
US 20070283362A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0283362 A1

Cheung et al. (43) Pub. Date: Dec. 6, 2007

(54) COMMON THREAD SERVER Related U.S. Application Data

(75) Inventors: Tom Thuan Cheung, San Jose, CA (63) Continuation of application No. 10/125,048, filed on
(US): Siyi Terry Donn, Saratoga, CA Apr. 17, 2002.
(US)

Publication Classification
Correspondence Address:
MH2 TECHNOLOGY LAW GROUP (Customer (51) Int. Cl.
No.w/IBM/SVL) G06F 9/44 (2006.01)
1951 KIDWELL, DRIVE (52) U.S. Cl. .. 71.9/315
SUTE 550 (57) ABSTRACT
TYSONS CORNER VA 22182 US

9 (US) Disclosed are a method, system, and program product for
calling a Common Thread Object from a running process.
This is done by comprising invoking a Thread Invocation
Object from the running process; creating a Generic Request
Object from the Thread Invocation Object and populating

(21) Appl. No.: 11/838,472 the Generic Request Object with Common Thread Object
and running process data; and passing data from the Generic
Request Object to the Common Thread Object to initiate the

(22) Filed: Aug. 14, 2007 common thread task.

(73) Assignee: International Business Machines Cor
poration

NORMAL
130- E - PROCESSING

NWOCATION ==e\es OBJECT
110

15, GENERIC REQUEST
OBJECT

SINGLE THREAD
17- COMMON PROCESSING

THREAD ==e\es OBJECT
19

GENERC
REQUEST 15b, Ec

NORMAL
THREAD PROCESSING

NWOCATION eves 13b OBJECT
11 b

Patent Application Publication Dec. 6, 2007

FIG. 1
THREAD

INWOCATION
OBJECT

130

GENERIC
REQUEST
OBJECT

150

17 COMMON
THREAD
OBJECT

GENERIC
REQUEST

15b OBJECT

THREAD
NWOCATION 15b "El

NORMAL
PROCESSING

110

SINGLE THREAD
PROCESSING

===

NORMAL
PROCESSING

1b

HIC. 3
21

25

25

EXECUTING PROCESS INVOKES
THREAD INWOCATION OBJECT i.e.
THREAD INWOCATION OBJEC
CREATES AND POPULATES

GENERC REQUEST OBJECT, AS A
CONTAINER, WITH PROGRAM AND
COMMON THREAD OBJECT DATA

DATA PASSED FROM GENERIC
REQUESE OBJECT, AS A

CONTAINER, TO COMMON THREAD
OBJECT TO INITIATE TASK

250 CREATE AND POPULATE GENERIC

CONTAINER, WITH PROGRAM AND
COMMON THREAD OBJECT DATA

CONTAINER, TO COMMON THREAD

US 2007/0283362 A1

FIG. 2
EXECUTING PROCESS
INVOKES THREAD
NWOCATION OBJECT

CREATE AND POPULATE
GENERIC REQUEST OBJECT,
ASA CONTAINER, WITH
PROGRAM AND COMMON
THREAD OBJECT DATA

DATA PASSED FROM
GENERIC REQUEST

OBJECT, AS A CONTAINER,
TO COMMON THREAD

OBJECT TO INITIATE TASK

FTC 4
EXECUTING PROCESS INVOKES
THREAD INVOCATION OBJECT

THREAD INVOCATION CAUSES
COMMON THREAD OBJECT TO

REQUEST OBJECT, ASA

DATA PASSED FROM GENERIC
REQUEST OBJECT, ASA

OBJECT TO INITIATE TASK

US 2007/0283362 A1

COMMON THREAD SERVER

0001. This is a continuation of application Ser. No.
10/125,048, filed Apr. 17, 2002, the entire contents of which
are incorporated herein by reference.

FIELD OF THE INVENTION

0002) Our invention relates to dividing the processor
bandwidth of a computer between multiple threads or sub
processes, including saving and restoring state data (i.e.,
context) of a task, process, or thread in a multitasking
system. In this regard, our invention relates to managing or
Supervising a Switch between discrete threads.

DEFINITIONS

0003. As used herein, a “thread' is a container for infor
mation associated with a single use of a program that can
handle multiple concurrent users. From the program's point
of-view, the thread is the information needed to serve one
individual user or a particular service request.

0004 As used herein, a “thread-safe' routine is a routine
that can be called from multiple programming threads
without unwanted interaction between the threads. “Thread
safety” is a term used to describe a property of a routine that
can be called from multiple programming threads without
unwanted interaction between the threads.

0005. As used herein an 'application program interface”
or “API is the set of routines that a program uses to request
and carry out tasks. The requesting program is typically a
higher level program, as an application program, and the
tasks are typically lower level tasks, as operating system
tasks and maintenance chores such as managing files and
displaying information on the display. The application pro
gram interface is the vehicle through which the application
program communicates requests for these services.

BACKGROUND OF THE INVENTION

0006. A “thread” is the basic unit of CPU (central pro
cessing unit) utilization. An individual thread has little
non-shared State, usually just its own register state and its
own stack. Normally, a group of peer threads share code,
address space, and operating system resources. The envi
ronment in which a thread executes is called a task. A task
does nothing if it does not contain threads, and a thread can
only be in one task.
0007. The “thread functions as a placeholder or con
tainer for information associated with a single user of a
program that can handle multiple concurrent users. From the
program's point-of-view, the thread is the information
needed to serve the one individual user or a particular
service request. If multiple users are using the program or
concurrent requests from other programs occur, a separate
thread is created and maintained for each of them. The
thread allows a program to know which user is being served
as the program alternately gets re-entered on behalf of
different users. (One way in which thread information is kept
is by storing it in a special data area and putting the address
of that data area in a register. The operating system always
saves the contents of the register when the program is
interrupted and restores it when it gives the program control
again.)

Dec. 6, 2007

0008. In the context of “threads” and “tasks” and “mul
titasking and “multithreading.'"multithreading and
“tasks are often confused. As used herein, “tasks” are made
up of and contain one or more “threads'. Multiple tasks may
be instantiated and appear to be running simultaneously.
While some computers can only execute one program
instruction at a time, because they operate so fast, they
appear to run many programs and serve many users simul
taneously. The computer operating system gives each pro
gram a “turn' at running, then, based upon various external
and internal events or happenings, the operating system
requires the current program or task to wait while another
program gets a turn. Each of these programs is viewed by the
operating system as a “task for which certain resources are
identified and kept track of. The operating system manages
each application program as a separate task and lets the user
look at and control items on a “task list.”

0009. By way of illustration, if the program initiates an
I/O request Such as reading a file or writing to a printer, it
creates a thread so that the program will be reentered at the
right place when the I/O operation completes. Meanwhile,
other concurrent uses of the program are maintained on
other threads. The extensive sharing of code, address space,
and operating system resources among threads make the
creation of threads and switching between threads relatively
inexpensive in terms of computer resources.
0010 Moreover, most modern operating systems provide
Support for both multitasking and multithreading. They also
allow multithreading within program processes so that the
system is saved the overhead of creating a new process for
each thread.

0011) Another aspect of multi-thread operations is
“thread safety.” As used herein, “thread-safe' is a term used
to describe a routine that can be called from multiple
programming threads without unwanted interaction between
the threads. Thread safety is of particular importance to Java
programmers, since Java is a programming language that
provides built-in support for threads. By using thread-safe
routines, the risk that one thread will interfere and modify
data elements of another thread is eliminated by circum
venting potential data race situations with coordinated
access to shared data.

0012. It is possible to ensure that a routine is thread-safe
by making Sure that concurrent threads use synchronized
algorithms that cooperate with each other, and confining the
address of a shared object to one thread whenever an
unsynchronized algorithm is active,
0013 Modern operating systems typically provide a set
of application program interfaces that allow a programmer
to include thread support in a program. Higher-level pro
gram development tools and application Subsystems and
“middleware also offer thread management facilities.
Object-oriented programming languages also accommodate
and encourage multithreading in several ways. For example,
Java Supports multithreading by including synchronization
modifiers in the language syntax, by providing classes
developed for multitheading that can be inherited by other
classes, and by doing background "garbage collection”
(recovering data areas that are no longer being used) for
multiple threads.
0014. One particular challenge is multi-threading in the
context of single-threaded code logic. Moreover, single

US 2007/0283362 A1

threaded logic is non-trivial. It is the low level low level glue
that provides I/O. opening and closing files, writing output
to the monitor, printer, and diskdrives, services interrupts,
traps exceptions, and the like. The single threaded logic
applications provide vital Substance to the high level appli
cations. Single-threaded code logic is usually in the form of
APIs or subroutines that have areas of memory or variables
that cannot be shared by multiple threads of execution
simultaneously. This is usually due to fixed memory
addressing logic and/or shared resource usage. The problem
arises because calling a single threaded application from
within a multi-threaded process or Sub-process can cause
memory over-writes and other problems. The single
threaded application is not “thread safe.”Thus, a need exists
for the capability of incorporating single-threaded code logic
into a multi-threaded software environment.

SUMMARY OF THE INVENTION

00.15 Our invention meets this challenge by providing a
data flow design, method, system, process and program
product that facilitates incorporating single-threaded code
logic into a multi-threaded software environment. We call
this capability the Common Thread Server. The basis of the
Common Thread Server is to uniquely serialize the invoca
tion of the single-threaded code logic by multiple threads of
execution within a single process space.
0016 We accomplish this by calling a single thread
process from a running process. This is done by invoking a
call from the running process. This invocation creates a
request (container in object oriented terminology) from the
call and directly or indirectly populates the request (con
tainer) with single thread process and running process data.
That is, the single thread process and running process data
may be supplied by and/or called from the thread invocation
object or the common thread object or a repository. Next, the
method passes data from the request (container) to the single
thread process to initiate the common thread process.
0017. In an object oriented environment, serialization of
the invocation of single thread code logic is accomplished
through the following simplified constructs:

0018 (A) Thread Invocation Object
0019 (B) Generic Request Object

0020 (C) Common Thread Object
0021 According to our invention, an executing process
wishing to invoke a single threaded process (a Common
Thread Object process) first invokes a Thread Invocation
Object. The Thread Invocation Object may either create and
populate a Generic Request Object, as a container, with data,
or set a flag or generate a signal to have or request the
Common Thread Object populate the Generic Request
Object. The Generic Request Object is used to encompass all
possible requests that need to be processed by the Common
Thread Object. The data carried by the Generic Request
Object (whether supplied by the Thread Invocation Object
or the Common Thread Object or both of them) is program
and Common Thread Object data, and includes, at a mini
mum, a reference to the calling Thread Invocation Object,
the request name, an empty results object, and an array of
parameter objects. This is a private data class used within the
Common Thread Object. . This data is passed from the

Dec. 6, 2007

Generic Request Object, as a container, to the Common
Thread Object to initiate the common thread task.
0022. The Common Thread Object is the single thread of
execution solely responsible for invocation of the single
threaded code logic. It processes Generic Request Objects in
a predetermined order (FIFO, assigned priority, etc)
0023 The Thread Invocation Object represents a thread
of execution that is registered with the Common Thread
Object. The Thread Invocation Object sends a request to be
processed via a reference call to the Common Thread
Object, waits until the request is completed and then imme
diately evaluates the result.

THE FIGURES

0024. Various aspects of our invention are illustrated in
the FIGURES appended hereto.
0025 FIG. 1 illustrates the environment of the invention,
with two running processes, 11a, 11b, seeking to access a
single thread process, 19, through associated Thread Invo
cation Objects, 13a, 13b, and Generic Request Objects, 15a,
15b, as containers of invocation data, to a Common Thread
Object, 17.
0026 FIG. 2 illustrates a high level flow chart for the
method, system, and program product of the invention.
Specifically, in block 21 an executing process invokes a
Thread Invocation Object. Next, as shown in block 23, one
or both of the Thread Invocation Object and the Common
Thread Object, 17, create and populate a Generic Request
Object, as a container, with program and Common Thread
Object data. Next, as shown in block 25, thisdata is passed
from Generic Request Object, as a container, to the Common
Thread Object to initiate the single thread task
0027 FIG. 3 illustrates a flow chart for a more specific
exemplification of the method, system, and program product
of the invention where the Thread Invocation Object drives
the process. Specifically, in block 21 an executing process
invokes a Thread Invocation Object. Next, as shown in block
23, the Thread Invocation Object creates and populates a
Generic Request Object, as a container, with program and
Common Thread Object data. Next, as shown in block 25,
thisdata is passed from Generic Request Object, as a con
tainer, to the Common Thread Object to initiate the single
thread task.

0028 FIG. 4 illustrates a flow chart for the method,
system, and program product of the invention where the
Thread Invocation Object initiates the process and the
Common Thread Object drives the process once initiated.
Specifically, in block 21 an executing process invokes a
Thread Invocation Object. Next, as shown in block 23A, the
Thread Invocation Object sets a flag or other signal or
register that calls upon the Common Thread Object to create
and populate a Generic Request Object, as a container, with
program and Common Thread Object data. Next, as shown
in block 25A, this data is passed from Generic Request
Object, as a container, to the Common Thread Object to
initiate the single thread task.

DETAILED DESCRIPTION OF THE
INVENTION

0029. The basis of our Common Thread Server lies in
serializing the invocation of the single-threaded code logic

US 2007/0283362 A1

by multiple threads of execution within a single process
space. This is accomplished through the use of the following
COnStructS:

0030) (A) Thread Invocation Object
0031 (B) Generic Request Object

0032) (C) Common Thread Object

0033 FIG. 1 illustrates the environment of the invention.
Specifically, FIG. 1 illustrates two running processes, 11a,
11b. Both processes, 11a, 11b, are capable of accessing a
single thread process, 19. This access is through associated
Thread Invocation Objects, 13a, 13b, and Generic Request
Objects, 15a, 15b. The Generic Request Objects, 15a, 15b,
are containers of invocation data, to be passed between a
Thread Invocation Object, 13a or 13b, and a Common
Thread Object, 17.

0034 FIG. 2 illustrates one high level flow chart for the
method, system, and program product of the invention.
Specifically, in block 21 an executing process (as processes
11a and 11b in FIG. 1) invokes a Thread Invocation Object
(as elements 13a and 13b in FIG. 1). Next, as shown in block
23, the Thread Invocation Object (as elements 13a and 13b
in FIG. 1) initiates the creation and population of a Generic
Request Object (as elements 15a and 15b in FIG. 1), as a
container or container class, with program and Common
Thread Object data. This initiation and population can come
about through passing data from the Thread Invocation
Object (elements 13a, 13b), or from the Common Thread
Object (as element 17), or both the Thread Invocation Object
(elements 13a, 13b) and the Common Thread Object (ele
ment 17). Next, as shown in block 25, this data is passed
from Generic Request Object, (elements 15a and 15b in
FIG. 1), as a container, to the Common Thread Object
(element 17) to initiate the single thread task (element 19).

0035) The Common Thread Object, 17, is the single
thread of execution solely responsible for invocation of the
single-threaded code logic. The Common Thread Object, 17.
processes Generic Request Objects in a predetermined order
(FIFO, priority, etc.). As each request is issued by a Thread
Invocation Object, 13a, 13b, the request is independently
processed. The results are returned to the calling Thread
Invocation Object, 13a or 13b. Each Thread Invocation
Object. 13a, 13b, is registered with the Common Thread
Object, 17. When there are no more registered Thread
Invocation Objects, the Common Thread Object cleans itself
and terminates.

0036) The Generic Request Object, 15a, 15b, is used to
encompass all possible requests that need to be processed by
the Common Thread Object, 17. It minimally consists of a
reference to the calling Thread Invocation Object, the
request name, an empty results object, and an array of
parameter objects. This is a private data class used within the
Common Thread Object, 17. The Generic Request Object,
15a, 15b, may be initiated as well as populated by a Thread
Invocation Objection, 13a, 13b, or by the Common Thread
Object, 17, or by both, with various communication modes
between them.

0037. The Thread Invocation Object represents a thread
of execution that is registered with the Common Thread
Object. It sends a request to be processed via a reference call

Dec. 6, 2007

to the Common Thread Object, 17, waits until the request is
completed and then immediately evaluates the result.
0038. In the embodiment shown in FIG. 3 the Thread
Invocation Object, 13a, 13b, directly initiates and populates
the Generic Request Object, 15a, 15b. Specifically, FIG. 1
illustrates a flow chart for one particular embodiment of the
method, system, and program product of the invention.
Specifically, in block 21 an executing process (as processes
11aand 11b in FIG. 1) invokes a Thread Invocation Object
(as elements 13a and 13b in FIG. 1). Next, as shown in block
23, the Thread Invocation Object (as elements 13a and 13b
in FIG. 1) initiates the creation and population of a Generic
Request Object (as elements 15a and 15b in FIG. 1), as a
container or container class, with program and Common
Thread Object data. This initiation and population comes
about through passing data from the Thread Invocation
Object (elements 13a, 13b). Next, as shown in block 25, this
data is passed from Generic Request Object, (elements 15a
and 15b in FIG. 1), as a container, to the Common Thread
Object (element 17) to initiate the single thread task (ele
ment 19).
0039. In the embodiment shown in FIG. 4, the Thread
Invocation Object, 13a, 13b, broadcasts or transmits or
otherwise signals a request for the Common Thread Object,
17, and the Common Thread Object, 17, initiates and
populates the Generic Request Object, 15a, 15b. FIG. 4
illustrates a flow chart for an alternative exemplification of
the method, system, and program product of the invention,
where the Common Thread Object, 17, populates the
Generic Request Object, 15a, 15b. Specifically, in block 21
an executing process (as processes 11a and 11b in FIG. 1)
invokes a Thread Invocation Object (as elements 13a and
13.b in FIG. 1). Next, as shown in block 23, the Thread
Invocation Object (as elements 13a and 13b in FIG. 1)
initiates the creation and population of a Generic Request
Object (as elements 15a and 15b in FIG. 1), as a container
or container class, with program and Common Thread
Object data. This initiation and population comes about
through passing data from the Common Thread Object (as
element 17). Next, as shown in block 25, thisdata is passed
from Generic Request Object, (elements 15a and 15b in
FIG. 1), as a container, to the Common Thread Object
(element 17) to initiate the single thread task (element 19).
0040. The three objects (thread InvocationObject, generi
cRequestObject, and commonThreadObject) have the
pseudocode shown in the Appendix. Specifically, the The
threadInvocationObject (represented by elements 13a and
13.b in FIG. 1) references a commonThreadObject and is
responsible for interaction with the commonThreadObject
for work done on single threaded API calls. That is, it
instantiates the commonThreadObject.
0041. The class thread InvocationObject extends thread
working through class variables and static commonThread
Object reference. It has constructors, and common thread
server specific methods. These include methods for manipu
lation of commonThreadObject, where each manipulation is
uniquely identified by a command (cmd). The current cmd
includes initialization and destruction of commonThread
Object, and a private static synchronized Void cmdCom
monThreadObjectRef(String cmd). Also included is a
method to initialize commonThreadObject if necessary. Also
included is a private static synchronized Void initCom
monThreadObject.

US 2007/0283362 A1

0.042 A further class is a method to destroy com
monThreadObject, and a private static synchronized void
destroyCommonThreadObject(). Still further included
classes include other methods, unique to specific request,
Such as an object to contain request parameters and infor
mation, all specific requests are to be derived from the base
class if using multiple request object classes.
0043. The class genericRequestObject, represented by
elements 15a and 15b in FIG. 1 encompasses class variables
as well as exact variables (which will be dependent on
request object definition). These are generally for specific
Solutions, such as public String requestString; public
Object parameters; public Object requestor (which is a
thread invocation object), and public Object result; (which is
a result object). Also included are various constructors, and
other methods such as set/get methods if necessary.
0044) The class commonThreadObject is an object that
executes request for processing of single threaded APIs, and
extends the thread. includes the class variable static flag
initiallized (which is a flag to indicate that the common
thread object has already been initiallized), a private Vector
requests, (which is a queue of requests to process), a private
Vector thread InvocationObjects (which is a queue of invo
cation objects), private int references; (which represents the
number of invocation objects referencing this object).
0045. The commonThreadObject class also includes con
structors and common thread server specific methods, for
example, a method to add a request to the request queue So
that it can be handled by the commonThreadObject. This
method returns a predefined results object. The com
monThreadObject class also includes a public Object
addRequest(String req. Object parameters, Object
requestor), which is a method to wait for and execute all
request in queue one by one.
0046. In a preferred exemplification, the Common
Thread Server has the following prerequisites (which makes
it compatible with the majority of existing application
projects): First, in a preferred exemplification, it uses object
oriented program language to more easily map the base
components. Synchronization control and inheritance are
favorable, however these can be programmed in or worked
around.

0047 As used herein, a program product is computer
readable program code on one or more media, where the
program code is capable of controlling and configuring a
computer system having one or more computers to carry out
the method of calling a Common Thread Object from a
running process by invoking a Thread Invocation Object
from the running process, creating a Generic Request Object
from the Thread Invocation Object and populating the
Generic Request Object with Common Thread Object and
running process data; and passing data from the Generic
Request Object to the Common Thread Object to initiate the
common thread task. The one or more computers may be

Dec. 6, 2007

configured and controlled to carry out the method described
herein. Alternatively, the program may be one or more of
encrypted or compressed for Subsequent installation, and
may be resident on installation media or on an installation
SeVe.

0048 While our common thread server has been
described with respect to certain preferred embodiments and
exemplifications, it is not intended to limit the scope of the
invention thereby, but solely by the claims appended hereto.
We claim:

1. A method of calling a single thread object from a
running process comprising:

a. invoking an invocation object from the running pro
CeSS;

b. creating a request object, populating the request object
with single thread object and running process data; and

c. passing data from the request object to the single thread
object to initiate the common thread task.

2. The method of claim 1 comprising the creating the
request object as a container from the invocation object and
populating the request object as a container with single
thread object and running process data.

3. The method of claim 2 comprising the creating the
request object as a container from the invocation object and
populating the request object as a container with single
thread object and running process data from the invocation
object.

4. The method of claim 1 comprising the creating the
request object as a container from the single thread object
and populating the request object as a container with single
thread object and running process data.

5. The method of claim 4 comprising the creating the
request object as a container from the single thread object
and populating the request object as a container with single
thread object and running process data from the single
thread object.

6. The method of claim 1 comprising creating a Generic
Request Object as a container from a Thread Invocation
Object and populating the Generic Request Object with
Common Thread Object and running process data.

7. The method of claim 6 creating a Generic Request
Object from the Common Thread Object and populating the
Generic Request Object with Common Thread Object and
running process data.

8. The system of claim 1 comprising the creating a
Generic Request Object as a container and populating the
Generic Request Object as a container with Common Thread
Object and running process data.

9. The method of claim 1 comprising populating the
request container with single thread process and running
process data from an object associated with the running
process.

