy (PIPE) coding or another entropy encoding methodology.
Video encoder 20 may also entropy encode syntax elements associated with the encoded
video data for use by video decoder 30 in decoding the video data.

[0060] To perform CABAC, video encoder 20 may assign a context within a context
model to a symbol to be transmitted. The context may relate to, for example, whether
neighboring values of the symbol are non-zero or not. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.

Codewords in VLC may be constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to less probable symbols. In
this way, the use of VLC may achieve a bit savings over, for example, using equal-
length codewords for each symbol to be transmitted. The probability determination
may be based on a context assigned to the symbol.

[0061] Sample adaptive offset (SAO) coding is currently under consideration for
adoption into the HEVC standard. In general, the addition of offset values to pixels in a
video frame (e.g., a predictive frame for inter-prediction or intra-prediction) may
improve coding during illumination changes between frames of a video sequence, ¢.g.,
such as during flashes, a darkening sky, or other types of illumination changes between

frames. SAOQ filtering may also be used as a smoothing filtering to improve video

WO 2013/148466 PCT/US2013/033325
16

quality. Previous video coding standards, such as H.264, applied offset types and values
uniformly across entire blocks or frames of pixels. SAO techniques allow for different
offset values to be applied to different pixels (or blocks) depending on pixel (or block)
classification metrics. Possible classification metrics include activity metrics such as
edge metrics and band metrics. A description of offset classifications can be found in
C.-M. Fu, C.-Y. Chen, C.-Y. Tsai, Y.-W. Huang, S. Lei, “CE13: Sample Adaptive
Offset with LCU-Independent Decoding,” JCT-VC Contribution, E049, Geneva, Feb
2011, which is hereby incorporated by reference in its entirety.

[0062] In one example SAO implementation, each partition (which consists of a set of
LCUs) can have one of three offset types (also called pixel classification): no offset,
band classification based offset type 0/1, and edge classification based type 0/1/2/3.
Each band classification offset type has 16 possible offset values, while each edge
classification based type has 4 possible offset values. If one of these offset types is
chosen to be used for the partition, information indicating the corresponding offset type
and the offset values are sent to the decoder. The edge offset type classifies each pixel
based on edge information.

[0063] FIG. 3 is a conceptual diagram showing four possible edge offset types currently
proposed for HEVC. The edge-offset type classifies each pixel based on edge
information. For each of the edge classifications shown in FIG. 3, an edge type for the
current pixel is calculated by comparing the value of the current pixel (C) to the values
of neighboring pixels (1 and 2). For SAO edge offset of classification zero (SAO _

EO _0), the current pixel is compared to the left and right neighbor pixels. For SAO
edge offset of classification one (SAO_EO_1), the current pixel is compared to the top
and bottom neighbor pixels. For SAO edge offset of classification two (SAO_ EO _2),
the current pixel is compared to the upper left and bottom right neighbor pixels. For
SAO edge offset of classification three (SAO_ EO_3), the current pixel is compared to
the bottom left and upper right neighbor pixels.

[0064] Initially, the edge type of the current pixel is assumed to be zero. If the value of
current pixel C is equal to values of both the left and right neighbor pixels (1 and 2), the
edge type remains at zero. If the value of the current pixel C is greater than the value of
neighbor pixel 1, the edge type is increased by one. If the value of the current pixel C is
less than the value of neighbor pixel 1, the edge type is decreased by one. Likewise, if

the value of the current pixel C is less than the value of neighbor pixel 2, the edge type

WO 2013/148466 PCT/US2013/033325
17

is increased by one, and if the value of the current pixel C is less than the value of the
neighbor pixel 2, the edge type is decreased by 1.

[0065] As such, the current pixel C may have an edge type of either -2, -1, 0, 1, or 2.
The edge type is -2 if the value of current pixel C is less than both values of neighbor
pixels 1 and 2. The edge type is -1 if the value of current pixel C is less than one
neighbor pixel, but equal to the other neighbor pixel. The edge type is 0 if the value of
current pixel C is the same as both neighbor pixels, or if the value of current pixel C is
greater than one neighbor pixel, but less than the other neighbor pixel. The edge type is
1 if the value of the current pixel C is greater than one neighbor pixel, but equal to the
other neighbor pixel. The edge type is 2 if the value of the current pixel C is greater
than both values of neighbor pixels 1 and 2. For each non-zero edge type value, four
offset values are determined and signaled in the encoded video bitstream for use by a
decoder (i.e., eoffset 5, coffset 1, eoffset;, coffsety).

[0066] In view of the above description, for each edge offset classification, edge type
values may be computed with the following equations:

EdgeType = 0;

if (C > Pixel 1) EdgeType = EdgeType + 1;

if (C <Pixel 1) EdgeType = EdgeType - 1;

if (C > Pixel 2) EdgeType = EdgeType + 1;

if (C <Pixel 2) EdgeType = EdgeType - 1;

[0067] For band offset, pixels are classified into different bands based on intensity.
FIG. 6 is a conceptual diagram showing example bands based on intensity value.
[0068] For band offset classification, pixels are categorized into 32 bands. Thel6 bands
in the center are classified into one group and the remaining bands are classified into a
second group. For each group of bands, 16 offset values are determined and are
signaled in the encoded video bitstream for use by a video decoder (i.¢., boffsety, ...,
boffset;s).

[0069] SAO with LCU-based syntax has been proposed. This technique supports
picture-based SAO encoding for higher coding efficiency (bottom-up merge picture
quadtree) and LCU-based encoding for lower complexity or sub-picture latency. Each
LCU is allowed to change SAO parameters by sending its own SAO type and offsets.
In some examples of LCU-based SAO encoding, each LCU may only use causal data to
derive SAQ parameters. For example, LCUs to the right and bottom cannot be utilized

and neither can the last four pixel rows of each LCU due to deblocking.

WO 2013/148466 PCT/US2013/033325
18

[0070] Currently, in sample adaptive offset (SAO) filtering and adaptive loop filtering
(ALF), a merge syntax element (i.e., merge left or merge up) can be transmitted from
an encoder to a decoder to indicate if the filter parameters of a loop filter (e.g. an SAO
filter or an ALF) for a current group of video blocks are to be borrowed from the filter
parameters for a previously coded group of video blocks. Filter parameters can include,
for example, filter coefficients for ALFs and offset values for SAO filters, as well as
other information describing the filter. An example of other information describing a
filter may include, for example, a filtering type for an SAO filter. A merge left syntax
element may, for example, indicate if the filter parameters for a current group of video
blocks are to be copied from (i.c., borrowed or reused) the filter parameters for a
previously coded group of video blocks to the left of the current group, while a

merge up syntax element can indicate if the filter parameters for the current group of
video blocks are to be copied from filter parameters for a previously coded group of
video blocks located above the current group. If one of the merge types is not chosen
(i.e., the current parameters are not equal to the parameters for the left or upper already
coded group of video blocks), then loop filter on/off indicators and offsets/coefficients
are subsequently signaled. This ordering of signaling can, in some instances, require
redundant signaling of merge signals when a lot LCUs or partitions are not applying
filtering (or offset).

[0071] Tables 1 and 2 below show examples of the current signaling scheme for SAO
filtering using CABAC. In the examples of Tables 1 and 2, merge left and merge up
syntax elements are first transmitted from a video encoder and received by a video
decoder (as shown in Table 1), and then if merge left and merge up flags indicate that
the SAO filter parameters are not the same as the filter parameters for a left group of
video blocks or an upper group of video blocks, the SAO offset values are transmitted

from an encoder to a decoder as shown in Table 2.

WO 2013/148466 PCT/US2013/033325

19
sao_unit_cabac(rx, ry, cldx){ Descriptor
if(rx > 0 & & CtbAddrInSlice !=0)
sao_merge left flag ac(v)

if(!sao_merge left flag)
if(ry>0 & & (AddrUp>0 ||
slice loop filter across slices enabled flag))
sao_merge up flag ae(v)

if(!sao_merge up flag)

sao_offset cabac(rx, ry, cldx)

}

Table 1 An Example of the Current Signaling Scheme for SAO Filtering Using
CABAC

sao_offset cabac(rx, ry, cldx) { Descriptor
sao_type idx[cldx J[rx][ry] ae(v)
if(sao_type idx[cldx J[rx [[ry] ==5)
sao_band_position[cldx][rx][ry] ac(v)

if(sao_type idx[cldx J[rx][ry]!=0)
for(1=0;1<4;1++)
sao_offset] cldx J[rx][ry][1] ae(v)

Table 2 Another Example of the Current Signaling Scheme for SAO Filtering
Using CABAC
[0072] In Table 2, the sao_type idx element can have the following possible types (off/
EO(0/EO1/EO2/EOQ3/BO signaling), where “off” indicates no SAO filtering is to be
performed, EO indicates edge offset types, and BO indicates band offset types. As will
be explained in more detail below, techniques of this disclosure include signaling
whether the SAO filter is turned off prior to signaling the merge syntax elements.
[0073] Tables 3 and 4 below show examples of the current signaling scheme for ALF
using CABAC. Similar to Tables 1 and 2 described above, in the examples of Tables 3
and 4, merge left and merge up syntax elements are first transmitted from a video
encoder to a video decoder (as shown in Table 3), and then if merge left and merge up
flags indicate that the ALF parameters are not to be borrowed from the filter parameters
for a left group of video blocks or an upper group of video blocks, then an indication of
whether ALF is enabled for a particular LCU is signaled from encoder to decoder (see

e.g. alf lcu enable flag in Table 3). If the alf lcu enable flag indicates ALF is enabled

WO 2013/148466
20

for the LCU, then filter coefficients are transmitted from encoder to decoder as shown in

PCT/US2013/033325

Table 4. As will be explained in greater detail below, techniques of the present

disclosure include signaling the enable information prior to signaling the merge flags.

alf unit cabac(rx, ry, cldx){

if(rx > 0 & & CtbAddrInSlice !=0)

alf merge left flag

u(l)

if(lalf merge left flag)

if(ry>0 & & (AddrUp >0 ||
slice loop filter across slices enabled flag))

alf merge up flag

u(1)

if(lalf merge up flag)

{
alf Icu enable flag[cldx J[ry][rx]

u(1)

if (alf Icu enable flag[cldx J[ry][rx])

alf info(rx, ry, cldx)

}

}

Table 3 An Example of the Current Signaling Scheme for ALF Filtering Using

CABAC

WO 2013/148466 PCT/US2013/033325
21

alf info(rx, ry, cldx) { Descrip
tor

if(NumALFFiltersInStoredBuffer[cIdx] > 0)

alf new filter set flag u(l)

if(alf new filter set flag==0&&
NumALFFiltersInStoredBuffer[cIdx] > 0)

alf stored filter set idx| cldx] u(v)
else {
if(cldx==0) {
alf no filters minusl ue(v)
if(alf no filters minusl ==1)
alf start second filter ue(v)

else if(alf no filters minusl > 1)
for(i=1;1<15;i++)

alf filter pattern flag|cldx][ry|[rx][i] u(1)
if(alf no_filters minusl >0)
alf pred flag| cldx][ry || rx | u(1)
for(1=0; 1 <AlfNumFilters; i++)
alf nb pred luma flag| cldx [ry][rx][i] u(1)
if(AlfNumFilters > 1) {
alf min_kstart minusl ue(v)
for(i=1;1<4;it++)
alf golomb_index flag[i] u(l)

}
for(1=0; 1 <AlfNumFilters; i++)
for(j = 0; j < AlfCodedLength; j++)

alf filt coeffl cldx |[ry][rx][il][j] ge(v)
} else
for(j = 0; j < AlfCodedLength; j++)
alf filt coeff cldx J[ry][rx][O0]]j] se(v)
}
}

Table 4 Another Example of the Current Signaling Scheme for ALF Filtering
Using CABAC
[0074] According to techniques of the present disclosure, a syntax element indicating if
a loop filter (e.g. SAO or ALF) is enabled can be transmitted from encoder to decoder
prior to the merge syntax elements. Tables 5 and 6 show examples of how such
techniques might be implemented. In the example of Tables 5 and 6, an
sao_cnable flag indicating whether or not SAO is enabled for a group of video blocks
(e.g. an LCU or a partition) is first transmitted by an encoder and received by a decoder.
As shown in Table 5, if the sao_enable flag indicates SAO filtering is enabled, then one
or more merge syntax elements (e.g. merge left and merge up) can be transmitted. If
merge_left and merge up flags indicate that the SAO filter parameters are not the same

as the filter parameters for a left group of video blocks or an upper group of video

WO 2013/148466 PCT/US2013/033325
22

blocks, then the filter parameters can be signaled as shown in Table 6. In the example
of Tables 5 and 6, because the sao_enable flag already indicates whether or not SAO
filtering is turned on or off, the sao_type idx syntax element does not need to include a
“filtering off” indicator, thus potentially allowing for a bit savings when transmitting the

sao_type idx syntax element.

sao_unit_cabac(rx, ry, cldx){ Descript
or
sao_enable flag u(1)

if(sao_enable flag) {
if(rx > 0 & & CtbAddrInSlice !=0)
sao_merge left flag ac(v)

if(!sao_merge left flag)
if(ry>0 & & (AddrUp>0 ||
slice loop filter across slices enabled flag))
sao_merge up flag ae(v)

if(!sao_merge up flag)

sao_offset cabac(rx, ry, cldx)

Table 5 An Example Syntax Element indicating if a Loop Filter is Enabled

sao_offset cabac(rx, ry, cldx) { Descripto
r
sao_type_idx[cldx][rx][ry] ac(v)
if(sao_type idx[cldx J[rx [[ry] ==5)
sao_band_position[cldx][rx][ry] ac(v)

if(sao_type idx[cldx J[rx][ry]!=0)
for(1=0;1<4;1++)
sao_offset] cldx J[rx][ry][1] ae(v)

Table 6 Another Example Syntax Element indicating if a Loop Filter is Enabled

[0075] Tables 7 and 8 show additional examples of how the techniques of this
disclosure might be implemented for SAO filtering. In the examples of Tables 7 and §,
an sao_type idx syntax parameter is sent first before a merge syntax elements or new
offset values are sent. In instances where the sao_type idx syntax element indicates
SAOQ filtering is turned off, then merge syntax elements and offset values do no need to

be transmitted. In instances when sao_type idx syntax elements indicate SAO filtering

WO 2013/148466 PCT/US2013/033325
23

is turned on, then merge syntax elements can be transmitted in the manner described

above.
sao_unit_cabac(rx, ry, cldx){ Descript
or
sao_type idx[cldx J[rx][ry] ae(v)
if(sao_type idx[cldx [[rx][ry] !=0) {
if(rx > 0 & & CtbAddrInSlice '=0)
sao_merge left flag ac(v)
if(!sao_merge left flag)
if(ry>0 & & (AddrUp>0 ||
slice loop filter across slices enabled flag))
sao_merge up flag ae(v)
if(!sao_merge up flag)
sao_offset cabac(rx, ry, cldx)
}
}
Table 7 Another Example Implementation for SAO
sao_offset cabac(rx, ry, cldx) { Descripto
r

if(sao_type idx[cldx J[rx [[ry] ==5)
sao_band_position[cldx][rx][ry] ac(v)
if(sao_type idx[cldx J[rx][ry]!=0)
for(1=0;1<4;i++)
sao_offset] cldx J[rx][ry][1] ae(v)

Table 8 Another Example Implementation for SAO

[0076] Tables 9 and 10 show additional examples of how the techniques of this
disclosure might be implemented for ALF. As shown in Table 9, an

alf lcu enable flag is first transmitted to indicate whether or not ALF is turned on or
off for a group of video blocks. In the example of Table 9, the group of video blocks is
an LCU, but other groups may also be used. Ifthe alf lcu enable flag indicates ALF is
turned off for the LCU, then merge flags and other syntax elements identifying filter
parameters do not need to be signaled. If the alf lcu enable flag indicates ALF is

turned on for the LCU and the merge flags indicate that the ALF parameters are not the

WO 2013/148466 PCT/US2013/033325
24

same as the filter parameters for a left group of video blocks or an upper group of video

blocks, then filter coefficients can be signaled in the manner shown in Table 10.

alf unit cabac(rx, ry, cldx){
alf Icu_enable flag[cldx J[ry][rx] u(l)
if (alf_lcu_enable_flag[cldx][ry][rx]){
if(rx > 0 & & CtbAddrInSlice '=0)
alf_merge_left flag u(l)
if(lalf merge left flag)
if(ry>0 & & (AddrUp>0 ||
slice loop filter across slices enabled flag))
alf_merge up_flag u(l)

if(alf merge up flag)
{

if (alf lcu_enable flag[cldx J[ry][x])
alf info(rx, ry, cldx)

Table 9 An Example Implementation for ALF

WO 2013/148466 PCT/US2013/033325
25

alf info(rx, ry, cldx) { Descript
or

if(NumALFFiltersInStoredBuffer[cldx] > 0)

alf new filter set flag u(l)

if(alf new filter set flag==0 &&
NumALFFiltersInStoredBuffer[cldx] > 0)

alf stored filter set idx| cldx] u(v)
else {
if(cldxk==0) {
alf no filters minusl ue(v)
if(alf no filters minusl ==1)
alf start second filter ue(v)

else if(alf no_filters minusl > 1)

for(i=1;1<15;i++)

alf filter pattern flag| cldx][ry][rx][i] u(1)
if(alf no filters minusl >0)
alf pred flag| cldx][ry]| rx | u(1)
for(1=0; i <AlfNumFilters; i++)
alf nb pred luma flag| cldx |[ry][rx][i] u(1)
if(. AlfNumFilters > 1) {
alf min_kstart minusl ue(v)
for(i=1;1<4;i++)
alf golomb_index flag[i] u(l)

}

for(1=0; 1 <AlfNumFilters; i++)

for(j = 0; j < AlfCodedLength; j++)

alf filt coeff[cldx |[ry][rx|[i]]j] ge(v)
} else
for(j = 0; j < AlfCodedLength; j++)
alf filt coeff[cIdx J[ry][rx]J[O0]]j] se(v)
}
}

Table 10 Another Example Implementation for ALF

[0077] Tables 11 and 12 show additional examples of how the techniques of this
disclosure might be implemented for ALF. In the example of Tables 11 and 12, an

alf lcu enable flag is transmitted by a video decoder and received by a video encoder.
After the alf lcu_enable flag is signaled, an alf new _filter flag signals whether or not
new coefficients are sent. If the alf new filter flag indicates new filter coefficients are
to be send, then the filter coefficients are transmitted from encoder to decoder. If the
alf new filter flag indicates new filter coefficients are not to be sent, then another
syntax element, such as a merge flag or filter index, can be transmitted from encoder to

decoder to identify the filter coefficients that are to be used.

WO 2013/148466 PCT/US2013/033325
26

alf unit cabac(rx, ry, cldx){

alf lcu_enable flag[cldx][ry][rx] u(l)

if (alf_lcu_enable flag[cldx][ry][rx]){

if(NumALFFiltersInStoredBuffer[cldx] > 0)

alf new _filter_set flag u(l)

if (alf new filter set flag) alf info(rx, ry, cldx)

else {

if(rx > 0 & & CtbAddrInSlice !=0)

alf_merge left flag u(l)

if(lalf merge left flag)

if(ry>0 & & (AddrUp>0||
slice loop filter across slices enabled flag))

alf_merge up_flag u(l)

if(alf merge up flag)

{

if(alf new filter set flag==0 &&
NumALFFiltersInStoredBuffer[cldx] > 0)

alf stored_filter set idx[cldx] u(v)

Table 11 An Example Including alf lcu_enable flag

WO 2013/148466 PCT/US2013/033325

27
alf info(rx, ry, cldx) { Descript
or
if(cldxk==0) {
alf no_filters minusl ue(v)
if(alf no filters minusl ==1)
alf start second filter ue(v)
else if(alf no_filters minusl > 1)
for(i=1;1<15;i++)
alf filter pattern flag| cldx |[ry][rx][i] u(1)
if(alf no filters minusl >0)
alf pred flag| cldx][ry][rx] u(1)
for(1=0; i <AlfNumFilters; i++)
alf nb pred luma flag| cldx |[ry][rx][i] u(1)
if(. AlfNumFilters > 1) {
alf min kstart minusl ue(v)
for(i=1;1<4;i++)
alf golomb _index flag|i] u(l)
}
for(1=0; 1 <AlfNumFilters; i++)
for(j = 0; j < AlfCodedLength; j++)
alf filt coeff[cldx J[ry][rx][i][j] ge(v)
} else
for(j = 0; j < AlfCodedLength; j++)
alf filt coeff[cldx [[ry][rx][O0][] se(v)
}

Table 12 Another Example Including alf Icu enable flag

[0078] According to other examples, the alf enable flag and alf new _filter flag can be
combined as follows:

Example 1

alf enable new flag=0: off

alf enable new_ flag=1: on with new coefficients

alf enable new flag=2: on with merge or filter index

Example 2
alf enable new flag=0: off

alf enable new_ flag=1: on with new coefficients
alf enable new flag=2: on with merge

alf enable new flag=3: on with filter index

WO 2013/148466 PCT/US2013/033325
28

Example 3
alf enable new flag=0: off

alf enable new_ flag=1: on with new coefficients

alf enable new flag=2: on with filter index

alf enable new flag=3: on with merge
[0079] As discussed above, e.g. Table 5, it has been proposed to decouple the
sao_cnable flag (i.e., on/off information of SAO) to save sending merge left and

merge up flags when SAO is off for each LCU.

sao_unit_cabac(rx, ry, cldx){ Descriptor

sao_enable flag[rx][ry][cldx] u(l)
if(sao_enable flag[rx][ry][cldx]) {
if(rx>0){

if(CtbAddrInSlice =0 &&
Tileld[CtbAddrTS] = = Tileld[CtbAddrRStoTS[CtbAddrRS —1]1)
sao_merge_left_flag ae(v)

§
if(Isao_merge left flag) {

if{ry>0) {
if(((CtbAddrTS — CtbAddrRStoTS [CtbAddrRS- PicWidthInCtbs])
<= CtbAddrInSlice) &&
(TileId[CtbAddrTS]
= = Tileld[CtbAddrRStoTS[CtbAddrRS- PicWidthInCtbs] 1))
sao_merge_up_flag ae(v)

}

if(!sao_merge up flag)

sao_offset cabac(rx, ry, cldx)

Table 13 Another Example of Decoupling sao_enable flag to Save Sending
merge _left and merge up flags when SAO is off for each LCU.

[0080] In these cases, video encoder 20 need only send merge left or merge up flag
only when neighboring LCU has enabled SAO, by checking whether left or upper
LCU’s sao_enable flag is on or off. To remove a line buffer (i.e., memory for a row of
video information) needed to check the sao_enable flag of upper LCU, this disclosure
further proposes modified syntax as follows (i.e., requiring a check of only left LCU’s

sao_cnable flag).

WO 2013/148466 PCT/US2013/033325

29
Sao_unit_cabac(rx, ry, cIdx){ Descriptor
sao_enable flag[rx][ry][cldx] u(l)
if(sao_enable_flag[rx][ry][cldx]) {
if(rx>0){

if(CtbAddrInSlice 1= 0 &&
Tileld[CtbAddrTS] == Tileld[CtbAddrRStoTS[CtbAddrRS — 1]]
&& sao_enable flag[rx-1][ry][cIdx])
sao_merge_left_flag ae(v)

§
if(Isao_merge left flag) {

if{ry>0) {
if(((CtbAddrTS — CtbAddrRStoTS [CtbAddrRS- PicWidthInCtbs])
<= CtbAddrInSlice) &&
(Tileld[CtbAddrTS]
== Tileld[CtbAddrRStoTS[CtbAddrRS- PicWidthInCtbs]]) &&
sao_enable flag[rx][ry-1][cldx])
sao_merge_up_flag ae(v)

}

if(!sao_merge up flag)

sao_offset cabac(rx, ry, cldx)

Table 14 Send merge left or merge up flag Only When Neighboring LCU
Enables SAO

[0081] Furthermore, to remove the need for a line buffer for upper LCU row’s SAO
parameters, this disclosure further proposes to remove sao_merge up_flag itself,

which, in one example,leads to following syntax table.

Sao_unit_cabac(rx, ry, cIdx){ Descriptor
sao_enable flag[rx][ry][cldx] u(l)
if(sao_enable_flag[rx][ry][cldx]) {
if(rx>0){

if(CtbAddrInSlice 1= 0 &&
Tileld[CtbAddrTS] == Tileld[CtbAddrRStoTS[CtbAddrRS — 1]]
&& sao_enable flag[rx-1][ry][cIdx])
sao_merge_left_flag ae(v)

}

if(!sao_merge up flag)

sao_offset cabac(rx, ry, cldx)

Table 15 SAO Syntax with Removed sao_merge up flag

WO 2013/148466 PCT/US2013/033325
30

[0082] As illustrated in the example of Table 15, in some examples when SAO enabled,
an SAO merge mode may be limited to left CUs. In other words, some systems and
methods may limit merge mode for ALF to the left neighboring CU. In this way, ALF
information for the above CU may not need to be stored in a line buffer for use when
performing ALF on CUs from a row/line below. Such a system may only need to store
the CU immediately to the left of the current one.

[0083] An example method may include receiving a current video unit and a video unit
adjacent left to the current video unit, parsing the received syntax elements to determine
whether a type of filtering is enabled for the video unit adjacent left to the current video
unit, in response to determining that the type of filtering is enabled for the video unit
adjacent left to the current video block, determining whether to borrow a filter
parameter for the current video unit from a filter parameter for the adjacent left video
unit based on one or more merge syntax elements, and in direct response to determining
that the filter parameter for the current video unit is not borrowed from the filter
parameter for the adjacent left video unit, determining whether the filter parameter for
the current video unit is borrowed from a filter parameter for an adjacent upper video
unit based on the one or more merge syntax elements.

[0084] Another example method may include receiving a current video unit and a video
unit adjacent left to the current video unit, parsing the received syntax elements to
determine whether a type of filtering is enabled for the video unit adjacent left to the
current video unit, in response to determining that the type of filtering is enabled for the
video unit adjacent left to the current video unit, determining whether a filter parameter
for the current video unit is borrowed from a filter parameter for the adjacent left video
unit based on one or more merge syntax elements, and in response to determining that
the filter parameter for the current video unit is not borrowed from the filter parameter
for the adjacent left video unit, determining the filter parameter for the current video
unit without determining whether the filter parameter for the current video unit is
borrowed from a filter parameter for an adjacent upper video unit.

[0085] In the examples above, merge syntax elements (e.g. alf merge left or

alf merge up) be removed such that only a filter index (e.g. filter set idx) are used to
identify filters when new coefficients are not signaled. Additionally, the merge syntax
elements can be combined with the filter index to form a new syntax element, where
certain values of the new syntax element correspond to alf merge left or alf merge up

while other values correspond to filter indexes. For example, alf merge left flag can be

WO 2013/148466 PCT/US2013/033325
31

combined with alf stored filter set idx, where alf stored filter set idx=0 is
equivalent with alf merge left flag.

[0086] Some examples of the systems and methods described herein may relate to
Scalable Video Coding (SVC). SVC provides for the encoding of a high-quality video
bitstream that also contains one or more subset bitstreams. A subset video bitstream
may be derived by dropping packets from the larger video to reduce the bandwidth
required for the subset bitstream. The subset bitstream may represent a lower spatial
resolution (smaller screen), lower temporal resolution (lower frame rate), or lower
quality video signal. Similarly, some examples of the systems and methods described
herein may relate to Multiview Video Coding (MVC). MVC may be used to encoding
stereoscopic (two-view) video, as well as free viewpoint television and multi-view 3D
television.

[0087] An example of SVC is the SVC process described in annex G of the H.264/AVC
standard, which is hereby incorporated by reference in its entirety. SVC may be
developed for, and applied, to other coding standards, such as HEVC. In SVC, one or
more enhancement layers may be coded to augment a base layer, often to increase
spatial or temporal resolutions at which the video data may be displayed. That is, the
base layer may represent video data at a first low spatial or temporal resolution.
Additional enhancement layers may augment the base layer to increase the spatial or
temporal resolutions in comparison to the base layer. SVC may generally enable
forward compatibility for older hardware in that the same bitstream can be consumed by
basic video decoders that are capable of decoding a low resolution subset of the
bitstream (e.g., the base layer) while more advanced video decoders may be able to
decode the base layer in conjunction with additional layers to provide higher resolution
video data. Option 2 may be implemented with respect to SVC to enable codebooks to
be referenced by multiple layers. For example, codebooks from the base layer can be
used to predict codebooks for use in one or more enhancement layers (e.g., differential
prediction). In another example, the codebook used for the base layer may simply be
reused for one or more enhancement layers.

[0088] Multiview Video Coding (MVC) is a video coding process for coding multiple
views of video data. Like SVC, an example of an MVC process is defined as an annex
to H.264/AVC. More specifically, an MVC process is described in annex H of the
H.264/AVC standard, which is hereby incorporated by reference in its entirety. MVC
may be developed for, and applied, to other coding standards, such as HEVC. In MVC,

WO 2013/148466 PCT/US2013/033325
32

cach view corresponds to a different perspective, or angle, at which corresponding video
data of a common scene was captured. MVC provides for inter-view prediction
(meaning prediction between two different views) and intra-view prediction (meaning
prediction within the same view). Option 2 may be implemented with respect to MVC
to enable codebooks to be referenced by multiple views. For example, codebooks from
one view (e.g., a base view) can be used to predict the codebook to be used in one more
different views. In another example, the codebook used for the base view may simply
be reused for one or more other views.

[0089] In an example, an encoder may generate, for inclusion in an encoded bitstream,
an enable syntax element, wherein the enable syntax element indicates whether a loop
filter is turned on or turned off for a group of video blocks. The encoder may generate
one or more additional syntax elements identifying parameters for the loop filter for the
group of video blocks in response to the enable syntax element indicating the loop filter
is turned on for the group of video blocks. These parameters may be used in
conjunction with SVC and/or MVC, e.g., to turn on and off layers within an SVC video
stream or to for signaling in an SVC base layer to indicate that the other layers are
copies of the base layer. The parameters signaled may be used in conjunction with
MVC to indicate information regarding multiple views. For example, the parameters
may indicate if depth and/or multiple views are included in the bitstream. The
parameters may also indicate if textures are being used.

[0090] FIG. 5 is a block diagram illustrating an example video encoder 20 that may
implement the techniques described in this disclosure. Video encoder 20 may code an
SAO on/off flag that is signaled first (e.g., at the LCU level) to indicate whether SAO is
used for any blocks in the LCU. Video encoder 20 may, in another example, include an
ALF on/off flag that is signaled first (e.g., at the LCU level) to indicate whether SAO is
used for any blocks in the LCU.

[0091] In one example SAO implementation, each partition (which comprises a set of
LCUs) can have one of three offset types (also called pixel classification): no offset,
band classification based offset type 0/1, and edge classification based type 0/1/2/3.
Each band classification offset type has 16 possible offset values, while each edge
classification based type has four possible offset values. If one of these offset types is
chosen to be used for the partition, information indicating the corresponding offset type

and the offset values are sent to the decoder.

WO 2013/148466 PCT/US2013/033325
33

[0092] Accordingly, in one example of the disclosure, an SAO on/off flag may be
signaled first (e.g., at the LCU level) to indicate whether SAO is used for any blocks in
the LCU. In another example, an ALF on/off flag is signaled first (e.g., at the LCU
level) to indicate whether SAO is used for any blocks in the LCU. The signaling may
be performed by video encoder 20.

[0093] According to techniques of the present disclosure, a syntax element indicating if
a loop filter (e.g. SAO or ALF) is enabled may be transmitted from video encoder 20 to
video decoder 30 prior to the merge syntax elements. In the example, an
sao_cnable flag indicating whether or not SAO is enabled for a group of video blocks
(e.g. an LCU or a partition) is first transmitted by an encoder and received by a decoder.
If the sao_enable flag indicates SAO filtering is enabled, then one or more merge
syntax elements (e.g. merge left and merge up) can be transmitted. If merge left and
merge up flags indicate that the SAO filter parameters are not the same as the filter
parameters for a left video block or an upper video block, then the filter parameters can
be signaled. In an example, because the sao_enable flag already indicates whether or
not SAQ filtering is turned on or off, the sao_type idx syntax element does not need to
include a “filtering off” indicator, thus potentially allowing for a bit savings when
transmitting the sao_type idx syntax element.

[0094] Video encoder 20 may perform intra- and inter-coding of video blocks within
video slices. Intra-coding relies on spatial prediction to reduce or remove spatial
redundancy in video within a given video frame or picture. Inter-coding relies on
temporal prediction to reduce or remove temporal redundancy in video within adjacent
frames or pictures of a video sequence. Intra-mode (I mode) may refer to any of several
spatial based compression modes. Inter-modes, such as uni-directional prediction (P
mode) or bi-prediction (B mode), may refer to any of several temporal-based
compression modes.

[0095] In the example of FIG. 5, video encoder 20 includes a partitioning unit 35,
prediction module 41, reference picture memory 64, summer 50, transform module 52,
quantization unit 54, and entropy encoding unit 56. Video encoder 20 also includes
ALF unit 61 and SAO unit 63 to perform the SAO techniques described in this
disclosure. Prediction module 41 includes motion estimation unit 42, motion
compensation unit 44, and intra prediction unit 46. For video block reconstruction,
video encoder 20 also includes inverse quantization unit 58, inverse transform module

60, and summer 62. A deblocking filter (not shown in FIG. 5) may also be included to

WO 2013/148466 PCT/US2013/033325
34

filter block boundaries to remove blockiness artifacts from reconstructed video. If
desired, the deblocking filter would typically filter the output of summer 62.

[0096] Additional loop filters (in loop or post loop) may also be used in addition to the
deblocking filter. Furthermore, the ordering of loop filters shown in FIG. 5 constitutes
merely one example, as it is contemplated that other orderings might also be used.
[0097] As shown in FIG. 5, video encoder 20 receives video data, and partitioning unit
35 partitions the data into video blocks. This partitioning may also include partitioning
into slices, tiles, or other larger units, as wells as video block partitioning, e.g.,
according to a quadtree structure of LCUs and CUs. Video encoder 20 generally
illustrates the components that encode video blocks within a video slice to be encoded.
The slice may be divided into multiple video blocks (and possibly into sets of video
blocks referred to as tiles). Prediction module 41 may select one of a plurality of
possible coding modes, such as one of a plurality of intra coding modes or one of a
plurality of inter coding modes, for the current video block based on error results (e.g.,
coding rate and the level of distortion). Prediction module 41 may provide the resulting
intra- or inter-coded block to summer 50 to generate residual block data and to summer
62 to reconstruct the encoded block for use as a reference picture.

[0098] In an example, prediction module 41 may generate a syntax element indicating if
a loop filter (e.g. SAO or ALF) is enabled. Such a syntax element may be encoded by
entropy encoder unit 56. Accordingly, video encoder 20 may transmit the syntax
element to video decoder 30 prior to the merge syntax elements. In the example, an
sao_cnable flag indicating whether or not SAO is enabled for a group of video blocks
(e.g. an LCU or a partition) is first transmitted by an encoder and received by a decoder.
If the sao_enable flag indicates SAO filtering is enabled, then one or more merge
syntax elements (e.g. merge left and merge up) can be transmitted. If merge left and
merge up flags indicate that the SAO filter parameters are not the same as the filter
parameters for a left video block or an upper video block, then the filter parameters can
be signaled. In an example, because the sao_enable flag already indicates whether or
not SAQ filtering is turned on or off, the sao_type idx syntax element does not need to
include a “filtering off” indicator, thus potentially allowing for a bit savings when
transmitting the sao_type idx syntax element.

[0099] In an example video encoder 20 the prediction module 41 generates, for
inclusion in an encoded bitstream, an enable syntax element. The enable syntax element

indicates whether a loop filter is turned on or turned off for a group of video blocks.

WO 2013/148466 PCT/US2013/033325
35

The prediction module 41 also generates one or more additional syntax elements
identifying parameters for the loop filter for the group of video blocks in response to the
enable syntax element indicating the loop filter is turned on for the group of video
blocks. The video encoder 20 may also perform the loop filter for the group of video
blocks according to the enable syntax element

[0100] In some examples, the additional syntax elements include one or more merge
syntax elements. The one or more merge syntax elements indicate whether the
parameters for the loop filter for at least one block of the group of video blocks may be
set equal to parameters for the loop filter for a previous group of video blocks such that
the parameters for the loop filter are reused or borrowed from the parameters for the
loop filter for a previous group of video blocks.

[0101] In an example prediction module 41 generates, for inclusion in the encoded
bitstream, information for reconstructing a set of filter coefficients for the loop filter.
The loop filter may be an SAO filter in some examples. Additionally, prediction
module 41 may generate, for inclusion in the encoded bitstream, information for
reconstructing offset values for the loop filter. In some examples, prediction module 41
may generate, for inclusion in the encoded bitstream, an SAO type syntax element,
wherein the SAO type syntax element identifies a type of SAO filtering from a set of
types.

[0102] In an example, the loop filter includes an ALF filter and the prediction module
41 may generate, for inclusion in the encoded bitstream, a filter syntax element
signaling if information identifying new filter coefficients are present in the encoded
bitstream. In response to the filter syntax element signaling that information identifying
new filter coefficients is present in the encoded bitstream, generating, for inclusion in
the encoded bitstream, the information. In an example, in response to a new filter
syntax element signaling that information identifying new filter coefficients is not
present in the encoded bitstream, the prediction module may generate, for inclusion in
the encoded bitstream, one or more merge syntax elements and/or a filter index.

[0103] Intra prediction unit 46 within prediction module 41 may perform intra-
predictive coding of the current video block relative to one or more neighboring blocks
in the same frame or slice as the current block to be coded to provide spatial
compression. Motion estimation unit 42 and motion compensation unit 44 within

prediction module 41 perform inter-predictive coding of the current video block relative

WO 2013/148466 PCT/US2013/033325
36

to one or more predictive blocks in one or more reference pictures to provide temporal
compression.

[0104] Motion estimation unit 42 may be configured to determine the inter-prediction
mode for a video slice according to a predetermined pattern for a video sequence. The
predetermined pattern may designate video slices in the sequence as P slices, B slices or
GPB slices. Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference picture.

[0105] A predictive block is a block that is found to closely match the PU of the video
block to be coded in terms of pixel difference, which may be determined by sum of
absolute difference (SAD), sum of square difference (SSD), or other difference metrics.
In some examples, video encoder 20 may calculate values for sub-integer pixel positions
of reference pictures stored in reference picture memory 64. For example, video
encoder 20 may interpolate values of one-quarter pixel positions, one-eighth pixel
positions, or other fractional pixel positions of the reference picture. Therefore, motion
estimation unit 42 may perform a motion search relative to the full pixel positions and
fractional pixel positions and output a motion vector with fractional pixel precision.
[0106] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in reference picture memory 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

[0107] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation, possibly performing interpolations to sub-pixel precision. Upon
receiving the motion vector for the PU of the current video block, motion compensation
unit 44 may locate the predictive block to which the motion vector points in one of the
reference picture lists. Video encoder 20 forms a residual video block by subtracting

pixel values of the predictive block from the pixel values of the current video block

WO 2013/148466 PCT/US2013/033325
37

being coded, forming pixel difference values. The pixel difference values form residual
data for the block, and may include both luma and chroma difference components.
Summer 50 represents the component or components that perform this subtraction
operation. Motion compensation unit 44 may also generate syntax elements associated
with the video blocks and the video slice for use by video decoder 30 in decoding the
video blocks of the video slice.

[0108] Intra-prediction unit 46 may intra-predict a current block, as an alternative to
the inter-prediction performed by motion estimation unit 42 and motion compensation
unit 44, as described above. In particular, intra-prediction unit 46 may determine an
intra-prediction mode to use to encode a current block. In some examples, intra-
prediction unit 46 may encode a current block using various intra-prediction modes,
e.g., during separate encoding passes, and intra-prediction unit 46 (or mode select unit
40, in some examples) may select an appropriate intra-prediction mode to use from the
tested modes. For example, intra-prediction unit 46 may calculate rate-distortion values
using a rate-distortion analysis for the various tested intra-prediction modes, and select
the intra-prediction mode having the best rate-distortion characteristics among the tested
modes. Rate-distortion analysis generally determines an amount of distortion (or error)
between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bit rate (that is, a number of bits) used to
produce the encoded block. Intra-prediction unit 46 may calculate ratios from the
distortions and rates for the various encoded blocks to determine which intra-prediction
mode exhibits the best rate-distortion value for the block.

[0109] In any case, after selecting an intra-prediction mode for a block, intra-prediction
unit 46 may provide information indicative of the selected intra-prediction mode for the
block to entropy coding unit 56. Entropy coding unit 56 may encode the information
indicating the selected intra-prediction mode in accordance with the techniques of this
disclosure. Video encoder 20 may include in the transmitted bitstream configuration
data, which may include a plurality of intra-prediction mode index tables and a plurality
of modified intra-prediction mode index tables (also referred to as codeword mapping
tables), definitions of encoding contexts for various blocks, and indications of a most
probable intra-prediction mode, an intra-prediction mode index table, and a modified
intra-prediction mode index table to use for each of the contexts.

[0110] After prediction module 41 generates the predictive block for the current video

block via either inter-prediction or intra-prediction, video encoder 20 forms a residual

WO 2013/148466 PCT/US2013/033325
38

video block by subtracting the predictive block from the current video block. The
residual video data in the residual block may be included in one or more TUs and
applied to transform module 52. Transform module 52 transforms the residual video
data into residual transform coefficients using a transform, such as a discrete cosine
transform (DCT) or a conceptually similar transform. Transform module 52 may
convert the residual video data from a pixel domain to a transform domain, such as a
frequency domain.

[0111] Transform module 52 may send the resulting transform coefficients to
quantization unit 54. Quantization unit 54 quantizes the transform coefficients to
further reduce bit rate. The quantization process may reduce the bit depth associated
with some or all of the coefficients. The degree of quantization may be modified by
adjusting a quantization parameter. In some examples, quantization unit 54 may then
perform a scan of the matrix including the quantized transform coefficients.
Alternatively, entropy encoding unit 56 may perform the scan.

[0112] Following quantization, entropy encoding unit 56 entropy encodes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy encoding methodology or
technique. Following the entropy encoding by entropy encoding unit 56, the encoded
bitstream may be transmitted to video decoder 30, or archived for later transmission or
retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode the
motion vectors and the other syntax elements for the current video slice being coded.
[0113] Inverse quantization unit 58 and inverse transform module 60 apply inverse
quantization and inverse transformation, respectively, to reconstruct the residual block
in the pixel domain for later use as a reference block of a reference picture. Motion
compensation unit 44 may calculate a reference block by adding the residual block to a
predictive block of one of the reference pictures within one of the reference picture lists.
Motion compensation unit 44 may also apply one or more interpolation filters to the
reconstructed residual block to calculate sub-integer pixel values for use in motion
estimation. Summer 62 adds the reconstructed residual block to the motion
compensated prediction block produced by motion compensation unit 44 to produce a

reference block for storage in reference picture memory 64. The reference block may

WO 2013/148466 PCT/US2013/033325
39

be used by motion estimation unit 42 and motion compensation unit 44 as a reference
block to inter-predict a block in a subsequent video frame or picture.

[0114] In this manner, video encoder 20 of FIG. 3 represents an example of a video
encoder configured to generate, for inclusion in an encoded bitstream, an enable syntax
element, wherein the enable syntax element indicates whether a loop filter is turned on
or turned off for a group of video blocks; and, in response to the enable syntax element
indicating the loop filter is turned on for the group of video blocks, generating one or
more additional syntax elements identifying parameters for the loop filter for the group
of video blocks. The loop filter can be, for example, an adaptive loop filter (ALF) or a
sample adaptive offset (SAO) filter. The additional syntax elements can include one or
more merge syntax elements that indicate whether the parameters for the loop filter for
the group of video blocks may be set equal to parameters for the loop filter for a
previous group of video blocks such that the parameters for parameters for the loop
filter are reused or borrowed from the parameters for the loop filter for a previous group
of video blocks. When the loop filter is an ALF filter, video encoder 20 can generate,
for inclusion in the encoded bitstream information for reconstructing a set of filter
coefficients for the loop filter. When the loop filter is an SAO filter, video encoder 20
can generate, for inclusion in the encoded bitstream, information for reconstructing
offset values for the loop filter. When the loop filter is an SAO filter, video encoder 20
can generate, for inclusion in the encoded bitstream, an SAO type syntax element that
identifies a type of SAQ filtering from a set of types, wherein the set of types does not
include a “filtering off” type. When the loop filter comprises an ALF filter, video
encoder 20 can generate, for inclusion in the encoded bitstream, a new filter syntax
element signaling if information identifying new filter coefficients are present in the
encoded bitstream; and, in response to the new filter syntax element signaling that
information identifying new filter coefficients is present in the encoded bitstream,
generate, for inclusion in the encoded bitstream, the information. In response to the new
filter syntax element signaling that information identifying new filter coefficients is not
present in the encoded bitstream, video encoder 20 can generate, for inclusion in the
encoded bitstream, one or more merge syntax elements and/or a filter index.

[0115] When the loop filter is an ALF filter, a first value of the enable syntax element
can indicate the ALF is turned off, a second value for the enable syntax element can
indicate the ALF filter is turned on and the encoded bitstream includes information

identifying new filter coefficients, and a third value for the enable syntax element can

WO 2013/148466 PCT/US2013/033325
40

indicate the ALF filter is turned on and the encoded bitstream does not include
information identifying new filter coefficients. The third syntax element can indicate
filter coefficients for the ALF are being signaled via a merge syntax element. The third
syntax element can also indicate filter coefficients for the ALF are being signaled via a
filter index.

[0116] Video encoder 20 also represents an example of a video encoder configured to
generate, for inclusion in an encoded bitstream, an SAO type syntax element, wherein
the SAO type syntax element identifies a type of SAO filtering from a set of types,
wherein the set of types includes a “filtering off” type, and in response to the SAO type
syntax element identifying a type of SAO filtering other than the “filtering off” type,
generating, for inclusion in the encoded bitstream, one or more additional syntax
elements identifying parameters for an SAO filter for a group of video blocks. The
additional syntax elements can include one or more merge syntax elements that indicate
the parameters for the loop filter for the group of video blocks may be borrowed from
the parameters for the loop filter for a previous group of video blocks. Video encoder
20 can also generate, for inclusion in the encoded bitstream, offset values for the SAO
filter.

[0117] According to techniques of the present disclosure, a syntax element indicating if
a loop filter (e.g. SAO or ALF) is enabled can be transmitted from video encoder 20 to
video decoder 30 prior to the merge syntax elements. In an example, an
sao_cnable flag indicating whether or not SAO is enabled for a group of video blocks
(e.g. an LCU or a partition) is first transmitted by an encoder and received by a decoder.
If the sao_enable flag indicates SAO filtering is enabled, then one or more merge
syntax elements (e.g. merge left and merge up) can be transmitted. If merge left and
merge up flags indicate that the SAO filter parameters are not the same as the filter
parameters for a left video block or an upper video block, then the filter parameters can
be signaled. In an example, because the sao_enable flag already indicates whether or
not SAQ filtering is turned on or off, the sao_type idx syntax element does not need to
include a “filtering off” indicator, thus potentially allowing for a bit savings when
transmitting the sao_type idx syntax element.

[0118] In one example, the concept relates to the introduction of an SAO on/off flag
that may signaled first by source device 12 (e.g., at the LCU level) to indicate whether
SAO is used for any blocks in the LCU. In another example, the concept relates to the

WO 2013/148466 PCT/US2013/033325
41

introduction of an ALF on/off flag that is signaled first by source device 12 (e.g., at the
LCU level) to indicate whether SAO is used for any blocks in the LCU.

[0119] In one example SAO implementation, each partition (which comprises a set of
LCUs) can have one of three offset types (also called pixel classification): no offset,
band classification based offset type 0/1, and edge classification based type 0/1/2/3.
Each band classification offset type has 16 possible offset values, while each edge
classification based type has four possible offset values. If one of these offset types is
chosen to be used for the partition, information indicating the corresponding offset type
and the offset values are sent to the decoder.

[0120] FIG. 6 is a block diagram illustrating an example video decoder 30 that may
implement the techniques described in this disclosure. In the example of FIG. 6, video
decoder 30 includes an entropy decoding unit 80, prediction module 81, inverse
quantization unit 86, inverse transformation unit 88, summer 90, and reference picture
memory 92. Video decoder 30 also includes SAO unit 91 and ALF unit 93 to perform
the filtering techniques described in this disclosure. Prediction module 81 includes
motion compensation unit 82 and intra prediction unit 84. Video decoder 30 may, in
some examples, perform a decoding pass generally reciprocal to the encoding pass
described with respect to video encoder 20 from FIG. 5. As explained above with
reference to FIG. 5, additional loop filters may also be included in video decoder 30.
Also, the ordering of loop filters shown in FIG. 6 are merely one example, as other
orderings may also be used.

[0121] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 80 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors, and other
syntax elements. Entropy decoding unit 80 forwards the motion vectors and other
syntax elements to prediction module 81. Video decoder 30 may receive the syntax
elements at the video slice level and/or the video block level.

[0122] When the video slice is coded as an intra-coded (I) slice, intra prediction unit 84
of prediction module 81 may generate prediction data for a video block of the current
video slice based on a signaled intra prediction mode and data from previously decoded
blocks of the current frame or picture. When the video frame is coded as an inter-coded
(i.e., B, P or GPB) slice, motion compensation unit 82 of prediction module 81 produces

predictive blocks for a video block of the current video slice based on the motion

WO 2013/148466 PCT/US2013/033325
42

vectors and other syntax elements received from entropy decoding unit 80. The
predictive blocks may be produced from one of the reference pictures within one of the
reference picture lists. Video decoder 30 may construct the reference frame lists, List 0
and List 1, using default construction techniques based on reference pictures stored in
reference picture memory 92.

[0123] In an example, syntax element transmitted by video encoder 20 to video decoder
30, which may be transmitted prior to the merge syntax elements, may be processed by
entropy decoding unit 80 and provided to prediction module 81. In the example, an
sao_cnable flag indicating whether or not SAO is enabled for a group of video blocks
(e.g. an LCU or a partition) is first transmitted by video encoder 20 and received by
video decoder 30. If the sao_enable flag indicates SAQO filtering is enabled, then one or
more merge syntax elements (e.g. merge left and merge up) can be transmitted. If
merge_left and merge up flags indicate that the SAO filter parameters are not the same
as the filter parameters for a left video block or an upper video block, then the filter
parameters can be signaled. In an example, because the sao_enable flag already
indicates whether or not SAO filtering is turned on or off, the sao_type idx syntax
element does not need to include a “filtering off” indicator, thus potentially allowing for
a bit savings when transmitting the sao_type idx syntax element.

[0124] In an example video decoder 30 the entropy decoding unit 80 receives an
encoded bitstream that includes an enable syntax element. The enable syntax element
indicates whether a loop filter is turned on or turned off for a group of video blocks.
The entropy decoding unit 80 also receives one or more additional syntax elements
identifying parameters for the loop filter for the group of video blocks in response to the
enable syntax element indicating the loop filter is turned on for the group of video
blocks. Additionally, the video decoder may perform the loop filter for the group of
video blocks based on the received enable syntax element

[0125] In an example, the additional syntax elements comprise one or more merge
syntax elements, wherein the one or more merge syntax elements indicate whether the
parameters for the loop filter for at least one block of the group of video blocks are
reused from parameters for the loop filter for a previous group of video blocks.

[0126] In an example, entropy decoding unit 80 may receive an encoded bitstream,
including information for reconstructing a set of filter coefficients for the loop filter.
The received encoded bitstream may include information for reconstructing offset

values for the loop filter, an SAO type syntax element, wherein the SAO type syntax

WO 2013/148466 PCT/US2013/033325
43

clement identifies a type of SAO filtering from a set of types. The entropy decoding
unit 80 may receive an encoded bitstream that includes a filter syntax element signaling
if information identifying new filter coefficients are present in the encoded bitstream.
The received encoded bitstream may also include the information identifying new filter
coefficients is not present in the encoded bitstream, generating, for inclusion in the
encoded bitstream, one or more merge syntax elements and/or a filter index.

[0127] In an example, the loop filter comprises an ALF filter, and wherein a first value
of the enable syntax element indicates the ALF is turned off, a second value for the
enable syntax element indicates the ALF filter is turned on and the encoded bitstream
includes information identifying new filter coefficients, and a third value for the enable
syntax element indicates the ALF filter is turned on and the encoded bitstream does not
include information identifying new filter coefficients. The third value for the enable
syntax element indicates filter coefficients for the ALF are being signaled via a merge
syntax element. The third value for the enable syntax element indicates filter
coefficients for the ALF are being signaled via a filter index. These signaled signaled
via the merge syntax elements may be received by video decoder 30 and decoded by
entropy decoding unit 80.

[0128] Motion compensation unit 82 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive blocks for the current
video block being decoded. For example, motion compensation unit 82 uses some of
the received syntax elements to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an inter-prediction slice
type (e.g., B slice, P slice, or GPB slice), construction information for one or more of
the reference picture lists for the slice, motion vectors for each inter-encoded video
block of the slice, inter-prediction status for each inter-coded video block of the slice,
and other information to decode the video blocks in the current video slice.

[0129] Motion compensation unit 82 may also perform interpolation based on
interpolation filters. Motion compensation unit 82 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 82
may determine the interpolation filters used by video encoder 20 from the received

syntax elements and use the interpolation filters to produce predictive blocks.

WO 2013/148466 PCT/US2013/033325
44

[0130] Inverse quantization unit 86 inverse quantizes, i.c., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
80. The inverse quantization process may include use of a quantization parameter
calculated by video encoder 20 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied. Inverse transform module 88 applies an inverse transform, e.g., an inverse
DCT, an inverse integer transform, or a conceptually similar inverse transform process,
to the transform coefficients in order to produce residual blocks in the pixel domain.
[0131] After motion compensation unit 82 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
module 88 with the corresponding predictive blocks generated by motion compensation
unit 82. Summer 90 represents the component or components that perform this
summation operation. If desired, a deblocking filter may also be applied to filter the
decoded blocks in order to remove blockiness artifacts. Other loop filters (either in the
coding loop or after the coding loop) may also be used to smooth pixel transitions, or
otherwise improve the video quality. The decoded video blocks in a given frame or
picture are then stored in reference picture memory 92, which stores reference pictures
used for subsequent motion compensation. Reference picture memory 92 also stores
decoded video for later presentation on a display device, such as display device 32 of
FIG. 1.

[0132] In this manner, video decoder 30 of FIG. 6 represents an example of a video
encoder configured to receive in an encoded bitstream an enable syntax element,
wherein the enable syntax element indicates whether a loop filter is turned on or turned
off for a group of one or more video blocks; and, in response to the enable syntax
element indicating the loop filter is turned on for the group of video blocks, receiving
one or more additional syntax elements identifying parameters for the loop filter for the
group of video blocks. The loop filter may be, for example, an adaptive loop filter
(ALF) or a sample adaptive offset (SAO) filter. The additional syntax elements can
include one or more merge syntax elements that indicate whether the parameters for the
loop filter for the group of video blocks are reused from parameters for the loop filter
for a previous group of video blocks. When the loop filter is an ALF filter, video
decoder 30 can further receive information for reconstructing a set of filter coefficients

for the loop filter.

WO 2013/148466 PCT/US2013/033325
45

[0133] When the loop filter is an ALF filter, video decoder 30 can also receive a new
filter syntax element signaling if information identifying new filter coefficients are
present in the encoded bitstream; and, in response to the new filter syntax element
signaling that information identifying new filter coefficients is present in the encoded
bitstream, video decoder 30 can receive the information. In response to the new filter
syntax element signaling that information identifying new filter coefficients is not
present in the encoded bitstream, video decoder 30 can receive one or more merge
syntax elements and/or a filter index.

[0134] When the loop filter is an ALF filter, a first value of the enable syntax element
can indicate the ALF is turned off, a second value for the enable syntax element can
indicate the ALF filter is turned on and the encoded bitstream includes information
identifying new filter coefficients, and a third value for the enable syntax element can
indicate the ALF filter is turned on and the encoded bitstream does not include
information identifying new filter coefficients. The third value can indicate filter
coefficients for the ALF are being signaled via a merge syntax element. The third value
can also indicate filter coefficients for the ALF are being signaled via a filter index.
[0135] When the loop filter is an SAO filter, video decoder 30 can receive information
for reconstructing offset values for the loop filter. When the loop filter is an SAO filter,
video decoder 30 can also receive an SAQ type syntax element that identifies a type of
SAO filtering from a set of types that does not include a “filtering off” type.

[0136] Video decoder 30 also represents an example of a video encoder configured to
receive in an encoded bitstream an SAO type syntax element that identifies a type of
SAO filtering from a set of types. The set of types can include a “filtering off” type. In
response to the SAO type syntax element identifying a type of SAO filtering other than
the “filtering off” type, video decoder 30 can receive additional syntax elements
identifying parameters for an SAO filter for a group of one or more video blocks.
[0137] The additional syntax elements can include or more merge syntax elements that
indicate the parameters for the loop filter for the group of video blocks are borrowed
from the parameters for the loop filter for a previous group of video blocks. Video
decoder 30 can also receive offset values for the SAO filter.

[0138] FIG. 7 is a flowchart illustrating an example method in accordance with one or
more examples of this disclosure. In the illustrated example, a device for encoding
video, such as, for example, a video encoder 20 may generate, for inclusion in an

encoded bitstream, an enable syntax element. The enable syntax element may indicate

WO 2013/148466 PCT/US2013/033325
46

whether a loop filter is turned on or turned off for a group of video blocks (700). In one
example, one or more processors in video encoder 20 or other device for encoding
video, may be configured to generate an enable syntax element for inclusion in an
encoded bitstream. In an example, prediction module 41 may generate the syntax
clement.

[0139] In the illustrated example, the device for encoding video data, e.g., video
encoder 20 may generate one or more additional syntax elements identifying parameters
for the loop filter for the group of video blocks in response to the enable syntax element
indicating the loop filter is turned on for the group of video blocks (702). Again, in one
example, one or more processors in the device for encoding video, may be configured to
generate one or more additional syntax elements identifying parameters for the loop
filter for the group of video blocks in response to the enable syntax element indicating
the loop filter is turned on for the group of video blocks. In an example, prediction
module 41 may generate the syntax element.

[0140] According to techniques of the present disclosure, a syntax element indicating if
a loop filter (e.g. SAO or ALF) is enabled can be transmitted from encoder to decoder
prior to the merge syntax elements. Tables 5 and 6 show examples of how such
techniques might be implemented. An sao_enable flag indicating whether or not SAO
is enabled for a group of video blocks (e.g. an LCU or a partition) is first transmitted by
an encoder and received by a decoder. If the sao_enable flag indicates SAO filtering is
enabled, then one or more merge syntax elements (e.g. merge left and merge up) can
be transmitted. If merge left and merge up flags indicate that the SAO filter
parameters are not the same as the filter parameters for a left video block or an upper
video block, then the filter parameters can be signaled. In an example, because the
sao_cnable flag already indicates whether or not SAO filtering is turned on or off, the
sao_type idx syntax element does not need to include a “filtering off” indicator, thus
potentially allowing for a bit savings when transmitting the sao_type idx syntax
clement.

[0141] In some examples, the device for encoding video, e.g., video encoder 20, may
performing the loop filter for the group of video blocks according to the enable syntax
element (704). This may be performed by, for example, a device to for encoding video
data, e.g., video encoder 20. Again, in one example, one or more processors in the
device for encoding video, may be configured to generate information for reconstructing

a set of filter coefficients for the loop filter for inclusion in the encoded bitstream.

WO 2013/148466 PCT/US2013/033325
47

[0142] FIG. 8 is a flowchart illustrating an example method for a video decoder in
accordance with one or more examples of this disclosure. In the illustrated example, a
device for decoding video, such as, for example, a video decoder 30 may receive an
enable syntax element in an encoded bitstream. The enable syntax element may
indicate whether a loop filter is turned on or turned off for a group of video blocks
(800). In one example, one or more processors in video decoder 30 or other device for
decoding video, may be configured to decode an enable syntax element from an
encoded bitstream. In an example, entropy decoder 80 may decode the syntax element.
[0143] In the illustrated example, the device for decoding video data, e.g., video
decoder 30 may receive one or more additional syntax elements identifying parameters
for the loop filter for the group of video blocks in response to the enable syntax element
indicating the loop filter is turned on for the group of video blocks (802). Again, in one
example, one or more processors in the device for decoding video, may be configured to
generate one or more additional syntax elements identifying parameters for the loop
filter for the group of video blocks in response to the enable syntax element indicating
the loop filter is turned on for the group of video blocks. In an example, entropy
decoder 80 may generate the syntax element.

[0144] In some examples, the device for decoding video, e.g., video decoder 30, may
performing the loop filter for the group of video blocks based on the received enable
syntax element (804). This may be performed by, for example, a device to for decoding
video data, ¢.g., video decoder 30. Again, in one example, one or more processors in
the device for decoding video, may be configured to generate information for
reconstructing a set of filter coefficients for the loop filter for inclusion in the encoded
bitstream.

[0145] The techniques discussed above are not intended to be mutually exclusive, and
two or more techniques may be simultaneously implemented by a video encoder or
video decoder. For example, a video encoder or video decoder may include multiple
loop filters, such as both an SAQ filter unit and an ALF filter unit, and each loop filter
may implement one or more of the techniques of the described.

[0146] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.

Computer-readable media may include computer-readable storage media, which

WO 2013/148466 PCT/US2013/033325
48

corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, ¢.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0147] By way of example, and not limitation, such computer-readable storage media
can comprisc RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0148] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or

software modules configured for encoding and decoding, or incorporated in a combined

WO 2013/148466 PCT/US2013/033325
49

codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0149] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0150] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2013/148466 PCT/US2013/033325
50

WHAT IS CLAIMED IS:

1. A method of decoding video, the method comprising:

receiving an enable syntax element in an encoded bitstream, wherein the enable
syntax element indicates whether a loop filter is turned on or turned off
for a group of video blocks;

receiving one or more additional syntax elements identifying parameters for the
loop filter for the group of video blocks in response to the enable syntax
element indicating the loop filter is turned on for the group of video
blocks; and

performing the loop filter for the group of video blocks based on the received

enable syntax element.

2. The method of claim 1, wherein the loop filter is an adaptive loop filter
(ALF).

3. The method of claim 1, wherein the loop filter is a sample adaptive offset
(SAO) filter.

4. The method of claim 1, wherein the additional syntax elements comprise

one or more merge syntax elements, wherein the one or more merge syntax elements
indicate whether the parameters for the loop filter for at least one block of the group of
video blocks are reused from parameters for the loop filter for a previous group of video

blocks.

5. The method of claim 1, wherein the loop filter is an ALF filter, the
method further comprising:
receiving information for reconstructing a set of filter coefficients for the
loop filter in the encoded bitstream; and
reconstructing the set of filter coefficients for the loop filter based on the

received information.

WO 2013/148466 PCT/US2013/033325
51

6. The method of claim 1, wherein the loop filter is an SAO filter, the
method further comprising:

receiving information for reconstructing offset values for the loop filter in the
encoded bitstream; and

reconstructing the set of filter coefficients for the loop filter based on the

received information.

7. The method of claim 1, wherein the loop filter is an SAO filter, the
method further comprising:
receiving an SAO type syntax element in the encoded bitstream, wherein the

SAO type syntax element identifies a type of SAO filtering from a set of
types.

8. The method of claim 1, wherein the loop filter comprises an ALF filter,
the method further comprising;:
receiving a filter syntax element in the encoded bitstream signaling if
information identifying new filter coefficients are present in the encoded
bitstream; and

receiving the information defining the new filter coefficients.

9. The method of claim 8, further comprising:
receiving one or more merge syntax elements and/or a filter index in a bitstream
in response to a new filter syntax element signaling that information

identifying new filter coefficients is not present in the encoded bitstream.

10. The method of claim 1, wherein the loop filter comprises an ALF filter,
and wherein a first value of the enable syntax element indicates the ALF is turned off, a
second value for the enable syntax element indicates the ALF filter is turned on and the
encoded bitstream includes information identifying new filter coefficients, and a third
value for the enable syntax element indicates the ALF filter is turned on and the

encoded bitstream does not include information identifying new filter coefficients.

WO 2013/148466 PCT/US2013/033325
52

11. The method of claim 10, wherein the third value for the enable syntax
element indicates filter coefficients for the ALF are being signaled via a merge syntax

element.

12. The method of claim 10, wherein the third value for the enable syntax

element indicates filter coefficients for the ALF are being signaled via a filter index.

13. The method of claim 1, wherein at least one of the parameters are used in
conjunction with Scalable Video Coding (SVC) to turn on and off layers within an SVC

video stream.

14. The method of claim 1, wherein at least one of the parameters from an

SVC base layer is copied to at least one other layer.

15. The method of claim 1, wherein at least one of the parameters are used in
conjunction with Multiview Video Coding (MVC) to indicate if depth is included in the

bit stream or if multiple views are included in the bitstream.

16. The method of claim 1, further comprising reusing the signaled enable
signal and parameters signaled in a base texture view for other views or for a depth

frame.

17. The method of claim 1, further comprising:

receiving a current video unit and a video unit adjacent left to the current video
unit;

parsing the received syntax elements to determine whether a type of filtering is
enabled for the video unit adjacent left to the current video unit;

in response to determining that the type of filtering is enabled for the video unit
adjacent left to the current video block, determining whether to borrow a filter
parameter for the current video unit from a filter parameter for the adjacent left video
unit based on one or more merge syntax elements; and

in direct response to determining that the filter parameter for the current video
unit is not borrowed from the filter parameter for the adjacent left video unit,

determining whether the filter parameter for the current video unit is borrowed from a

WO 2013/148466 PCT/US2013/033325
53

filter parameter for an adjacent upper video unit based on the one or more merge syntax

elements.

18. The method of claim 1, further comprising:

receiving a current video unit and a video unit adjacent left to the current video
unit;

parsing the received syntax elements to determine whether a type of filtering is
enabled for the video unit adjacent left to the current video unit;

in response to determining that the type of filtering is enabled for the video unit
adjacent left to the current video unit, determining whether a filter parameter for the
current video unit is borrowed from a filter parameter for the adjacent left video unit
based on one or more merge syntax elements; and

in response to determining that the filter parameter for the current video unit is
not borrowed from the filter parameter for the adjacent left video unit, determining the
filter parameter for the current video unit without determining whether the filter
parameter for the current video unit is borrowed from a filter parameter for an adjacent

upper video unit.

19. A device for decoding video comprising;:
a processor configured to:
receive an enable syntax element in an encoded bitstream, wherein the
enable syntax element indicates whether a loop filter is turned on
or turned off for a group of video blocks; and
receive one or more additional syntax elements identifying parameters
for the loop filter for the group of video blocks in response to the
enable syntax element indicating the loop filter is turned on for
the group of video blocks; and
perform the loop filter for the group of video blocks based on the

received enable syntax element.

20. The device of claim 19, wherein the loop filter is an adaptive loop filter

(ALF).

WO 2013/148466 PCT/US2013/033325

54

21. The device of claim 19, wherein the loop filter is a sample adaptive
offset (SAO) filter.

22. The device of claim 19, wherein the additional syntax elements comprise

one or more merge syntax elements, wherein the one or more merge syntax elements
indicate whether the parameters for the loop filter for at least one block of the group of

video blocks are reused from parameters for the loop filter for a previous group of video
blocks.

23. The device of claim 19, wherein the loop filter is an ALF filter, the
device further configured to receive information for reconstructing a set of filter
coefficients for the loop filter in the encoded bitstream; and

reconstruct the set of filter coefficients for the loop filter based on the received

information.

24, The device of claim 19, wherein the loop filter is an SAO filter, the
device further configured to receive information for reconstructing offset values for the
loop filter in the encoded bitstream; and reconstruct the set of filter coefficients for the

loop filter based on the received information.

25. The device of claim 19, wherein the loop filter is an SAO filter, the
device further configured to receive an SAO type syntax element in the encoded
bitstream, wherein the SAO type syntax element identifies a type of SAO filtering from
a set of types.

26. The device of claim 19, wherein the loop filter comprises an ALF filter,
the device further configured to:
receive a filter syntax element in the encoded bitstream signaling if information
identifying new filter coefficients are present in the encoded bitstream;
and

receive the information defining the new filter coefficients.

WO 2013/148466 PCT/US2013/033325
55

27. The device of claim 26, the device further configured to:
receive one or more merge syntax elements and/or a filter index in a bitstream in
response to a new filter syntax element signaling that information

identifying new filter coefficients is not present in the encoded bitstream.

28. The device of claim 19, wherein the loop filter comprises an ALF filter,
and wherein a first value of the enable syntax element indicates the ALF is turned off, a
second value for the enable syntax element indicates the ALF filter is turned on and the
encoded bitstream includes information identifying new filter coefficients, and a third
value for the enable syntax element indicates the ALF filter is turned on and the

encoded bitstream does not include information identifying new filter coefficients.

29. The device of claim 28, wherein the third value for the enable syntax
element indicates filter coefficients for the ALF are being signaled via a merge syntax

element.

30. The device of claim 28, wherein the third value for the enable syntax

element indicates filter coefficients for the ALF are being signaled via a filter index.

31. The device of claim 19, wherein at least one of the parameters are used in
conjunction with Scalable Video Coding (SVC) to turn on and off layers within an SVC

video stream.

32. The device of claim 19, wherein at least one of the parameters from an

SVC base is copied to at least one other layer.

33. The device of claim 19, wherein at least one of the parameters are used in
conjunction with Multiview Video Coding (MVC) to indicate if depth is included in the

bit stream or if multiple views are included in the bitstream.

34. The device of claim 19, the device further configured to reuse the
signaled enable signal and parameters signaled in a base texture view for other views or

for a depth frame.

WO 2013/148466 PCT/US2013/033325
56

35. The device of claim 19, wherein the processor is further configured to:

receive a current video unit and a video unit adjacent left to the current video
unit;

parsing the received syntax elements to determine whether a type of filtering is
enabled for the video unit adjacent left to the current video unit;

in response to determination that the type of filtering is enabled for the video
unit adjacent left to the current video block, determine whether a filter parameter for the
current video unit is borrowed from a filter parameter for the adjacent left video unit
based on the one or more merge syntax elements; and

in direct response to determination that the filter parameter for the current video
unit is not borrowed from the filter parameter for the adjacent left video unit, determine
whether the filter parameter for the current video unit is borrowed from a filter
parameter for an adjacent upper video unit based on the one or more merge syntax

elements.

36. The device of claim 19, wherein the processor is further configured to:

receive a current video unit and a video unit adjacent left to the current video
unit;

parsing the received syntax elements to determine whether a type of filtering is
enabled for the video unit adjacent left to the current video unit;

in response to determination that the type of filtering is enabled for the video
unit adjacent left to the current video unit, determine whether a filter parameter for the
current video unit is borrowed from a filter parameter for the adjacent left video unit
based on the one or more merge syntax elements; and

in response to determination that the filter parameter for the current video unit is
not borrowed from the filter parameter for the adjacent left video unit, determine the
filter parameter for the current video unit without determining whether the filter
parameter for the current video unit is borrowed from a filter parameter for an adjacent

upper video unit.

37. A method of encoding video, the method comprising:
generating, for inclusion in an encoded bitstream, an enable syntax element,
wherein the enable syntax element indicates whether a loop filter is

turned on or turned off for a group of video blocks;

WO 2013/148466 PCT/US2013/033325
57

generating one or more additional syntax elements identifying parameters for the
loop filter for the group of video blocks in response to the enable syntax
element indicating the loop filter is turned on for the group of video
blocks; and

performing the loop filter for the group of video blocks according to the enable

syntax element.

38. The method of claim 37, wherein the loop filter is an adaptive loop filter
(ALF).

39. The method of claim 37, wherein the loop filter is a sample adaptive
offset (SAO) filter.

40. The method of claim 37, wherein the additional syntax elements
comprise one or more merge syntax elements, wherein the one or more merge syntax
elements indicate whether the parameters for the loop filter for at least one block of the
group of video blocks are reused from parameters for the loop filter for a previous group

of video blocks.

41. The method of claim 37, wherein the loop filter is an ALF filter, the
method further comprising:
generating, for inclusion in the encoded bitstream, information for

reconstructing a set of filter coefficients for the loop filter.

42. The method of claim 37, wherein the loop filter is an SAO filter, the
method further comprising:
generating, for inclusion in the encoded bitstream, information for

reconstructing offset values for the loop filter.

43. The method of claim 37, wherein the loop filter is an SAO filter, the
method further comprising:
generating, for inclusion in the encoded bitstream, an SAO type syntax element,
wherein the SAO type syntax element identifies a type of SAO filtering

from a set of types.

WO 2013/148466 PCT/US2013/033325
58

44. The method of claim 37, wherein the loop filter comprises an ALF filter,
the method further comprising;:

generating, for inclusion in the encoded bitstream, a filter syntax element
signaling if information identifying new filter coefficients are present in
the encoded bitstream; and

in response to the filter syntax element signaling that information identifying
new filter coefficients is present in the encoded bitstream, generating, for
inclusion in the encoded bitstream, the information defining the new

filter coefficients.

45. The method of claim 44, further comprising:

in response to a new filter syntax element signaling that information identifying
new filter coefficients is not present in the encoded bitstream, generating,
for inclusion in the encoded bitstream, one or more merge syntax

elements and/or a filter index.

46. A device for encoding video comprising:
a processor configured to:
generate, for inclusion in an encoded bitstream, an enable syntax
element, wherein the enable syntax element indicates whether a
loop filter is turned on or turned off for a group of video blocks;
generate one or more additional syntax elements identifying parameters for the
loop filter for the group of video blocks in response to the enable syntax
element indicating the loop filter is turned on for the group of video
blocks; and
performing the loop filter for the group of video blocks according to the enable

syntax element.

47. The device of claim 46, wherein the loop filter is an adaptive loop filter
(ALF).

48. The device of claim 46, wherein the loop filter is a sample adaptive
offset (SAO) filter.

WO 2013/148466 PCT/US2013/033325
59

49. The device of claim 46, wherein the additional syntax elements comprise
one or more merge syntax elements, wherein the one or more merge syntax elements
indicate whether the parameters for the loop filter for at least one block of the group of

video blocks are reused from parameters for the loop filter for a previous group of video
blocks.

50. The device of claim 46, wherein the loop filter is an ALF filter, the
device further configured to generate, for inclusion in the encoded bitstream,

information for reconstructing a set of filter coefficients for the loop filter.

51. The device of claim 46, wherein the loop filter is an SAO filter, the
device further configured to generate, for inclusion in the encoded bitstream,

information for reconstructing offset values for the loop filter.

52. The device of claim 46, wherein the loop filter is an SAO filter, the
device further configured to generate, for inclusion in the encoded bitstream, an SAO
type syntax element, wherein the SAO type syntax element identifies a type of SAO

filtering from a set of types.

53. The device of claim 46, wherein the loop filter comprises an ALF filter,
the device further configured to:
generate, for inclusion in the encoded bitstream, a filter syntax element signaling
if information identifying new filter coefficients are present in the
encoded bitstream; and
in response to the filter syntax element signaling that information identifying
new filter coefficients is present in the encoded bitstream, generating, for

inclusion in the encoded bitstream, the information.

54. The device of claim 53, further comprising:

in response to a new filter syntax element signaling that information identifying
new filter coefficients is not present in the encoded bitstream, generating,
for inclusion in the encoded bitstream, one or more merge syntax

elements and/or a filter index.

WO 2013/148466 PCT/US2013/033325
60

55. A computer-readable storage medium comprising instructions that, when
executed, cause a processor to:

generate, for inclusion in an encoded bitstream, an enable syntax element,
wherein the enable syntax element indicates whether a loop filter is
turned on or turned off for a group of video blocks;

generate one or more additional syntax elements identifying parameters for the
loop filter for the group of video blocks in response to the enable syntax
element indicating the loop filter is turned on for the group of video
blocks; and

perform the loop filter for the group of video blocks according to the enable

syntax element.

56. The computer-readable storage medium of claim 55, wherein the loop

filter is an adaptive loop filter (ALF).

57. The computer-readable storage medium of claim 55, wherein the loop

filter is a sample adaptive offset (SAO) filter.

58. The computer-readable storage medium of claim 55, wherein the
additional syntax elements comprise one or more merge syntax elements, wherein the
one or more merge syntax elements indicate whether the parameters for the loop filter
for at least one block of the group of video blocks are reused from parameters for the

loop filter for a previous group of video blocks.

59. The computer-readable storage medium of claim 55, further comprising
instructions causing the one or more processors to generate, for inclusion in the encoded

bitstream, information for reconstructing a set of filter coefficients for the loop filter.

60. The computer-readable storage medium of claim 55, further comprising
instructions causing the one or more processors to generate, for inclusion in the encoded

bitstream, information for reconstructing offset values for the loop filter.

WO 2013/148466 PCT/US2013/033325
61

61. A device of encoding video, the device comprising:

means for generating, for inclusion in an encoded bitstream, an enable syntax
element, wherein the enable syntax element indicates whether a loop
filter is turned on or turned off for a group of video blocks;

means for generating one or more additional syntax elements identifying
parameters for the loop filter for the group of video blocks in response to
the enable syntax element indicating the loop filter is turned on for the
group of video blocks; and

means for performing the loop filter for the group of video blocks according to

the enable syntax element.

62. The device of claim 61, wherein the loop filter is an adaptive loop filter
(ALF).

63. The device of claim 61, wherein the loop filter is a sample adaptive
offset (SAO) filter.

64. The device of claim 61, wherein the additional syntax elements comprise

one or more merge syntax elements, wherein the one or more merge syntax elements
indicate whether the parameters for the loop filter for at least one block of the group of
video blocks are reused from parameters for the loop filter for a previous group of video

blocks.

65. The device of claim 61, wherein the loop filter is an ALF filter, the
device further comprising;:
means for generating, for inclusion in the encoded bitstream, information

for reconstructing a set of filter coefficients for the loop filter.

66. The device of claim 61, wherein the loop filter is an SAO filter, the
device further comprising;:
means for generating, for inclusion in the encoded bitstream, information for

reconstructing offset values for the loop filter.

WO 2013/148466 PCT/US2013/033325
62

67. A method of decoding video, the method comprising:
receiving in an encoded bitstream an enable syntax element, wherein the
enable syntax element indicates whether a loop filter is turned on
or turned off for a group of one or more video blocks;
in response to the enable syntax element indicating the loop filter is
turned on for the group of video blocks, receiving one or more
additional syntax elements identifying parameters for the loop

filter for the group of video blocks.

68. A method of coding video, the method comprising:

determining whether a type of filtering is enabled for a video unit
adjacent left to a current video unit;

in response to determining that the type of filtering is enabled for the
video unit adjacent left to the current video block, determining
whether a filter parameter for the current video unit is equal to a
filter parameter for the adjacent left video unit; and

in direct response to determining that the filter parameter for the current
video unit is not equal to the filter parameter for the adjacent left
video unit, determining whether the filter parameter for the
current video unit is equal to a filter parameter for an adjacent

upper video unit.

WO 2013/148466

SOURCE DEVICE
12

VIDEO SOURCE
18

l

VIDEO
ENCODER
20

l

OUTPUT
INTERFACE
22

Page1/9

— e— e— — —

l

| STORAGE |
| DEVICE L—

| 34

— —— — |

PCT/US2013/033325

Yy

FIG. 1

DESTINATION DEVICE
14

DISPLAY DEVICE
32

T

VIDEO
DECODER
30

T

INPUT INTERFACE
28

WO 2013/148466 PCT/US2013/033325

Page 2/9

250
—
ROOT
NODE
252
LEAF LEAF LEAF
NODE N;ﬂE NODE NODE
256A £22 256B 256C
LEAF LEAF LEAF LEAF
NODE NODE NODE NODE
258A 258B 258C 258D
FIG. 2A
272
- 274
R L
| |
: 278A | 278B :
276A | |
| |
I| 278C 278D ||
| |
U ————— J
276B 276C

FIG. 2B

WO 2013/148466

Page 3/9

PCT/US2013/033325

O
XS =
() S s g
= s 5
O o £ 8
O
O O
® e
NE e
X O
m 5
% L
o 5
= " LCI3
Si2 8 &
Ol o (D
- - o
O O
5
5 | 5
5
5 5

FIG. 2D

WO 2013/148466 PCT/US2013/033325

Page 4/9

1
1 C 2 C
2

SAO_EO 0 SAO_EO_1

1 1
C C
2 2
SAO_EO 2 SAO_EO_3

FIG. 3

WO 2013/148466 PCT/US2013/033325

Page 5/9
center
0 max
LLOL it
Seconél group Firsvt group Seconél group
(offset type 1) (offset type 0) (offset type 1)

FIG. 4

PCT/US2013/033325

Page 6/9

WO 2013/148466

‘ais3y

_ 0¢c l
_ ¥3IAOIN3 03 AIA _
| 29 |
| wlm wlm a SMO00149 O3dIA |
_ 1INN 1INN 31NAONW d31INYLSNOOIN €9 _
— P

| | oniaooNa [| NOILYZILNYND WYO4SNVYL wv_oo._mu_u LINNOVS | |
“ AdOY1IN3 ISUIANI ISUIANI ey 5% e _
| A ‘NODIY LINN - "
| NOILOIa3yd 19 _
| VLN tz:« 41V |
“ 7 "
_ 1INN 79 |
_ NOILVSNIdINOD | | ¢ | Avowaw |
_ NOILOW FUNLOId |
_ H 43y _
| ¢ € A% |
| SINIWITI XVLNAS LINN |
_ < NOILVIILST _
“ NOILOI _
_ r "
| "AOW NOILOIa3ud |
_ 0S _
| SANosSNVEL VS & N ge |
| vNaIS3y 1INN ITNAON . $»001a 03aIA 1lINN Ali
_ Q3ZILNVNO NOILVZILNVNO INYOASNVYL | gy9018 ONINOILILIVC | o3diA
|

PCT/US2013/033325

WO 2013/148466

Page 7/9

88 98
- ® | Inaow || LINN
oaan | LLINN Ovs INHO4SNVAL NOLLVZILNVNO

a3qoo3a | h 06 $)1007d ASUIANI ISHUIANI

_ IvNnais3y 7'y

_ %

| LLLnn 2w

. 2

| - LINN

NOILOIQ3¥d 44309

| | Auowaw 34300

| | 3un1o [valini

_ 43y — —

| e 08

| -

NOILVSNIdINOD

_ SIN3INTTI XVLNAS ONIQod3d

_ NOILOW AdONLN3

| 78

| QOW NOLLOIaT¥d o

I

d33d0933d O3dIA

1INN —

Wv3ylislig
O3daiA
a3aodNd

WO 2013/148466

PCT/US2013/033325

Page 8/9

GENERATE AN ENABLE SYNTAX
ELEMENT THAT INDICATES
WHETHER A LOOP FILTER IS

700
TURNED ON OR TURNED OFF FOR A /
GROUP OF VIDEO BLOCKS

GENERATE ONE OR MORE
ADDITIONAL SYNTAX ELEMENTS
IDENTIFYING PARAMETERS FOR THE 702

LOOP FILTER FOR THE GROUP OF /
VIDEO BLOCKS IN RESPONSE TO
THE ENABLE SYNTAX ELEMENT

INDICATING THE LOOP FILTER IS
TURNED ON FOR THE GROUP OF

VIDEO BLOCKS

l

PERFORM THE LOOP FILTER FOR

704
THE GROUP OF VIDEO BLOCKS /-
ACCORDING TO THE ENABLE

SYNTAX ELEMENT

FIG. 7

WO 2013/148466 PCT/US2013/033325

Page 9/9

RECEIVE AN ENABLE SYNTAX
ELEMENT THAT INDICATES
WHETHER A LOOP FILTER IS 800
TURNED ON OR TURNED OFF FOR A /
GROUP OF VIDEO BLOCKS

RECEIVE ONE OR MORE ADDITIONAL
SYNTAX ELEMENTS IDENTIFYING
PARAMETERS FOR THE LOOP 802
FILTER FOR THE GROUP OF VIDEO /-
BLOCKS IN RESPONSE TO THE
ENABLE SYNTAX ELEMENT
INDICATING THE LOOP FILTER IS

TURNED ON FOR THE GROUP OF
VIDEO BLOCKS

l

PERFORMING THE LOOP FILTER FOR 804
THE GROUP OF VIDEO BLOCKS /
BASED ON THE RECEIVED ENABLE
SYNTAX ELEMENT

FIG. 8

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/033325

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4N7/26
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4N

Minimum documentation searched {classification system followed by classification symbols)

Documentation searshed other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X C-Y CHEN ET AL: "CE8.a.4:

LCU-based syntax",

URL:
no. JCTVC-HO274,

One-stage/Two-stage SAO and ALF with

8. JCT-VC MEETING; 99. MPEG MEETING;
1-2-2012 - 10-2-2012; SAN JOSE; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
ISO/1EC JTC1/SC29/WG11 AND ITU-T SG.16);

HTTP://WFTP3.1TU. INT/AV-ARCH/JCTVC-SITE/,,

20 January 2012 (2012-01-20), XP030111301,
paragraph [02.1] - paragraph [02.4]

1-66

-/--

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" documentwhich may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or sannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

'&" document member of the same patent family

Date of the actual completion of the international search

4 June 2013

Date of mailing of the international search report

13/06/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswilk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Oelbaum, Tobias

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/033325

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category” | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

C-Y CHEN ET AL: "CE8 Subset2: A Joint
Proposal on Improving the Adaptive Loop
Filter in TMuC0.9 by MediaTek, Qualcomm,
and Toshiba",

4, JCT-VC MEETING; 95. MPEG MEETING;
20-1-2011 - 28-1-2011; DAEGU; (JOINT
COLLABORATIVE TEAM ON VIDEQO CODING OF
1SO/I1EC JTC1/SC29/WG11AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-D119,

15 January 2011 (2011-01-15), XP030008159,
ISSN: 0000-0015

paragraph [02.5]

C-M FU ET AL: "Sample Adaptive Offset
with LCU-based Syntax",

6. JCT-VC MEETING; 97. MPEG MEETING;
14-7-2011 - 22-7-2011; TORINO; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
1SO/I1EC JTC1/SC29/WG11 AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-FO56, 15 July 2011 (2011-07-15),
XP030009079,

the whole document

YURI VATIS ET AL: "Syntax of adaptive
filter coefficients in the KTA reference
model",

32. VCEG MEETING; 80. MPEG MEETING;
23-4-2007 - 27-4-2007; SAN JOSE;(VIDEO
CODING EXPERTS GROUP OF ITU-T SG.16),,

no. VCEG-AF09, 2 May 2007 (2007-05-02),
XP0O30003530,

ISSN: 0000-0068

Table on page 4

C-Y CHEN ET AL: "CE8.a.l: One-stage SAOQ
and ALF with LCU-based syntax",

8. JCT-VC MEETING; 99. MPEG MEETING;
1-2-2012 - 10-2-2012; SAN JOSE; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
1SO/1EC JTC1/SC29/WG11 AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-HO272,

20 January 2012 (2012-01-20), XP030111299,
paragraph [02.1] - paragraph [02.4]

1-66

1-66

1,19,37,
46,55,
61,67,68

1-66

Form PCT/ISA210 (continuation of second sheet) [Aptil 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - wo-search-report
	Page 75 - wo-search-report

