HYDROPROCESSING CATALYST AND HYDROPROCESSING CATALYST OF MAKING THE SAME

Applicant: CHEVRON U.S.A. INC., San Ramon, CA (US)

Inventors: Bi-Zeng ZHAN, Albany, CA (US); Theodorus Ludovicus Michael MAESEN, Moraga, CA (US); Hye Kyung Cho TIMKEN, Albany, CA (US)

Appl. No.: 14/882,582
Filed: Oct. 14, 2015

Related U.S. Application Data
Continuation of application No. 12/496,442, filed on Jul. 1, 2009, now Pat. No. 9,187,702.

The present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.
FIG. 1
HYDROPROCESSING CATALYST AND HYDROPROCESSING CATALYST OF MAKING THE SAME

FIELD OF THE INVENTION

[0001] The present invention is directed to a catalyst for hydroprocessing a carbonaceous feedstock under hydroprocessing conditions, hydroprocessing catalysts for making the catalyst, and hydroprocessing processes using the catalyst of the present invention.

BACKGROUND OF THE INVENTION

[0002] Catalytic hydroprocessing refers to petroleum refining processes in which a carbonaceous feedstock is brought into contact with hydrogen and a catalyst, at a higher temperature and pressure, for the purpose of removing undesirable impurities and/or converting the feedstock to an improved product. Examples of hydroprocessing processes include hydrotreating, hydrodemetalization, hydrocracking and hydroisomerization processes.

[0003] A hydroprocessing catalyst typically consists of one or more metals deposited on a support or carrier consisting of an amorphous oxide and/or a crystalline microporous material (e.g. a zeolite). The selection of the support and metals depend upon the particular hydroprocessing process for which the catalyst is employed.

[0004] Petroleum refiners continue to seek out catalysts of improved activity, selectivity and/or stability. Increasing the activity of a catalyst increases the rate at which a chemical reaction proceeds under a given set of conditions. Increasing the activity of the catalyst increases the rate of production for a given end product. As a hydrogen source, a particular sulfur or nitrogen content, becomes more mild (e.g. decreased temperature). Milder conditions require less energy to achieve a desired product, and the catalyst’s life is extended due to such factors as lower coke formation and the like.

[0005] It is well known in the art that modest or slight variations in compositional characteristics or hydroprocessing catalysts of preparing hydroprocessing catalysts have been known to have highly unpredictable activity, selectivity and/or stability effects on hydroprocessing reactions (such as demetalation and/or desulfurization reactions). Accordingly, because of this unpredictability in the art, there continues to be new and surprising improvements in activity, selectivity and/or stability of hydroprocessing catalysts.

SUMMARY OF THE INVENTION

[0006] The present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, and optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.

[0007] The present invention is also directed to hydroprocessing catalysts for making the catalyst, and hydroprocessing processes using the catalyst of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 shows the polyphenolic aromatics build up as a function of time-on-stream for the catalyst compositions synthesized per the teachings of Examples 1 and 3 herein.

DETAILED DESCRIPTION OF THE INVENTION

Introduction

[0009] The term “Periodic Table” refers to the version of IUPAC Periodic Table of the Elements dated Jun. 22, 2007, and the numbering scheme for the Periodic Table Groups is as described in Chemical and Engineering News, 63(5), 27 (1985).

[0010] The term “bulk dry weight” to the weight of a material after calcination at an elevated temperature of over 1000°C for 30 minutes.

[0011] The term “hydroprocessing” refers to processes in which a carbonaceous feedstock is brought into contact with hydrogen and a catalyst, at a higher temperature and pressure, for the purpose of removing undesirable impurities and/or converting the feedstock to a desired product.

[0012] The term “hydrodredtreaming” refers to a process that converts sulfur and/or nitrogen-containing hydrocarbon feeds into hydrocarbon products with reduced sulfur and/or nitrogen content, typically in conjunction with a hydrocracking function, and which generates hydrogen sulfide and/or ammonia (respectively) as byproducts.

[0013] The term “hydrocracking” refers to a process in which hydrogenation and dehydrogenation accompanies the cracking/fragmentation of hydrocarbons, e.g., converting heavier hydrocarbons into lighter hydrocarbons, or converting aromatics and/or cycloparaffins (napthenes) into non-cyclic branched paraffins.

[0014] The term “hydroisomerization” refers to a process in which normal paraffins are isomerized to their more branched counterparts in the presence of hydrogen over a catalyst.

[0015] The term “hydrodemetalization” refers to a process that removes undesirable metals from hydrocarbon feeds into hydrocarbon products with reduced metal content.

[0016] The term “gas-to-liquid” (GTL) refers to a process in which gas-phase hydrocarbons such as natural gas are converted to longer-chain hydrocarbons such as diesel fuel via direct conversion or via syngas as an intermediate, for example using the Fischer-Tropsch process.

[0018] The term “alkenyl” as used herein, represents a straight or branched chain group of one to twelve carbon atoms derived from a straight or branched chain hydrocarbon containing at least one carbon-carbon double bond.

[0019] The term “hydroxyalkyl,” as used herein, represents one or more hydroxy groups attached to the parent molecular moiety through an alkyl group.

[0020] The term “alkoxyalkyl,” as used herein, represents one or more alkoxy groups attached to the parent molecular moiety through an alkyl group.

[0021] The term “aminoalkyl,” as used herein, represents one or more amino groups attached to the parent molecular moiety through an alkyl group.
The term “oxoalkyl,” as used herein, represents one or more ether groups attached to the parent molecular moiety through an alkyl group.

The term “carboxyalkyl,” as used herein, represents one or more carboxyl groups attached to the parent molecular moiety through an alkyl group.

The term “aminoxyalkyl,” as used herein, represents one or more carboxyl groups and one or more amino groups attached to the parent molecular moiety through an alkyl group.

The term “hydroxyxycarboxyalkyl,” as used herein, represents one or more carboxyl groups and one or more hydroxyl groups attached to the parent molecular moiety through an alkyl group.

Where permitted, all publications, patents and patent applications cited in this application are herein incorporated by reference in their entirety; to the extent such disclosure is not inconsistent with the present invention.

Unless otherwise specified, the recitation of a genus of elements, materials or other components, from which an individual component or mixture of components can be selected, is intended to include all possible sub-generic combinations of the listed components and mixtures thereof. Also, “include” and its variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that may also be useful in the materials, compositions and hydroprocessing catalysts of this invention.

Properties for the materials described herein are determined as follows:

(a) Constrained index (CI): indicates the total cracking conversion of a 50/50 mixture of n-hexane and 3-methylpentane by a sample catalyst at 900°F (482°C), 0.68 WHSV. Samples are prepared according to the hydroprocessing catalyst described in U.S. Pat. No. 7,063,828 to Zones and Burton, issued Jun. 20, 2006.

(c) SiO2/Al2O3 Ratio (SAR): determined by ICP elemental analysis. A SAR of infinity (∞) represents the case where there is no aluminum in the zeolite, i.e., the mole ratio of silica to alumina is infinity. In that case the molecular sieve is comprised of essentially all of silica.

(d) Surface area: determined by N2 adsorption at its boiling temperature. BET surface area is calculated by the 5-point hydroprocessing catalyst at P/P0 = 0.05, 0.088, 0.125, 0.163, and 0.200. Samples are first pre-treated at 400°C for 6 hours in the presence of flowing, dry N2 so as to eliminate any adsorbed volatiles like water or organics.

(e) Micropore volume: determined by N2 adsorption at its boiling temperature. Micropore volume is calculated by the t-plot hydroprocessing catalyst at P/P0 = 0.05, 0.088, 0.125, 0.163, and 0.200. Samples are first pre-treated at 400°C for 6 hours in the presence of flowing, dry N2 so as to eliminate any adsorbed volatiles like water or organics.

(f) Mesopore pore diameter: determined by N2 adsorption at its boiling temperature. Mesopore pore diameter is calculated from N2 isotherms by the BJH hydroprocessing catalyst described in E. P. Barrett, L. G. Joyner and P. P. Halenda, “The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms.” J. Am. Chem. Soc. 73, 373-380, 1951. Samples are first pre-treated at 400°C for 6 hours in the presence of flowing, dry N2 so as to eliminate any adsorbed volatiles like water or organics.

(g) Total pore volume: determined by N2 adsorption at its boiling temperature at P/P0 = 0.990. Samples are first pre-treated at 400°C for 6 hours in the presence of flowing, dry N2 so as to eliminate any adsorbed volatiles like water or organics.

(h) Unit cell size: determined by X-ray powder diffraction.

(i) Alpha value: determined by an Alpha test adapted from the published descriptions of the Mobil Alpha test (P. B. Weiss and J. N. Miale, J. Catal., 4, 527-529, 1965; J. N. Miale, N. Y. Chen, and P. B. Weiss, J. Catal., 6, 278-87, 1966). The “Alpha Value” is calculated as the cracking rate of the sample in question divided by the cracking rate of a standard silica aluminia sample. The resulting “Alpha” is a measure of acid cracking activity which generally correlates with number of acid sites.

Hydroprocessing Catalyst Composition

The present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, and optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.

For each embodiment described herein, the catalyst support is selected from the group consisting of alumina, silica, zirconia, titanium oxide, magnesium oxide, thorium oxide, beryllium oxide, alumina-silica, alumina-titanium oxide, alumina-magnesium oxide, silica-magnesium oxide, silica-zirconia, silica-thorium oxide, silica-beryllium oxide, silica-titanium oxide, titanium oxide-zirconia, silica-alumina-zirconia, silica-alumina-thorium oxide, silica-alumina-titanium oxide or silica-alumina-magnesium oxide, preferably alumina, silica-alumina, and combinations thereof.

In one subembodiment, the catalyst support is an alumina selected from the group consisting of γ-alumina, η-alumina, δ-alumina, β-alumina, χ-alumina, and mixtures thereof.

In another subembodiment, the catalyst support is an amorphous silica-alumina material in which the mean mesopore diameter is between 70 Å and 130 Å.

In another subembodiment, the catalyst support is an amorphous silica-alumina material containing SiO3 in an amount of 10 to 70 wt. % of the bulk dry weight of the carrier as determined by ICP elemental analysis, a BET surface area of between 450 and 550 m²/g and a total pore volume of between 0.75 and 1.05 mL/g.

In another subembodiment, the catalyst support is an amorphous silica-alumina material containing SiO3 in an amount of 10 to 70 wt. % of the bulk dry weight of the carrier as determined by ICP elemental analysis, a BET surface area of between 450 and 550 m²/g, a total pore volume of between 0.75 and 1.05 mL/g, and a mean mesopore diameter is between 70 Å and 130 Å.

In another subembodiment, the catalyst support is a highly homogeneous amorphous silica-alumina material having a surface to bulk silica to alumina ratio (S/B ratio) of 0.7 to 1.3, and a crystalline alumina phase present in an amount no more than about 10 wt. %.
To determine the S/B ratio, the Si/Al atomic ratio of the surface measured by XPS (XPS). XPS is also known as electron spectroscopy for chemical analysis (ESCA). Since the penetration depth of XPS is less than 50 Å, the Si/Al atomic ratio measured by XPS is for the surface chemical composition.

Use of XPS for silica-alumina characterization was published by W. Daneill et al. in Applied Catalysis A, 196, 247-260, 2000. The XPS technique is, therefore, effective in measuring the chemical composition of the outer layer of catalytic particle surface. Other surface measurement techniques, such as Auger electron spectroscopy (AES) and Secondary-ion mass spectroscopy (SIMS), could also be used for measurement of the surface composition.

Separately, the bulk Si/Al ratio of the composition is determined from ICP elemental analysis. Then, by comparing the surface Si/Al ratio to the bulk Si/Al ratio, the S/B ratio and the homogeneity of silica-alumina are determined. How the S/B ratio defines the homogeneity of a particle is explained as follows. An S/B ratio of 1.0 means the material is completely homogeneous throughout the particles. An S/B ratio of less than 1.0 means the particle surface is enriched with aluminum (or depleted with silicon), and aluminum is predominantly located on the external surface of the particles. The S/B ratio of more than 1.0 means the particle surface is enriched with silicon (or depleted with aluminum), and aluminum is predominantly located on the internal area of the particles.

For each embodiment described herein, the amount of catalyst support in the hydroprocessing catalyst is from 5 wt.% to 80 wt.% based on the bulk dry weight of the hydroprocessing catalyst.

For each embodiment described herein, the hydroprocessing catalyst may optionally contain one or more molecular sieves selected from the group consisting of BEA-, MFI-, MEL-, MTL-, MCM-41, MCM-48, MCM-50, MTW-, Mordenite, SHEPHERD, ZSM-5, GEORGE, CITTO, ZK, and mixtures thereof.

In one embodiment, the one or more molecular sieves selected from the group consisting of molecular sieves having a FAU framework topology, molecular sieves having a BEA framework topology, and mixtures thereof.

The amount of molecular sieve material in the hydroprocessing catalyst is from 0 wt.% to 60 wt.% based on the bulk dry weight of the hydroprocessing catalyst. In one embodiment, the amount of molecular sieve material in the hydroprocessing catalyst is from 0.5 wt.% to 40 wt.%.

In one embodiment, the molecular sieve is a Y zeolite with a unit cell size of 24.15 Å-24.45 Å. In another embodiment, the molecular sieve is a Y zeolite with a unit cell size of 24.15 Å-24.35 Å. In another embodiment, the molecular sieve is a Y zeolite having an Alpha value of less than 5 and a Brunsted acidity of from 1 to 40. In one embodiment, the molecular sieve is a Y zeolite having the properties described in Table 1 below.

| TABLE 1 |
|-----------------|-----------------|-----------------|-----------------|
| Alpha value | 0.01-5 | CI | 0.05-5% |
| Bronsted acidity| 1-40 μmole/g | SAR | 80-150 |
| surface area | 650-750 m^2/g | micropore volume| 0.25-0.30 mL/g |
| total pore volume| 0.51-0.55 mL/g | unit cell size | 24.15-24.35 Å |

In another embodiment, the molecular sieve is a Y zeolite having the properties described in Table 2 below.

| TABLE 2 |
|-----------------|-----------------|-----------------|-----------------|
| SAR | 10-20 | micropore volume| 0.15-0.27 mL/g |
| BET surface area| 700-825 m^2/g | unit cell size | 24.15-24.45 Å |

In another embodiment, the catalyst contains from 0.1 wt.% to 40 wt.% (based on the bulk dry weight of the catalyst) of a Y zeolite having the properties described Table 2 above, and from 1 wt.% to 60 wt.% (based on the bulk dry weight of the catalyst) of a low-acidity, highly dealuminated ultrastable Y zeolite having an Alpha value of less than about 5 and Bronsted acidity of from 1 to 40 micro-mole/g.

As described herein above, the hydroprocessing catalyst of the present invention contains one or more metals. For each embodiment described herein, each metal employed is selected from the group consisting of elements from Group 6 and Groups 8 through 10 of the Periodic Table, and mixtures thereof. In one embodiment, each metal is selected from the group consisting of nickel (Ni), palladium (Pd), platinum (Pt), cobalt (Co), iron (Fe), chromium (Cr), molybdenum (Mo), and mixtures thereof. In another embodiment, the hydroprocessing catalyst contains at least one Group 6 metal and at least one metal selected from Groups 8 through 10 of the periodic table. Exemplary metal combinations include Ni/Mo/W, Ni/Mo, Ni/W, Co/Mo, Co/W, Co/W/Mo and Ni/Co/W/Mo.

The total amount of metal oxide material in the hydroprocessing catalyst is from 0.1 wt.% to 90 wt. % based on the bulk dry weight of the hydroprocessing catalyst. In one embodiment, the hydroprocessing catalyst contains from 2 wt.% to 10 wt. % of nickel oxide and from 8 wt.% to 40 wt.% of tungsten oxide based on the bulk dry weight of the hydroprocessing catalyst.

A diluent may be employed in the formation of the hydroprocessing catalyst. Suitable diluents include inorganic oxides such as aluminum oxide and silicon oxide, titanium oxide, clays, ceria, and zirconia, and mixtures thereof. The amount of diluent in the hydroprocessing catalyst is from 0 wt. % to 35 wt. % based on the bulk dry weight of the hydroprocessing catalyst. In one embodiment, the amount of diluent in the hydroprocessing catalyst is from 0 wt. % to 25 wt. % based on the bulk dry weight of the hydroprocessing catalyst.

The hydroprocessing catalyst of the present invention may contain one or more promoters selected from the group consisting of phosphorus (P), boron (B), fluoride (F), silicon (Si), aluminum (Al), zinc (Zn), manganese (Mn), and mixtures thereof. The amount of promoter in the hydroprocessing catalyst is from 0 wt.% to 10 wt.% based on the bulk dry weight of the hydroprocessing catalyst. In one subem-
bodiment, the amount of promoter in the hydروprocessing catalyst is from 0.1 wt. % to 5 wt. % based on the bulk dry weight of the hydروprocessing catalyst.

Preparation of the Hydروprocessing Catalyst

[0059] In the present invention, deposition of at least one of the metals on the catalyst is achieved in the presence of a modifying agent. In one embodiment, a shaped hydروprocessing catalyst is prepared by:

[0060] (a) forming an extrudable mass containing at least the amorphous silica-alumina catalyst support,

[0061] (b) extruding then calcining the mass to form a calcined extrudate,

[0062] (c) exposing the calcined extrudate to an impregnation solution containing at least one metal and a modifying agent to form an impregnated extrudate, and

[0063] (d) drying the impregnated extrudate at a temperature below the decomposition temperature of the modifying agent and sufficient to remove the impregnation solution solvent, to form a dried impregnated extrudate.

The diluent, promoter and/or molecular sieve (if employed) may be combined with the carrier when forming the extrudable mass. In another embodiment, the carrier and (optionally) the diluent, promoter and/or molecular sieve can be impregnated before or after being formed into the desired shapes.

[0064] In one embodiment, deposition of at least one of the metals is achieved in the presence of a modifying agent is selected from the group consisting of compounds represented by structures (1) through (4), including condensed forms thereof:

\[
\text{(1) } \begin{array}{c}
\text{HO} \\
\text{O} \\
\text{R_4} \\
\text{R_5}
\end{array}
\]

\[
\text{(2) } \begin{array}{c}
\text{N} \\
\text{R_4} \\
\text{R_5} \\
\text{R_6}
\end{array}
\]

\[
\text{(3) } \begin{array}{c}
\text{N} \\
\text{R_7} \\
\text{R_8} \\
\text{R_10} \\
\text{R_9}
\end{array}
\]

\[
\text{(4) } \begin{array}{c}
\text{OH} \\
\text{R_{11}} \\
\text{OH}
\end{array}
\]

wherein:

[0065] (1) R_1, R_2 and R_3 are independently selected from the group consisting of hydrogen; hydroxyl; methyl; amine; and linear or branched, substituted or unsubstituted C_1-C_3 alkyl groups, C_1-C_2 alkenyl groups, C_1-C_3 hydroxalkyl groups, C_1-C_3 alkoxyalkyl groups, C_1-C_3 aminoalkyl groups, C_1-C_3 alkoxyalkyl groups, C_1-C_3 aminoalkyl groups, C_1-C_3 oxoalkyl groups, C_1-C_2 carboxyalkyl groups, C_1-C_3 aminoalkyl groups, C_1-C_3 aminoalkyl groups, C_1-C_3 hydroxycarbalkyl groups, and C_1-C_3 hydroxycarbalkyl groups;

[0066] (2) R_4 through R_{10} are independently selected from the group consisting of hydrogen; hydroxyl; and linear or branched, substituted or unsubstituted C_2-C_3 carboxyalkyl groups; and

[0067] (3) R_{11} is selected from the group consisting of linear or branched, saturated and unsaturated, substituted or unsubstituted C_2-C_3 alkyl groups, C_1-C_3 hydroxyalkyl groups, and C_1-C_3 oxoalkyl groups.

[0068] Representative examples of modifying agents useful in this embodiment include 2,3-dihydroxy-succinic acid, ethanedioic acid, 2-hydroxyacetic acid, 2-hydroxy-propanoic acid, 2-hydroxy-1,2,3-propanetricarboxylic acid, methoxyacetic acid, cis-1,2-ethylene dicarboxylic acid, hydroxethane-1,2-dicarboxylic acid, ethane-1,2-diol, propene-1,2,3-triol, propandioic acid, and α-hydroxy-α-hydroxypropyloxy (oxyethylene).

[0069] In an alternate embodiment, deposition of at least one of the metals is achieved in the presence of a modifying agent selected from the group consisting of N,N’-bis[2-aminoethoxy]-1,2-ethane-diamine, 2-amino-3-(1H-indol-3-yl)-propanoic acid, benzaldehyde, [(carboxymethyl)iminobis (ethylenentriyl)-tetra-acetic acid, 1,2-cyclohexanediame, 2-hydroxybenzoic acid, thiocyanate, thiosulfate, thiourea, pyridine, and quinoline.

[0070] The modifying agent impedes metal aggregation, thereby enhancing the activity and selectivity of the catalyst.

[0071] For each embodiment described herein, the amount of modifying agent in the pre-calci ned hydروprocessing catalyst is from 2 wt. % to 18 wt. % based on the bulk dry weight of the hydروprocessing catalyst.

[0072] The calcination of the extrudate mass will vary depending on the particular support selected. Typically, the extrudate mass can be calcined at a temperature between 750°F (400°C) and 1200°F (650°C) for a period of between 1 and 3 hours.

[0073] Non-limiting examples of suitable solvents include water and C_1 to C_3 alcohols. Other suitable solvents can include polar solvents such as alcohols, ethers, and amines.

[0074] The amount of metal precursors and modifying agent in the impregnation solution should be selected to achieve preferred ratios of metal to modifying agent in the catalyst precursor after drying.

[0075] The calcined extrudate is exposed to the impregnation solution until incipient wetness is achieved, typically for a period of between 1 and 100 hours (more typically between 1 and 5 hours) at room temperature to 212°F (100°C) while tumbling the extrudates, following by aging for from 0.1 to 10 hours, typically from about 0.5 to about 5 hours.

[0076] The drying step is conducted at a temperature sufficient to remove the impregnation solution solvent, but below the decomposition temperature of the modifying agent. In another embodiment, the dried impregnated extrudate is then calcined at a temperature above the decomposition temperature of the modifying agent, typically from about 500°F (260°C) to 1100°F (590°C), for an effective amount of time, to convert the metals to metal oxides. The present invention contemplates that when the impregnated extrudate is to be calcined, it will undergo drying during the period where
the temperature is being elevated or ramped to the intended calcination temperature. This effective amount of time will range from about 0.5 to about 24 hours, typically from about 1 to about 5 hours. The calcination can be carried out in the presence of a flowing oxygen-containing gas such as air, a flowing inert gas such as nitrogen, or a combination of oxygen-containing and inert gases.

[0077] The dried and calcined hydrosulfuration catalysts of the present invention can be sulfided to form an active catalyst. Sulfiding of the catalyst precursor to form the catalyst can be performed prior to introduction of the catalyst into a reactor (thus ex-situ presulfiding), or can be carried out in the reactor (in-situ sulfiding).

[0078] Suitable sulfiding agents include elemental sulfur, ammonium sulfide, ammonium polysulfide ((NH₄)₂Sₓ), ammonium thiosulfate ((NH₄)₂S₂O₃), sodium thiosulfate (Na₂S₂O₃), thiourea CS₂N₂H₂, carbon disulfide, dimethyl disulfide (DMDS), dimethyl sulfoxide (DMS), dibutyl polysulfide (DBPS), mercaptanes, tertiarybutyl polysulfide (PSTB), tertiarinyl polysulfide (PSTN), aqueous ammonium sulfide.

[0079] Generally, the sulfiding agent is present in an amount in excess of the stoichiometric amount required to form the sulfided catalyst. In another embodiment, the amount of sulfiding agent represents a sulfur to metal mole ratio of at least 3 to 1 to produce a sulfided catalyst.

[0080] The catalyst is converted into an active sulfided catalyst upon contact with the sulfiding agent at a temperature of 150°F to 900°F (66°C to 482°C), from 10 minutes to 15 days, and under a H₂-containing gas pressure of 101 kPa to 25,000 kPa. If the sulfidation temperature is below the boiling point of the sulfiding agent, the process is generally carried out at atmospheric pressure. Above the boiling temperature of the sulfiding agent/optional components, the reaction is generally carried out at an increased pressure. As used herein, completion of the sulfidation process means that at least 95% of stoichiometric sulfur quantity necessary to convert the metals into, for example, Co₉S₁₈, Mo₅S₉, W₅S₂, Ni₃S₂, etc., has been consumed.

[0081] In one embodiment, the sulfiding can be carried out to completion in the gaseous phase with hydrogen and a sulfur-containing compound which is decomposable into H₂S. Examples include mercaptanes, CS₂, thiophenenes, DMS, DMDS, and suitable S-containing refinery outlet gasses. The gaseous mixture of H₂ and sulfur containing compound can be the same or different in the steps. The sulfidation in the gaseous phase can be done in any suitable manner, including a fixed bed process and a moving bed process (in which the catalyst moves relative to the reactor, e.g., ebullated process and rotary furnace).

[0082] The contacting between the catalyst precursor with hydrogen and a sulfur-containing compound can be done in one step at a temperature of 68°F to 700°F (20°C to 371°C) at a pressure of 101 kPa to 25,000 kPa for a period of 1 to 100 hrs. Typically, sulfidation is carried out over a period of time with the temperature being increased or ramped in increments and held over a period of time until completion.

[0083] In another embodiment of sulfidation in the gaseous phase, the sulfidation is done in two or more steps, with the first step being at a lower temperature than the subsequent step(s).

[0084] In one embodiment, the sulfidation is carried out in the liquid phase. At first, the catalyst precursor is brought in contact with an organic liquid in an amount in the range of 20% to 500% of the catalyst total pore volume. The contacting with the organic liquid can be at a temperature ranging from ambient to 248°F (120°C). After the incorporation of an organic liquid, the catalyst precursor is brought into contact with hydrogen and a sulfur-containing compound.

[0085] In one embodiment, the organic liquid has a boiling range of 200°F to 1200°F (93°C to 649°C). Exemplary organic liquids include petroleum fractions such as heavy oils, lubricating oil fractions like mineral lube oil, atmospheric gas oils, vacuum gas oils, straight run gas oils, white spirit, middle distillates like diesel, jet fuel and heating oil, naphthas, and gasoline. In one embodiment, the organic liquid contains less than 10 wt. % sulfur, and preferably less than 5 wt. %.

Hydrosulfuration Processes and Feeds

[0086] The catalyst composition according to the invention can be used in the dry or calcined form, in virtually all hydrosulfuration processes to treat a plurality of feeds under wide-ranging reaction conditions, e.g., at temperatures in the range of 200°F to 450°F, hydrogen pressures in the range of 5 to 300 bar, and space velocities (LHSV) in the range of 0.05 to 10 h⁻¹. The hydrosulfuration catalytic composition of the invention is particularly suitable for hydrotreating hydrocarbon feedstocks such as middle distillates, kero, naphtha, vacuum gas oil, and heavy gas oils.

[0087] Using the catalyst of the present invention, heavy petroleum residual feedstocks, cyclic stocks and other hydrocrackate charge stocks can be hydrocracked using the process conditions and catalyst components disclosed in U.S. Pat. No. 4,910,006 and U.S. Pat. No. 5,316,753. Typically, hydrocracking can be carried out using the catalyst of the present invention by contacting the feedstock with hydrogen and the catalyst at a temperature in the range of 750-850°F, hydrogen pressures in the range of 5 to 300 bar, and LHSV in the range of 0.1-30 h⁻¹.

[0088] During hydrotreatment, oxygen, sulfur, and nitrogen present in the hydrocarbonaceous feed is reduced to low levels. Aromatics and olefins, if present in the feed, may also have their double bonds saturated. In some cases, the hydrotreating catalyst and hydrotreating conditions are selected to minimize cracking reactions, which can reduce the yield of the most desulfurized product (typically useful as a fuel).

[0089] Hydrotreating conditions typically include a reaction temperature between 204-482°C, for example 315-454°C; a pressure between 3.5-34.6 Mpa, for example 7.0-20.8 Mpa; a feed rate (LHSV) of 0.5 h⁻¹ to 20 h⁻¹ (v/v); and overall hydrogen consumption of 300 to 2000 scf per barrel of liquid hydrocarbon feed (53.4-356 m³ H₂/m³ feed).

[0090] Hydroisomerization conditions are dependent in large measure on the feed used and upon the desired product. The hydrogen to feed ratio is typically between 0.8 to 5.34 SCM/liter (standard cubic meters/liter), for example between 0.178 to 3.56 SCM/liter. Generally, hydrogen will be separated from the product and recycled to the reaction zone. Typical feedstocks include light gas oil, heavy gas oils and reduced crudes boiling above about 177°C.

[0091] Lube oil may be prepared using the catalyst. For example, a C₁₇₅₀ lube oil may be made by hydroisomerizing the paraffin fraction of the feed. Alternatively, the lubricating oil may be made by hydrocracking in a hydrotreating zone a hydrocarbonsaceous feedstock to obtain an effluent comprising a hydrocracked oil, and catalytically dewaxing the efflu-
ent at a temperature of at least about 200° C. and at a pressure between 0.103 and 20.7 Mpa gauge, in the presence of added hydrogen gas.

Example 1
Catalyst A—Comparative Hydrocracking Catalyst

A comparative hydrocracking catalyst was prepared per the following procedure: 67 parts by weight silica-alumina powder (obtained from Sasol), 25 parts by weight pseudo boehmite aluminum powder (obtained from Sasol), and 8 parts by weight of zeolite Y (from Tosoh) were mixed well. A diluted HNO₃ acid aqueous solution (1 wt. %) was added to the mix powder to form an extrudable paste. The paste was extruded in \(\frac{1}{4} \)” asymmetric quadrilobe shape, and dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 1100° F. (593° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.

Example 2
Catalyst B—Modified Hydrocracking Catalyst

A modified Ni/W hydrocracking catalyst was prepared using extrudates prepared with the same formulation as that for Catalyst A. Impregnation of Ni and W was done using a solution containing ammonium metatungstate and nickel nitrate in concentrations equal to the target metal loadings of 4 wt. % NiO and 28 wt. % WO₃ based on the bulk dry weight of the finished catalyst. The total volume of the solution matched the 103% water pore volume of the base extrudate sample (incipient wetness hydroprocessing catalyst). The metal solution was added to the base extrudates gradually while tumbling the extrudates. When the solution addition was completed, the soaked extrudates were aged for 2 hours. Then the extrudates were dried at 400° F. (205° C.) for 2 hour with purging excess dry air, and cooled down to room temperature.

Example 3
Catalyst C—Modified Hydrocracking Catalyst

Catalyst C was prepared by further calcination of a sampling of Catalyst B at 842° F. (450° C.) for 1 hour.

Example 4
Catalyst D—Modified Hydrocracking Catalyst

Catalyst D was prepared per following procedure: 55 parts silica-alumina powder, 25 parts pseudo boehmite aluminum powder, and 20 parts of zeolite Y were mixed well. To the mix, a diluted HNO₃ acid (1 wt. %) solution was added to form an extrudable paste. The paste was extruded in \(\frac{1}{4} \)” asymmetric quadrilobe, and dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 1100° F. (593° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.

Example 5
Catalyst E—Modified Hydrocracking Catalyst

Catalyst E was prepared by further calcination of a sampling of Catalyst D at 842° F. (450° C.) for 1 hour.

Example 6
Catalyst F—Modified Hydrocracking Catalyst

Catalyst F was prepared per following procedure: 69 parts silica-alumina powder and 31 parts pseudo boehmite aluminum powder were mixed well. To the mix, a diluted HNO₃ acid (1 wt. %) solution was added to form an extrudable paste. The paste was extruded in \(\frac{1}{4} \)” asymmetric quadrilobe, and dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 1100° F. (593° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.

Example 7
Catalyst G—Modified Hydrocracking Catalyst

Catalyst G was prepared per following procedure: 69 parts silica-alumina powder and 31 parts pseudo boehmite aluminum powder were mixed well. To the mix, a diluted HNO₃ acid (1 wt. %) solution was added to form an extrudable paste. The paste was extruded in \(\frac{1}{4} \)” asymmetric quadrilobe, and dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 1100° F. (593° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.

Example 8
Catalyst H—Modified Hydrocracking Catalyst

Catalyst H was prepared per following procedure: 69 parts silica-alumina powder and 31 parts pseudo boehmite aluminum powder were mixed well. To the mix, a diluted HNO₃ acid (1 wt. %) solution was added to form an extrudable paste. The paste was extruded in \(\frac{1}{4} \)” asymmetric quadrilobe, and dried at 250° F. (121° C.) overnight. The dried extrudates were calcined at 1100° F. (593° C.) for 1 hour with purging excess dry air, and cooled down to room temperature.
of the bulk dry weight of the finished catalyst, was added to the Ni/W solution. The solution was heated to above 120°F (49°C) to ensure a clear solution. The total volume of the metal solution matched the 103% water pore volume of the base extrudates (incipient wetness hydroprocessing catalyst). The metal solution was added to the base extrudates gradually while tumbling the extrudates. When the solution addition was completed, the soaked extrudates were aged for 2 hours. Then the extrudates were dried at 400°F (205°C) for 2 hours with purging excess dry air, and cooled down to room temperature.

Example 7

Catalyst G—Modified Hydrocracking Catalyst

[0103] Catalyst G was prepared by further calcination of a sampling of Catalyst F at 842°F (450°C) for 1 hour.

TABLE 3

<table>
<thead>
<tr>
<th>CATALYST</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeolite, wt. %</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Silica Alumina, wt. %</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>55</td>
<td>55</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>Alumina, wt. %</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Pore size by N₂ uptake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface area, m²/g</td>
<td>413</td>
<td>413</td>
<td>413</td>
<td>451</td>
<td>451</td>
<td>398</td>
<td>398</td>
</tr>
<tr>
<td>Mean mesopore diameter, Å</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>80</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Total pore volume, cc/g</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.67</td>
<td>0.67</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>C¹ test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-C₆ conversion, wt. %</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>2.0</td>
<td>2.0</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>n-C₆ conversion %</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.5</td>
<td>8.5</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Alumina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal content, wt. %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂O, wt. %</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO₃, wt. %</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pore size by N₂ uptake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface area, m²/g</td>
<td>231</td>
<td>243</td>
<td>314</td>
<td>235</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean mesopore diameter, Å</td>
<td>89</td>
<td>98</td>
<td>71</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro pore volume, cc/g</td>
<td>0.0059</td>
<td>0.0096</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pore volume, cc/g</td>
<td>0.40</td>
<td>0.42</td>
<td>0.41</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 8

Hydrocracking Performance

[0104] A variety of feeds were used to evaluate the hydrocracking performances of the catalysts. In each test, the catalyst was subjected to the following process conditions for feed 1: 2300 psig total pressure (2100 psia H₂ at the reactor inlet), 5000 SCFH H₂, 1.0 LHSV, 60 LV % per pass conversion. For feed 2, the testing conditions were: 1000 psig total pressure (900 psia H₂ at the reactor inlet), 5000 scfH H₂, 1.0 LHSV, 65 LV % per pass conversion. Table 4 summarizes the physical properties of two feeds used in the tests. Feed 1 is a hydrotreated VGO comprising high concentrations of poly-cyclic aromatics. Feed 2 is a FT wax generated from a GTH process.

TABLE 4

<table>
<thead>
<tr>
<th>Feed 1</th>
<th>Feed 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>API Gravity</td>
<td>33.4</td>
</tr>
<tr>
<td>Sulfur, ppm wt.</td>
<td>14.3</td>
</tr>
<tr>
<td>Nitrogen, ppm wt.</td>
<td>0.5</td>
</tr>
<tr>
<td>Oxygen, wt. %</td>
<td>0</td>
</tr>
<tr>
<td>PCI</td>
<td>333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Feed 1</th>
<th>Feed 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraffins, LV %</td>
<td>25.5</td>
<td>100</td>
</tr>
<tr>
<td>Naphthenes, LV %</td>
<td>66.5</td>
<td>0</td>
</tr>
<tr>
<td>Aromatics, LV %</td>
<td>8.0</td>
<td>0</td>
</tr>
<tr>
<td>ASTM D2887 SimDis, ° F. (° C.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 wt. %/5 wt. %</td>
<td>771 (819)</td>
<td>437 (572)</td>
</tr>
<tr>
<td>10 wt. %/30 wt. %</td>
<td>(381/437)</td>
<td>(225/300)</td>
</tr>
<tr>
<td>90 wt. %/95 wt. %</td>
<td>840 (886)</td>
<td>624 (734)</td>
</tr>
<tr>
<td>95 wt. %/99.5 wt. %</td>
<td>(440/474)</td>
<td>(329/350)</td>
</tr>
</tbody>
</table>

[0105] Tables 5 and 6 compare the hydrocracking performance over catalysts prepared with and without a modifying agent.
What is claimed is:

1. A hydroprocessing catalyst, comprising:
 - at least one molecular sieve which is a Y zeolite with a unit cell size of between 24.15 Å and 24.45 Å; and
 - at least one metal deposited on an amorphous silica-alumina catalyst support containing SiO₂ in an amount of 10 wt. % to 70 wt. % of the dry bulk weight of the carrier as determined by ICP elemental analysis, a BET surface area of between 450 m²/g and 550 m²/g, a total pore volume of between 0.75 mL/g and 1.05 mL/g, and a mean mesopore diameter of between 70 Å and 130 Å;
 - wherein deposition of the metal is achieved in the presence of a modifying agent and with the catalyst support after the deposition subjected to drying for a period of time ranging from 1 to 5 hours and at a temperature sufficient to remove impregnation solvent but below the decomposition temperature of the modifying agent.

2. The hydroprocessing catalyst of claim 1, wherein the Y zeolite has a silica-to-alumina ratio of greater than 10, a micropore volume of from 0.15 mL/g to 0.27 mL/g, a BET surface area of from 700 m²/g to 825 m²/g, and a unit cell size of from 24.15 Å to 24.45 Å.

3. The hydroprocessing catalyst of claim 1, wherein Y zeolite has a silica-to-alumina ratio of greater than 10, a micropore volume of from 0.15 mL/g to 0.27 mL/g, a BET surface area of from 700 m²/g to 825 m²/g, and a unit cell size of from 24.15 Å to 24.35 Å, and a low-acidity, highly dealuminated ultrastable Y zeolite having an Alpha value of less than about 5 and Brønsted acidity of from 1 to 40 micro-mole/g.

4. The hydroprocessing catalyst of claim 1, wherein the modifying agent is selected from the group consisting of compounds represented by structures (1) through (4), and condensed forms thereof:

![Chemical Structures]

wherein:

- (1) R₁, R₂ and R₃ are independently selected from the group consisting of hydroxyl; hydroxy; methyl; amine; and linear or branched, substituted or unsubstituted C₁-C₄ alkyl groups, C₅-C₈ alkenyl groups, C₆-C₈ hydroxyalkyl groups, C₇-C₈ alkoxyalkyl groups, C₈-C₁₀ aminocarbonylalkyl groups, C₉-C₁₀ alkoxyalkyl groups, C₉-C₁₀ aminocarbonylalkyl groups, C₉-C₁₀ carbocyclicalkyl groups, C₁₀-C₁₅ hydroxyalkyl groups and C₆-C₈ hydroxyalkyl groups;
(2) R₄ through R₁₀ are independently selected from the group consisting of hydrogen; hydroxyl; and linear or branched, substituted or unsubstituted C₂-C₅ carboxyalkyl groups; and
(3) R₁₁ is selected from the group consisting of linear or branched, saturated and unsaturated, substituted or unsubstituted C₁-C₃ alkyl groups, C₁-C₃ hydroxyalkyl groups, and C₁-C₃ oxoalkyl groups.

5. The hydroprocessing catalyst of claim 1, wherein the modifying agent selected from the group consisting of N,N'-bis(2-aminoethyl)-1,2-ethane-diamine, 2-amino-3-(1H-indol-3-yl)-propanoic acid, benzaldehyde, [(carboxymethyl) imino]bis(ethylenenitrilo)tetracetic acid, 1,2-cyclohexanediamine, 2-hydroxybenzoic acid, thiocyanate, thiosulfate, thiourea, pyridine, and quinoline.

6. The hydroprocessing catalyst of claim 1, wherein the at least one metal is selected from the group consisting of elements from Group 6 and Groups 8 through 10 of the Periodic Table.

7. The hydroprocessing catalyst of claim 6, wherein the at least one metal is selected from the group consisting of nickel (Ni), palladium (Pd), platinum (Pt), cobalt (Co), iron (Fe), chromium (Cr), molybdenum (Mo), tungsten (W), and mixtures thereof.

8. The hydroprocessing catalyst of claim 6, wherein the at least one metal is at least one metal selected from Groups 6 of the Periodic Table and at least one metal selected from Groups 8 through 10 of the periodic table.

9. A method for making a hydroprocessing catalyst comprising at least one metal deposited on an amorphous silica-alumina catalyst support containing SiO₂ in an amount of 10 wt. % to 70 wt. % of the dry bulk weight of the carrier as determined by ICP elemental analysis, the hydroprocessing catalyst made by a method comprising the steps of:
(a) forming an extrudable mass comprising the amorphous silica-alumina catalyst support,
(b) extruding then calcining the mass to form a calcined extrudate,
(c) exposing the calcined extrudate to an impregnation solution comprising the at least one metal and a modifying agent to form an impregnated extrudate, and
(d) drying the impregnated extrudate for a period of time ranging from 1 to 5 hours and at a temperature sufficient to remove impregnation solution solvent but below the decomposition temperature of the modifying agent.

10. The method of claim 9, wherein the amorphous silica-alumina catalyst support has a BET surface area of between 450 m²/g and 550 m²/g, a total pore volume of between 0.75 mL/g and 1.05 mL/g, and a mean mesopore diameter of between 70 Å and 130 Å.

11. The hydroprocessing catalyst of claim 10, further comprising the step of calcining the dried impregnated extrudate at a temperature high enough to remove the modifying agent and impregnation solution solvent and to convert the at least one metal to a metal oxide.

12. The hydroprocessing catalyst of claim 10, wherein the extrudable mass further comprises at least one molecular sieve.

13. The hydroprocessing catalyst of claim 12, wherein the molecular sieve is a Y zeolite with a unit cell size of between 24.15 Å and 24.45 Å.

14. The hydroprocessing catalyst of claim 12, wherein the at least one molecular sieve is a Y zeolite having a silica-to-alumina ratio of greater than 10, a micropore volume of from 0.15 mL/g to 0.27 mL/g, a BET surface area of from 700 m²/g to 825 m²/g, and a unit cell size of from 24.15 Å to 24.45 Å.

15. The hydroprocessing catalyst of claim 10, wherein the modifying agent is selected from the group consisting of compounds represented by structures (1) through (4), an condensed forms thereof:

```
(1)
HO
O
R₁
R₂
R₃

(2)
R₄

(3)
R₅

(4)
R₆
R₇
R₈
R₉

wherein:
(1) R₁, R₂, and R₃ are independently selected from the group consisting of hydrogen; hydroxyl; methyl; amine; and linear or branched, substituted or unsubstituted C₁-C₅ alkyl groups, C₁-C₃ alkenyl groups, C₁-C₃ hydroxyalkyl groups, C₁-C₃ alkoxyalkyl groups, C₁-C₃ aminoalkyl groups, C₁-C₃ oxoalkyl groups, C₁-C₃ carboxyalkyl groups, C₁-C₃ aminoxyalkyl groups and C₁-C₃ hydroxyxyalkyl groups;
(2) R₄ through R₁₀ are independently selected from the group consisting of hydrogen; hydroxyl; and linear or branched, saturated and unsaturated, substituted or unsubstituted C₂-C₅ carboxyalkyl groups; and
(3) R₁₁ is selected from the group consisting of linear or branched, saturated and unsaturated, substituted or unsubstituted C₁-C₃ alkyl groups, C₁-C₃ hydroxyalkyl groups, and C₁-C₃ oxoalkyl groups.

* * * * *