发明名称
虾夷扇贝铁蛋白基因及其应用

摘要
本发明涉及一种虾夷铁蛋白基因及其应用，本发明从虾夷扇贝中分离得到了铁蛋白基因，其蛋白序列为SEQ ID NO:1，cDNA序列为SEQ ID NO:2。本发明克隆了虾夷扇贝铁蛋白基因，并对其体外重组表达产物进行了铁氧化和抑菌活性分析。研究表明本发明的虾夷扇贝铁蛋白不仅具有整合铁的功能，而且具有抑菌活性，能够抑制贝类重要致病性细菌的生长。因此，虾夷扇贝铁蛋白在病害防治中具有良好的应用潜能。
1. 一种虾夷扇贝铁蛋白，其特征在于，所述的铁蛋白的氨基酸序列为 SEQ ID NO :1。
2. 如权利要求 1 所述虾夷扇贝铁蛋白，其基因 CDNA 序列为 SEQ ID NO :2。
3. 一种重组载体，其特征在于，所述的重组载体用于表达权利要求 1 所述虾夷扇贝铁蛋白。
4. 权利要求 1 所述的虾夷贝铁蛋白在制备抗菌剂中的应用。
虾夷扇贝铁蛋白基因及其应用

技术领域
[0001] 本发明属于水产动物抗病基因筛选技术领域，具体涉及一种虾夷扇贝铁蛋白基因及其应用。

背景技术
[0002] 研究表明铁蛋白是一种重要的免疫蛋白，在维持胞内铁离子平衡和先天免疫系统中起着重要作用。铁蛋白参与了海洋无脊椎动物的诸多重要生理过程，在炎症反应、铁离子吸收、去氧解毒等方面均有重要作用。比如，海湾扇贝经注射细菌后，其体内铁蛋白水平显著提高；同样，太平洋对虾经过溶酶菌感染后，铁蛋白基因也明显上调表达。此外，经金属离子及高温胁迫处理后，血细胞的铁蛋白也明显提高，以上研究表明铁蛋白在海洋无脊椎动物的先天免疫中起重要角色。因此，筛选不同物种的铁蛋白，从而更准确的检测海水养殖生物的免疫系统具有重要的作用。

发明内容
[0003] 本发明的目的是提供一种虾夷扇贝铁蛋白基因及其应用，为贝类育种中病害防治提供技术手段，从而弥补现有技术的不足。
[0004] 本发明的虾夷扇贝铁蛋白，其氨基酸序列为 SEQ ID NO:1。
[0005] 上述虾夷扇贝铁蛋白基因的核苷酸序列为 SEQ ID NO:2。
[0006] 本发明还涉及用于表达上述的虾夷扇贝铁蛋白基因的重组载体。
[0007] 本发明的虾夷扇贝铁蛋白用于制备抗菌剂。
[0008] 本发明克隆了虾夷扇贝铁蛋白基因，并对体外重组表达产物进行了铁氧化和抑菌活性分析。研究表明本发明的虾夷扇贝铁蛋白不仅具有螯合铁的功能，而且具有抑菌活性，能够抑制贝类重要致病性细菌的生长。因此，虾夷扇贝铁蛋白在病害防治中具有良好的应用潜能。

附图说明
[0009] 图1：本发明的虾夷扇贝铁蛋白基因的序列分析图；
[0010] 其中长方形方框中为铁反应元件 TRE；实下划线 aataaa 为加尾信号；虚下划线为 A + U 不稳定元件；
[0011] 图2：本发明的虾夷扇贝铁蛋白的立体结构图；
[0012] 图3：本发明的虾夷扇贝铁蛋白重组表达后的电泳图；
[0013] 图4：本发明的虾夷扇贝铁蛋白的铁氧化活性检测图；
[0014] 图5：本发明的虾夷扇贝铁蛋白的抗菌活性图。

具体实施方式
[0015] 下面通过实施例对本发明做进一步说明。
实施例1: 虾夷扇贝铁蛋白基因的分离及性质分析

本发明中的虾夷扇贝铁蛋白基因的cDNA序列克隆包括下列步骤:

a) 虾夷扇贝总RNA提取;

b) 虾夷扇贝5′ RACE和3′ RACE文库构建;

c) 虾夷扇贝铁蛋白cDNA全长序列的获得;

d) 目的基因的生物信息学分析。

具体操作如下:

a) 虾夷扇贝总RNA的提取:按照trizol提取方法从虾夷扇贝肝胰腺中提取总RNA。

b) 虾夷扇贝RACE文库构建:利用Clontech公司SMART RACE cDNA Amplification Kit构建5′ RACE和3′ RACE文库。

c) 虾夷扇贝铁蛋白cDNA全长序列的获得:根据虾夷扇贝转录组文库中铁蛋白的部分序列信息,设计目的基因RACE引物;3′ RACE引物:5′-ATGTTGAAACGCTGGAATCAACC-3′和5′ RACE引物:5′-GCATGTTACAGCTGTCAGACTTGGT-3′。分别利用3′ RACE引物和5′ RACE引物及接头引物NUP(5′-AAGCACTGATCAGCCAGT-3′)进行3′末端和5′末端的扩增。PCR产物用1.2%琼脂糖凝胶电泳进行检测,用胶回收试剂盒(上海生工)进行PCR产物纯化,再与pMD18-T载体(大连宝生物工程有限公司)连接,参照《分子克隆第三版》(黄培堂译,科学出版社,2002年)的方法转化大肠杆菌DH5α。菌落PCR检测后,挑取阳性克隆进行测序,两端序列拼接后得到cDNA全长序列,为SEQ ID NO:2,其编码的蛋白序列为SEQ ID NO:2。

其中3′和5′末端扩增的条件如下:

50μL反应体系:

5′(3′)-RACE-Ready cDNA 2.5μL

10× Advantage 2 PCR buffer 5.0μL

10mM dNTP Mix 1.0μL

10×UPM 5.0μL

2μM 5′(3′)RACE引物 5.0μL

50× Advantage 2 Polymerase Mix 1.0μL

PCR-Grade Water 30.5μL

扩增所用PCR反应程序:94℃预变性5min;94℃变性30sec,72℃3min,5个循环;94℃变性30sec,70℃退火30sec,72℃延伸3min,5个循环;94℃变性30sec,65℃退火30sec,72℃延伸3min,28个循环;72℃延伸10min。

对筛选出的虾夷扇贝铁蛋白基因进行分析表明基因序列全长920 bp,包括516 bp的开放阅读框,117 bp的5′非编码区和287 bp的3′非编码区,在3′非编码区有一个加
尾信号，5’非编码区有一个铁反应元件 IRE (图1)。该基因编码 171 个氨基酸，分子量为 21.92kd，等电点为 5.52。生物信息学分析显示，该序列有铁蛋白典型的二级结构特征 (图2)：四个长α螺旋，一个短α螺旋和一个长茎环；存在铁氧化活性中心 (E25, Y32, E59, E60, H63, E105, Q139) 和铁离子矿化中心 (D58, E59, E62)，属于 M 型铁蛋白。

[0032] 实施例 2：本发明的虾夷扇贝铁蛋白基因的重组表达

[0033] 本发明中的体外重组铁蛋白制备及活性分析包括下列步骤：

[0034] a) 重组铁蛋白表达质粒的构建；

[0035] b) 重组铁蛋白的表达；

[0036] c) 重组铁蛋白的纯化；

[0037] d) 铁蛋白的活性分析。

[0038] 具体操作如下：

[0039] a) 重组铁蛋白表达质粒的构建：根据 SEQ ID NO :2 的 cDNA 序列，结合表达载体的多克隆位点，设计引物，其中正向引物的序列为 5’-CCACATATGACTGAAAGTCAACCTCG-3’。反向引物的序列为 5’-GGGAAGCTTGGCCGATTCTTCTGCG-3’。以虾夷扇贝肝脏 DNA 为模板，进行蛋白编码区 PCR 扩增，20 μl 反应体系包含：

灭菌双蒸水 10.2 μl

10 × PCR Buffer 2 μl
dNTPs (2.5 mM) 1.6 μl
MgCl2 (25 mM) 1.6 μl
正向引物 (2 μM) 2 μl
反向引物 (2 μM) 2 μl
cDNA 模板 0.5 μl
Ex Taq 酶 (5 U/μl) 0.1 μl

[0040] 按下列程序进行 PCR 扩增，95℃变性 5 min，94℃ 30 s，62.8℃ 30 s，72℃ 2 min，共 35 个循环；72℃延伸 10 min。采用胶回收试剂盒 (上海生工) 进行 PCR 产物纯化，纯化后的 PCR 产物与 pMD18-T 载体 (大连宝生物工程有限公司) 连接，参照《分子克隆第三版》 (黄培堂译，科学出版社，2002 年) 的方法转化大肠杆菌 DH5α，挑选克隆进行菌落 PCR 检测，而挑取阳性克隆进行序列测定。培养含有目的重组质粒的克隆，提取质粒，用 Nde I 和 Hind III 于 37℃完全酶切后，按照《分子克隆第三版》的方法将其连接到 pET28a 表达载体中，转化大肠杆菌 BL21 (DE3)，经测序确认表达框与 SEQ ID NO. 2 的序列一致。

[0042] b) 重组铁蛋白的表达：提取含有目的重组质粒的阳性克隆，接种于含卡那霉素的 LB 液体培养基中，37℃ 200 rpm 振荡培养过夜，作为种子菌。取种子菌按 1:100 体积比接种于新鲜的含卡那霉素的 LB 培养基中，37℃ 200 rpm 振荡培养 15 h，培养至 OD600 约为 0.5 时，在 4℃静置 1 h 后，加入异丙基硫代-β-D-半乳糖苷 (Isopropyl-β-D-thiogalactopyran}
### 说 明 书

**CN 102850449 A**

IPTG) 至终浓度 1 mmol/L, 15℃诱导表达 10h。4℃ 5000 rpm 离心 10 min, 收集菌体。

**[0044]** 重组铁蛋白的纯化: 用预冷的 PBS 缓冲液重悬菌体。采用超声波细胞粉碎仪以 320 W 的功率在冰水浴下超声 (总共 7 min : 工作 5 s 停 10 s) 破碎细菌细胞, 4℃ 12000 rpm 离心 30 min, 取上清液备用。用 Novagen 公司 Ni-NTA 柱纯化上清液中目的蛋白, 具体操作如下: 将 1 ml 50% Ni-NTA His • Bind 树脂悬液加入到 4 ml 制备好的细菌裂解上清液中, 在旋转混合器上 200 rpm 轻柔摇动混匀后, 4℃ 结合 60 min。将裂解液 Ni-NTA His • Bind 树脂混合物加入下端封闭的空色谱柱中, 除去柱下端封闭盖子, 让液体自由流下。以 4 ml 1×Ni-NTA 洗涤缓冲液 I (50mM NaH₂PO₄, pH 8.0, 300mM NaCl, 20mM 吡唑) 漂洗 2 次; 再以 0.5 ml 1×Ni-NTA 洗涤缓冲液 II (50mM NaH₂PO₄, pH 8.0, 300mM NaCl, 100mM 吡唑) 漂洗 4 次, 以 0.5 ml 1×Ni-NTA 洗脱缓冲液 (50mM NaH₂PO₄, pH 8.0, 300mM NaCl, 250mM 吡唑) 洗脱目的蛋白 4 次。取洗脱下来的蛋白溶液吸到透析袋中, 置于 1L 0.15M NaCl 中, 4℃透析。隔 2h 换一次 NaCl 溶液, 换第三次后, 过夜透析。透析完毕后, 将透析袋中的目的蛋白冷冻干燥, 置于 -80℃保存。

**[0045]** 通过高保真 PCR 技术, 扩增编码铁蛋白成熟肽的基因片段, 并将其克隆到 pET28a 表达载体中, 在大肠杆菌 BL21 (DE3) 中成功实现了原核外重组表达。采用 Nickel-NTA 凝胶柱的活性回收方法, 纯化得到可溶性的重组铁蛋白 (图 3)。

**[0046]** 实施例 3: 本发明的铁蛋白的活性分析

**[0047]** 铁蛋白的活性分析: 称取一定量目的蛋白溶解于灭菌水中, Bradford 法测定蛋白含量。而后用于活性验证。

**[0048]** 铁氧化活性验证: 根据 Levi et al. (1988) 方法, 将 0.1 M 硫酸亚铁铵, 4 mg/mI 人拓扑转铁蛋白 (Sigma, Aldrich), 0.2M 醋酸钠 (pH 7.0) 和 20 μg/ml 纯化得到的重组铁蛋白混合, 室温反应, 10 min 后再加入等体积的人拓扑转铁蛋白。从开始到结束的 20 min 内, 每隔 1min 记录 470 nm 处溶液的吸光值。结果显示加入铁蛋白后, 吸光值显著提高, 表明该表达产物具有铁氧化活性, 即将二价铁离子转化成三价铁离子 (图 4)。

**[0049]** 抑菌活性验证: 将鳗弧菌培养至指数期, 然后用 MH 培养基稀释到 10⁵ CFU/ml。将 20 μl 稀释后的鳗弧菌分别加入到 180μl 含有纯化后重组铁蛋白 (70 μg/ml) 和 180μl 不含有纯化后重组铁蛋白的 MH 液体培养基中, 混匀后, 28℃ 静置培养 24h。于 0h, 12h, 24h, 测定 600 nm 处吸光值。实验重复 3 次。结果显示加入铁蛋白的培养基内, 鳗弧菌生长明显受到抑制, 从而在吸光度上比对照组明显低, 表明本发明筛选的铁蛋白具有抑菌活性 (图 5)。因此, 本发明分离的铁蛋白能够用来制备水产养殖中应用的抗菌剂。
SEQUENCE LISTING

<110>  中国海洋大学

<120>  虾夷扇贝铁蛋白基因及其应用

<160>  2

<170>  PatentIn version 3.5

<210>  1
<211>  171
<212>  PRT
<213>  amino acid sequence

<400>  1

Met Ser Val Ser Gln Pro Arg Gln Asn Phe Asn Ala Glu Ser Glu Ala
1  5  10  15

Gly Ile Asn Arg Gln Ile Asn Leu Glu Leu Tyr Ala Cys Tyr Ala Tyr
20  25  30

Gln Ser Met Ser Tyr Tyr Phe Asp Arg Asp Ala Leu Pro Gly
35  40  45

Phe Ala Lys Tyr Phe Lys Lys Ala Ser Asp Glu Glu Arg Glu His Ala
50  55  60

Glu Lys Phe Met Lys Tyr Gln Asn Lys Arg Gly Gly Arg Ile Val Leu
65  70  75  80

Gln Asp Val Lys Ala Asp Arg Asp Glu Trp Gly Thr Gly Leu Asp
85  90  95

Ala Met Gln Ala Ala Leu Thr Leu Glu Lys Gln Val Asn Gln Ser Leu
100 105 110

Leu Asp Leu His Asp Val Gly Asp His Gly Asp Lys Gln Phe Met
115 120 125

Asp Phe Leu Glu Ser Glu Tyr Leu Glu Glu Gln Val Asp Ala Ile Lys
130 135 140

Glu Ile Ser Asp His Ile Thr Asn Leu Lys Arg Val Gly Ser Gly Leu
145 150 155 160

Gly Glu Tyr Leu Tyr Asp Lys Glu Ser Leu Glu
165 170
<210>  2
<211>  920
<212>  DNA
<213>  CDNA sequence

<400>  2
acatgggaga cacttgata tttgtctcg ctgcgtcag tgaacgtacag acaaactat  60
tgctttctta caacattaca tctttgtaaa cacacgtaaca cctacgacaa actcaaaatg  120
tctgtcaagtc acacctgcca gaacctcaaat gccagagccg aagctgggat ccaacgcacag  180
atcaacctgg aagctttacgc ctgctatgcc taccagtcca tgctctacta ctctgacgct  240
gacgacgctcg ccctgcccagg gttcgcccaag tctttcaga agggctctaga tgagggcgt  300
gaacatgcgcg agaggttcat gaagtaccag aacaaagaagg gaggccgatta tgctctttca  360
gatgtcaaga aagcagacac agagtggatgg ggaactgagac tggacgcccc gcaagcggcc  420
ttgacccctgg agaagccaagt gaaccagttct tctattgactc ttcagacgct tggagataaa  480
cacggagaca aacagttcat ggacgttctg gagaagcgagt acctgaggga acaggtgcac  540
gctataagg aaatctcaga ccaacattcacc aacctgaagc gccgigggttc cggcccgtcgc  600
gagtcttctg acgacaagga gttcctgagg taacccctgg atacaaccaa gataaatacc  660
ggcacattcgt caacaaacgtg ttaacagcata cgtataata acaatacagc  720
agctgtgtt ggttaaaaaga acaatttac aacctctatcc ggtgaacaaat taaaaagatt  780
atgtttttttg ataaagaaaac aatttacaaaa tcctttttg gagaagaaat aataagagaaga  840
taccaggtta ataaaagatt gaaaaacaaaa taaaaaaat gcaagatct aaaaaaa  900

aaaaaaaaaa aaaaaaaaaa  920
图 1

图 2

图 3

1. acatgggatacactcgtgatattttgctctgctgctgctgtaaggtacagagacatatat

2. tgcctctttacactctttacactcttttgtaaaccgtaacactcagacaaactcaaaATG

3. SVSOPRQNFNAESEAEAGINTQR

4. TCTGTAACTGAACCTGGCCAGAARCTTTCATGCGAGAGGGGAATCTGGAATCAACCCGCAG

5. INLELYACYAYQSMYFYDR

6. GACGACGTGGCCCTTGCGCAATAGACTTTCACAGAAGGGCTCAGAGTGAGGCCGT

7. DQVALGFPFAKLYFKKASDEER

8. GAAACTGCCGAGAATGGTATAGAATCCAGAACAAAGGGGGGAGCATTTTCACAA

9. DQKKAENDORWEWTGGLDAMQA

10. LTLKQVNSQLLDDLDHIDVGDK

11. TTGACCTTTGGAAGAAGTGAAACATCTCTACTTACGACCTTCGAGAGTAA

12. HGDKQFMDFLSEYLEEPQVD

13. CAGGGAAACAGTCTATGCGAATCTCCGAGGAGGATACCTGGAGAACAGTTGACAC

14. AIKEISDHITNLKRVRGSGL

15. GCTATCAGGAAATCCTCAGACCAAGATCAGACCCAGTCAACCTCGAGCGGAGTGGTTCAGCCTGGCGC

16. EYLYDKESLE

17. GAAGTACTTGTACGAAAGAAGTCCCTGGGAGTAACCGTCTGATAAAAGGTAACGATCGAAGAATACC

18. ggacatctattgcaaccagttaacactcagatgtaaaccagtaaatataaacaataacg

19. agtatggttggtaaaaaaagaaacatattacaacctcatttttggtagaacaatattaaaagaaatt

20. atgtttgtgtttaaaaaaagaaacatattacaacctcatttttggtagaacaatattaaaagaaatt

21. taccaggttaaataaaaaatgtgaaaffaatattaaaatgtgcaagatttcaaaaaa

901. aaaaaaaaaaaaaaaaaa