
USOO777.0153B2

(12) United States Patent (10) Patent No.: US 7,770,153 B2
Chilimbi et al. 45) Date of Patent: Aug. 3, 2010 9

(54) HEAP-BASED BUG IDENTIFICATION USING 6,026,234. A 2/2000 Hanson et al.
ANOMALY DETECTION 6,073,232 A 6/2000 Kroeker et al.

6,079,032 A 6, 2000 Peri
(75) Inventors: Trishul Chilimbi, Seattle, WA (US); 6,148,437 A 1 1/2000 Shah et al.

Vinod Ganapathy, Madison, WI (US) 6,216,219 B1 4/2001 Cai et al.
6,233,678 B1 5, 2001 Bala

(73) Assignee: Mision Corporation, Redmond, WA 6,311,260 B1 10/2001 Stone et al.
6,321,240 B1 1 1/2001 Chilimbi et al.

(*) Notice: Subject to any disclaimer, the term of this 6,330,556 B1 12/2001 Chilimbi et al.
patent is extended or adjusted under 35 6,360,361 B1 3/2002 Larus et al.
U.S.C. 154(b) by 889 days. 6,370,684 B1 * 4/2002 DePauw et al. 717/124

(21) Appl. No.: 11/134,812

(22) Filed: May 20, 2005 (Continued)
(65) Prior Publication Data OTHER PUBLICATIONS

US 2006/0265694 A1 Nov. 23, 2006 Diwan, et al., "Memory-System Performance of Programs with
Intensive Heap Allocation'. ACM TOCS vol. 13, Issue 3, Aug. 1995,

(51) Int. Cl ISSN: 0734-2O71.
G06F 9/44 (2006.01) Continued
G06F II/00 (2006.01) (Continued)

(52) U.S. Cl. 717/127; 717/130; 717/131; Primary Examiner Wei Y Zhen
714/38; 714/100 Assistant Examiner Ryan D Coyer

(58) Field of Classification Search 717/124 136 (74) Attorney, Agent, or Firm Klarquist Sparkman, LLP
714/38, 100

See application file for complete search history. (57) ABSTRACT

(56) References Cited

U.S. PATENT DOCUMENTS

5,220,667 A 6, 1993 Ichieda
5,333,311 A 7/1994 Whipple, II
5,713,008 A 1/1998 Falkner
5,740,443 A 4, 1998 Carini
5,774,685 A 6/1998 Dubey
5,815,720 A 9, 1998 Buzbee
5,909,578 A 6, 1999 Buzbee
5,925, 100 A 7/1999 Drewry et al.
5,940,618 A 8/1999 Urquhartet al.
5,950,003 A 9, 1999 Kaneshiro et al.
5,950,007 A 9/1999 Nishiyama et al.
5,953,524. A 9/1999 Meng et al.
5,960,198 A 9/1999 Roediger et al.

132, TRAINING INPUT
DATASET

"-ivodel constructor TT 14,
115. 3. 135

input.exe BNARY output.exe
NSTRUMENter

EXECUTION
GGER

A dynamic analysis tool uses anomaly detection to find heap
based bugs. In spite of the evolving nature of the heap, pro
grams generally exhibit several of properties of their heap
usage that remainstable. Periodically, during the execution of
the program, the analysis tool computes a Suite of metrics
which are sensitive to the state of the heap. These metrics
track heap behavior, and the stability of the heap reflects
quantitatively in the values of these metrics. The ranges of
stable metrics, obtained by running a program on a multiple
input training set, are then treated as indicators of correct
behavior, and are used in conjunction with an anomaly detec
tor to find heap-based bugs.

20 Claims, 12 Drawing Sheets

MERCREPORTS
FORRUNS

MTRIC
SUMMARIZER

SUMARIZED
ETRCS

158.
NU

METRIC
REPORT ANONALY

EXECUTCN Tector
LOGGER

'-EXECUTION CHECKER -

US 7,770,153 B2
Page 2

U.S. PATENT DOCUMENTS

6,404,455 B1 6, 2002 to et al.
6,560,693 B1 5, 2003 Puzak et al.
6,571,318 B1 5, 2003 Sander et al.
6,598,141 B1* 7/2003 Dussud et al. 711/17O
6,628,835 B1 9, 2003 Brill et al.
6,651,243 B1 1 1/2003 Berry et al.
6,658,652 B1* 12/2003 Alexander et al. 717/128
6,675,374 B2 1/2004 Pieper et al.
6,704,860 B1 3, 2004 Moore
6,848,029 B2 1/2005 Coldewey
6,886,167 B1 4/2005 Breslau et al.
6.951,015 B2 9/2005 Thompson
7,032,217 B2 4, 2006 Wu
7,058,936 B2 6, 2006 Chilimbi et al.
7,140,008 B2 11/2006 Chilimbi et al.
7,181,730 B2 * 2/2007 Pitsianis et al. 717 132
7,296,180 B1 1 1/2007 Waterhouse et al.
7,343,598 B2 3/2008 Chilimbi et al.
7,587,709 B2 9, 2009 Chilimbi et al.
7,607,119 B2 10/2009 Chilimbi et al.

2002/0133639 A1
2002fO144245 A1
2003. O145314 A1

9, 2002 Breslau et al.
10, 2002 Lueh
7/2003 Nguyen et al.

2003/020484.0 A1 10, 2003 Wu
2004, OO15897 A1 1/2004 Thompson et al.
2004, OO1593.0 A1 1, 2004 Wu
2004/OO251.45 A1
2004/0088699 A1
2004/0103401 A1
2004/0103408 A1

2/2004 Dawson
5, 2004 Suresh
5, 2004 Chilimbi et al.
5, 2004 Chilimbi et al.

2004/011 1444 A1 6/2004 Garthwaite
2004/O133556 A1 7/2004 Wolczko et al.
2004/O181782 A1* 9, 2004 Findeisen 717/130
2004/0215880 A1 10, 2004 Chilimbi et al.
2004/0216091 A1* 10, 2004 Groeschel
2005/0091645 A1 4/2005 Chilimbi et al.
2005/0246696 A1 11/2005 Alexander et al.
2006/015.5791 A1 7/2006 Tene et al.

- - - - - - - - - - 717/128

OTHER PUBLICATIONS

Zhou, et al., “AccMon: Automatically Detecting Memory-related
Bugs via Program Counter-based Invariants', 37th Annual IEEE/
ACM International Symposium on Micro-architecture, Dec. 4.
2004.
Balakrishnan et al., “Analyzing Memory Accesses in x86 Binary
Executables”. Proc. 13" Intl. Conference on Compiler Construction,
LNCS 2985, pp. 5-23 (Apr. 2004).
Chilimbi et al., “Low-Overhead Memory Leak Detection Using
Adaptive Statistical Profiling”. Proc. 11' Intl. Conference on Archi
tectural Support for Programming Language and Operating Systems
(ASPLOS), pp. 156-164 (Oct. 2004).
Demsky et al., “Role-Based Exploration of Object-Oriented Pro
grams”. Proceedings of 24' International Conference on Software
Engineering (ISCE), pp. 313-334 (May 2002).
Demsky et al., “Automatic Detection and Repair of Errors in Data
Structures”. Proceedings of 18 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Language and Applications
(OOPLSA) pp. 78-95 (Oct. 2003).
Ernst, “Dynamically Discovering Likely Program Invariants”, PhD
Thesis, University of Washington, Seattle, WA (Aug. 2000).
Hangal et al., “Tracking Down Software Bugs Using Automatic
Anomaly Detection”. Proceedings of 22" International Conference
on Sofiware Engineering (ICSE) pp. 125-136 (Jan. 1992).
Hastings et al., “Purify: Fast Detection of Memory Leaks and Access
Errors”, Winter USENIX Conference, pp. 125-136 (Jan. 1992).
Hirzel et al., “Understanding the Connectivity of Heap Objects'. In
Proceedings of International Symposium on Memory Management
(ISMM) pp. 143-156 (Jun. 2002).

Zhou et al., “AccMon: Automatically Detectin Memory-Related
Bugs via Program Counter-Based Invariants”. Proceedings of 37"
International Symposium on Micro-Architecture (MICRO) Dec.
2004.
Zornet al., “A Memory Allocation Profiler for Cand Lisp Programs.”
published Feb. 16, 1988, pp. 1-18.
English et al., “Loge: a self-organizing disk controller.” Proc.
USENIX Winter 1992 Tech. Conf. San Francisco, pp. 237-251 (Jan.
1992).
Griffioen et al., “Reducing File System Latency Using a Predictive
Approach. 11 pp. (no. date).
Hatfield et al., “Program Restructuring for Virtual Memory.” IBM
Sys. J., No. 3, pp. 168-192 (1971).
Kroeger et al., “Predicting Future File-system Actions from Prior
Events.” Proc. USENIXAnnual Tech. Conf. San Diego, pp. 1-10 (Jan.
1996).
Palmer et al., “Fido: A Cache that Learns to Fetch.” Proc. 17th Int'll
Conf. On Very Large Databases, Barcelona, pp. 255-264 (Sep.1991).
Patterson et al., “Informed Prefetching and Caching.” Proc. 15th
ACM Symp. On Operating System Principles, Copper Mountain
Resort, CO, pp. 79-95 (Dec. 1995).
Staelin et al., “Smart Filesystems.” Proc. USENIX Winter '91, Dal
las, TX, pp. 45-51 (1991).
Tait et al., “Detection and Exploitation of File Working Sets.” IEEE,
pp. 2-9 (1991).
U.S. Appl. No. 1 1/134,796, filed May 20, 2005, Shankar et al.
U.S. Appl. No. 1 1/115,924, filed Apr. 26, 2005, Chilimbi et al.
Ammons et al., “Exploiting Hardware Performance Counters with
Flow and Context Sensitive Profiling”. PLDI (Jun. 1997), 12 pages.
Ammons et al., “Improving Data-Flow Analysis with Path Profiles.”
SIGPLAN '98 (1998), pp. 72-84.
Anderson et al., “Continuous Profiling: Where Have All the Cycles
Gone?”, ACM (Nov. 1997), pp. 357-390.
Annavaram et al., "Data Prefetching by Dependence Graph
Precomputation', IEEE (2001), pp. 52-61.
Arnold et al., “A Framework for Reducing the Cost of Instrumented
Code”. Rutgers University Technical Report DCS-TR-424 (Nov.
2000), pp. 1-10.
Bala et al., “Dynamo: A Transparent Dynamic Optimization Sys
tem”, ACM (2000), pp. 1-12.
Ball et al., “Efficient Path Profiling”, IEEE (1996), pp. 46-57.
Berger et al., “Composing High-Performance Memory Allocators'.
ACM (2001), 11 pages.
Bush et al., “A Static Analyzer for Finding Dynamic Programming
Errors'. Sofiware. Practice and Experience (2000), pp. 775-802.
Cahoon et al., “Data Flow Analysis for Software Prefetching Linked
Data Structures in Java”, IEEE (2001), 12 pages.
Calder et al., "Cache-Conscious Data Placement'. ACM (1998), 11
pageS.
Chen et al., “Reducing Memory Latency via Non-Blocking and
Prefetching Caches”, ACM (1992), pp. 51-61.
Chilimbi et al., "Cache-Conscious Structure Definition', Proceed
ings of the ACM SIGPLAN 99 (May 1999), 12 pages.
Chilimbi et al., "Cache-Conscious Structure Layout', Proc. ACM
SIGPLAN '99 Conf. On Programming Language Design and Impl.
(May 1999), 12 pages.
Chilimbi et al., “Dynamic Hot Data Stream Prefetching for General
Purpose Programs”, ACM (2002), 11 pages.
Chilimbi, “Efficient Representations and Abstractions for Quantify
ing and Exploiting Data Reference Locality”, ACM (2001), pp. 191
2O2.
Chilimbi et al., “On the Stability of Temporal Data Reference Pro
files”, PACT (Sep. 2001), 10 pages.
Chilimbi et al., “Using Generational Garbage Collection to Imple
ment Cache-Conscious Data Placement”. Proceedings of the First
International Symposium On Memory Management (Oct 1998), vol.
34(3), pp. 37-48.
Cooksey et al., “A Stateless, Content-Directed Data Prefetching
Mechanism”, ACM (2002), pp. 279-290.
Cowan et al., “Buffer Overflows: Attacks and Defenses for the Vul
nerability of the Decade”. DARPA information survivability confer
ence and expo (DISCEX) (2000), pp. 1-11.

US 7,770,153 B2
Page 3

Crescenzi at al., “A Compendium of NP Optimization Problems.”
Downloaded from the WorldWideWeb on Dec. 12, 2003). 20 pages.
Dean et al., “ProfileMe: Hardware Support for Instruction-Level
Profiling on Out-of-Order Processors'. Proc. 30th Annual Intl. Symp.
On Microarchitecture (Dec. 1997), 12 pages.
Deaver et al., “Wiggins/Redstone: An On-line Program Specializer”.
Proceedings of the IEEE Hot Chips XI Conference (Aug. 1999), 29
pageS.
Dor et al., “Cleanness Checking of String Manipulations in C Pro
grams via Integer Analysis”. Proc. 8th Int'l Static Analysis Sympo
sium (Jun. 2001), 19 pages.
Dor et al., "CSSV: Towards a Realistic Tool for Statically Detecting
All Buffer Overflows in C. PLDI’03 (Jun. 9-11, 2003), pp. 155-167.
Duesterwald et al., “Software profiling for hot path prediction: Less
is more.” Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems (Nov. 2000),
pp. 202-211.
Edwards, “Black-Box Testing Using Flowgraphs: An Experimental
Assessment of Effectiveness and Automation Potential”. Software
Testing, Verification and Reliability, vol. 10, No. 4 (Dec. 2000), pp.
249-262.
Eeckhout et al., “Workload Design: Selecting Representative Pro
gram-Input Pairs'. Proceedings of the 2002 International Confer
ence on Parallel Architectures and Compilation Techniques (2002),
12 pages.
Evans et al., “Improving Security Using Extensible Lightweight
Static Analysis”, IEEE Sofiware (Jan./Feb. 2002), pp. 42-51.
Evans et al., “LCLint: A Tool for Using Specifications to Check
Code'. SIGSOFTSymposium on the Foundations of Sofiware Engi
neering (Dec. 1994), 10 pages.
Evans et al., “Splint Manual, Version 3.1.1-1’, Secure Programming
Group, University of Virginia Department of Computer Science (Jun.
5, 2003), 121 pages.
Evans, “Static Detection of Dynamic Memory Errors'. SIGPLAN
Conf. On Programming Language and Design Implementation (May
1996), 10 pages.
Evans, “Using Specifications to Check Source Code”. TR-628, MIT
Lab for Computer Science (Jun. 1994), 97 pages.
Fosteret al., “A Theory of Type Qualifiers”. Proc. ACM SIGPLAN '99
Conf. On Programming Language and Design Implementation
(PLDI) (May 1999), 12 pages.
Gloy et al., “Procedure Placement Using Temporal-Ordering Infor
mation'. ACM Transactions on Programming Languages and Sys
tem, vol. 21 (1999), pp. 111-161.
Guyer et al., “An Annotation Language for Optimizing Software
Libraries'. Proc. Second Conf. On Domain Specific Languages (Oct.
1999), 14 pages.
Halldorsson, "Approximations of Weighted Independent Set and
Hereditary Subset Problems”. JGAA, vol. 4. No. 1 (Apr. 2000), pp.
1-16.
Harris, “Dynamic Adaptive Pre-tenuring”. Proceedings of the Inter
national Symposium On Memory Management (Oct. 2000), 9 pages.
Heil et al., “Relational Profiling: Enabling Thread-Level Parallelism
in Virtual Machines'. Proc. 33rd International Symposium on
Microarchitecture (Dec. 2000), pp. 1-10.
Hirzelet al., “Bursty Tracing: A Framework for Low-Overhead Tem
poral Profiling', 4th ACM Workshop on Feedback-Directed and
Dynamic Optimization (Dec. 2001), pp. 1-10.
Hollingsworth et al., “MDL: A Language and Compiler for Dynamic
Program Instrumentation'. Proc. Of the International Conference on
Parallel Architectures and Compilations Techniques (Nov. 1997), 12
pageS.
Hölzle et al., “Reconciling Responsiveness with Performance in
Purse Object-Oriented Languages'. ACM Transactions on Program
ming Languages and Systems (Jul. 1996), pp. 1-40.
Horning, “The Larch Shared Language: Some Open Problems”.
Compass/ADT Workshop (Sep. 1995), 16 pages.
Joseph et al., “Prefetching Using Markov Predictors'. ACM (1997),
pp. 252-263.
Jouppi. “Improving Direct-Mapped Cache Performance by the Addi
tion of a Small Fully-Associative Cache and Prefetch Buffers', IEEE
(1990), pp. 364-373.
“JProfiler Manual,” eitechnologies, GmbH (2004), pp. 1-141.

Karlsson et al., “A Prefetching Technique for Irregular Accesses to
Linked Data Structures'. Sixth International Symposium on High
Performance Computer Architecture (Jan. 2000), 12 pages.
Khurshidet al., “An Analyzable Annotation Language.” OOPSLA '02
(Nov. 2002), 15 pages.
Kistler et al., “Automated Data-Member Layout of Heap Objects to
Improve Memory-Hierarchy Performance.” ACM Transactions. On
Programming Language and Systems, (2000), 16 pages.
Klaiber et al., “An Architecture for Software-Controlled Data
Prefetching, ACM (1991), pp. 43-53.
Kramer, “Examples of Design by Contract in Java. Using Contract,
the Design by ContractTMTool for JavaTM. Object World Berlin '99,
Design & Components (May 17-20, 1999), 26 pages.
Larochelle et al., “Statistically Detecting Likely Buffer Overflow
Vulnerabilities”, 2001 USENIX Security Symposium (Aug. 2001), 5
pageS.
Larus, “Whole Program Paths.” SIGPLAN '99 Conference on Pro
gramming Languages and Design (1999), 11 pages.
Leavens et al., “Enhancing the Pre-and Postcondition Technique for
More Expressive Specifications'. Proc. World Congress on Formal
Methods in the Development of Computing Systems (Sep. 1999), 21
pageS.
Leavens et al., “Preliminary Design of JML”. Technical Report
98-06v. Iowa State University Department of Computer Science (Jun.
1998-2003; revised May 2003), 94 pages.
Leino, "Checking Correctness Properties of Object-Oriented Pro
grams.” Internet. http://research.microsoft.com/leino?paper 1 (Aug.
19, 2002), 49 pages.
Luk et al., “Complier-Based Prefetching for Recursive Data Struc
tures”, ACM (1996), pp. 222-233.
Melski et al., “Interprocedural Path Profiling'. University of Wiscon
sin (1998), pp. 1-50.
Microsoft Corporation, “Scalable Program Analysis”. Internet,
http://research.microsoft.com/spa? (downloaded on Sep. 5, 2003), 3
pageS.
Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching, ACM (1992), pp. 62-73.
Mowry et al., “Predicting Data Cache Misses in Non-Numeric Appli
cations Through Correlation Profiling”, International Symposium On
Microarchitecture (1997), 7 pages.
Nevill-Manning et al., “Identifying Hierarchical Structure in
Sequences: A Linear-time Algorithm”, Journal of Artificial Intelli
gence Research (1997), 7:67-82.
Petrank et al., “The Hardness of Cache Conscious Data Placement.”
29th Annual ACM Symposium On Principles of Programming Lan
guages (2002), 33 pages.
Roth et al., “Dependence Based Prefetching for Linked Data Struc
tures'. Proceedings of the 8th International Conference on Architec
tural Support (Oct. 1998), pp. 115-126.
Roth et al., “Effective Jump-Pointer Prefetching for Linked Data
Structures”, IEEE (1999), pp. 111-121.
Rubin et al., “An Efficient Profile-Analysis Framework for Data
Layout Optimizations'. POPL (Jan. 2002), pp. 140-153.
Saavedra et al., “Improving the Effectiveness of Software Prefetch
ing With Adaptive Execution', IEEE (1996), pp. 68-78.
Sastry et al., “Rapid Profiling Via Stratified Sampling”, International
Symposium on Computer Architecture (2001), pp. 1-12.
Savage et al., “Eraser: a dynamic data race detector for multighreaded
programs”, ACM Transactions on Computer Systems (TOCS) (1997),
391-411.

Seidl et al., “Segregating Heap Objects by Reference Behavior and
Lifetime”, 8th Int'l Conf. On Architectural Support for Programming
Languages and Operating Systems (Oct. 1998), 12 pages.
Shaham, “Automatic Removal of Array Memory Leaks in Java',
(1999), 12 pages.
Srivastava, "ATOM: A System for Building Customized Program
Analysis Tools', SIGPLAN '94 Conf. On Programming Language
Design and Impl. (1994), 25 pages.
Srivastava et al., “Vulcan Binary Transformation in a Distributed
Environment”, Microsofi Research, MSR-TR-99-76 (Apr. 20, 2001),
pp. 1-12.

US 7,770,153 B2
Page 4

Stoutchinin et al., “Speculative Prefetching of Induction Pointers',
Proceedings of 10th International Conference on Compiler Con
struction (2001), 15 pages.
“Technologies for Measuring Software Performance'. Intel Corpo
ration (2003), 4 pages.
Traub et al., “Ephemeral instrumentation for lightweight program
profiling”. Technical report, Harvard University (2000), pp. 1-13.
Truong et al., “Improving Cache Behavior of Dynamically Allocated
Data Structures'. PACT (1998), 8 pages.
Vanderwiel et al., “Data Prefetch Mechanisms’. ACM Computing
Surveys, vol. 32, No. 2 (Jun. 2000), pp. 174-199.
Wahls et al., “The Direct Execution of SPECS-C++: A Model-Based
Specification Language for C++ Classes”. Technical Report TR94
02b, Iowa State University Department of Computer Science (Nov.
18, 1994), 52 pages.
Zilles et al., “A Programmable Co-processor for Profiling'. Proceed
ings of the 7' International Symposium on High Performance Archi
tecture (Jan. 2001), 12 pages.

Cifuentes, "Structuring Decompiled Graphs.” Technical Report5/94,
Faculty of Information Technology, Queensland University of Tech
nology, GPO Box 2434, Brisbane 4001, Australia (Apr. 1994), 15
pageS.

Hauck, “Configuration Prefetch for Single Context Reconfigurable
Coprocessors.” In Proceedings of the ACM SIGDA International
Symposium on Field Programmable Gate Arrays (Feb. 1998), pp.
65-74.

Ung et al., “Optimising Hot Paths in a Dynamic Binary Translator.”
In Workshop on Binary Translation, Oct. 2000, pp.55-65.
Chilimbi et al., “HeapMD: Identifying Heap-based Bugs. Using
Anomaly Detection.” ACM (2006) 10 pages.
Gonzalez et al., “Eliminating Cache Conflict Misses Through XOR
Based Placed Functions.” ACM (1997) pp. 76-83.

* cited by examiner

US 7,770,153 B2 Sheet 1 of 12 Aug. 3, 2010 U.S. Patent

0/ |

S5DNI LLEIS

gel-,

U.S. Patent Aug. 3, 2010 Sheet 2 of 12 US 7,770,153 B2

Figure 2

200 c
EXAMPLEA

22 '-DATA FELD 289 NEINSEE 210.
EXAMPLEB

US 7,770,153 B2 Sheet 4 of 12 Aug. 3, 2010 U.S. Patent

†7 eun61

U.S. Patent Aug. 3, 2010 Sheet 5 of 12 US 7,770,153 B2

Figure 5
Std. DeV.

O.01%

0.02%
9.01%
1.72%
1.10%
O.14%
1.74%
O.22%

Average
0.00%
0.00%
O.34%
-0.17%
-0.03%
-0.04%
-0.47%
-0.01%

are
ife p

Figure 8

Inded ree Outdecree input 1 input 2
2.10% -0.29%

Standard Deviation 24.38% 4.61%

Outdecree2 in out 1 in Out 2
-0.22% -0.15%

Standard Deviation 2.44% 0.63%

U.S. Patent Aug. 3, 2010 Sheet 6 of 12 US 7,770,153 B2

Figure 6

6 3 T 2 is 3 as on ess as is is
C

(B) Motrics for vpron input?

As

s

". resentatiseraisenberra
Execution Progress

U.S. Patent Aug. 3, 2010 Sheet 7 of 12 US 7,770,153 B2

Figure 7
(A) Motric fluctuation for vpr, on Input

U.S. Patent Aug. 3, 2010 Sheet 8 of 12 US 7,770,153 B2

Figure 9
1) Struct s linked Vptr * insert in Vptr list
2) (struct s linked Vptr * head, void * vptr. to add) {
3) struct s linked Vptr linked Vptr;
4) linked Vptr = (struct s linked vptr *)
5) my malloc (sizedf (struct s linked vptr));
6) //linked vptr->data vptr = vptr. to add; /* Bug! */
7) linked vptr->next = head;
8) return (linked Vptr) ;
9)

(
(
(
(
(
(
(
(
(9)

Figure 10

The dotted edges do not appear in the heapergraph of the buggy version of ver

Figure 11
Metrics for buggy vpr

righters

U.S. Patent Aug. 3, 2010 Sheet 9 of 12

Figure 12
SCCs. Mean size
SCCs. Median size 11
SCCs. Mode size 11
Indecree 1
OutdegreeO 0.217, 0.445
Outdecree.1 0.047, 0.214
Outdecree=2 0.071, 0.264

Violation?

Figure 16
Violation?

SCCs. Median size (1,1)
SCCs. Mode size 1
Indeqree=1 0.650, 0.910
Outdeqree=1 0.281, 0.361
Outdeqree-F2 0.324, 0.352

Figure 21
Metric Normal Range Bug Violation? ud2 Violation?

O

US 7,770,153 B2

SCCS: Mode size
0.388, 0.682

Outded ree=1 0.148, 0.412

#Edges/iWertices 1849, 4.644)
0.424, 0.763

One 0.635, 0.837

SCCs. Mean size 1, 1.047 O
SCCs: Median size 1,1 O O

1 O

Outdegree F2 0.035, 0.236 yes no

U.S. Patent Aug. 3, 2010 Sheet 10 of 12 US 7,770,153 B2

Figure 13

(1) sortpin () {
(2) . . .
(3) xpptr = (TEBOXPTR *)
(4) safe malloc (300 * sizedf (TEBOXPTR));
(5) /* Several lines of code omitted for brevity */
(6) for (j = 1; j <= n : ++) {
(7) // xpptr (j ->nextterm = xpptr j+1); /* Bug! */
(8) }
(9) }

Figure 14

Figure 15
Metrics for buggy twolf

t assists assassessesses
Execution Progress

U.S. Patent Aug. 3, 2010 Sheet 11 of 12 US 7,770,153 B2

Figure 17
(1) boolean Tree AddInto (. . .) {
(2) /* Several lines omitted for brevity */
(3) /* Create a new Leaf Node (Sibling) */
(4) if (Tree CreateNode (. . .)) {
(5) // SibNode-> ParentNode = Leaf Node-> Parent Node;
(6) /* Bug! */
(7) . . .)
(8) }

Figure 18
s Parenkrafed

estice SNote

Figure 19
(1) boolean Tree Promote Internal Node (. . .) {
(2) /* Several lines omitted for brevity */
(3) // for (Pos = 0; Pos < SetHead->Minkeys; ++Pos) {
(4) for (Pos = 0; Pos < SetHead->MinKeys-1; ++Pos) {
(5) ParentNode->Nodekeys Pos
= SetHead->TempKeys Pos);
(6) ParentNode->Node Handles Pos)
= SetHead->TempHandles Pos);
(7) Parent Node->Nodel eafs Post-1)
= SetHead->Templeafs (Pos+1);
(8) }
(9) . . .)

Figure 20
Parto

dodekeys
desires
celess

The array eerers withinger Pts rare attested

U.S. Patent Aug. 3, 2010 Sheet 12 of 12 US 7,770,153 B2

Figure 22
f TTTTTTTTTT C C C C
Computing Environment 22OO Communication
TT - T Connection(s) 227O C

223O
Input Device(s)

225O

Output Device(s)
226O

F---- Storage
-----2240

Processing
Unit 221 O

Analysis Tool Software 228O

US 7,770,153 B2
1.

HEAP-BASED BUG IDENTIFICATION USING
ANOMALY DETECTION

TECHNICAL FIELD

The field relates to dynamic program analysis, and tools
therefor.

BACKGROUND

As defined by Microsoft(R) Computer Dictionary, Fourth
Edition, Microsoft Press (1999), the heap is a portion of
memory in a computer that is reserved for a program to use for
the temporary storage of data structures whose existence or
size cannot be determined until the program is running. To
build and use such elements, programming languages such as
C and Pascal include functions and procedures for requesting
free memory from the heap, accessing it, and freeing it when
it is no longer needed. In contrast to stack memory, heap
memory blocks are not freed in reverse of the order in which
they were allocated, so free blocks may be interspersed with
blocks that are in use. As the program continues running, the
blocks may have to be moved around so that small free blocks
can be merged together into larger ones to meet the programs
needs.

Modern Software packages allocate and manage a vast
amount of information on the heap. Object oriented lan
guages such as Java and C# almost exclusively use the heap to
represent and manipulate complex data structures. The grow
ing importance of the heap necessitates detection and elimi
nation of heap-based bugs. These bugs often manifest them
selves in different forms, such as dangling pointers, memory
leaks, and inconsistent data structures.

Unfortunately, heap-based bugs are hard to detect. The
effect of these bugs is often delayed, and may be apparent
only after significant damage has been done to the heap. In
Some cases, the effect of the bug may not be apparent. For
instance, a dangling pointerbug does not crash the program
unless the pointer in question is dereferenced, and on occa
Sion, may not cause a crash even then. Consequently, Software
testing is not very effective at identifying heap-based bugs.
Because of the non-deterministic nature of heap-based bugs,
even if the buggy Statement is executed on a test run, it is not
always guaranteed to crash the program, or produce unex
pected results. Moreover, the effect of heap-based bugs is
often delayed, as a result of which testing does not reveal the
root-cause of the bug.

Static analysis techniques, such as shape analysis (see, e.g.,
M. Sagiv. T. W. Reps, and R. Wilhelm, “Parametric Shape
Analysis Via 3-Valued Logic. ACM Trans. Prog. Lang. Syst.
(TOPLAS), 24(3):217-298, May 2002), overcome these limi
tations. They examine all valid code paths, and can also
provide Soundness guarantees about the results of the analy
sis. Shape analysis has enjoyed Success at determining the
correctness of, or finding bugs in algorithms that manipulate
heap data structures. However, in spite of recent advances
(such as described by B. Hackett and R. Rugina, “Region
Based Shape Analysis With Tracked Locations.” Proc. 32nd
Symp. On Princ. of Prog. Lang. (POPL), January 2005; and E.
Yahav and G. Ramalingam, “Verifying Safety Properties
Using Separation And Heterogeneous Abstractions.” Proc.
ACM SIGPLAN Conf. On Prog. Lang. Design and Impl.
pages 25-34, June 2004), shape analysis algorithms are
expensive, and apply only to limited classes of data struc
tures, and properties to be checked on them. Moreover, the

10

15

25

30

35

40

45

50

55

60

65

2
results of static analysis, while Sound, are often overly con
servative, and over approximate the possible set of heap con
figurations.
On the other hand, dynamic analysis techniques have the

advantage of precisely capturing the set of heap configura
tions that arise. Several dynamic analysis tools have been
developed to detect special classes of heap-based bugs. (See,
e.g., T. M. Chilimbi and M. Hauswirth, “Low-Overhead
Memory Leak Detection Using Adaptive Statistical Profiling,
Proc. 11th Intl. Conf. On Arch. Support for Prog. Lang, and

Op. Sys. (ASPLOS), pages 156-164, October 2004; B. Dem
sky and M. Rinard, “Automatic Detection And Repair Of
Errors In Data Structures.” Proc. 18th ACM SIGPLAN Conf.
on Object-Oriented Prog., Systems, Lang. and Appls. (OOP
SLA), pages 78-95, October 2003; R. Hastings and B. Joyce,
“Purify: Fast Detection Of Memory Leaks And Access
Errors.” Winter USENIX Conference, pages 125-136, January
1992; and N. Nethercote and J. Seward, “Valgrind: A Program
Supervision Framework.” Elec. Notes in Theor: Comp. Sci.
(ENTCS), 89(2), 2003.) However, there has been relatively
little research at understanding the runtime behavior of the
heap, and applying this information for bug finding.

SUMMARY

The following description details various techniques and
tools for analyzing heap behavior of a program, and finding
heap-related bugs. An exemplary implementation of a runt
ime tool constructs and Summarizes heap behavior, and uses
anomaly detection to find heap-based bugs. The tool analyzes
heap behavior during execution of a program to identify rela
tively stable properties. The tool then detects the occurrence
of anomalies deviating from the observed properties, which
may lead to finding bugs.
More particularly, the exemplary implementation of the

runtime tool discovers stable properties of the heap-graph,
which is a directed graph with objects on the heap as vertexes.
An edge is drawn from vertex u to vertex v if the object
corresponding to u points to the object corresponding to V.
The runtime tool further computes a suite of metrics, such

as the size and number of connected components, the ratio of
Vertexes with in-degree out-degree, and the ratio of leaves
and roots, which are sensitive to the structure of the heap
graph. It computes these metrics periodically as the program
executes, thus capturing the evolving nature of the heap
graph. A key hypothesis of this technique is that in spite of the
evolving nature of the heap, several properties of the heap
graph remain relatively stable. Experimental results using
several benchmarks empirically show that this hypothesis
holds in practice. The intuition behind this is that program
mers implicitly maintain several invariants overheap proper
ties to manage the complexity of the heap, which, unlike code,
has no tangible, programmer-visible representations. The sta
bility of the heap-graph is reflected quantitatively in the val
ues of the metrics, several of which remain stable as well.
These metrics serve as a “signature' of the heap behavior of
a program, and their range determines the set of values that
arise during normal execution of the program.
The runtime tool uses these metrics with an anomaly detec

tor to find bugs. Metrics computed over an execution of the
program are compared against the normal range; if a metric
goes out of range, it is an indication that something is wrong.
The runtime tool does not require a formal specification of
correct behavior to be specified by the programmer in
advance; the tool automatically mines stable properties of the
heap, and uses these as specifications of correct behavior.

US 7,770,153 B2
3

Additional features and advantages of the invention will be
made apparent from the following detailed description of
embodiments that proceeds with reference to the accompa
nying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a data flow diagram of a software analysis tool
utilizing anomaly detection to identify heap-based bugs in a
computer program.

FIG. 2 is a diagram illustrating two examples of a heap
graph constructed by the tool of FIG. 1 to model heap behav
ior of a program.

FIG. 3 is a bar chart of experimental results illustrating
stability of all heap locations for a set of benchmark pro
grams.

FIG. 4 is a bar chart of experimental results illustrating
stability of pointer-valued heap locations for the set of bench
mark programs.

FIG. 5 is a table of average and standard deviation for the
rates of change of the ratio of pointer-valued heap locations
that store NULL and non-NULL constant values.

FIG. 6 is a pair of graphs of two degree-based metrics
resulting from two inputs applied on a benchmark program.

FIG. 7 is a pair of graphs of the fluctuation of the metrics
shown in FIG. 6.

FIG. 8 is a table of average and standard deviation for the
distributions in FIG. 7.

FIG. 9 is a source code listing of a portion of a benchmark
program having an injected bug.

FIG. 10 is a heap-graph produced by the analysis tool of
FIG. 1 for an execution of the buggy benchmark program of
FIG. 9.

FIG. 11 is a graph of several globally stable metrics iden
tified by the analysis tool of FIG. 1 for the execution of the
buggy benchmark program of FIG. 9.

FIG. 12 is a table of the globally stable metrics, their
normal range and anomaly detected information generated by
the analysis tool of FIG. 1 for the execution of the buggy
benchmark program of FIG. 9.

FIG. 13 is a source code listing of a portion of a benchmark
program having an injected bug.

FIG. 14 is a heap-graph produced by the analysis tool of
FIG. 1 for an execution of the buggy benchmark program of
FIG. 13.

FIG. 15 is a graph of globally stable metrics identified by
the analysis tool of FIG. 1 for the execution of the buggy
benchmark program of FIG. 13.

FIG. 16 is a table of the globally stable metrics, their
normal range and anomaly detected information generated by
the analysis tool of FIG. 1 for the execution of the buggy
benchmark program of FIG. 13.

FIG. 17 is a source code listing of a portion of a benchmark
program having an injected bug.

FIG. 18 is a heap-graph produced by the analysis tool of
FIG. 1 for an execution of the buggy benchmark program of
FIG. 17.

FIG. 19 is a source code listing of a portion of a benchmark
program having an injected bug.

FIG. 20 is a heap-graph produced by the analysis tool of
FIG. 1 for an execution of the buggy benchmark program of
FIG. 19.

FIG. 21 is a table of globally stable metrics, their normal
range and anomaly detected information generated by the
analysis tool of FIG. 1 for the execution of the buggy bench
mark programs of FIGS. 17 and 19.

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 22 is a block diagram of a Suitable computing envi

ronment for implementing the Software analysis tool utilizing
anomaly detection to identify heap-based bugs of FIG. 1.

DETAILED DESCRIPTION

The following description is directed to techniques for
identifying heap-based bugs in a program using anomaly
detection. More particularly, an exemplary implementation
of a runtime tool described herein models evolving heap
behavior to discover stable heap properties for a program. The
runtime tool then detects anomalous behavior of the program
that deviates from these observed stable properties, so as to
aid in finding heap-based bugs.

1. Overview of Runtime Tool For Heap-based Bug Identifi
cation Using Anomaly Detection

With reference to FIG. 1, an exemplary software analysis
tool 100 for heap-based bug identification using anomaly
detection employs a two-phase design. The first phase, a
model constructor 110, builds a model of expected program
behavior. The second phase, an execution checker 120, com
pares execution traces of the program against the model, and
raises an alarm if a trace deviates from the model.
The tool 100 can be designed to operate in various ways,

based upon the interaction of the two phases discussed above:
1. A first design, typically meant for long-running pro

grams, uses the model constructor and execution checker
simultaneously. It builds a model of the program using the
model constructor 110 as the program executes on an input,
and uses the execution checker 120 to verify the current state
of the program against the model built so far. Thus, the model
evolves as execution proceeds. It learns stable ranges of heap
properties, and checks that the heap properties at any point
during the execution remains within this expected stable
range. If it detects a violation, it raises an alarm, and refines
the model to accommodate the case that caused the violation.

2. In a second design, the model constructor 110 first builds
a model of the program’s behavior (e.g., during a trial or
reference execution of the program). This model is then used
to check Subsequent execution of the program in an online
fashion. That is, the execution of the program is continuously
monitored against the model, and an alarm is raised if the
execution violates the model.

3. The third design, typically meant for post-mortem analy
sis, compares an execution trace in an offline fashion against
a model of the program’s behavior, and detects locations in
the execution trace where the model was violated. This design
offers the advantage of having the entire execution trace for
analysis against the model. The implementation of the tool
used for the experimental results described below employs
this design. As demonstrated in the results discussed below,
offline analysis of execution traces produced by this tool can
be used to identify the first instance of an anomaly, and hence
be used to localize the root-cause of the bug. The offline
analysis can also use the information available in the entire
trace, thus potentially reducing the “cascade-effect', where a
single mistake in the analysis leads to a large number of false
positives.

In alternative implementations, the tool may be modified to
accommodate the first or the second design using sampling
techniques, such as those described by T. M. Chilimbi and M.
Hauswirth, “Low-Overhead Memory Leak Detection Using
Adaptive Statistical Profiling.” Proc. 11th Intl. Conf. On Arch.
Support for Prog. Lang, and Op. Sys. (ASPLOS), pages 156
164, October 2004; and B. Liblit, A. Aiken, A.X. Zheng, and
M.I. Jordan, “Bug Isolation Via Remote Program Sampling.”

US 7,770,153 B2
5

Proc. ACM SIGPLAN Conf. On Prog. Lang. Design and Impl.
(PLDI), pages 141-154, June 2003.
1.1 Building Models of Heap Behavior
The model constructor 110 computes a suite of metrics on

the heap-graph at several points during the execution of the
program. The metrics computed by the model constructor 110
are sensitive to the properties of the heap-graph; conse
quently, changes to the heap-graph manifest as changes in the
values of metrics. The model constructor 110 uses values of
metrics gathered over executions of the program on a training
set 132, and identifies the normal range of a subset of these
metrics. The execution checker 120 identifies runs of the
program in which metrics violate the normal range, and
marks them as erroneous.

There are several challenges to appropriately modeling
heap behavior that are addressed in an exemplary implemen
tation of the model constructor 110, including the following.

1. Evolving nature of the heap. As a program runs, it allo
cates and deallocates memory from the heap. Consequently,
the number of objects on the heap, as well as the connectivity
of these objects differs at different program points. Accord
ingly, the model of the heap desirably captures the heap's
evolving nature.

In one implementation of the tool 100 described below, the
metrics computed by the model constructor 110, such as the
number and mean size of connected components, degree of
Vertexes and ratio of leaves and roots, are sensitive to the
structure of the heap-graph. Because the model constructor
110 computes these metrics periodically at several points
during the program’s execution, it captures the evolving
nature of the heap-graph.

2. Sensitivity to the inputs of the program. Different inputs
to the program may induce different heap configurations.
Consequently, several heap configurations are possible at a
single point of the program. Accordingly, the model of the
heap desirably Summarizes heap configurations that can arise
at a particular program point.

Because the below described implementation of the model
constructor 110 constructs models using metric reports from
runs of the program on inputs drawn from a training set, it
models sensitivity of the program to its inputs.

3. Size of the heap. Heap-intensive programs create a large
number of objects on the heap. Given that several heap con
figurations can arise at a program point based upon the input
to the program, a model that stores all the con-figurations of
the heap at each program point can become impractical, espe
cially for heap-intensive programs. Firstly, it is challenging to
construct and represent such a model in a scalable way. Sec
ondly, the execution checker 120, which compares an actual
execution trace against this model, also has to work efficiently
and Scalably to handle Such programs. Hence, the model
constructor preferably provides a Succinct and Scalable Sum
marization of heap configurations.
The exemplary implementation of the model constructor

110 described below does not store the exact set of configu
rations of the heap-graph that can arise at each program-point.
The metrics it computes, which are sensitive to the heap
graphs properties, serve as a Succinct Summary of possible
heap-graph configurations.

4. Sensitivity of the models. A model that captures only a
Subset of the possible heap configurations that arise at a
program point is an under approximation. Because the tool
100 infers the heap configurations that can arise by executing
the program on inputs from a training set, the model con
structed is necessarily an under approximation. An under
approximation will identify all execution traces that result in

10

15

25

30

35

40

45

50

55

60

65

6
erroneous heap configurations at a program point. However,
legitimate heap configurations could still be marked errone
ous, thus resulting in false-positives.
On the other hand, a model that over approximates the

possible set of heap configurations captures a Superset of the
possible heap configurations at each program point. While
such a model will never report a false-positive, it could allow
execution traces that result in buggy heap configurations, thus
resulting in false negatives (i.e., missed bugs).
As discussed later, the model constructed in the exemplary

implementation of the tool 100 neither under approximates
nor over approximates the set of heap configurations. Conse
quently, the execution checker 120 can produce both false
positives and false-negatives. With program analysis tools
that find bugs, false-positives are generally considered a big
ger problem than false-negatives, because a large number of
false-positives overwhelm the user of the tool. The model
constructed by the model constructor 110 consolidates sev
eral metric reports, and identifies the normal range of “stable'
metrics. The tool 100 can miss bugs because a buggy execu
tion can still produce metric values within the normal range.
However, we have observed that violation of the normal range
of metrics correlate closely to real bugs, thus the tool pro
duces few false-positives.

In the exemplary implementation, the metrics computed by
the tool’s model constructor 110 can be broadly divided into
three categories (Table 1 shows the list of metrics computed in
this exemplary implementation), although the architecture of
the model constructor allows other metrics to be easily added
in the future. Each metric described in Table 1 is computed at
several program points during the run of the program on each
input from a training set.

TABLE 1

Metrics Computed by Tool.

Classification Metrics

Connectivity
based

(a) Mean, (b) Median, and (c) Mode sizes of, and
(d) number of connected and strongly connected
components.
Ratio of vertexes in the heap-graph with: (a)
outdegree = 0 (leaves), (b) outdegree = 1,
(c) outdegree = 2, (d) indegree = 0 (roots),
(e) indegree = 1, and (f) indegree =
outdegree, and the ratio of edges to vertices in
the heap-graph.
Ratio of heap locations, both pointer-valued and
otherwise, that, during their lifetime, store: (a)
only the value Zero (NULL), (b) a constant non
Zero value, (c) two non-zero values, and (d) many
non-zero values.

Degree-based

Value-based

Ideally, the tool 100 would compute the metrics each time
the heap-graph changes because of addition or deletion of
vertexes, or addition, deletion or modification of edges. How
ever, doing so would lead to an unacceptable performance
penalty because the metrics have to be recomputed poten
tially after every program Statement that modifies the heap.
Consequently, the model constructor 110 computes metrics
periodically at certain pre-defined program points, called
metric computation points. In the exemplary implementation
of the tool 100, these are function entry-points and function
exits. As the program executes, metrics are computed once for
every frametric computation points encountered, where frcis
a user-specified frequency.
The model constructed by the tool 100 is neither an under

approximation nor an over approximation of the heap's
behavior. For each input from the training set 132, the model

US 7,770,153 B2
7

constructor computes a Suite of metrics on the heap-graph at
several program points. The use of metrics only captures
certain properties of the heap-graph, and hence results in loss
of information because the heap-graph cannot be recon
structed uniquely using the metrics observed. Thus, the Suite
of metrics for each run is an over approximation of the set of
possible configurations of the heap-graph. On the other hand,
because the tool uses inputs from a training set, it observes a
Subset of the possible set of heap configurations. Hence, a
model constructed by computing metrics on the heap con
figurations that arise on inputs from a training set neither
under approximates nor over approximates the set of correct
configurations.
1.2 Implementation of the Analysis Tool

FIG. 1 shows the architecture of the analysis tool 100. The
model constructor 110 has three main components: a binary
instrumenter 130, an execution logger 140, and a metric Sum
marizer 150.
The binary instrumenter 130 processes the executable of

the program being analyzed (e.g., "input.exe 115) and adds
instrumentation that exposes the addition, modification and
removal of objects in the heap to the execution logger. It 130
instruments allocator and deallocator functions, such as mal
loc, realloc and free, to record the addresses and the sizes of
objects allocated on the heap. In addition, the binary instru
menter 130 also instruments instructions which write to
objects on the heap. Each write instruction is instrumented to
record the address of the object being writtento, and the value
written to that address. In an exemplary implementation of
the tool 100, the binary instrumenter 130 is built using a
binary transformation tool, such as Vulcan (described by A.
Edwards, A. Srivastava, and H. Vo, “Vulcan: Binary transfor
mation in a distributed environment. Technical Report 2001
50, Microsoft Research, April 2001). In alternative imple
mentations, the analysis tool 100 can employ other
instrumenters, including instrumentation tools that process
the source files of the program to add instrumentation instruc
tions.

The execution logger 140 runs the instrumented file (e.g.,
“output.exe” 135) on inputs from a training set 132. It main
tains an image of the heap-graph, and updates this image
when output.exe allocates, frees, or writes to an object repre
sented in the heap-graph. As mentioned earlier, it computes
metrics on the heap-graph at a user-specified frequency
(called “frc), which is specified in a settings file 138.

Alternatively, it is also possible to compute the metrics
directly on the heap, which would obviate the need to main
tain an image of the heap-graph within the execution logger.
The approach of maintaining an image of the heap-graph was
chosen in the exemplary implementation of the analysis tool
100 for two reasons:

1. Algorithms that compute connected component metrics,
strongly connected component metrics, and value-based met
rics are only sensitive to the connectivity of objects on the
heap. Traversing the heap periodically to compute metrics
can result in poor cache-locality translating to performance
penalty. By maintaining an image of the heap-graph that only
stores connectivity information between objects on the heap,
the analysis tool 100 can compute the required metrics while
still preserving cache-locality.

2. The approach permits modular reasoning about the heap
behavior of interacting programs. For instance, one could
study the heap behavior of a library by instrumenting the
library alone. As the library gets invoked by several programs,
the heap-graph produced by the execution logger corresponds
to the heap behavior of the library. Consequently, one can

5

10

15

25

30

35

40

45

50

55

60

65

8
identify heap-based bugs in the library without having to
instrument all the programs that invoke the library.
The execution logger 140 can construct the heap-graph at

any of several levels of granularity. For instance. Example 1 in
FIG. 2 shows three nodes of a linked-list. Each node of the
linked-list contains two fields: a data member, and a pointerto
the next node. If the heap-graph is constructed at the granu
larity of individual fields, as shown by the dotted lines, it has
six vertexes and two edges. On the other hand, if it is con
structed at the granularity of objects, as shown by the bold
lines, it has three vertexes and two edges.

Constructing the heap-graph at the granularity of fields
captures fine-grained information, such as the connectivity of
individual fields. However, the metrics computed on such a
graph will be sensitive to the layout of fields within an object.
For instance, consider the heap-graph (constructed at field
granularity) of a k-node linked-list. With a field layout similar
to Example A shown in FIG. 2, only two vertexes have
indegree outdegree (equal to 0), namely, the vertexes corre
sponding to the data-field of the left-most node, and the
next-node-field of the right-most node of the linked-list.
However, with a field layout similar to Example B in FIG. 2,
all but two vertexes have indegree-outdegree, namely the
vertexes corresponding to the next-node-fields of the left
most node and the right-most node of the linked list. With this
layout, all the vertexes corresponding to the data-fields have
indegree outdegree-0, and all but two of the next-node
fields of the linked-list have indegree-outdegree-1. On the
other hand, all metrics are the same if heap-graphs are con
structed at object granularity. For this reason, the exemplary
implementation of the analysis tool 100 constructs the heap
graph at object granularity.
The metric summarizer 150 consolidates metric reports

145 obtained from individual executions of the instrumented
program (e.g., "output.exe” 135) on inputs from a training set
132. The summarized metrics can be classified into three
categories based upon their stability across runs of a program:

1. A metric may remain relatively constant during the
execution of the program for each input from the training set,
perhaps acquiring a different constant value in each run. The
range of Such a globally stable metric can be used as an
indicator of correct behavior, and executions which result in
the metric going out of range can be marked as potentially
buggy.

2. As observed by several researchers, programs execute in
phases, and different phases of the program exhibit different
heap behavior. As the program phase changes, the heap
graph, and consequently some metrics associated with the
heap-graph change to reflect the new heap behavior of the
program. A locally stable metric acquires different values
across phases of the program, but remains relatively constant
within a program phase. Note that globally stable metrics are
also locally stable.

3. An unstable metric is neither globally stable nor locally
stable.
The key observation used by the analysis tool 100 is that in

spite of the phase behavior of the program, several stable
metrics exist. In our experience, metrics change rapidly dur
ing program startup and shutdown. We observed that during
the other phases of the program, while some metrics change
to reflect the phase behavior of the program, there are several
metrics which remain relatively stable. In the section entitled
“Existence of Stable Metrics’ below, we provide empirical
evidence that stable metrics exist.
The analysis tool 100 uses this observation. In the exem

plary implementation, the summarizer 150 identifies metrics
which remain globally stable when the startup and shutdown

US 7,770,153 B2
9

of the program are ignored. Because a globally stable metric
does not change, or changes slowly, its average rate of change
will be close to zero. The summarizer compares the rate of
change of each metric against a threshold value, and identifies
slowly changing metrics as globally stable. The Summarized
metric report, which serves as a model for the execution
checker, contains the range of values observed for these met
rics over the runs of the program on the training input set. In
alternative implementations, the summarizer 150 can also
include locally stable metrics in the model.
1.3 Checking Execution Traces to Detect Bugs
The second phase of the analysis tool 100, the execution

checker 120, uses the model constructed by the first phase to
monitor executions of the program, and identify anomalies,
which are potentially because ofheap-related bugs. The lower
half of FIG. 1 shows the architecture of the analysis tools
execution checker 120. As with the model constructor 110,
the execution logger 160 executes the instrumented program
(e.g., “output.exe” 135), and produces a metric report 165.
This report is analyzed by the anomaly detector 170, which
identifies deviations from the model.

The anomaly detector 170 uses the summarized metric
report 155 (from the model constructor), which serves as the
model, as a basis for comparing metric reports obtained from
executions of the program on other inputs. The Summarized
metric report 155 contains ranges of globally stable metrics.
The execution checker 120 verifies that the values of these
metrics obtained in the current execution are within the per
mitted range.
As discussed earlier, the exemplary implementation of the

analysis tool is constructed as a post-mortem analysis tool,
where metrics are analyzed after the execution of the program
has completed. The design of the execution checker 120 can
be readily adapted to other designs as well. Because the
execution checker in the exemplary implementation only per
forms a light-weight comparison to Verify that a metric is in
its allowed range, the execution checker can be modified to
work in an online fashion as well.

In other implementations of the analysis tool, the execution
checker can be extended to also perform comparison of
locally stable metrics as well. In one such alternative imple
mentation, the execution checker compares the values of the
locally stable metrics from corresponding phases in the pro
gram. This technique requires identification of corresponding
program phases, such as by applying program phase detection
and prediction techniques described by C. Ding and Y. Zhong,
“Predicting Whole-Program Locality With Reuse Distance
Analysis.” Proc. ACM SIGPLAN Confon Prog. Lang. Design
and Impl. (PLDI), pages 245-257, June 2003: X. Shen, Y.
Zhong, and C. Ding, “Locality phase prediction.” Proc. 11th
Intl. Conf. On Arch. Support for Prog. Lang, and Op. Sys.
(ASPLOS), pages 165-176, October 2004; T. Sherwood, E.
Perelman, G. Hamerly, and B. Calder, Automatically char
acterizing large scale program behaviour.” Proc. 10th Intl.
Confon Arch. Support for Prog. Lang, and Op. Sys. (ASP
LOS), pages 45-57, October 2002; and T. Sherwood, S. Sair,
and B. Calder. “Phase tracking and prediction.” Proc. 30th
Intl. Symp. On Computer Architecture (ISCA), pages 336-347,
June 2003.

2. Existence of Stable Metrics
In this section, we present empirical evidence that stable

metrics exist. Several metrics computed on the heap-graph,
especially connectivity and degree-based metrics, are sensi
tive to its structure. Thus, a structurally stable heap-graph
provides indirect evidence that stable metrics exist. In addi

10

15

25

30

35

40

45

50

55

60

65

10
tion, value-based metrics, are sensitive to the number of dis
tinct values stored at heap locations.
To study stability, we measured the number of distinct

values stored in each heap location. If a large fraction of heap
locations are mutated only once, i.e., they either store the
value Zero, or a constant non-Zero value during their lifetime,
then it is an indication that a large number of pointer-valued
heap locations store NULL or a constant non-NULL value as
well. This yields a stable points-to relationship. Because the
edges of the heap-graph are determined by the points-to rela
tionship between heap objects, this translates to the stability
of connectivity- and degree-based metrics.

FIG. 3 shows the results of the study performed on eight
programs chosen from the SPEC 2000 benchmarks suite. We
measured the ratio of heap locations that, during their life
time, store: (i) only the value Zero, (ii) a constant nonzero
value (denoted by One), (iii) exactly two non-zero values
(denoted by Two), and (iv) more than two non-zero values
(denoted by Many). Because heap locations are written to as
the program executes, these ratios change as the program
evolves. Hence, we measured the above ratios at each metric
computation point—the numbers in FIG. 3 denote the aver
age taken across all metric computation points.

Note that for all benchmarks, except crafty and parser,
greater than 50% of all heap locations either store Zero or a
constant nonzero Value. In the case of crafty, a chess playing
program, all the data structures are allocated at the beginning
of execution, and the program only manipulates non-pointer
fields of the data structures during execution. Consequently,
only 17.90% of heap locations are mutated just once.

While this study indicates that for most benchmarks, a
majority of heap locations are mutated only once, the results
are not encouraging enough to indicate the stability of con
nectivity- and degree-based metrics. Consequently, we per
formed the same experiment, but restricted attention to
pointer-valued heap locations. The results, shown in FIG. 4,
are very encouraging. They indicate that on an average, over
75% of pointer-valued heap locations either store NULL or a
constant non-NULL value. The result is most striking in the
case of crafty, where the number of pointer valued heap
locations mutated only once is 99.80%, as opposed to 17.90%
when all heap locations are considered.

While FIG. 4 shows the ratios averaged across all metric
computation points, it does not show how these ratios evolve
as the program executes. To do so, we measured the rate at
which the ratio of pointer-valued heap locations that store
NULL and constant non-NULL values change as the program
evolves. That is, if NULLt and ONEt denote the ratio of
pointer-valuedheap locations that store NULL and a constant
non-NULL value at metric computation point t, and
NULLt--1 and ONEt--1 denote these values at computation
point t+1, then, at metric computation point t+1, we record the
value (NULLt--1-NULLt--ONEt+1-ONEt) NULLt+ONEtx
100. The results, presented in FIG. 5, show for each bench
mark the rate of change averaged overall metric computation
points, and the standard deviation of change. Note that, except
for mcf. the number of heap locations that store NULL or
constant values either remains a constant, or changes very
slowly, as shown by the small values of standard deviation.
From this study, we conclude that the points-to relationship

is relatively stable. Consequently, this indicates the stability
of connectivity and degree-based metrics. Furthermore,
because the points-to relationship evolves slowly over time,
we can expect value-based metrics to be relatively stable as
well. The results of this study also facilitate several optimi
Zation opportunities. Because a large fraction of heap loca

US 7,770,153 B2
11

tions are stable, it means they can be prefetched to the cache,
thus reducing the number of cache misses.
3. Experience with the Analysis Tool
The following sections present various examples using the

analysis tool 100 to identify bugs introduced into various of
the SPECINT 200 benchmark programs, which illustrates
key features of the analysis tool.
3.1 Detailed Example
Model Construction. In a first example, the analysis tool

100 (FIG. 1) produces a model of the heap behavior of the
benchmark program, vpr, using the test and train input sets
(henceforth referred to as Input1 and as Input2) from the
SPECINT 2000 benchmark Suite. The model constructor's
execution logger 140 produces metric reports 145 for the
execution of the Vpr program on each of these inputs. For
clarity, we restrict the discussion here to two degree-based
metrics: the ratio of vertexes with indegree-outdegree and
outdegree-2. FIGS. 6(A) and (B) denote the distribution of
these metrics on Input1 and Input2, respectively. The y-axis
denotes the ratio of vertexes with indegree-outdegree or out
degree 2, and the X-axis denotes progress of execution; each
data point on the graph is obtained at a metric computation
point. Because the Vpr program executes longer on Input2.
FIG. 6(B) has more metric computation points than FIG.
6(A).

Note that both metrics change rapidly initially, correspond
ing to the heap behavior of the Vpr program on startup, but
stabilize as execution proceeds. Observe that for Input1, both
metrics acquire a relatively stable value after 3 metric com
putation points, while for Input2, they do so after 25 metric
computation points. As explained earlier, the metric summa
rizer 150 (FIG.1) analyzes metric reports 145 for these execu
tion runs to identify globally stable metrics: to do so, it com
putes the change in metrics as execution proceeds. FIGS.
7(A) and 7(B) illustrate the fluctuation of metrics as execution
proceeds. The y-axis denotes the percentage change between
consecutive values of the metric. That is, if a metric changes
from y1 to y2 between metric computation points t and t+1,
we plot the value (y2-y1)x100 y1 at t+1. The x-axis denotes
metric computation points; in FIGS. 7(A) and 7(B), we ignore
the first 3, and first 25 metric computation points, respec
tively.

Informally, for a globally stable metric, the metric fluctua
tion plot will be relatively “flat, and close to 0. For a locally
stable metric, the fluctuation plot will also be “flat” with a
value close to 0, except for occasional “spikes, which denote
sharp changes in the value of the metric. Formally, the aver
age change of a globally stable metric will be close to 0, and
the standard deviation of the change will also be close to 0.
The average change of a locally stable metric will also be
close to 0, but the standard deviation of the change will be
further away from 0. An unstable metric will either have a
large non-Zero value for average change, or will have a large
standard deviation. By using a threshold value for the average
change, and the standard deviation of change, the model
constructor 110 identifies globally stable metrics.

FIG. 8 shows the average values and standard deviations of
the distributions in FIGS. 7(A) and 7(B). The average changes
in the ratio of vertexes with outdegree-2 are -0.22% and
-0.15% for Input1 and Input2, respectively, while the stan
dard deviations of change are 2.44% and 0.63% for Input1
and Input2, respectively. Setting the threshold for average
change at it 1% and standard deviation of change at 5%, out
degree-2 becomes a globally stable metric. The allowed
range of this metric is 0.071, 0.264, which are the minimum
and maximum values of this metric from FIG. 6, ignoring the

10

15

25

30

35

40

45

50

55

60

65

12
first 3 and first 25 metric computation points for Input1 and
Input2, respectively. The ratio of vertexes with
indegree outdegree is not globally stable. For Input1 the
average change is 2.10%, and the standard deviation of
change is 24.38%, both of which are above the threshold.
Note that for Input2, the average change and the standard
deviation are within the threshold value. For a globally stable
metric, we require the average change and standard deviation
of change to be within the threshold for all inputs in the
training set.

Checking Execution Traces. To illustrate the effectiveness
of the analysis tool 100, we demonstrate how the execution
checker 120 identifies bugs based upon the normal ranges of
globally stable metrics identified by the model constructor
110. In this continuing example, the bug shown in the code
listing of FIG. 9 was injected in the file util.c of the Vpr
benchmark program. In this listing, a function called “insert
in Vptr list inserts a new element at the beginning of a linked
list of void pointers, and returns the new head of the list. The
statement at line (4) of the Source code listing creates a new
node, the statement online (6) links the data-field of the node
to the void pointer vptr to add, and the statement on line (7)
adds the new node before the head of the linked list. To create
a buggy version for this example, we removed line (6); thus a
new node is added to the linked list, but the data field of the
node, data vptr. is left uninitialized. As shown in FIG. 10, the
dotted edges do not appear in the heap-graph of the bug
injected version of Vpr. This results in a dangling pointerbug,
which may lead to a crash when data vptr is dereferenced.
When this buggy version of Vpr is executed on Input2, the

metric outdegree-2 goes out of range. The flat lines in the
graph of FIG. 11 indicate the allowed range 0.071, 0.264 for
this metric, and the ratio of nodes with outdegree-2 is smaller
than the minimum allowed value. In the buggy version of vpr,
each node in the linked list manipulated by the “insert in Vptr
list' function has outdegree–1, whereas in the normal ver
Sion, each node has outdegree-2. Thus, the ratio ofnodes with
outdegree-2 falls below the acceptable limit; predictably, the
ratio of nodes with outdegree-1 was above its acceptable
limit. The table in FIG. 12 also lists the normal ranges of other
globally stable metrics identified by the analysis tool 100, and
indicates whether the metric was out of range for the buggy
version of the benchmark program, Vpr. In addition to these
metrics, the analysis tool identified that all the value-based
metrics were stable, but were within their normal range in the
buggy Version.

This example illustrates the analysis tool identifies the
root-cause of the bug. It identifies the bug at the point when
data vptr was left uninitialized, not when a dereference of data
Vptr causes a crash. Thus, the analysis tool can be used effec
tively as a debugging tool. This example also illustrates the
kind of bugs that the analysis tool was designed to isolate. In
particular, the analysis tool looks for coarse-grained heap
based bugs which cause a significant change in the properties
of the heap-graph, resulting in one of the globally stable
metrics going out of range. Because the analysis tool does not
capture invariants about aparticular object or set of objects on
the heap, it cannot detect fine-grained heap manipulation
errors. For instance, Suppose that an object 'u' points to an
object 'v' on all the inputs from the training set. While this is
an invariant which can be used for bug detection, the analysis
tool does not capture this fact, and hence will not detect
violation of this invariant. Similarly, shape analysis algo
rithms (such as the one described by M. Sagiv. T. W. Reps, and
R. Wilhelm, “Parametric Shape Analysis Via 3-Valued
Logic. ACM Trans. Prog. Lang. Syst. (TOPLAS), 24(3):217
298, May 2002) can prove the correctness of algorithms that

US 7,770,153 B2
13

manipulate data structures on the heap. They use fine-grained
abstractions to capture the possible set of heap configurations
at every step of the algorithm. Because the exemplary imple
mentation of the analysis tool 100 only observes the heap
graph periodically, it cannot be used to prove or disprove the
correctness of Such algorithms.
3.2 More Examples

In a second example, the analysis tool 100 (FIG. 1) is used
on the benchmark program, “Twolf” which is an engineering
application for pin placement and routing. For this example,
a bug is injected in the “sortpin' function in the source file
("sortpin.c') of the Twolf program, which is shown in the
statement at line (7) of FIG. 13. The sortpin function creates
and manipulates a linked list whose nodes have type
“TEBOXPTR,” which has, apart from other fields, two point
ers: nextterm and termptr. As FIG. 14 shows, the dotted lines
do not appear on the heap-graph in the bug-injected version.
The analysis tool 100 successfully finds the root cause of

the bug. Among the globally stable metrics identified, outde
gree-1 was above its normal range, and outdegree 2 was
below the normal range, as shown in the metrics graph in FIG.
14 and summarized in the table in FIG. 16. This is as
expected, because the nodes of type TEBOXPTR have out
degree-1 (instead of 2) in the buggy version. We observed
that in the case of twolf, the other degree-based metrics were
locally stable—they acquired different (constant) values in
phases. Because the current implementation of the analysis
tool 100 only supports globally stable metrics, we were
unable to use locally stable metrics for bug detection.

In a further example, the analysis tool 100 was tested on
another benchmark program, “Vortex, which is an object
oriented database. For this example, Vortex was modified
with two injected bugs, as discussed below.
Bug 1. FIG. 17 shows the bug injected in function “Tree

AddInto a tree manipulation function in the source file,
“treeOO.c. of the “Vortex' program. In this procedure, a
sibling is created for a leaf node in the tree; but the injected
bug fails to initialize the ParentNode pointer of the sibling. As
a result, the dotted edge shown in FIG. 18 is missing from the
buggy Version.

FIG. 21 lists the globally stable metrics identified by the
analysis tool along with their normal ranges. The Ptr One
metric denotes the ratio of pointer-valued heap locations that
store a constant non-NULL value during their lifetime, while
One is the same ratio across all heap locations, irrespective of
type. The buggy version results in a greater number of nodes
with indegree-1 (the parent nodes), and a fewer number of
nodes with outdegree-1 (the sibling nodes), thus resulting in
these metrics violating their normal ranges.

Bug. 2. FIG. 19 shows the second bug, which is injected in
the function "Tree PromotenternalNode' in the source file
“treeO0.c” of the “Vortex” program. The arrays “NodeKeys.”
“NodeHandles” and “NodeLeafs' store integers. When the
bug shown in line (4) of the code listing in FIG. 19 is intro
duced, one fewer element is updated than in the normal case.
As Summarized in FIG. 21, the exemplary implementation

of the analysis tool 100 is unable to identify this bug, thus
resulting in a false negative. Note that because the arrays store
integer values, the bug does not change the structure of the
heap-graph in FIG. 20, as a result of which connectivity- and
degree-based metrics are unaffected. For the same reason, Ptr
One is also unaffected, because it is restricted to pointer
valued heap locations alone. However, contrary to our expec
tation, the metric One is also unaffected. We discovered that
the reason for this is because each location of each array is
updated several times, even in the correct version of vortex.

10

15

25

30

35

40

45

50

55

60

65

14
Because value-based metrics group heap locations that store
more than two distinct values into the same category (Many),
there is no change in any of the value-based metrics when the
bug is induced.
4. Alternative Implementations
Due to lack of a diagnostic front-end, it can be difficult to

correlate anomalies in bug reports with the code that caused
the anomaly with the above-described exemplary implemen
tation of the analysis tool. Alternative implementations of the
analysis tool can overcome this limitation by recording, in
addition to the value written to a heap location, the instruction
that caused the write. In other alternative implementations,
the analysis tool can be combined with other diagnostic tools
to better correlate a detected anomaly with the code that
caused the anomaly.

Because the above-described exemplary implementation
of the analysis tool instruments each instruction that writes to
memory, the execution runs of the program being test may
Suffer performance penalty compared to uninstrumented
counterparts. This is acceptable for a post-mortem analysis
tool. In alternative implementations of the analysis tool as an
online tool, the binary instrumenter 130 can introduce instru
mentation that employs a sampling-based approach. Such
periodic sampling can mitigate the cost of analysis, while still
providing useful information.

Alternative implementations of the analysis tool can be
modified to make use of type information, such as symbol
table information, which can be used to extract fine-grained
characteristics of the heap-graph. For instance, such alterna
tive implementation of the analysis tool could restrict atten
tion to data members of a particular type, and only compute
metrics over these data members.

4. Computing Environment
The above described exemplary analysis tool 100 (FIG. 1)

that implements the above-described techniques for heap
based bug identification using anomaly detection can be
implemented on any of a variety of computing devices and
environments, including computers of various form factors
(personal, workstation, server, handheld, laptop, tablet, or
other mobile), distributed computing networks, and Web ser
vices, as a few general examples. The heap-based bug iden
tification using anomaly detection techniques of the analysis
tool 100 can be implemented in hardware circuitry, as well as
in software 2280 executing within a computer or other com
puting environment, such as shown in FIG. 22.

FIG. 22 illustrates a generalized example of a suitable
computing environment 2200 in which the described tech
niques can be implemented. The computing environment
2200 is not intended to Suggest any limitation as to scope of
use or functionality of the invention, as the present invention
may be implemented in diverse general-purpose or special
purpose computing environments.

With reference to FIG. 22, the computing environment
2200 includes at least one processing unit 2210 and memory
2220. In FIG. 22, this most basic configuration 2230 is
included within a dashed line. The processing unit 2210
executes computer-executable instructions and may be a real
or a virtual processor. In a multi-processing system, multiple
processing units execute computer-executable instructions to
increase processing power. The memory 2220 may be volatile
memory (e.g., registers, cache, RAM), non-volatile memory
(e.g., ROM, EEPROM, flash memory, etc.), or some combi
nation of the two. The memory 2220 stores software 2280
implementing the analysis tool 100 with heap-based bug
identification using anomaly detection.

US 7,770,153 B2
15

A computing environment may have additional features.
For example, the computing environment 2200 includes stor
age 2240, one or more input devices 2250, one or more output
devices 2260, and one or more communication connections
2270. An interconnection mechanism (not shown) Such as a
bus, controller, or network interconnects the components of
the computing environment 2200. Typically, operating sys
tem Software (not shown) provides an operating environment
for other software executing in the computing environment
2200, and coordinates activities of the components of the
computing environment 2200.
The storage 2240 may be removable or non-removable,

and includes magnetic disks, magnetic tapes or cassettes,
CD-ROMs, CD-RWs, DVDs, or any other medium which can
be used to store information and which can be accessed within
the computing environment 2200. The storage 2240 stores
instructions for the software 2280 of the exemplary analysis
tool implementing the heap-based bug identification using
anomaly detection techniques.
The input device(s) 2250 (e.g., for devices operating as a

control point in the device connectivity architecture 100) may
be a touch input device Such as a keyboard, mouse, pen, or
trackball, a Voice input device, a scanning device, or another
device that provides input to the computing environment
2200. For audio, the input device(s) 2250 may be a sound card
or similar device that accepts audio input in analog or digital
form, or a CD-ROM reader that provides audio samples to the
computing environment. The output device(s) 2260 may be a
display, printer, speaker, CD-writer, or another device that
provides output from the computing environment 2200.
The communication connection(s) 2270 enable communi

cation over a communication medium to another computing
entity. The communication medium conveys information
Such as computer-executable instructions, audio/video or
other media information, or other data in a modulated data
signal. A modulated data signal is a signal that has one or
more of its characteristics set or changed in Such a manner as
to encode information in the signal. By way of example, and
not limitation, communication media include wired or wire
less techniques implemented with an electrical, optical, RF,
infrared, acoustic, or other carrier.
The analysis tool and techniques herein can be described in

the general context of computer-readable media. Computer
readable media are any available media that can be accessed
within a computing environment. By way of example, and not
limitation, with the computing environment 2200, computer
readable media include memory 2220, storage 2240, commu
nication media, and combinations of any of the above.
The techniques herein can be described in the general

context of computer-executable instructions, such as those
included in program modules, being executed in a computing
environment on a target real or virtual processor. Generally,
program modules include routines, programs, libraries,
objects, classes, components, data structures, etc. that per
form particular tasks or implement particular abstract data
types. The functionality of the program modules may be
combined or split between program modules as desired in
various embodiments. Computer-executable instructions for
program modules may be executed within a local or distrib
uted computing environment.

For the sake of presentation, the detailed description uses
terms like “determine.” “generate.” “adjust and “apply’ to
describe computer operations in a computing environment.
These terms are high-level abstractions for operations per
formed by a computer, and should not be confused with acts

5

10

15

25

30

35

40

45

50

55

60

65

16
performed by a human being. The actual computer operations
corresponding to these terms vary depending on implemen
tation.

In view of the many possible embodiments to which the
principles of our invention may be applied, we claim as our
invention all Such embodiments as may come within the
Scope and spirit of the following claims and equivalents
thereto.

We claim:
1. A method of identifying heap-based bugs, comprising:
building a model of heap behavior for a program executing

on a computer comprising physical memory devices
Such that at least some memory storage for the program
on the memory devices is managed as a heap, the build
ing occurring by observing heap behavior of the pro
gram during execution, the model comprising a Suite of
numerical metrics, the numerical metrics measuring
structure of a heap-graph which represents objects and
pointers between objects in the heap:

calculating a rate of change of the numerical metrics across
one or more execution runs and comparing the rate of
change to a threshold rate;

identifying slowly-changing numerical metrics from the
Suite whose rate of change remains lower than the
threshold rate to be globally stable;

detecting anomalous heap behavior deviating from the
model, wherein the detecting comprises computing the
globally stable metrics from a Subsequent execution of
the program and detecting anomalies where the globally
stable metrics deviate from predefined acceptable
ranges, wherein the detecting ignores startup and shut
down of the program; and

reporting information of the anomalous heap behavior as
indicative of a heap-based bug in the program.

2. The method of claim 1 further comprising:
adaptively building the model and detecting anomalous

heap behavior concurrently during a single execution of
the program.

3. The method of claim 1 further comprising:
performing said detecting anomalous behavior in on-line

fashion during execution of the program.
4. The method of claim 1 wherein detecting anomalous

behavior comprises:
recording an execution trace of the program’s execution;

and
performing said detecting anomalous behavior in an off

line fashion based on the execution trace.
5. The method of claim 1 wherein said building the model

comprises:
causing the program to execute on a training set of inputs;
computing the Suite of numerical metrics for the heap

graph, the numerical metrics representing the programs
heap behavior; and

determining which of the numerical metrics remain stable.
6. The method of claim 5 further wherein the suite of

metrics comprise at least one connectivity-based numerical
metric for the heap-graph.

7. The method of claim 5 further wherein the Suite of
metrics comprise at least one degree-based numerical metric
for the heap-graph.

8. The method of claim 5 further wherein the suite of
metrics comprise at least one value-based numerical metric
for the heap-graph.

9. The method of claim 5 further comprising determining
numerical ranges in which the metrics for the heap-graph
remain stable.

US 7,770,153 B2
17

10. The method of claim 9 wherein said detecting anoma
lous behavior comprises:

periodically computing the metrics for the heap-graph dur
ing a further execution of the program; and

detecting that the metrics have gone outside of the deter
mined ranges.

11. The method of claim 5 further comprising determining
which of the metrics for the heap-graph are locally stable.

12. A computer system programmed as a dynamic analysis
tool for identifying heap-based bugs in programs, compris
ing:

a processor;
memory devices, the memory devices containing memory

storage for a program executing on the processor, the
memory storage managed as a heap:

the processor configured to perform:
detecting phases of execution of the program;
building a model of heap behavior for the program, the

model comprising a set of numerical metrics, the
numerical metrics measuring properties of a heap
graph which represents objects and pointers between
objects in the heap and which is modified as the heap
changes:

calculating a rate of change of the numerical metrics
across one or more execution runs and comparing the
rate of change to a threshold rate;

identifying slowly-changing numerical metrics from the
set whose rate of change remains lower than the
threshold rate within a detected phase of execution to
be locally stable; and

detecting anomalies occurring in an execution of the
program in which heap behavior of the program devi
ates from the model wherein the detecting comprises
computing the locally stable metrics from a Subse
quent execution of the program and detecting anoma
lies where the locally stable metrics deviate from
predefined acceptable ranges, wherein the detecting
ignores startup and shutdown of the program; and

reporting information of the anomalies as indicative of a
heap-based bug in the program.

13. The computer system of claim 12 wherein building a
model comprises:

adding instrumentation to a program to produce data rep
resentative heap usage of the program; and

executing the program for a training set of inputs, and
analyzing the data thereby produced by the instrumen
tation to identify a set of stable, heap-related metrics.

14. The computer system of claim 13 wherein executing
the program comprises:

adaptively modifying the heap-graph tracking heap usage
of the program during execution of the training set, and
periodically computing the set of numerical metrics
based on the heap-graph; and

identifying which of the numerical metrics remain stable.
15. The computer system of claim 13 wherein the set of

metrics for the heap-graph comprise connectivity-based,
degree-based and value-based metrics.

16. The computer system of claim 13 wherein detecting
anomalies occurring in the execution of the program com
prises:

5

10

15

25

30

35

40

45

50

55

18
computing the set of numerical metrics for the heap-graph

for an execution of the instrumented program; and
detecting anomalies in the stable, heap-related metrics.
17. The computer system of claim 16, wherein the proces

sor is further configured to perform:
based on the phases detected, identify identifying metrics

for the heap-graph that remain locally stable for at least
one of the phases; and

detecting anomalies in the locally stable, metrics for the
heap-graph occurring in their respective locally stable
phases.

18. A set of one or more computer-readable software
storing media having computer-executable instructions of a
dynamic program analysis tool stored thereon, the computer
executable instructions causing a computer to perform:

computing a Suite of numerical heap-related metrics from
one or more execution runs of a program on a training set
of inputs, the program executing on a computer com
prising physical memory devices such that at least some
memory storage for the program on the memory devices
is managed as a heap, and the numerical heap-related
metrics measure structure of a heap-graph which repre
sents pointers between objects in the heap during the one
or more execution runs;

recording an instruction that causes a write to a location of
the heap;

calculating a rate of change of the heap-related metrics
across the one or more execution runs;

comparing the rate of change to a threshold rate;
identifying phases in the program;
identifying slowly changing heap-related metrics from the

Suite whose rate of change remains lower than the
threshold rate to be globally stable or locally stable
metrics, wherein the identifying ignores startup and
shutdown of the program for purposes of evaluating
globally stable metrics:

establishing ranges of the globally stable or locally stable
metrics;

computing the globally stable or locally stable metrics
from a Subsequent execution of the program, wherein
the computing restricts attention to data members of a
particular type; and

detecting anomalies where the globally stable or locally
stable metrics deviate from their respective ranges.

19. The set of one or more computer-readable software
storing media of claim 18 wherein the computer-executable
instructions further comprise computer-executable instruc
tions causing the computer to perform:

correlating the detected anomalies with an instruction in
the program that caused a respective anomaly.

20. The set of one or more computer-readable software
storing media of claim 18 wherein the numerical heap-related
metrics comprise:
number of connected components;
number of strongly connected components;
ratio of edges to vertices in the heap-graph; and
ratio of heap locations that, during their lifetime, store only

a value NULL.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,770,153 B2 Page 1 of 1
APPLICATIONNO. : 11/134812
DATED : August 3, 2010
INVENTOR(S) : Trishul Chilimbi et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 18, line 6, in Claim 17, before “identifying delete “identify.

Signed and Sealed this
Twenty-fourth Day of May, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

