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Figure 7 
(A) Motric fluctuation for vpr, on Input 

  



U.S. Patent Aug. 3, 2010 Sheet 8 of 12 US 7,770,153 B2 

Figure 9 
1) Struct s linked Vptr * insert in Vptr list 
2) (struct s linked Vptr * head, void * vptr. to add) { 
3) struct s linked Vptr linked Vptr; 
4) linked Vptr = (struct s linked vptr *) 
5) my malloc (sizedf (struct s linked vptr)); 
6) //linked vptr->data vptr = vptr. to add; /* Bug! */ 
7) linked vptr->next = head; 
8) return (linked Vptr) ; 
9) 

( 
( 
( 
( 
( 
( 
( 
( 
(9) 

Figure 10 

The dotted edges do not appear in the heapergraph of the buggy version of ver 

Figure 11 
Metrics for buggy vpr 

righters 

  

  



U.S. Patent Aug. 3, 2010 Sheet 9 of 12 

Figure 12 
SCCs. Mean size 
SCCs. Median size 11 
SCCs. Mode size 11 
Indecree 1 
OutdegreeO 0.217, 0.445 
Outdecree.1 0.047, 0.214 
Outdecree=2 0.071, 0.264 

Violation? 

Figure 16 
Violation? 

SCCs. Median size (1,1) 
SCCs. Mode size 1 
Indeqree=1 0.650, 0.910 
Outdeqree=1 0.281, 0.361 
Outdeqree-F2 0.324, 0.352 

Figure 21 
Metric Normal Range Bug Violation? ud2 Violation? 

O 

US 7,770,153 B2 

SCCS: Mode size 
0.388, 0.682 

Outded ree=1 0.148, 0.412 

#Edges/iWertices 1849, 4.644) 
0.424, 0.763 

One 0.635, 0.837 

SCCs. Mean size 1, 1.047 O 
SCCs: Median size 1,1 O O 

1 O 

Outdegree F2 0.035, 0.236 yes no 

  

  

    

  

  

  



U.S. Patent Aug. 3, 2010 Sheet 10 of 12 US 7,770,153 B2 

Figure 13 
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Figure 17 
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HEAP-BASED BUG IDENTIFICATION USING 
ANOMALY DETECTION 

TECHNICAL FIELD 

The field relates to dynamic program analysis, and tools 
therefor. 

BACKGROUND 

As defined by Microsoft(R) Computer Dictionary, Fourth 
Edition, Microsoft Press (1999), the heap is a portion of 
memory in a computer that is reserved for a program to use for 
the temporary storage of data structures whose existence or 
size cannot be determined until the program is running. To 
build and use such elements, programming languages such as 
C and Pascal include functions and procedures for requesting 
free memory from the heap, accessing it, and freeing it when 
it is no longer needed. In contrast to stack memory, heap 
memory blocks are not freed in reverse of the order in which 
they were allocated, so free blocks may be interspersed with 
blocks that are in use. As the program continues running, the 
blocks may have to be moved around so that small free blocks 
can be merged together into larger ones to meet the programs 
needs. 

Modern Software packages allocate and manage a vast 
amount of information on the heap. Object oriented lan 
guages such as Java and C# almost exclusively use the heap to 
represent and manipulate complex data structures. The grow 
ing importance of the heap necessitates detection and elimi 
nation of heap-based bugs. These bugs often manifest them 
selves in different forms, such as dangling pointers, memory 
leaks, and inconsistent data structures. 

Unfortunately, heap-based bugs are hard to detect. The 
effect of these bugs is often delayed, and may be apparent 
only after significant damage has been done to the heap. In 
Some cases, the effect of the bug may not be apparent. For 
instance, a dangling pointerbug does not crash the program 
unless the pointer in question is dereferenced, and on occa 
Sion, may not cause a crash even then. Consequently, Software 
testing is not very effective at identifying heap-based bugs. 
Because of the non-deterministic nature of heap-based bugs, 
even if the buggy Statement is executed on a test run, it is not 
always guaranteed to crash the program, or produce unex 
pected results. Moreover, the effect of heap-based bugs is 
often delayed, as a result of which testing does not reveal the 
root-cause of the bug. 

Static analysis techniques, such as shape analysis (see, e.g., 
M. Sagiv. T. W. Reps, and R. Wilhelm, “Parametric Shape 
Analysis Via 3-Valued Logic. ACM Trans. Prog. Lang. Syst. 
(TOPLAS), 24(3):217-298, May 2002), overcome these limi 
tations. They examine all valid code paths, and can also 
provide Soundness guarantees about the results of the analy 
sis. Shape analysis has enjoyed Success at determining the 
correctness of, or finding bugs in algorithms that manipulate 
heap data structures. However, in spite of recent advances 
(such as described by B. Hackett and R. Rugina, “Region 
Based Shape Analysis With Tracked Locations.” Proc. 32nd 
Symp. On Princ. of Prog. Lang. (POPL), January 2005; and E. 
Yahav and G. Ramalingam, “Verifying Safety Properties 
Using Separation And Heterogeneous Abstractions.” Proc. 
ACM SIGPLAN Conf. On Prog. Lang. Design and Impl. 
pages 25-34, June 2004), shape analysis algorithms are 
expensive, and apply only to limited classes of data struc 
tures, and properties to be checked on them. Moreover, the 
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2 
results of static analysis, while Sound, are often overly con 
servative, and over approximate the possible set of heap con 
figurations. 
On the other hand, dynamic analysis techniques have the 

advantage of precisely capturing the set of heap configura 
tions that arise. Several dynamic analysis tools have been 
developed to detect special classes of heap-based bugs. (See, 
e.g., T. M. Chilimbi and M. Hauswirth, “Low-Overhead 
Memory Leak Detection Using Adaptive Statistical Profiling, 
Proc. 11th Intl. Conf. On Arch. Support for Prog. Lang, and 

Op. Sys. (ASPLOS), pages 156-164, October 2004; B. Dem 
sky and M. Rinard, “Automatic Detection And Repair Of 
Errors In Data Structures.” Proc. 18th ACM SIGPLAN Conf. 
on Object-Oriented Prog., Systems, Lang. and Appls. (OOP 
SLA), pages 78-95, October 2003; R. Hastings and B. Joyce, 
“Purify: Fast Detection Of Memory Leaks And Access 
Errors.” Winter USENIX Conference, pages 125-136, January 
1992; and N. Nethercote and J. Seward, “Valgrind: A Program 
Supervision Framework.” Elec. Notes in Theor: Comp. Sci. 
(ENTCS), 89(2), 2003.) However, there has been relatively 
little research at understanding the runtime behavior of the 
heap, and applying this information for bug finding. 

SUMMARY 

The following description details various techniques and 
tools for analyzing heap behavior of a program, and finding 
heap-related bugs. An exemplary implementation of a runt 
ime tool constructs and Summarizes heap behavior, and uses 
anomaly detection to find heap-based bugs. The tool analyzes 
heap behavior during execution of a program to identify rela 
tively stable properties. The tool then detects the occurrence 
of anomalies deviating from the observed properties, which 
may lead to finding bugs. 
More particularly, the exemplary implementation of the 

runtime tool discovers stable properties of the heap-graph, 
which is a directed graph with objects on the heap as vertexes. 
An edge is drawn from vertex u to vertex v if the object 
corresponding to u points to the object corresponding to V. 
The runtime tool further computes a suite of metrics, such 

as the size and number of connected components, the ratio of 
Vertexes with in-degree out-degree, and the ratio of leaves 
and roots, which are sensitive to the structure of the heap 
graph. It computes these metrics periodically as the program 
executes, thus capturing the evolving nature of the heap 
graph. A key hypothesis of this technique is that in spite of the 
evolving nature of the heap, several properties of the heap 
graph remain relatively stable. Experimental results using 
several benchmarks empirically show that this hypothesis 
holds in practice. The intuition behind this is that program 
mers implicitly maintain several invariants overheap proper 
ties to manage the complexity of the heap, which, unlike code, 
has no tangible, programmer-visible representations. The sta 
bility of the heap-graph is reflected quantitatively in the val 
ues of the metrics, several of which remain stable as well. 
These metrics serve as a “signature' of the heap behavior of 
a program, and their range determines the set of values that 
arise during normal execution of the program. 
The runtime tool uses these metrics with an anomaly detec 

tor to find bugs. Metrics computed over an execution of the 
program are compared against the normal range; if a metric 
goes out of range, it is an indication that something is wrong. 
The runtime tool does not require a formal specification of 
correct behavior to be specified by the programmer in 
advance; the tool automatically mines stable properties of the 
heap, and uses these as specifications of correct behavior. 
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Additional features and advantages of the invention will be 
made apparent from the following detailed description of 
embodiments that proceeds with reference to the accompa 
nying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a data flow diagram of a software analysis tool 
utilizing anomaly detection to identify heap-based bugs in a 
computer program. 

FIG. 2 is a diagram illustrating two examples of a heap 
graph constructed by the tool of FIG. 1 to model heap behav 
ior of a program. 

FIG. 3 is a bar chart of experimental results illustrating 
stability of all heap locations for a set of benchmark pro 
grams. 

FIG. 4 is a bar chart of experimental results illustrating 
stability of pointer-valued heap locations for the set of bench 
mark programs. 

FIG. 5 is a table of average and standard deviation for the 
rates of change of the ratio of pointer-valued heap locations 
that store NULL and non-NULL constant values. 

FIG. 6 is a pair of graphs of two degree-based metrics 
resulting from two inputs applied on a benchmark program. 

FIG. 7 is a pair of graphs of the fluctuation of the metrics 
shown in FIG. 6. 

FIG. 8 is a table of average and standard deviation for the 
distributions in FIG. 7. 

FIG. 9 is a source code listing of a portion of a benchmark 
program having an injected bug. 

FIG. 10 is a heap-graph produced by the analysis tool of 
FIG. 1 for an execution of the buggy benchmark program of 
FIG. 9. 

FIG. 11 is a graph of several globally stable metrics iden 
tified by the analysis tool of FIG. 1 for the execution of the 
buggy benchmark program of FIG. 9. 

FIG. 12 is a table of the globally stable metrics, their 
normal range and anomaly detected information generated by 
the analysis tool of FIG. 1 for the execution of the buggy 
benchmark program of FIG. 9. 

FIG. 13 is a source code listing of a portion of a benchmark 
program having an injected bug. 

FIG. 14 is a heap-graph produced by the analysis tool of 
FIG. 1 for an execution of the buggy benchmark program of 
FIG. 13. 

FIG. 15 is a graph of globally stable metrics identified by 
the analysis tool of FIG. 1 for the execution of the buggy 
benchmark program of FIG. 13. 

FIG. 16 is a table of the globally stable metrics, their 
normal range and anomaly detected information generated by 
the analysis tool of FIG. 1 for the execution of the buggy 
benchmark program of FIG. 13. 

FIG. 17 is a source code listing of a portion of a benchmark 
program having an injected bug. 

FIG. 18 is a heap-graph produced by the analysis tool of 
FIG. 1 for an execution of the buggy benchmark program of 
FIG. 17. 

FIG. 19 is a source code listing of a portion of a benchmark 
program having an injected bug. 

FIG. 20 is a heap-graph produced by the analysis tool of 
FIG. 1 for an execution of the buggy benchmark program of 
FIG. 19. 

FIG. 21 is a table of globally stable metrics, their normal 
range and anomaly detected information generated by the 
analysis tool of FIG. 1 for the execution of the buggy bench 
mark programs of FIGS. 17 and 19. 
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4 
FIG. 22 is a block diagram of a Suitable computing envi 

ronment for implementing the Software analysis tool utilizing 
anomaly detection to identify heap-based bugs of FIG. 1. 

DETAILED DESCRIPTION 

The following description is directed to techniques for 
identifying heap-based bugs in a program using anomaly 
detection. More particularly, an exemplary implementation 
of a runtime tool described herein models evolving heap 
behavior to discover stable heap properties for a program. The 
runtime tool then detects anomalous behavior of the program 
that deviates from these observed stable properties, so as to 
aid in finding heap-based bugs. 

1. Overview of Runtime Tool For Heap-based Bug Identifi 
cation Using Anomaly Detection 

With reference to FIG. 1, an exemplary software analysis 
tool 100 for heap-based bug identification using anomaly 
detection employs a two-phase design. The first phase, a 
model constructor 110, builds a model of expected program 
behavior. The second phase, an execution checker 120, com 
pares execution traces of the program against the model, and 
raises an alarm if a trace deviates from the model. 
The tool 100 can be designed to operate in various ways, 

based upon the interaction of the two phases discussed above: 
1. A first design, typically meant for long-running pro 

grams, uses the model constructor and execution checker 
simultaneously. It builds a model of the program using the 
model constructor 110 as the program executes on an input, 
and uses the execution checker 120 to verify the current state 
of the program against the model built so far. Thus, the model 
evolves as execution proceeds. It learns stable ranges of heap 
properties, and checks that the heap properties at any point 
during the execution remains within this expected stable 
range. If it detects a violation, it raises an alarm, and refines 
the model to accommodate the case that caused the violation. 

2. In a second design, the model constructor 110 first builds 
a model of the program’s behavior (e.g., during a trial or 
reference execution of the program). This model is then used 
to check Subsequent execution of the program in an online 
fashion. That is, the execution of the program is continuously 
monitored against the model, and an alarm is raised if the 
execution violates the model. 

3. The third design, typically meant for post-mortem analy 
sis, compares an execution trace in an offline fashion against 
a model of the program’s behavior, and detects locations in 
the execution trace where the model was violated. This design 
offers the advantage of having the entire execution trace for 
analysis against the model. The implementation of the tool 
used for the experimental results described below employs 
this design. As demonstrated in the results discussed below, 
offline analysis of execution traces produced by this tool can 
be used to identify the first instance of an anomaly, and hence 
be used to localize the root-cause of the bug. The offline 
analysis can also use the information available in the entire 
trace, thus potentially reducing the “cascade-effect', where a 
single mistake in the analysis leads to a large number of false 
positives. 

In alternative implementations, the tool may be modified to 
accommodate the first or the second design using sampling 
techniques, such as those described by T. M. Chilimbi and M. 
Hauswirth, “Low-Overhead Memory Leak Detection Using 
Adaptive Statistical Profiling.” Proc. 11th Intl. Conf. On Arch. 
Support for Prog. Lang, and Op. Sys. (ASPLOS), pages 156 
164, October 2004; and B. Liblit, A. Aiken, A.X. Zheng, and 
M.I. Jordan, “Bug Isolation Via Remote Program Sampling.” 
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Proc. ACM SIGPLAN Conf. On Prog. Lang. Design and Impl. 
(PLDI), pages 141-154, June 2003. 
1.1 Building Models of Heap Behavior 
The model constructor 110 computes a suite of metrics on 

the heap-graph at several points during the execution of the 
program. The metrics computed by the model constructor 110 
are sensitive to the properties of the heap-graph; conse 
quently, changes to the heap-graph manifest as changes in the 
values of metrics. The model constructor 110 uses values of 
metrics gathered over executions of the program on a training 
set 132, and identifies the normal range of a subset of these 
metrics. The execution checker 120 identifies runs of the 
program in which metrics violate the normal range, and 
marks them as erroneous. 

There are several challenges to appropriately modeling 
heap behavior that are addressed in an exemplary implemen 
tation of the model constructor 110, including the following. 

1. Evolving nature of the heap. As a program runs, it allo 
cates and deallocates memory from the heap. Consequently, 
the number of objects on the heap, as well as the connectivity 
of these objects differs at different program points. Accord 
ingly, the model of the heap desirably captures the heap's 
evolving nature. 

In one implementation of the tool 100 described below, the 
metrics computed by the model constructor 110, such as the 
number and mean size of connected components, degree of 
Vertexes and ratio of leaves and roots, are sensitive to the 
structure of the heap-graph. Because the model constructor 
110 computes these metrics periodically at several points 
during the program’s execution, it captures the evolving 
nature of the heap-graph. 

2. Sensitivity to the inputs of the program. Different inputs 
to the program may induce different heap configurations. 
Consequently, several heap configurations are possible at a 
single point of the program. Accordingly, the model of the 
heap desirably Summarizes heap configurations that can arise 
at a particular program point. 

Because the below described implementation of the model 
constructor 110 constructs models using metric reports from 
runs of the program on inputs drawn from a training set, it 
models sensitivity of the program to its inputs. 

3. Size of the heap. Heap-intensive programs create a large 
number of objects on the heap. Given that several heap con 
figurations can arise at a program point based upon the input 
to the program, a model that stores all the con-figurations of 
the heap at each program point can become impractical, espe 
cially for heap-intensive programs. Firstly, it is challenging to 
construct and represent such a model in a scalable way. Sec 
ondly, the execution checker 120, which compares an actual 
execution trace against this model, also has to work efficiently 
and Scalably to handle Such programs. Hence, the model 
constructor preferably provides a Succinct and Scalable Sum 
marization of heap configurations. 
The exemplary implementation of the model constructor 

110 described below does not store the exact set of configu 
rations of the heap-graph that can arise at each program-point. 
The metrics it computes, which are sensitive to the heap 
graphs properties, serve as a Succinct Summary of possible 
heap-graph configurations. 

4. Sensitivity of the models. A model that captures only a 
Subset of the possible heap configurations that arise at a 
program point is an under approximation. Because the tool 
100 infers the heap configurations that can arise by executing 
the program on inputs from a training set, the model con 
structed is necessarily an under approximation. An under 
approximation will identify all execution traces that result in 
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6 
erroneous heap configurations at a program point. However, 
legitimate heap configurations could still be marked errone 
ous, thus resulting in false-positives. 
On the other hand, a model that over approximates the 

possible set of heap configurations captures a Superset of the 
possible heap configurations at each program point. While 
such a model will never report a false-positive, it could allow 
execution traces that result in buggy heap configurations, thus 
resulting in false negatives (i.e., missed bugs). 
As discussed later, the model constructed in the exemplary 

implementation of the tool 100 neither under approximates 
nor over approximates the set of heap configurations. Conse 
quently, the execution checker 120 can produce both false 
positives and false-negatives. With program analysis tools 
that find bugs, false-positives are generally considered a big 
ger problem than false-negatives, because a large number of 
false-positives overwhelm the user of the tool. The model 
constructed by the model constructor 110 consolidates sev 
eral metric reports, and identifies the normal range of “stable' 
metrics. The tool 100 can miss bugs because a buggy execu 
tion can still produce metric values within the normal range. 
However, we have observed that violation of the normal range 
of metrics correlate closely to real bugs, thus the tool pro 
duces few false-positives. 

In the exemplary implementation, the metrics computed by 
the tool’s model constructor 110 can be broadly divided into 
three categories (Table 1 shows the list of metrics computed in 
this exemplary implementation), although the architecture of 
the model constructor allows other metrics to be easily added 
in the future. Each metric described in Table 1 is computed at 
several program points during the run of the program on each 
input from a training set. 

TABLE 1 

Metrics Computed by Tool. 

Classification Metrics 

Connectivity 
based 

(a) Mean, (b) Median, and (c) Mode sizes of, and 
(d) number of connected and strongly connected 
components. 
Ratio of vertexes in the heap-graph with: (a) 
outdegree = 0 (leaves), (b) outdegree = 1, 
(c) outdegree = 2, (d) indegree = 0 (roots), 
(e) indegree = 1, and (f) indegree = 
outdegree, and the ratio of edges to vertices in 
the heap-graph. 
Ratio of heap locations, both pointer-valued and 
otherwise, that, during their lifetime, store: (a) 
only the value Zero (NULL), (b) a constant non 
Zero value, (c) two non-zero values, and (d) many 
non-zero values. 

Degree-based 

Value-based 

Ideally, the tool 100 would compute the metrics each time 
the heap-graph changes because of addition or deletion of 
vertexes, or addition, deletion or modification of edges. How 
ever, doing so would lead to an unacceptable performance 
penalty because the metrics have to be recomputed poten 
tially after every program Statement that modifies the heap. 
Consequently, the model constructor 110 computes metrics 
periodically at certain pre-defined program points, called 
metric computation points. In the exemplary implementation 
of the tool 100, these are function entry-points and function 
exits. As the program executes, metrics are computed once for 
every frametric computation points encountered, where frcis 
a user-specified frequency. 
The model constructed by the tool 100 is neither an under 

approximation nor an over approximation of the heap's 
behavior. For each input from the training set 132, the model 
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constructor computes a Suite of metrics on the heap-graph at 
several program points. The use of metrics only captures 
certain properties of the heap-graph, and hence results in loss 
of information because the heap-graph cannot be recon 
structed uniquely using the metrics observed. Thus, the Suite 
of metrics for each run is an over approximation of the set of 
possible configurations of the heap-graph. On the other hand, 
because the tool uses inputs from a training set, it observes a 
Subset of the possible set of heap configurations. Hence, a 
model constructed by computing metrics on the heap con 
figurations that arise on inputs from a training set neither 
under approximates nor over approximates the set of correct 
configurations. 
1.2 Implementation of the Analysis Tool 

FIG. 1 shows the architecture of the analysis tool 100. The 
model constructor 110 has three main components: a binary 
instrumenter 130, an execution logger 140, and a metric Sum 
marizer 150. 
The binary instrumenter 130 processes the executable of 

the program being analyzed (e.g., "input.exe 115) and adds 
instrumentation that exposes the addition, modification and 
removal of objects in the heap to the execution logger. It 130 
instruments allocator and deallocator functions, such as mal 
loc, realloc and free, to record the addresses and the sizes of 
objects allocated on the heap. In addition, the binary instru 
menter 130 also instruments instructions which write to 
objects on the heap. Each write instruction is instrumented to 
record the address of the object being writtento, and the value 
written to that address. In an exemplary implementation of 
the tool 100, the binary instrumenter 130 is built using a 
binary transformation tool, such as Vulcan (described by A. 
Edwards, A. Srivastava, and H. Vo, “Vulcan: Binary transfor 
mation in a distributed environment. Technical Report 2001 
50, Microsoft Research, April 2001). In alternative imple 
mentations, the analysis tool 100 can employ other 
instrumenters, including instrumentation tools that process 
the source files of the program to add instrumentation instruc 
tions. 

The execution logger 140 runs the instrumented file (e.g., 
“output.exe” 135) on inputs from a training set 132. It main 
tains an image of the heap-graph, and updates this image 
when output.exe allocates, frees, or writes to an object repre 
sented in the heap-graph. As mentioned earlier, it computes 
metrics on the heap-graph at a user-specified frequency 
(called “frc), which is specified in a settings file 138. 

Alternatively, it is also possible to compute the metrics 
directly on the heap, which would obviate the need to main 
tain an image of the heap-graph within the execution logger. 
The approach of maintaining an image of the heap-graph was 
chosen in the exemplary implementation of the analysis tool 
100 for two reasons: 

1. Algorithms that compute connected component metrics, 
strongly connected component metrics, and value-based met 
rics are only sensitive to the connectivity of objects on the 
heap. Traversing the heap periodically to compute metrics 
can result in poor cache-locality translating to performance 
penalty. By maintaining an image of the heap-graph that only 
stores connectivity information between objects on the heap, 
the analysis tool 100 can compute the required metrics while 
still preserving cache-locality. 

2. The approach permits modular reasoning about the heap 
behavior of interacting programs. For instance, one could 
study the heap behavior of a library by instrumenting the 
library alone. As the library gets invoked by several programs, 
the heap-graph produced by the execution logger corresponds 
to the heap behavior of the library. Consequently, one can 
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8 
identify heap-based bugs in the library without having to 
instrument all the programs that invoke the library. 
The execution logger 140 can construct the heap-graph at 

any of several levels of granularity. For instance. Example 1 in 
FIG. 2 shows three nodes of a linked-list. Each node of the 
linked-list contains two fields: a data member, and a pointerto 
the next node. If the heap-graph is constructed at the granu 
larity of individual fields, as shown by the dotted lines, it has 
six vertexes and two edges. On the other hand, if it is con 
structed at the granularity of objects, as shown by the bold 
lines, it has three vertexes and two edges. 

Constructing the heap-graph at the granularity of fields 
captures fine-grained information, such as the connectivity of 
individual fields. However, the metrics computed on such a 
graph will be sensitive to the layout of fields within an object. 
For instance, consider the heap-graph (constructed at field 
granularity) of a k-node linked-list. With a field layout similar 
to Example A shown in FIG. 2, only two vertexes have 
indegree outdegree (equal to 0), namely, the vertexes corre 
sponding to the data-field of the left-most node, and the 
next-node-field of the right-most node of the linked-list. 
However, with a field layout similar to Example B in FIG. 2, 
all but two vertexes have indegree-outdegree, namely the 
vertexes corresponding to the next-node-fields of the left 
most node and the right-most node of the linked list. With this 
layout, all the vertexes corresponding to the data-fields have 
indegree outdegree-0, and all but two of the next-node 
fields of the linked-list have indegree-outdegree-1. On the 
other hand, all metrics are the same if heap-graphs are con 
structed at object granularity. For this reason, the exemplary 
implementation of the analysis tool 100 constructs the heap 
graph at object granularity. 
The metric summarizer 150 consolidates metric reports 

145 obtained from individual executions of the instrumented 
program (e.g., "output.exe” 135) on inputs from a training set 
132. The summarized metrics can be classified into three 
categories based upon their stability across runs of a program: 

1. A metric may remain relatively constant during the 
execution of the program for each input from the training set, 
perhaps acquiring a different constant value in each run. The 
range of Such a globally stable metric can be used as an 
indicator of correct behavior, and executions which result in 
the metric going out of range can be marked as potentially 
buggy. 

2. As observed by several researchers, programs execute in 
phases, and different phases of the program exhibit different 
heap behavior. As the program phase changes, the heap 
graph, and consequently some metrics associated with the 
heap-graph change to reflect the new heap behavior of the 
program. A locally stable metric acquires different values 
across phases of the program, but remains relatively constant 
within a program phase. Note that globally stable metrics are 
also locally stable. 

3. An unstable metric is neither globally stable nor locally 
stable. 
The key observation used by the analysis tool 100 is that in 

spite of the phase behavior of the program, several stable 
metrics exist. In our experience, metrics change rapidly dur 
ing program startup and shutdown. We observed that during 
the other phases of the program, while some metrics change 
to reflect the phase behavior of the program, there are several 
metrics which remain relatively stable. In the section entitled 
“Existence of Stable Metrics’ below, we provide empirical 
evidence that stable metrics exist. 
The analysis tool 100 uses this observation. In the exem 

plary implementation, the summarizer 150 identifies metrics 
which remain globally stable when the startup and shutdown 
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of the program are ignored. Because a globally stable metric 
does not change, or changes slowly, its average rate of change 
will be close to zero. The summarizer compares the rate of 
change of each metric against a threshold value, and identifies 
slowly changing metrics as globally stable. The Summarized 
metric report, which serves as a model for the execution 
checker, contains the range of values observed for these met 
rics over the runs of the program on the training input set. In 
alternative implementations, the summarizer 150 can also 
include locally stable metrics in the model. 
1.3 Checking Execution Traces to Detect Bugs 
The second phase of the analysis tool 100, the execution 

checker 120, uses the model constructed by the first phase to 
monitor executions of the program, and identify anomalies, 
which are potentially because ofheap-related bugs. The lower 
half of FIG. 1 shows the architecture of the analysis tools 
execution checker 120. As with the model constructor 110, 
the execution logger 160 executes the instrumented program 
(e.g., “output.exe” 135), and produces a metric report 165. 
This report is analyzed by the anomaly detector 170, which 
identifies deviations from the model. 

The anomaly detector 170 uses the summarized metric 
report 155 (from the model constructor), which serves as the 
model, as a basis for comparing metric reports obtained from 
executions of the program on other inputs. The Summarized 
metric report 155 contains ranges of globally stable metrics. 
The execution checker 120 verifies that the values of these 
metrics obtained in the current execution are within the per 
mitted range. 
As discussed earlier, the exemplary implementation of the 

analysis tool is constructed as a post-mortem analysis tool, 
where metrics are analyzed after the execution of the program 
has completed. The design of the execution checker 120 can 
be readily adapted to other designs as well. Because the 
execution checker in the exemplary implementation only per 
forms a light-weight comparison to Verify that a metric is in 
its allowed range, the execution checker can be modified to 
work in an online fashion as well. 

In other implementations of the analysis tool, the execution 
checker can be extended to also perform comparison of 
locally stable metrics as well. In one such alternative imple 
mentation, the execution checker compares the values of the 
locally stable metrics from corresponding phases in the pro 
gram. This technique requires identification of corresponding 
program phases, such as by applying program phase detection 
and prediction techniques described by C. Ding and Y. Zhong, 
“Predicting Whole-Program Locality With Reuse Distance 
Analysis.” Proc. ACM SIGPLAN Confon Prog. Lang. Design 
and Impl. (PLDI), pages 245-257, June 2003: X. Shen, Y. 
Zhong, and C. Ding, “Locality phase prediction.” Proc. 11th 
Intl. Conf. On Arch. Support for Prog. Lang, and Op. Sys. 
(ASPLOS), pages 165-176, October 2004; T. Sherwood, E. 
Perelman, G. Hamerly, and B. Calder, Automatically char 
acterizing large scale program behaviour.” Proc. 10th Intl. 
Confon Arch. Support for Prog. Lang, and Op. Sys. (ASP 
LOS), pages 45-57, October 2002; and T. Sherwood, S. Sair, 
and B. Calder. “Phase tracking and prediction.” Proc. 30th 
Intl. Symp. On Computer Architecture (ISCA), pages 336-347, 
June 2003. 

2. Existence of Stable Metrics 
In this section, we present empirical evidence that stable 

metrics exist. Several metrics computed on the heap-graph, 
especially connectivity and degree-based metrics, are sensi 
tive to its structure. Thus, a structurally stable heap-graph 
provides indirect evidence that stable metrics exist. In addi 
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10 
tion, value-based metrics, are sensitive to the number of dis 
tinct values stored at heap locations. 
To study stability, we measured the number of distinct 

values stored in each heap location. If a large fraction of heap 
locations are mutated only once, i.e., they either store the 
value Zero, or a constant non-Zero value during their lifetime, 
then it is an indication that a large number of pointer-valued 
heap locations store NULL or a constant non-NULL value as 
well. This yields a stable points-to relationship. Because the 
edges of the heap-graph are determined by the points-to rela 
tionship between heap objects, this translates to the stability 
of connectivity- and degree-based metrics. 

FIG. 3 shows the results of the study performed on eight 
programs chosen from the SPEC 2000 benchmarks suite. We 
measured the ratio of heap locations that, during their life 
time, store: (i) only the value Zero, (ii) a constant nonzero 
value (denoted by One), (iii) exactly two non-zero values 
(denoted by Two), and (iv) more than two non-zero values 
(denoted by Many). Because heap locations are written to as 
the program executes, these ratios change as the program 
evolves. Hence, we measured the above ratios at each metric 
computation point—the numbers in FIG. 3 denote the aver 
age taken across all metric computation points. 

Note that for all benchmarks, except crafty and parser, 
greater than 50% of all heap locations either store Zero or a 
constant nonzero Value. In the case of crafty, a chess playing 
program, all the data structures are allocated at the beginning 
of execution, and the program only manipulates non-pointer 
fields of the data structures during execution. Consequently, 
only 17.90% of heap locations are mutated just once. 

While this study indicates that for most benchmarks, a 
majority of heap locations are mutated only once, the results 
are not encouraging enough to indicate the stability of con 
nectivity- and degree-based metrics. Consequently, we per 
formed the same experiment, but restricted attention to 
pointer-valued heap locations. The results, shown in FIG. 4, 
are very encouraging. They indicate that on an average, over 
75% of pointer-valued heap locations either store NULL or a 
constant non-NULL value. The result is most striking in the 
case of crafty, where the number of pointer valued heap 
locations mutated only once is 99.80%, as opposed to 17.90% 
when all heap locations are considered. 

While FIG. 4 shows the ratios averaged across all metric 
computation points, it does not show how these ratios evolve 
as the program executes. To do so, we measured the rate at 
which the ratio of pointer-valued heap locations that store 
NULL and constant non-NULL values change as the program 
evolves. That is, if NULLt and ONEt denote the ratio of 
pointer-valuedheap locations that store NULL and a constant 
non-NULL value at metric computation point t, and 
NULLt--1 and ONEt--1 denote these values at computation 
point t+1, then, at metric computation point t+1, we record the 
value (NULLt--1-NULLt--ONEt+1-ONEt) NULLt+ONEtx 
100. The results, presented in FIG. 5, show for each bench 
mark the rate of change averaged overall metric computation 
points, and the standard deviation of change. Note that, except 
for mcf. the number of heap locations that store NULL or 
constant values either remains a constant, or changes very 
slowly, as shown by the small values of standard deviation. 
From this study, we conclude that the points-to relationship 

is relatively stable. Consequently, this indicates the stability 
of connectivity and degree-based metrics. Furthermore, 
because the points-to relationship evolves slowly over time, 
we can expect value-based metrics to be relatively stable as 
well. The results of this study also facilitate several optimi 
Zation opportunities. Because a large fraction of heap loca 
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tions are stable, it means they can be prefetched to the cache, 
thus reducing the number of cache misses. 
3. Experience with the Analysis Tool 
The following sections present various examples using the 

analysis tool 100 to identify bugs introduced into various of 
the SPECINT 200 benchmark programs, which illustrates 
key features of the analysis tool. 
3.1 Detailed Example 
Model Construction. In a first example, the analysis tool 

100 (FIG. 1) produces a model of the heap behavior of the 
benchmark program, vpr, using the test and train input sets 
(henceforth referred to as Input1 and as Input2) from the 
SPECINT 2000 benchmark Suite. The model constructor's 
execution logger 140 produces metric reports 145 for the 
execution of the Vpr program on each of these inputs. For 
clarity, we restrict the discussion here to two degree-based 
metrics: the ratio of vertexes with indegree-outdegree and 
outdegree-2. FIGS. 6(A) and (B) denote the distribution of 
these metrics on Input1 and Input2, respectively. The y-axis 
denotes the ratio of vertexes with indegree-outdegree or out 
degree 2, and the X-axis denotes progress of execution; each 
data point on the graph is obtained at a metric computation 
point. Because the Vpr program executes longer on Input2. 
FIG. 6(B) has more metric computation points than FIG. 
6(A). 

Note that both metrics change rapidly initially, correspond 
ing to the heap behavior of the Vpr program on startup, but 
stabilize as execution proceeds. Observe that for Input1, both 
metrics acquire a relatively stable value after 3 metric com 
putation points, while for Input2, they do so after 25 metric 
computation points. As explained earlier, the metric summa 
rizer 150 (FIG.1) analyzes metric reports 145 for these execu 
tion runs to identify globally stable metrics: to do so, it com 
putes the change in metrics as execution proceeds. FIGS. 
7(A) and 7(B) illustrate the fluctuation of metrics as execution 
proceeds. The y-axis denotes the percentage change between 
consecutive values of the metric. That is, if a metric changes 
from y1 to y2 between metric computation points t and t+1, 
we plot the value (y2-y1)x100 y1 at t+1. The x-axis denotes 
metric computation points; in FIGS. 7(A) and 7(B), we ignore 
the first 3, and first 25 metric computation points, respec 
tively. 

Informally, for a globally stable metric, the metric fluctua 
tion plot will be relatively “flat, and close to 0. For a locally 
stable metric, the fluctuation plot will also be “flat” with a 
value close to 0, except for occasional “spikes, which denote 
sharp changes in the value of the metric. Formally, the aver 
age change of a globally stable metric will be close to 0, and 
the standard deviation of the change will also be close to 0. 
The average change of a locally stable metric will also be 
close to 0, but the standard deviation of the change will be 
further away from 0. An unstable metric will either have a 
large non-Zero value for average change, or will have a large 
standard deviation. By using a threshold value for the average 
change, and the standard deviation of change, the model 
constructor 110 identifies globally stable metrics. 

FIG. 8 shows the average values and standard deviations of 
the distributions in FIGS. 7(A) and 7(B). The average changes 
in the ratio of vertexes with outdegree-2 are -0.22% and 
-0.15% for Input1 and Input2, respectively, while the stan 
dard deviations of change are 2.44% and 0.63% for Input1 
and Input2, respectively. Setting the threshold for average 
change at it 1% and standard deviation of change at 5%, out 
degree-2 becomes a globally stable metric. The allowed 
range of this metric is 0.071, 0.264, which are the minimum 
and maximum values of this metric from FIG. 6, ignoring the 
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first 3 and first 25 metric computation points for Input1 and 
Input2, respectively. The ratio of vertexes with 
indegree outdegree is not globally stable. For Input1 the 
average change is 2.10%, and the standard deviation of 
change is 24.38%, both of which are above the threshold. 
Note that for Input2, the average change and the standard 
deviation are within the threshold value. For a globally stable 
metric, we require the average change and standard deviation 
of change to be within the threshold for all inputs in the 
training set. 

Checking Execution Traces. To illustrate the effectiveness 
of the analysis tool 100, we demonstrate how the execution 
checker 120 identifies bugs based upon the normal ranges of 
globally stable metrics identified by the model constructor 
110. In this continuing example, the bug shown in the code 
listing of FIG. 9 was injected in the file util.c of the Vpr 
benchmark program. In this listing, a function called “insert 
in Vptr list inserts a new element at the beginning of a linked 
list of void pointers, and returns the new head of the list. The 
statement at line (4) of the Source code listing creates a new 
node, the statement online (6) links the data-field of the node 
to the void pointer vptr to add, and the statement on line (7) 
adds the new node before the head of the linked list. To create 
a buggy version for this example, we removed line (6); thus a 
new node is added to the linked list, but the data field of the 
node, data vptr. is left uninitialized. As shown in FIG. 10, the 
dotted edges do not appear in the heap-graph of the bug 
injected version of Vpr. This results in a dangling pointerbug, 
which may lead to a crash when data vptr is dereferenced. 
When this buggy version of Vpr is executed on Input2, the 

metric outdegree-2 goes out of range. The flat lines in the 
graph of FIG. 11 indicate the allowed range 0.071, 0.264 for 
this metric, and the ratio of nodes with outdegree-2 is smaller 
than the minimum allowed value. In the buggy version of vpr, 
each node in the linked list manipulated by the “insert in Vptr 
list' function has outdegree–1, whereas in the normal ver 
Sion, each node has outdegree-2. Thus, the ratio ofnodes with 
outdegree-2 falls below the acceptable limit; predictably, the 
ratio of nodes with outdegree-1 was above its acceptable 
limit. The table in FIG. 12 also lists the normal ranges of other 
globally stable metrics identified by the analysis tool 100, and 
indicates whether the metric was out of range for the buggy 
version of the benchmark program, Vpr. In addition to these 
metrics, the analysis tool identified that all the value-based 
metrics were stable, but were within their normal range in the 
buggy Version. 

This example illustrates the analysis tool identifies the 
root-cause of the bug. It identifies the bug at the point when 
data vptr was left uninitialized, not when a dereference of data 
Vptr causes a crash. Thus, the analysis tool can be used effec 
tively as a debugging tool. This example also illustrates the 
kind of bugs that the analysis tool was designed to isolate. In 
particular, the analysis tool looks for coarse-grained heap 
based bugs which cause a significant change in the properties 
of the heap-graph, resulting in one of the globally stable 
metrics going out of range. Because the analysis tool does not 
capture invariants about aparticular object or set of objects on 
the heap, it cannot detect fine-grained heap manipulation 
errors. For instance, Suppose that an object 'u' points to an 
object 'v' on all the inputs from the training set. While this is 
an invariant which can be used for bug detection, the analysis 
tool does not capture this fact, and hence will not detect 
violation of this invariant. Similarly, shape analysis algo 
rithms (such as the one described by M. Sagiv. T. W. Reps, and 
R. Wilhelm, “Parametric Shape Analysis Via 3-Valued 
Logic. ACM Trans. Prog. Lang. Syst. (TOPLAS), 24(3):217 
298, May 2002) can prove the correctness of algorithms that 
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manipulate data structures on the heap. They use fine-grained 
abstractions to capture the possible set of heap configurations 
at every step of the algorithm. Because the exemplary imple 
mentation of the analysis tool 100 only observes the heap 
graph periodically, it cannot be used to prove or disprove the 
correctness of Such algorithms. 
3.2 More Examples 

In a second example, the analysis tool 100 (FIG. 1) is used 
on the benchmark program, “Twolf” which is an engineering 
application for pin placement and routing. For this example, 
a bug is injected in the “sortpin' function in the source file 
("sortpin.c') of the Twolf program, which is shown in the 
statement at line (7) of FIG. 13. The sortpin function creates 
and manipulates a linked list whose nodes have type 
“TEBOXPTR,” which has, apart from other fields, two point 
ers: nextterm and termptr. As FIG. 14 shows, the dotted lines 
do not appear on the heap-graph in the bug-injected version. 
The analysis tool 100 successfully finds the root cause of 

the bug. Among the globally stable metrics identified, outde 
gree-1 was above its normal range, and outdegree 2 was 
below the normal range, as shown in the metrics graph in FIG. 
14 and summarized in the table in FIG. 16. This is as 
expected, because the nodes of type TEBOXPTR have out 
degree-1 (instead of 2) in the buggy version. We observed 
that in the case of twolf, the other degree-based metrics were 
locally stable—they acquired different (constant) values in 
phases. Because the current implementation of the analysis 
tool 100 only supports globally stable metrics, we were 
unable to use locally stable metrics for bug detection. 

In a further example, the analysis tool 100 was tested on 
another benchmark program, “Vortex, which is an object 
oriented database. For this example, Vortex was modified 
with two injected bugs, as discussed below. 
Bug 1. FIG. 17 shows the bug injected in function “Tree 

AddInto a tree manipulation function in the source file, 
“treeOO.c. of the “Vortex' program. In this procedure, a 
sibling is created for a leaf node in the tree; but the injected 
bug fails to initialize the ParentNode pointer of the sibling. As 
a result, the dotted edge shown in FIG. 18 is missing from the 
buggy Version. 

FIG. 21 lists the globally stable metrics identified by the 
analysis tool along with their normal ranges. The Ptr One 
metric denotes the ratio of pointer-valued heap locations that 
store a constant non-NULL value during their lifetime, while 
One is the same ratio across all heap locations, irrespective of 
type. The buggy version results in a greater number of nodes 
with indegree-1 (the parent nodes), and a fewer number of 
nodes with outdegree-1 (the sibling nodes), thus resulting in 
these metrics violating their normal ranges. 

Bug. 2. FIG. 19 shows the second bug, which is injected in 
the function "Tree PromotenternalNode' in the source file 
“treeO0.c” of the “Vortex” program. The arrays “NodeKeys.” 
“NodeHandles” and “NodeLeafs' store integers. When the 
bug shown in line (4) of the code listing in FIG. 19 is intro 
duced, one fewer element is updated than in the normal case. 
As Summarized in FIG. 21, the exemplary implementation 

of the analysis tool 100 is unable to identify this bug, thus 
resulting in a false negative. Note that because the arrays store 
integer values, the bug does not change the structure of the 
heap-graph in FIG. 20, as a result of which connectivity- and 
degree-based metrics are unaffected. For the same reason, Ptr 
One is also unaffected, because it is restricted to pointer 
valued heap locations alone. However, contrary to our expec 
tation, the metric One is also unaffected. We discovered that 
the reason for this is because each location of each array is 
updated several times, even in the correct version of vortex. 
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Because value-based metrics group heap locations that store 
more than two distinct values into the same category (Many), 
there is no change in any of the value-based metrics when the 
bug is induced. 
4. Alternative Implementations 
Due to lack of a diagnostic front-end, it can be difficult to 

correlate anomalies in bug reports with the code that caused 
the anomaly with the above-described exemplary implemen 
tation of the analysis tool. Alternative implementations of the 
analysis tool can overcome this limitation by recording, in 
addition to the value written to a heap location, the instruction 
that caused the write. In other alternative implementations, 
the analysis tool can be combined with other diagnostic tools 
to better correlate a detected anomaly with the code that 
caused the anomaly. 

Because the above-described exemplary implementation 
of the analysis tool instruments each instruction that writes to 
memory, the execution runs of the program being test may 
Suffer performance penalty compared to uninstrumented 
counterparts. This is acceptable for a post-mortem analysis 
tool. In alternative implementations of the analysis tool as an 
online tool, the binary instrumenter 130 can introduce instru 
mentation that employs a sampling-based approach. Such 
periodic sampling can mitigate the cost of analysis, while still 
providing useful information. 

Alternative implementations of the analysis tool can be 
modified to make use of type information, such as symbol 
table information, which can be used to extract fine-grained 
characteristics of the heap-graph. For instance, such alterna 
tive implementation of the analysis tool could restrict atten 
tion to data members of a particular type, and only compute 
metrics over these data members. 

4. Computing Environment 
The above described exemplary analysis tool 100 (FIG. 1) 

that implements the above-described techniques for heap 
based bug identification using anomaly detection can be 
implemented on any of a variety of computing devices and 
environments, including computers of various form factors 
(personal, workstation, server, handheld, laptop, tablet, or 
other mobile), distributed computing networks, and Web ser 
vices, as a few general examples. The heap-based bug iden 
tification using anomaly detection techniques of the analysis 
tool 100 can be implemented in hardware circuitry, as well as 
in software 2280 executing within a computer or other com 
puting environment, such as shown in FIG. 22. 

FIG. 22 illustrates a generalized example of a suitable 
computing environment 2200 in which the described tech 
niques can be implemented. The computing environment 
2200 is not intended to Suggest any limitation as to scope of 
use or functionality of the invention, as the present invention 
may be implemented in diverse general-purpose or special 
purpose computing environments. 

With reference to FIG. 22, the computing environment 
2200 includes at least one processing unit 2210 and memory 
2220. In FIG. 22, this most basic configuration 2230 is 
included within a dashed line. The processing unit 2210 
executes computer-executable instructions and may be a real 
or a virtual processor. In a multi-processing system, multiple 
processing units execute computer-executable instructions to 
increase processing power. The memory 2220 may be volatile 
memory (e.g., registers, cache, RAM), non-volatile memory 
(e.g., ROM, EEPROM, flash memory, etc.), or some combi 
nation of the two. The memory 2220 stores software 2280 
implementing the analysis tool 100 with heap-based bug 
identification using anomaly detection. 
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A computing environment may have additional features. 
For example, the computing environment 2200 includes stor 
age 2240, one or more input devices 2250, one or more output 
devices 2260, and one or more communication connections 
2270. An interconnection mechanism (not shown) Such as a 
bus, controller, or network interconnects the components of 
the computing environment 2200. Typically, operating sys 
tem Software (not shown) provides an operating environment 
for other software executing in the computing environment 
2200, and coordinates activities of the components of the 
computing environment 2200. 
The storage 2240 may be removable or non-removable, 

and includes magnetic disks, magnetic tapes or cassettes, 
CD-ROMs, CD-RWs, DVDs, or any other medium which can 
be used to store information and which can be accessed within 
the computing environment 2200. The storage 2240 stores 
instructions for the software 2280 of the exemplary analysis 
tool implementing the heap-based bug identification using 
anomaly detection techniques. 
The input device(s) 2250 (e.g., for devices operating as a 

control point in the device connectivity architecture 100) may 
be a touch input device Such as a keyboard, mouse, pen, or 
trackball, a Voice input device, a scanning device, or another 
device that provides input to the computing environment 
2200. For audio, the input device(s) 2250 may be a sound card 
or similar device that accepts audio input in analog or digital 
form, or a CD-ROM reader that provides audio samples to the 
computing environment. The output device(s) 2260 may be a 
display, printer, speaker, CD-writer, or another device that 
provides output from the computing environment 2200. 
The communication connection(s) 2270 enable communi 

cation over a communication medium to another computing 
entity. The communication medium conveys information 
Such as computer-executable instructions, audio/video or 
other media information, or other data in a modulated data 
signal. A modulated data signal is a signal that has one or 
more of its characteristics set or changed in Such a manner as 
to encode information in the signal. By way of example, and 
not limitation, communication media include wired or wire 
less techniques implemented with an electrical, optical, RF, 
infrared, acoustic, or other carrier. 
The analysis tool and techniques herein can be described in 

the general context of computer-readable media. Computer 
readable media are any available media that can be accessed 
within a computing environment. By way of example, and not 
limitation, with the computing environment 2200, computer 
readable media include memory 2220, storage 2240, commu 
nication media, and combinations of any of the above. 
The techniques herein can be described in the general 

context of computer-executable instructions, such as those 
included in program modules, being executed in a computing 
environment on a target real or virtual processor. Generally, 
program modules include routines, programs, libraries, 
objects, classes, components, data structures, etc. that per 
form particular tasks or implement particular abstract data 
types. The functionality of the program modules may be 
combined or split between program modules as desired in 
various embodiments. Computer-executable instructions for 
program modules may be executed within a local or distrib 
uted computing environment. 

For the sake of presentation, the detailed description uses 
terms like “determine.” “generate.” “adjust and “apply’ to 
describe computer operations in a computing environment. 
These terms are high-level abstractions for operations per 
formed by a computer, and should not be confused with acts 
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16 
performed by a human being. The actual computer operations 
corresponding to these terms vary depending on implemen 
tation. 

In view of the many possible embodiments to which the 
principles of our invention may be applied, we claim as our 
invention all Such embodiments as may come within the 
Scope and spirit of the following claims and equivalents 
thereto. 

We claim: 
1. A method of identifying heap-based bugs, comprising: 
building a model of heap behavior for a program executing 

on a computer comprising physical memory devices 
Such that at least some memory storage for the program 
on the memory devices is managed as a heap, the build 
ing occurring by observing heap behavior of the pro 
gram during execution, the model comprising a Suite of 
numerical metrics, the numerical metrics measuring 
structure of a heap-graph which represents objects and 
pointers between objects in the heap: 

calculating a rate of change of the numerical metrics across 
one or more execution runs and comparing the rate of 
change to a threshold rate; 

identifying slowly-changing numerical metrics from the 
Suite whose rate of change remains lower than the 
threshold rate to be globally stable; 

detecting anomalous heap behavior deviating from the 
model, wherein the detecting comprises computing the 
globally stable metrics from a Subsequent execution of 
the program and detecting anomalies where the globally 
stable metrics deviate from predefined acceptable 
ranges, wherein the detecting ignores startup and shut 
down of the program; and 

reporting information of the anomalous heap behavior as 
indicative of a heap-based bug in the program. 

2. The method of claim 1 further comprising: 
adaptively building the model and detecting anomalous 

heap behavior concurrently during a single execution of 
the program. 

3. The method of claim 1 further comprising: 
performing said detecting anomalous behavior in on-line 

fashion during execution of the program. 
4. The method of claim 1 wherein detecting anomalous 

behavior comprises: 
recording an execution trace of the program’s execution; 

and 
performing said detecting anomalous behavior in an off 

line fashion based on the execution trace. 
5. The method of claim 1 wherein said building the model 

comprises: 
causing the program to execute on a training set of inputs; 
computing the Suite of numerical metrics for the heap 

graph, the numerical metrics representing the programs 
heap behavior; and 

determining which of the numerical metrics remain stable. 
6. The method of claim 5 further wherein the suite of 

metrics comprise at least one connectivity-based numerical 
metric for the heap-graph. 

7. The method of claim 5 further wherein the Suite of 
metrics comprise at least one degree-based numerical metric 
for the heap-graph. 

8. The method of claim 5 further wherein the suite of 
metrics comprise at least one value-based numerical metric 
for the heap-graph. 

9. The method of claim 5 further comprising determining 
numerical ranges in which the metrics for the heap-graph 
remain stable. 
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10. The method of claim 9 wherein said detecting anoma 
lous behavior comprises: 

periodically computing the metrics for the heap-graph dur 
ing a further execution of the program; and 

detecting that the metrics have gone outside of the deter 
mined ranges. 

11. The method of claim 5 further comprising determining 
which of the metrics for the heap-graph are locally stable. 

12. A computer system programmed as a dynamic analysis 
tool for identifying heap-based bugs in programs, compris 
ing: 

a processor; 
memory devices, the memory devices containing memory 

storage for a program executing on the processor, the 
memory storage managed as a heap: 

the processor configured to perform: 
detecting phases of execution of the program; 
building a model of heap behavior for the program, the 

model comprising a set of numerical metrics, the 
numerical metrics measuring properties of a heap 
graph which represents objects and pointers between 
objects in the heap and which is modified as the heap 
changes: 

calculating a rate of change of the numerical metrics 
across one or more execution runs and comparing the 
rate of change to a threshold rate; 

identifying slowly-changing numerical metrics from the 
set whose rate of change remains lower than the 
threshold rate within a detected phase of execution to 
be locally stable; and 

detecting anomalies occurring in an execution of the 
program in which heap behavior of the program devi 
ates from the model wherein the detecting comprises 
computing the locally stable metrics from a Subse 
quent execution of the program and detecting anoma 
lies where the locally stable metrics deviate from 
predefined acceptable ranges, wherein the detecting 
ignores startup and shutdown of the program; and 

reporting information of the anomalies as indicative of a 
heap-based bug in the program. 

13. The computer system of claim 12 wherein building a 
model comprises: 

adding instrumentation to a program to produce data rep 
resentative heap usage of the program; and 

executing the program for a training set of inputs, and 
analyzing the data thereby produced by the instrumen 
tation to identify a set of stable, heap-related metrics. 

14. The computer system of claim 13 wherein executing 
the program comprises: 

adaptively modifying the heap-graph tracking heap usage 
of the program during execution of the training set, and 
periodically computing the set of numerical metrics 
based on the heap-graph; and 

identifying which of the numerical metrics remain stable. 
15. The computer system of claim 13 wherein the set of 

metrics for the heap-graph comprise connectivity-based, 
degree-based and value-based metrics. 

16. The computer system of claim 13 wherein detecting 
anomalies occurring in the execution of the program com 
prises: 
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computing the set of numerical metrics for the heap-graph 

for an execution of the instrumented program; and 
detecting anomalies in the stable, heap-related metrics. 
17. The computer system of claim 16, wherein the proces 

sor is further configured to perform: 
based on the phases detected, identify identifying metrics 

for the heap-graph that remain locally stable for at least 
one of the phases; and 

detecting anomalies in the locally stable, metrics for the 
heap-graph occurring in their respective locally stable 
phases. 

18. A set of one or more computer-readable software 
storing media having computer-executable instructions of a 
dynamic program analysis tool stored thereon, the computer 
executable instructions causing a computer to perform: 

computing a Suite of numerical heap-related metrics from 
one or more execution runs of a program on a training set 
of inputs, the program executing on a computer com 
prising physical memory devices such that at least some 
memory storage for the program on the memory devices 
is managed as a heap, and the numerical heap-related 
metrics measure structure of a heap-graph which repre 
sents pointers between objects in the heap during the one 
or more execution runs; 

recording an instruction that causes a write to a location of 
the heap; 

calculating a rate of change of the heap-related metrics 
across the one or more execution runs; 

comparing the rate of change to a threshold rate; 
identifying phases in the program; 
identifying slowly changing heap-related metrics from the 

Suite whose rate of change remains lower than the 
threshold rate to be globally stable or locally stable 
metrics, wherein the identifying ignores startup and 
shutdown of the program for purposes of evaluating 
globally stable metrics: 

establishing ranges of the globally stable or locally stable 
metrics; 

computing the globally stable or locally stable metrics 
from a Subsequent execution of the program, wherein 
the computing restricts attention to data members of a 
particular type; and 

detecting anomalies where the globally stable or locally 
stable metrics deviate from their respective ranges. 

19. The set of one or more computer-readable software 
storing media of claim 18 wherein the computer-executable 
instructions further comprise computer-executable instruc 
tions causing the computer to perform: 

correlating the detected anomalies with an instruction in 
the program that caused a respective anomaly. 

20. The set of one or more computer-readable software 
storing media of claim 18 wherein the numerical heap-related 
metrics comprise: 
number of connected components; 
number of strongly connected components; 
ratio of edges to vertices in the heap-graph; and 
ratio of heap locations that, during their lifetime, store only 

a value NULL. 
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