wo 2012/031047 A1 I 00 000 O 0O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization 2 ey
(19) World Intellectual Property Organization /g ]I ) IM)F 00N A0 00 0 00 O
International Bureau U
! 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
8 March 2012 (08.03.2012) PCT WO 2012/031047 Al
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 11/14 (2006.01) kind of national protection available): AE, AG, AL, AM,
. o AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA. CH. CL. CN. CO. CR. CU. CZ. DE. DK. DM. DO
PCT/US2011/050101 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
31 August 2011 (31.08.2011) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
- . ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(30) Priority Data: M, ZW.
12/875,815 3 September 2010 (03.09.2010) us
(84) Designated States (unless otherwise indicated, for every
(71) Applicant (for all designated States except US): kind of regional protection available): ARIPO (BW, GH,
SYMANTEC CORPORATION [US/US]; 350 Ellis GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
Street, Mountain View, California 94043 (US). ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Inventor; and
(75) Inventor/Applicant (for US only): GUO, Fanglu EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, 1T, LT, LU,
[CN/US]; 11510 Washington Place, Los Angeles, Califor- ISJIY/[, I\"I{II% l\glzi)l;/[(%g I];JN(CDI:“ Pé’GP%IRgMR%:E(’HS\II > (S}Ié’
nia 90066 (US). GW, ML, MR, NE, SN, TD, TG).
(74) Agent: RANKIN, Rory, D.; Meyertons, Hood, Kivlin,

Kowert & Goetzel, P.C., P.O. Box 398, Austin, TX Yublished:

78767-0398 (US).

—  with international search report (Art. 21(3))

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR SCALABLE REFERENCE MANAGEMENT IN A DEDUPLICATION BASED
STORAGE SYSTEM

Store & new
segment object in &
container and add
the backup entry to
the containers
reference hst
950

L]
Search for & matching
segment objgct in
starage for a segment
partitioned from adtfed
fila

240

Locate the maiching segment
object correspondling fo the
added fite
955

]
Determine which
container holds the sfored
segmeni object
860

¥

Add backup entry o the
confainer's reference fist

Are thare
more dale

Yes

segments

from the added
Fe? 970

Ne

tart
208

Datect a storage
operation
210

is the

No _Bperation & backy,

deleiion?
815

Yes

¥
Determing which
containers are refarenced
by the backup
928

Delete the backup entry
from the container's
reference hist

No

FIG. 10

End
975

(57) Abstract: A system and method for managing a resource recla-
mation reference list at a coarse level. A storage device is configured
to store a plurality of storage objects in a plurality of storage contain-
ers, each of said storage containers being configured to store a plurali-
ty of said storage objects. A storage container reference list is main-
tained, wherein for each of the storage containers the storage container
reference list identities which files of a plurality of files reference a
storage object within a given storage container. In response to detect-
ing deletion of a given file that references an object within a particular
storage container of the storage containers, a server is configured to
update the storage container reference list by removing from the stor-
age container reference list an identification of the given file. A refer-
ence list associating segment objects with files that reference those
segment objects may not be updated response to the deletion.



WO 2012/031047 A1 I 0000 Y0 00 O

—  before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))




10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
TITLE: SYSTEM AND METHOD FOR SCALABLE REFERENCE MANAGEMENT

IN A DEDUPLICATION BASED STORAGE SYSTEM

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates generally to backup storage systems, and in particular to

reference lists used to facilitate resource reclamation in deduplication based storage systems.

Description of the Related Art

[0002]  Organizations are accumulating and storing immense amounts of electronic data. As a
result, backup storage systems are increasing in size and consuming large quantities of resources.
To cope with storing ever increasing amounts of data, deduplication has become an important
feature for maximizing storage utilization in backup storage systems. In a typical deduplication
system, files are partitioned into data segments and redundant data segments are deleted from the
system. Then, the unique data segments are stored as segment objects in the backup storage
medium. As the number of stored segment objects increases, the management of the segment
objects requires an increasing share of system resources which can impact the overall efficiency
and performance of the deduplication system.

[0003] A deduplication based system aims to reduce the amount of storage capacity required
to store large amounts of data. Deduplication techniques have matured to the point where they
can achieve significant reductions in the quantity of data stored. However, while such techniques
may reduce the required storage space, the number of segment objects stored in the system may
nevertheless continue to increase. As deduplication systems scale up to handle higher data loads,
the management and indexing of the segment objects may become an important factor that
affects performance of the systems.

[0004] Typically, segment objects have a small size, as small as 4 Kilobytes (KB) in some
systems. For a system storing 400 Terabytes (TB) of data, with all segment objects of size 4 KB,
100 billion segment objects would be maintained. As storage requirements grow, the increase in
the number of segment objects may create unacceptable management overhead. Therefore, a
highly scalable management system is needed to efficiently store and manage large quantities of
segment objects.

[0005] A particularly challenging issue involves reclaiming resources after a file is deleted

from the system. When a file is deleted, the segment objects that make up the file cannot simply
1



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
be deleted as there is the possibility that some other file stored by the system references one or

more of those same segment objects. Only if no other files use those segment objects can they
be deleted. Some form of management is needed to keep track of the segment objects and all of
the files that use the segment objects. There are a variety of techniques used to manage the
segment objects and the files that point to them, most of which may work reasonably well when
operating on a small scale. However, many of these approaches may not be efficient when
dealing with a large number of segment objects.

[0006]  One technique used to facilitate resource reclamation is reference counting for segment
objects. The reference count stores a value indicating how many files point to, or use, that
segment. A segment object’s reference count is incremented every time it is used by a file, and
decremented when the file using the segment is deleted — eventually the segment may be
reclaimed when the count drops to zero.

[0007] Reference counting has several limitations which make it unsuitable for deduplication.
One limitation is that any lost or repeated update will incorrectly change the count. If the count is
accidentally reduced, the segment may be deleted while it is still being used by at least one file. If
the count is accidentally increased, then the segment may never be deleted even after all of the
files using it are deleted from the system.

[0008] A further shortcoming of reference counting is that it does not allow for identifying
which files use a given segment object. If a segment object gets corrupted, the backup system
would need to know which files are using it, so that the file can be requested to recover the
corrupted data. However, reference counting does not maintain a listing of which files are using
cach particular segment object, making recovery of corrupted data more difficult.

[0009] Another tool that can be used to facilitate resource reclamation is a reference list.
Maintaining a reference list does not suffer from the inherent shortcomings of reference counting.
A reference list may have greater immunity to mistaken updates, since the list can be searched to
see if an add or remove operation has already been performed. Also, reference lists have the
capability to identify which files are using each segment object. However, a reference list is not
readily scalable to handle a large number of segment objects. Traditionally, a reference list is
managed at a fine level according to ecach segment object that is stored. As the number of
segment objects increases, updating the reference list may take a longer period of time, which
may slow down system performance. What is needed is a new method for maintaining a
reference list that can efficiently manage large numbers of segment objects.

[0010] In view of the above, improved methods and mechanisms for managing reference lists

in a deduplication system are desired.



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101

SUMMARY OF THE INVENTION

[0011]  Various embodiments of methods and mechanisms for efficiently managing reference
lists in deduplication based storage systems are contemplated. In one embodiment, the reference
list may consist of coarse level entries for each container stored in the backup storage medium.
Each file that is made up of at least one segment object stored within a specific container may
have an entry in the reference list for that specific container. Entries may be added to or deleted
from the reference list as files are added to or deleted from the deduplication based storage
system. In another embodiment, the reference list may consist of coarse level entries for
containers, and fine level entries for segment objects stored within the containers. The reference
list may be managed at a coarse level, such that deletions of files from the storage system may
result in the container entries being updated without the segment object entries being updated. As
the number of coarse level entries for a particular container decreases, eventually the number will
fall below a threshold, at which point the server may switch back to managing the list for that
specific container at a fine level. Managing the reference list at a fine level may involve updating
segment object entries each time a file is deleted from the system.

[0012] In a further embodiment, the reference list may associate each entry with a backup
transaction instead of associating each entry with a file. A backup transaction may include all of
the files sent by a single client to the deduplication based storage system for a single backup
operation. The reference list may consist of coarse level entries for each container stored in the
backup storage medium. Each backup transaction that is made up of at least one segment object
stored within a specific container may have an entry in the reference list for that specific
container. In a still further embodiment, the reference list may have a course level entry for each
container that a backup transaction references and a fine level entry for each segment object that
a backup transaction references. The reference list may be updated only at the coarse level until
the number of coarse level entries for a particular container falls below a threshold, at which
point the server may switch back to managing the list for that specific container at a fine level.
Organizing the reference list according to backup transactions may further reduce the amount of
entries in the list and reduce the processing time required to process the list in response to a
backup transaction being added to or deleted from the system.

[0013] These and other features and advantages will become apparent to those of ordinary

skill in the art in view of the following detailed descriptions of the approaches presented herein.



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The above and further advantages of the methods and mechanisms may be better
understood by referring to the following description in conjunction with the accompanying
drawings, in which:

[0015]  FIG. 1 illustrates one embodiment of a deduplication based storage system.

[0016]  FIG. 2 illustrates one embodiment of a backup transaction being stored as segment
objects within a container in backup storage.

[0017]  FIG. 3 illustrates one embodiment of files and associated segment object references.
[0018]  FIG. 4 illustrates a container storing segment objects and two embodiments of a
container reference list.

[0019] FIG. 5 illustrates one embodiment of a file oriented reference list with coarse and fine
level entries.

[0020] FIG. 6 illustrates one embodiment of a method for maintaining a storage container
reference list.

[0021] FIG. 7 illustrates one embodiment of a reference list after a first delete operation.
[0022] FIG. 8 illustrates one embodiment of a reference list after a second delete operation.
[0023] FIG. 9 illustrates one embodiment of a backup oriented reference list with entries for a
backup transaction.

[0024] FIG. 10 is a generalized flow diagram illustrating one embodiment of a method to
update a reference list following a file add or delete operation.

[0025] FIG. 11 is a generalized flow diagram illustrating one embodiment of a method to

update the reference list.

DETAILED DESCRIPTION

[0026] In the following description, numerous specific details are set forth to provide a
thorough understanding of the methods and mechanisms presented herein. However, one having
ordinary skill in the art should recognize that the various embodiments may be practiced without
these specific details. In some instances, well-known structures, components, signals, computer
program instructions, and techniques have not been shown in detail to avoid obscuring the
approaches described herein.

[0027] It will be appreciated that for simplicity and clarity of illustration, elements shown in
the figures have not necessarily been drawn to scale. For example, the dimensions of some of the
clements may be exaggerated relative to other elements. Further, where considered appropriate,

reference numerals have been repeated among the figures to indicate corresponding elements.
4



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
[0028] FIG. 1 illustrates one embodiment of a deduplication based storage system 100. The

deduplication based storage system 100 includes clients 110, 120 and 130 that are representative
of any number of mobile or stationary clients. While this figure shows the examples of two
desktop computers and a laptop computer as clients, other client devices including personal
digital assistants, cell phones, smartphones, digital cameras, video cameras, wireless reading
devices, and any other types of electronic devices capable of sending and receiving data are
possible and are contemplated. As shown in FIG. 1, the clients are connected to a network 140
through which they are also connected to the deduplication server 150. The deduplication server
150 may be used for a variety of different purposes, such as to provide clients 110, 120, and 130
with access to shared data and to back up mission critical data.

[0029] In general, the deduplication server 150 may be any type of physical computer or
computing device. The deduplication server 150 may include a bus which may interconnect
major subsystems or components of the server 150, such as one or more central processor units
(CPUs), system memory (random-access memory (RAM), read-only memory (ROM), flash
RAM, or the like), input/output (I/0) devices, persistent storage devices such as hard disks, and
other peripheral devices typically included in a computer. The deduplication server 150 may have
a distributed architecture, or all of its components may be integrated into a single unit. The
deduplication server 150 may host an operating system running software processes and
applications, and the software may run on the server’s CPU(s) and may be stored in the server’s
memory. Also, the deduplication based storage system 100 may include one or more
deduplication servers 150.

[0030] The deduplication server 150 may also be connected to backup storage 160, where
data from clients 110, 120, and 130 may be stored. Backup storage 160 may include one or more
data storage devices of varying types, such as hard disk drives, optical drives, magnetic tape
drives, removable disk drives, and others. Backup storage 160 may store the reference list 170,
and the reference list 170 may be managed by the deduplication server 150. In another
embodiment, the reference list 170 may be stored in the deduplication server’s 150 memory. In a
further embodiment, the reference list 170 may be managed and stored by an entity other than the
deduplication server 150. The reference list 170 may provide a way for the deduplication server
150 to track how many files or backup transactions from clients 110, 120, and 130 are using each
of the segment objects stored in the backup storage 160.

[0031] In one embodiment, the reference list 170 may contain coarse level entries for the
containers stored in the backup storage 160. A container may be a logical entity associated with a

variable-sized portion of a file system that includes a number of allocated units of data storage.
5



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
Also, a container may be mapped to a physical location in the backup storage medium. For each

container in the backup storage medium, the reference list 170 may contain a different coarse
level entry for each separate file referencing one or more of the plurality of segment objects
stored within that particular container. Hence, a container may have a number of coarse level
entries in the reference list equal to the number of distinct files that reference at least one
segment object within that container. In another embodiment, the reference list may also contain
fine level entries for segment objects stored within the containers. For each segment object stored
within the container, the reference list may contain a fine level entry for each file referencing that
particular segment object. Therefore, the segment object may have a number of fine level entries
in the reference list equal to the number of distinct files that reference the segment object.

[0032] One or more of the clients coupled to network 140 may also function as a server for
other clients. The approaches described herein can be utilized in a variety of networks, including
combinations of local area networks (LANSs), such as Ethernet networks, Fiber Distributed Data
Interface (FDDI) networks, token ring networks, and wireless local area networks (WLANS)
based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards (Wi-Fi),
and wide area networks (WANS), such as the Internet, cellular data networks, and other data
communication networks. The networks served by the approaches described herein may also
contain a plurality of backup storage media 160, depending on the unique storage and backup
requirements of each specific network. Storage media associated with the backup storage 160
may be implemented in accordance with a variety of storage architectures including, but not
limited to, a network-attached storage environment, a storage area network (SAN), and a disk
assembly directly attached to the deduplication server 150.

[0033] Clients 110, 120, and 130 may send data over the network 140 to the deduplication
server 150. The data may be sent in the form of data segments that have been created by
partitioning the data stored on the clients 110, 120, and 130 into pieces of one or more
predetermined sizes. In various embodiments, clients may include software that assists in backup
operations (e.g., a backup agent). In some embodiments, deduplication server 150 may
deduplicate received data. Deduplication typically entails determining whether a received data
segment is already stored in backup storage 160. If the data segment is already stored in backup
storage 160, the received data segment may be discarded and a pointer to the already stored data
segment (also referred to as a segment object) used in its place. In this manner, the deduplication
server 150 may seck to maintain only a single copy of any segment object in backup storage 160.
In other embodiments, the deduplication process may take place prior to the data segments being

sent to the deduplication server 150, so that only new data segments may be sent to the
6



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
deduplication server 150, and all redundant data segments may be deleted at the clients 110,

120, and 130. Deduplication based storage system 100 is shown as including clients and a
server, but in alternative embodiments, the functions performed by clients and servers may be
performed by peers in a peer-to-peer configuration, or by a combination of clients, servers, and
peers.

[0034] In other embodiments, the data may also be sent from the clients 110, 120, and 130 to
the deduplication server 150 as complete data files, as a plurality of data files copied from an
image file or a volume, as a virtual machine disk file (VMDK), as a virtual hard disk (VHD), as a
disk image file (.V2I) created by SYMANTEC® BackupExec software products, as a .TAR
archive file that further includes a VMDK file for storing the data files as a raw disk partition, or
as otherwise may be formatted by the clients 110, 120, and 130.

[0035] Referring now to FIG. 2, a deduplication based storage system is shown. A client 110
is connected to a deduplication server 150 through a network 140. The deduplication server 150
is connected to backup storage 160, which stores a reference list 170 and data from client 110 as
segment objects 231-239 within the logical data storage container 210. Any number of segment
objects may be stored within a container. In addition, the segment objects 231-239 may be of
variable sizes. In another embodiment, segment objects 231-239 may be the same size.

[0036] The client 110 has a group of files 241-244 constituting a single backup transaction
250, which the client 110 may send to deduplication server 150 to be stored in backup storage

160. The files 241-244 may be partitioned into data segments of various sizes before or after
being sent from the client 110 to the deduplication server 150. Also, the data segments may be
deduplicated by the client 110 or by the deduplication server 150. In one embodiment, the
backup transaction 250 may comprise all of the files backed up by a single client in a single
backup operation. In another embodiment, the backup transaction 250 may comprise a plurality
of files from a single client or from a plurality of clients. In a further embodiment, the backup
transaction 250 may comprise a plurality of files grouped together based at least in part on the
proximity of the segment objects, referenced by the plurality of files, within the backup storage
medium 160. Other groupings of files into backup transactions are possible and are
contemplated.

[0037]  The deduplication server 150 may store the deduplicated data segments created from
backup transaction 250 in backup storage 160 as segment objects 231-239. The deduplication
server 150 may create a container 210 to store the segment objects 231-239. The deduplication

server 150 may also create additional containers in the backup storage 160. In one embodiment,



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
the containers may all be the same size. In another embodiment, the containers may be of

variable sizes.

[0038] Turning now to FIG. 3, a group of files 260 and associated segment object references
270 are shown. Files 241-244 are shown as they would be reconstructed from segment objects
231-239 in box 260. The files 241-244 from client 110 (of FIG. 2) may be partitioned into data
segments, and then the data segments may be stored as segment objects 231-239 in backup
storage 160 (of FIG. 2). Each segment object 231-239 may be referenced by more than one file.
[0039] In the example shown, file 241 may comprise or be reconstructed from 5 segment
objects: 231, 234, 235, 236 and 237. File 242 may be reconstructed from 7 segment objects: 231,
233, 234, 236, 237, 238 and 239. File 243 may be reconstructed from 6 segment objects: 231,
232, 234, 235, 237, and 238. File 244 may be reconstructed from 4 segment objects: 231, 232,
233, and 234. Most of the segment objects are referenced more than once by the four files 241-
244, but only one copy of each segment object is stored in backup storage 160 within container
210 (of FIG. 2), reducing the total storage capacity required to store the four files 241-244.

[0040] Also shown in FIG. 3 are segment object references 270, with each segment object
231-239 having an associated list of files which reference the segment object. Numerous possible
embodiments for the reference lists 270 are possible. For example, in one embodiment a linked
list of files may be associated with each segment object identifier. B-tree structures or otherwise
may be used to store and maintain the lists 270. Numerous such embodiments are possible and
are contemplated. In one embodiment, if a file is deleted, the segment object identifiers 231-239
may be traversed in order to remove those entries/entities that identify the deleted file. As may
be appreciated, it may be necessary to traverse many entries in order to completely update the
data structure(s) 270. Generally speaking, the overhead associated with such deletions is
relatively high. In the following discussion, an alternative approach is described.

[0041] Turning now to FIG. 4, a container 210 containing segment objects 231-239 is shown
in box 280. Generally speaking, all segment objects stored within the system may be logically
stored within a container. In the simple example shown, container 210 includes six segment
objects. However, a container may be configured to include any number of segment objects —
hundreds, thousands, or more. Consequently, the number of containers will be a fraction of the
number of segment objects. In addition to the above, two embodiments of a container reference
list 170 for container 210 (of FIG. 2) are shown in box 290. The first embodiment is shown as a
linked list, and the second embodiment is shown as a table.

[0042] The container reference list identifies each file that references a segment object within

the container. The first embodiment of the container reference list 170 is depicted as a container
8



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
reference 210 associated with files 241-244, cach of which references at least one segment

object stored within the container. As with the previously discussed segment object reference
list, any suitable data structure may be utilized for maintaining the container reference list. In the
first embodiment shown, a linked list type structure is depicted wherein a container identifier 210
has a linked list of file identifiers that reference a segment object within the container 210. As
before, B-trees, doubly linked lists, and other data structures may be utilized. Container reference
list 170 with headers “container” and “files” includes coarse level entries for the container 210.
This container reference list 170 is presented for illustrative purposes only; other ways of
implementing a container reference list may be utilized in accordance with the methods and
mechanisms described herein. It is also noted that the reference lists described herein may be
maintained as one or more lists or structures. In the event multiple lists are maintained, given lists
could be associated with particular sets of data, particular types of data, users of the data,
particular backups, and so on.

[0043] In addition to the linked type structure, more array oriented type structures could be
utilized. For example, in one embodiment a dynamically allocable n-dimensional array could be
utilized. In the example of FIG. 4, a 2-dimentional array is shown for the container 210, with an
entry for each file 241-244. In this manner, there is a coarse level entry in reference list 170 for
cach file that references at least one of the segment objects stored in the container 210. Four files
241-244 reference segment objects stored in container 210. Consequently, there are four coarse
level entries for container 210 in the reference list - one for each of the files referencing segment
objects stored within the container.

[0044] As noted above, a container reference list as described above will have a fraction of
the entries of a segment object reference list in a storage system. Utilizing such a container
reference storage list, a method for maintaining the reference lists with much less overhead is
now described. FIG. 5 illustrates one embodiment of an overview of a method for maintaining a
“file oriented” container reference list. The container list is said to be file oriented as each
container has a list of files that reference at least one object in the container. As previously
discussed, traversing and maintaining segment object reference lists may entail a relatively high
amount of overhead. Particularly when deleting a file, the traversal and updating of segment
object reference lists can be relatively time consuming. As an alternative to such an approach, the
following method describes an approach where the segment object reference is often ignored. In
this manner, overhead associated with maintaining such a list is reduced.

[0045]  The method of FIG. 5 begins with the detection of a file operation (block 510). If the

operation is not a file deletion operation (decision block 515), then the file may be partitioned
9



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
and a search made for matching objects already stored within the system (block 540) — such as

may be the case in a de-duplicating storage system. If there is a matching segment object already
stored (decision block 545), an identification of the file is added to the container reference list for
the container that includes the matching segment object (block 565), and the process may repeat
if there are remaining data segments of the file to process (decision block 570). On the other
hand, if there are no matching segment objects already stored (decision block 545), then the data
may be stored in the system as a new segment object, and the container reference list updated to
include an identification of the file for the container including the new segment object (block
550).

[0046]  Ifit turns out that the detected file operation is a file deletion operation (decision block
515), then the identification of the file is removed from the container reference list (block 530). It
is noted that in one embodiment the segment object reference list is not updated or maintained at
this time. Rather, only the container reference list is updated to reflect the deleted file. As there
are far fewer containers than segment objects in the system, and the container reference list
includes a fraction of the entries of the segment object reference list, overhead associated with
updating the container reference list is much less than that of the segment object list. In the
following discussion, a number of examples will be illustrated which show the maintenance of
container and segment object reference lists. For ease of illustration, the example will show the
lists and entries in an arrayed format. However, as noted above, the actual implementation may
be that of a linked structure, tree structures, or otherwise. Additionally, while the discussion may
describe coarse and fine entries as part of a single list, it is to be understood that there actually
may be multiple lists maintained.

[0047]  Referring now to FIG. 6, a reference list 500 for container 210 (of FIG. 2) with coarse
and fine level entries is shown. As in FIG. 4, both a table and linked list format are shown. The
reference list 500 includes coarse level entries for the container 210 which may be in backup
storage 160 (of FIG. 2), and fine level entries for the segment objects stored within container
210. In another embodiment, the reference list 500 may contain entries for a plurality of
containers stored in backup storage 160. In a further embodiment, the reference list 500 may
contain entries for all of the containers stored in backup storage 160. In a still further
embodiment, the deduplication server 150 (of FIG. 2) may maintain a separate reference list for
cach container stored in backup storage 160.

[0048] There is a coarse level entry in reference list 500 for each file that references at least
one of the segment objects stored in the container 210. Four files 241-244 (of FIG. 3) reference

segment objects stored in container 210, and therefore, there are four entries for container 210 in
10



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
the reference list, one for each of the files pointing to segment objects stored within the

container. These entries for container 210 are the coarse level entries of the reference list 500.
The entries for each of the segment objects are the fine level entries of the reference list 500.
Each segment object may contain a fine level entry for each file that references it. A file may
reference a segment object if the segment object may be used to recreate the file during a retrieve
or restore operation, or otherwise forms a part of the data that makes up the file.

[0049] Segment object 231 contains four fine level entries in reference list 500 for the four
files (241-244) that point to it. In addition, segment object 232 contains two fine level entries in
the list for files 243 and 244, segment object 233 contains two fine level entries for file 242 and
244, segment object 234 contains four fine level entries for files 241-244, segment object 235
contains two fine level entries for files 241 and 243, segment object 236 contains two fine level
entries for files 241 and 242, segment object 237 contains three fine level entries for files 241-
243, segment object 238 contains two fine level entries for files 242 and 243, and segment object
239 contains one fine level entry for file 242.

[0050] As is shown in FIG. 6, the fine level entries may come after the coarse level entries in
the reference list 500. In one embodiment, if the reference list 500 contains entries for more than
one container, than the coarse and fine level entries for a first container may be grouped together,
followed by the coarse and fine level entries for a second container, and so on for the remainder
of the containers. In another embodiment, the coarse level entries for all containers may be
grouped together, followed by all of the fine level entries for all containers. Other methods of
grouping coarse and fine level entries together and organizing the reference list 500 are possible
and are contemplated.

[0051] Turning now to FIG. 7, the reference list 500 for container 210 is shown after the list
has been updated following the deletion of file 243 from the storage system. Again, both a table
and linked list format are shown. As depicted in FIG. 7, the reference list is only being updated
for coarse level entries. The threshold for this reference list may be any desired number, such as
three. Therefore, when the number of files pointing to the container 210 falls below three, the
reference list may switch to updating both the coarse and fine level entries. In another
embodiment, the threshold may take on different values. In a further embodiment, the server 150
(from FIG. 1) may determine the value of the threshold based at least in part on the percentage of
storage space in the backup storage 160 (from FIG. 1) currently being utilized. In a still further
embodiment, the server may determine the value of the threshold based at least in part on the size
or number of entries in the reference list. Any desired condition may be used for setting or

determining a value of the threshold.
11



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
[0052] Container 210 has three coarse level entries in the reference list 500 after the entry for

file 243 has been deleted. The entries in the reference list 500 for segment objects referenced by
file 243 still remain in the list. Since the reference list 500 is only being updated for coarse level
entries, the fine level entries are not deleted when a file is deleted. The advantage of updating
reference lists at a coarse level is it may speed up the process of updating the lists as there may be
fewer entries to process. In the case of reference list 500, when file 243 is deleted only one coarse
level entry may be deleted. Also, only four entries (the coarse level entries), may need to be
processed to determine if the deleted file references the container. If the reference list 500 had
been updated at a fine level, six additional entries may have been deleted, for each of the segment
objects pointed to by file 243. Also, all of the fine level entries may have been processed, if the
reference list 500 had been updated at a fine level. In a large scale deduplication based storage
system storing large numbers of containers and segment objects, updating only the coarse level
entries of the reference list(s) may significantly reduce the number of update and processing
operations performed following the deletion of a file or group of files.

[0053] There may be a disadvantage of updating the reference list at a coarse level. If some of
the segment objects within the container are not being used by any files, the reference list may
not show this. This may result in unused segment objects consuming storage space that otherwise
could be freed and reused. To mitigate against storing unused segment objects, the reference list
entries for a specific container may be updated at a fine level when the number of coarse level
entries for this container falls below a threshold. When there are only a few coarse level entries
for a particular container, there may be a higher probability that segment objects can be
reclaimed, and so switching to fine level updating may facilitate faster resource reclamation than
utilizing only coarse level updating. Also, when there are a small number of coarse level entries
for a particular container, switching to fine level updating may only slightly increase the
processing burden of updating the list as compared to if there were a large number of coarse level
entries.

[0054]  After the reference list switches to fine level updating for a specific container, new
files may be added to the backup storage system that reference segment objects stored within this
particular container. If the number of files referencing the container increases above the
threshold, the reference list may switch back to coarse level updating for this container. The
reference list may switch back and forth from fine to coarse level updating as many times as the
number of coarse level entries for a specific container crosses the threshold in either direction.
[0055] Referring now to FIG. 8, the reference list 500 (both table and linked list format) for

container 210 is shown after the file 242 has been deleted from the storage system. After file 242
12



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
is deleted, the number of coarse level entries for container 210 is two. Therefore, the reference

list 500 may switch to updating both coarse and fine level entries since the number of entries has
fallen below the threshold of three. In other embodiments, reference lists may have different
threshold values, and the reference lists may switch from coarse level updating to fine level
updating at different numbers of coarse level entries.

[0056] In FIG. 8, the coarse level entry of container 210 for file 242 may be deleted from the
reference list 500. In addition, the segment object (or fine level) entries, may also be updated. All
fine level entries for the file 242 may be deleted from the list. Also, because there is no longer a
coarse level entry for file 243, which was deleted in a prior operation, all fine entries for file 243
may be deleted from the list. When file 243 was deleted, as shown in FIG. 7, the reference list
500 was in coarse level update mode and only the coarse level entry for file 243 was deleted from
the list. After the reference list 500 switches to fine level updating, the fine level entries may
need to be updated to match the coarse level entries for the container 210. This allows the list to
accurately reflect how many files reference each segment object. As shown in FIG. 8, after
deleting all fine level entries associated with files 242 and 243 from reference list 500, segment
objects 238 and 239 are not referenced by any files. Therefore, these two segment objects may be
deleted and the storage space taken up by these objects reused. The segment objects may be
deleted immediately, or they may be marked for deletion and deleted at a later time in a batch
operation involving other unused segment objects. In further embodiments, other methods of
marking and reclaiming segment objects are possible and contemplated.

[0057] When files are added to the backup storage system, the files may be partitioned into
data segments identical to already stored segment objects. The reference lists for the containers
storing these identical segment objects may be updated. In one embodiment, if the number of
coarse level entries is below the threshold, then only the coarse reference list is updated. Should a
file be deleted and the coarse level reference list reach the threshold, then the fine reference list
may be rebuilt. In this manner, action is only taken for the fine level reference list when needed.
If the coarse reference list container rarely reaches the threshold, there is no fine reference update
overhead at all. In an alternative embodiment, when files are added to a container, reference lists
may be updated at both the fine and course level, even if the number of coarse level entries is
below the threshold. In such an embodiment, the segment objects referenced by the newly stored
files may be stored in containers that are being processed at a coarse level in the reference list.
For containers being processed at a coarse level, when a new file is added to the backup storage

system, the segment object entries for these containers may still be updated.

13



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
[0058] In some embodiments, a container may have all of its coarse level entries deleted

from the reference list without the fine level entries being updated. This may occur when the
reference list for a container only contains coarse level entries. This may also occur when the
reference list for a container contains coarse and fine level entries and the threshold is zero. Or
this may occur when a group of files is deleted at one time and all of the coarse level entries for a
container are deleted in one operation. When all of the coarse level entries are deleted for a
particular container, the segment objects for that container may be reclaimed or marked as being
ready to be reclaimed, without the fine level entries of the reference list being updated or
processed. This may save processing time and overhead by reclaiming the resources used by the
segment objects without having to process the fine level entries of the reference list.

[0059] Turning now to FIG. 9, a “backup oriented” reference list 800 for container 210 is
shown. The container reference list is backup oriented in that each container has a list of backups
which reference at least on object in the container. Accordingly, in contrast to the reference list
500 in FIGs. 5-7, reference list 800 contains entries associated with a backup transaction 250. As
in the previous examples, both a table and linked list format are shown. Backup transaction 250,
as shown in FIG. 2, contains files 241-244. The reference list 800 in FIG. 9 corresponds to the
reference list 500 of FIG. 6, before the files 243 and 242 were deleted. The number of entries in
the reference list 800 has been reduced by tracking the container 210 and segment objects 231-
239 according to a backup transaction instead of according to each individual file. Reducing the
size of the reference list 800 may reduce the storage space required to store the list, and may
reduce the processing time required to process entries in the list as backup transactions are added
to or deleted from the storage system. In one embodiment, the reference list 800 may contain an
entry for each instance of a backup transaction referencing a container or segment object. In
another embodiment, the deduplication server 150 (of FIG. 2) may organize a plurality of backup
transactions into a group of backup transactions, and reference list 800 may contain entries for
cach instance of a group of backup transactions referencing a container or segment object. In
further embodiments, other groupings of files and backup transactions may be used to determine
how the reference list 800 records entries. As may be appreciated, while a backup transaction
including multiple files is described, other identifiable groupings of files could be used as well.
[0060] In addition, the coarse level entries of a reference list may correspond to more than one
container. For example, in one embodiment, a plurality of containers may be grouped together.
This plurality of containers may store data from one backup transaction. Or, the plurality of
containers may be chosen and grouped together based on other factors. The reference list may be

organized such that the coarse level entries correspond to a plurality of containers instead of to a
14



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
single container. Organizing the reference list in this way may result in a smaller reference list

with fewer entries and may result in faster update processing when files or backup transactions
are added to or deleted from the system.

[0061] Turning now to FIG. 10, an embodiment of a method for maintaining a backup
oriented reference list is shown. For purposes of discussion, the steps in this embodiment are
shown in sequential order. It should be noted that in various embodiments of the method
described below, one or more of the elements described may be performed concurrently, in a
different order than shown, or may be omitted entirely. Other additional elements may also be
performed as desired.

[0062] The method of FIG. 10 starts in block 905, and then storage operation may be detected
in block 910. As the present figure is generally discussing backup operations, the storage
operation may be performing a new backup or deleting a previous backup. In conditional block
915, if the operation is determined to be deletion of a backup, then it may be determined which
containers of the container reference list include an identification of the backup being deleted
(block 925). Then, the entries for the deleted backup in the container’s reference list may be
deleted (block 930).

[0063]  If the detected operation is a new backup (conditional block 915), then for each file
being added a search may be conducted for a matching segment object in storage identical to a
data segment partitioned from the added file (block 940). If there is a matching segment object
(conditional block 945), then the matching segment object may be located (block 955). If there is
not a matching segment object (conditional block 945), then a new segment object
(corresponding to the data segment from the added file) may be stored in a container and a file
entry may be added to the container’s reference list (block 950).

[0064]  After the matching segment object is located (block 955), it may be determined which
container holds the matching segment object (block 960). Next, an entry for the backup
transaction corresponding to the new file may be added to the container’s reference list (block
965). In the event the backup transaction already has an entry for the container, a new entry may
not be needed. If there are more data segments from the added file (conditional block 970), then
the method may return to block 940 to search for matching segment objects. If there are no more
data segments from the added file (conditional block 970), then the method may end in block
975.

[0065] While embodiments for both file oriented and backup oriented container reference lists
have been discussed, in various embodiments, combinations of such embodiments, included

segment object reference lists, may be maintained simultaneously. In such embodiments, various
15



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
conditions may be utilized to determine whether and which reference list to update in a given

situation.

[0066] Referring now to FIG. 11, one embodiment of a hybrid approach based upon the above
described methods and mechanisms is shown. In the example, a hybrid between a container
reference list and a segment object reference list is described. The method 1000 illustrates one
embodiment of a method for determining whether to maintain a container reference list or a
segment object reference list. For purposes of discussion, the steps in this embodiment are shown
in sequential order. It should be noted that in various embodiments of the method described
below, one or more of the clements described may be performed concurrently, in a different
order than shown, or may be omitted entirely. Other additional elements may also be performed
as desired.

[0067] In the following discussion, a file oriented container reference list is used for purposes
of discussion — similar to that discussed in FIG. 5. However, the method may also be applied in a
backup oriented container reference list. The method 1000 shown begins with a request to delete
a file in block 1010. In block 1020, the deduplication server (or other component) identifies a
container referenced by the deleted file (i.e., the file comprises a segment object that is stored in
the container). Having identified the container, the deduplication server may then determine how
many other files reference the container (block 1025). If the number of files is greater than a
given threshold (conditional block 1030), then the deduplication server may maintain the
container reference list and delete an identification of the deleted file form the container
reference list (block 1035). Deletion of entries may be as described in either FIG. 5 or FIG. 10.
In the case of a file oriented container reference list, an identification of the deleted file may be
removed from the container reference list for that file. In the case of a backup oriented container
reference list, an identification of the deleted backup may be removed from the container
reference list.

[0068] If the number of files for a given container in the container reference list is less than
the threshold (conditional block 1030), then the deduplication server may maintain the segment
object reference list and delete the entries corresponding to the deleted file from the segment
object reference list (block 1040). In one embodiment, when switching from maintaining the
container reference list to maintaining the segment object reference list, the segment object
reference list entries corresponding to the identified container may not yet exist. For example, if
only the container reference list is being maintained during addition of files, then no
corresponding segment object reference list is being maintained. Consequently, if there are still

files referencing a given container when a switch to segment object reference list maintenance is
16



10

15

20

25

30

WO 2012/031047 PCT/US2011/050101
made for that container, then the segment object reference list entries for that container do not

yet exist. In such a case, the segment object reference list for that container would need to be
created. In one embodiment, creation of these segment object reference list entries may occur at
the time the decision is made to maintain the segment object reference list (block 104). Next, the
deduplication server may determine if this container was the last container referenced by the
deleted file (conditional block 1045). If this was the last container pointed to by the deleted file
(conditional block 1045), then the method may end in block 1055. If this was not the last
container pointed to by the deleted file (conditional block 1045), then the method may find the
next container pointed to by the deleted file (block 1050). Next, the server may return to block
1025 to determine how many other files point to the next container.

[0069] It is noted that the above-described embodiments may comprise software. In such an
embodiment, program instructions and/or a database (both of which may be referred to as
“instructions’) that represent the described systems and/or methods may be stored on a computer
readable storage medium. Generally speaking, a computer readable storage medium may include
any storage media accessible by a computer during use to provide instructions and/or data to the
computer. For example, a computer readable storage medium may include storage media such as
magnetic or optical media, e.g., disk (fixed or removable), tape, CD-ROM, DVD-ROM, CD-R,
CD-RW, DVD-R, DVD-RW, or Blu-Ray. Storage media may further include volatile or non-
volatile memory media such as RAM (e.g., synchronous dynamic RAM (SDRAM), double data
rate (DDR, DDR2, DDR3, etc.) SDRAM, low-power DDR (LPDDR2, etc.) SDRAM, Rambus
DRAM (RDRAM), static RAM (SRAM)), ROM, Flash memory, non-volatile memory (e.g.
Flash memory) accessible via a peripheral interface such as the USB interface, etc. Storage
media may include micro-electro-mechanical systems (MEMS), as well as storage media
accessible via a communication medium such as a network and/or a wireless link.

[0070] In various embodiments, one or more portions of the methods and mechanisms
described herein may form part of a cloud computing environment. In such embodiments,
resources may be provided over the Internet as services according to one or more various models.
Such models may include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS). In TaaS, computer infrastructure is delivered as a service. In such a
case, the computing equipment is generally owned and operated by the service provider. In the
PaaS model, software tools and underlying equipment used by developers to develop software
solutions may be provided as a service and hosted by the service provider. SaaS typically

includes a service provider licensing software as a service on demand. The service provider may

17



10

WO 2012/031047 PCT/US2011/050101
host the software, or may deploy the software to a customer for a given period of time.

Numerous combinations of the above models are possible and are contemplated.

[0071]  Although several embodiments of approaches have been shown and described, it will
be apparent to those of ordinary skill in the art that a number of changes, modifications, or
alterations to the approaches as described may be made. Changes, modifications, and alterations
should therefore be seen as within the scope of the methods and mechanisms described herein. It
should also be emphasized that the above-described embodiments are only non-limiting

examples of implementations.

18



WO 2012/031047 PCT/US2011/050101
WHAT IS CLAIMED IS

1. A system for managing data storage, comprising:

10

15

20

25

30

a storage device configured to store a plurality of storage objects in a plurality of storage
containers, each of said storage containers being configured to store a plurality of
said storage objects;

a storage container reference list, wherein for each of the storage containers the storage
container reference list identifies which files of a plurality of files reference a
storage object within a given storage container; and

a server, wherein in response to detecting deletion of a given file that references an object
within a particular storage container of the storage containers, the server is
configured to update the storage container reference list by removing from the

storage container reference list an identification of the given file.

The system as recited in claim 1, wherein the server is further configured to maintain a
segment object reference list, wherein for a given segment object stored in the storage device,
the segment object reference list identifies which files of the plurality of files reference the

given segment object.

The system as recited in claim 2, wherein in response to determining a number of files
referencing a given container has fallen to a threshold level, the server is configured to update
the segment object reference list instead of the container reference list responsive to detecting

a file deletion.

The system as recited in claim 3, wherein when updating the segment object reference list,
the server is configured to delete from the segment object reference list entries for segment

objects referenced by the given file.

The system as recited in claim 2, wherein in response to detecting said deletion, the server

does not update the segment object reference list.

The system as recited in claim 3, wherein the server is further configured to determine a
value of the threshold based at least in part on storage utilization of the storage device and a

size of the storage container reference list.
19



10

15

20

25

30

7.

10.

11.

12.

WO 2012/031047 PCT/US2011/050101

A computer implemented method comprising:

storing in a storage device a plurality of storage objects in a plurality of storage
containers, each of said storage containers being configured to store a plurality of
said storage objects;

maintaining a storage container reference list, wherein for each of the storage containers
the storage container reference list identifies which files of a plurality of files
reference a storage object within a given storage container; and

removing from the storage container reference list an identification of the given file, in
response to detecting deletion of a given file that references an object within a

particular storage container of the storage containers.

The method as recited in claim 7, further comprising maintaining a segment object reference
list, wherein for a given segment object stored in the storage device, the segment object

reference list identifies which files of the plurality of files reference the given segment object.

The method as recited in claim 8, wherein in response to determining a number of files
referencing a given container has fallen to a threshold level, the method comprises updating
the segment object reference list instead of the container reference list responsive to detecting

a file deletion.

The method as recited in claim 9, wherein when updating the segment object reference list,
the method comprises deleting from the segment object reference list entries for segment

objects referenced by the given file.

The system as recited in claim 1, or the method as recited in claim 9, wherein the storage
container reference list includes entries associated with a group of containers at a coarse
level, with a separate coarse level entry for each file that references at least one segment

object stored within said group of containers.

A computer readable storage medium comprising program instructions, wherein when

executed the program instructions are operable to:

20



10

15

20

25

WO 2012/031047 PCT/US2011/050101
store in a storage device a plurality of storage objects in a plurality of storage containers, ecach of

said storage containers being configured to store a plurality of said storage objects;
maintain a storage container reference list, wherein for each of the storage containers the
storage container reference list identifies which files of a plurality of files
reference a storage object within a given storage container; and
remove from the storage container reference list an identification of the given file, in
response to detecting deletion of a given file that references an object within a

particular storage container of the storage containers.

13. The computer readable storage medium as recited in claim 12, wherein when executed the
program instructions are further operable to maintain a segment object reference list, wherein
for a given segment object stored in the storage device, the segment object reference list

identifies which files of the plurality of files reference the given segment object.

14. The system as recited in claim 1, method as recited in claim 9, or the computer readable
storage medium as recited in claim 16, wherein subsets of the plurality of files are grouped
into backups, and wherein for each of the storage containers the storage container list
identifies which backups of the backups include a file that reference a segment object within

the given storage container.
15. The computer readable storage medium as recited in claim 12, wherein in response to

detecting said deletion and determining the number of files referencing the given container

has not fallen to a given threshold, the segment object reference list is not updated.

21



WO 2012/031047 PCT/US2011/050101

1/11

Deduplication Based Storage Systerm
100

Client
{Hent 120
110
Chient
130

Nenvork
140

Deduplication Server
150

Loosooess- T8

Backup || Reference
Sorage | = List
§ 170

160

FIG. 1



WO 2012/031047

Client
110

Network
0

Deduplication Server
150

B 0y

Backup

Reference ; i
List Storage | e
170

160

2/11

PCT/US2011/050101

File 244

Backup Transaction 250

Segment Object 237

Segment Object 232

Segment Object 233

Segment Object 234

Segment Object 238

Segment Object 236

Segment Object 237

Segment Object 238

Segment Object 239

Container 210

FIG. 2




WO 2012/031047 PCT/US2011/050101
3711
Fite 747 Segment Segment Segment Object Segrment Segment Object
e a4/ Oblect 237 | Object 234 238 Object 236 237
File 247 Segment Sagment Sagment Segment Segrient Objest Sagment Segment
“ Object 237 { Object 233 Dbject 234 Dbject 236 237 Dbject 238 Dbject 233
File 243 Segment | Segment Object Segment Segment Object Segment Object Segment
Object 231 232 Chiject 234 235 237 Ohjact 238
Eile 244 Segment Segment Object Segment Segment
= Chject 237 232 Object 233 Object 234

247 Pt 247




WO 2012/031047 PCT/US2011/050101

4711
................................................................................................................................................ s
3 214 237 :
232 2% 2% ] ... 280
233 736 735 |
Container Files

210 Pt 247 bl 247 M 243 Pl 244

Container Reference |

List 170
- 280
Container Files
210 241
210 247
210 243
210 244




WO 2012/031047

Store segment
object in a
container and add
the file entry to the
container’s
referance list
850

5711

J

Partition file and Search
for a matching segment
ebject in storage
540

No

s there a
matching segment
obfect?
545

Yes

F

PCT/US2011/050101

( Start )

v

Detect a file operation
810

No

l

is the
operation a file

Add the file entry to the
corresponding container’s
reference list
265

Are there
more data
segments
from the added
filte? 570

deletion?
515

Yes

h 4

Delete the file entry from
the container reference
list
830

FIG. 5




WO 2012/031047 PCT/US2011/050101

6/11
Reference List 500

Container Segment Object Files
210 241
210 247
210 243
210 244
231 241

231 242

231 243

231 244

232 243

232 244

233 242

233 244

234 24

234 242

234 243

234 244

235 241

235 243

236 241

236 247

237 241

237 242

237 243

238 242

238 243

234 242

Container Files

210 Pl 247 bl 242 (el 243 Pl 244

FIG. 6



WO 2012/031047

PCT/US2011/050101

7711
Reference List 500

Container Segment Object Files
210 241
210 242
210 244
231 241

231 2472

231 243

231 244

237 243

232 244

233 242

233 244

234 241

234 242

234 743

234 244

235 241

235 243

236 241

236 242

231 241

2317 242

237 243

238 247

238 243

239 242

Container Files
210 e 24T Bl 242 (e 244

FIG. 7



WO 2012/031047

PCT/US2011/050101
8/11
Reference List 500

Container Segment Object Files
210 241
210 744
231 241

231 244

232 244

233 244

234 241

234 244

235 241

236 241

2317 41

238 None

238 None

Container Files
210 ! 247 B 244

FIG. 8



WO 2012/031047 PCT/US2011/050101

9/11
Reference List 800A
Container Segment Object Backup Transaction
210 250
231 250
237 250
733 250
234 250
235 250
236 250
237 250
238 250
239 250
Container Backups

210 R g

FIG. 9



WO 2012/031047

Store a new
segment object in a
container and add
the hackup entry to
the container’s
reference fist
250

10/ 11

Y

Search for a matching
segment object in
storage for a segment
partitioned from added
file
940

Is there a
mafching segment
object?
945

No

Yes

Locate the matching segment
object corresponcling to the
added file
955

)
Determine which
container holds the stored
segment object
960

v

Add backup entry to the
container’s reference list
865

Are there
more data
segments
from the added
fife? 870

PCT/US2011/050101

Start
905

'

Defect a storage
operation
810

l

Is the
peration a backu

No

r 3

deletion?
916

Determine which
containers are referenced
by the backup
925

Delete the backup entry
from the container’s
reference list
930

No

FIG. 10

4
End




WO 2012/031047
11711

( Start )
Y

Receive request to
delete a file
1010

X

Find container corresponding o
the deleted fife
1020

PCT/US2011/050101

Method
1000

Y
Determine how many
other fifes point to the

container
1025

is the
number of files
greater than
the threshold?
1030

Maintain segment object
reference list

Yes Maintain container

refergnce list 1035

1040

Find the next container
corresponding to the

4

Y

No ASf
container?

deleted file
1050

FIG. 11

1045

End
1055

(e )




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/050101

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/14
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, INSPEC, COMPENDEX, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

[0041] - [o046],
- [0067]
figures 2,3,5

[0024] - [0031]
figures 1-3

[0049] - [0061], [0065]

A US 2010/083003 Al (SPACKMAN STEPHEN P 1-15
[US]) 1 April 2010 (2010-04-01)
paragraphs [0003] - [0006],

A US 2009/259701 Al (WIDEMAN RODERICK B [US] 1-15
ET AL) 15 October 2009 (2009-10-15)
paragraphs [0013] - [0019],

[0034],

[0010],

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
merr:ts, such combination being obvious to a person skilled
inthe art.

"&" document member of the same patent family

Date of the actual completion of the international search

7 February 2012

Date of mailing of the international search report

14/02/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Johansson, U1f

Form PCT/ISA/210 (second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/050101
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2009259701 Al 15-10-2009 US 2009259701 Al 15-10-2009
WO 2009129161 A2 22-10-2009
US 2010083003 Al 01-04-2010  NONE

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report

