This invention relates to a toy gun and more particularly to a toy gun simulating a rifle having a lever action for advancing cap rollers therein, cocking the hammer therefrom, and ejecting simulated cartridges outwardly of the housing thereof in realistic fashion.

In general, the invention comprises a hollow housing simulating a rifle in its outward appearance, having a breech portion, a forwardly extending cylindrical barrel portion and a stock or handle portion. Door means are provided on the side of the breech portion to normally cover an opening, the door means being yieldingly mounted to facilitate manual insertion of one or more simulated cartridges into the barrel portion for subsequent selective ejection outwardly of the housing as through an open top of the breech portion. Means are provided adjacent the barrel portion for releasably retaining the last of the inserted cartridges until released therefrom by ejector means operatively associated with a lever means pivotally mounted in the housing. A breech cover means is slidably mounted on the housing for selective covering and uncovering of the open top of the housing and is actuated by means operatively associated with the lever means when the lever means is actuated.

The housing is further provided with a cap-firing means for successively firing caps of a cap roll stored on a cap roll support and extended over an intermittently rotatable anvil means. Hammer means are provided adjacent the anvil means and adapted to be actuated by a firing means operatively associated with a lever means, whereby the hammer means is latched in the firing position by a bolt integral with a manually operable trigger means mounted in the housing and having a finger piece extending outwardly thereof. Arrouse motion of the trigger means, as imparted by a digit of the user's hand, unlatches the hammer means which is spring urged to strike the anvil means. Pawl means are further provided pivotally secured to the hammer means and operatively associated with the anvil means for intermittently rotating the anvil means and thereby advancing the cap roll to position a succeeding cap for detonation by the hammer means.

The breech cover means is preferably formed of discrete members, one manually slideable over the other, to further expose the open top whereby the cap roll support means may be manually rotated outwardly of the housing for reloading purposes.

It is therefore an object of this invention to provide a new and improved lever action toy gun which realistically simulates a lever-action rifle for use by juveniles to afford greater realism in play.

More specifically, an object of this invention is to provide a new and improved toy gun which cocks and advances a cap-firing means within the gun by manual actuation of a lever means secured thereto to simulate the lever action of a real rifle.

Another object of this invention is to provide a new and improved toy gun in which simulated cartridges may be manually inserted and stored to simulate loading of an actual repeating rifle.

Yet another object of this invention is to provide retaining means within the housing for retaining the simulated cartridge against the bias of a spring contained within the barrel portion in position to be released therefrom and ejected by the ejection means when actuated by the lever means.

Another object of this invention is to provide a new and improved toy gun in which the realism in play is increased by the ejection of simulated cartridges from the breech of the rifle by actuation of the lever means, simul- taneous with the cocking action of the cap-firing means.

It is further an object of this invention to provide a lever action toy gun which includes improved breech cover action whereby the breech cover is effected by the action of the lever means to slide rearwardly and expose the open top of the breech portion to permit ejection of the simulated cartridges through the open top and outwardly of the housing and in which return movement of the lever to its normal position, similar to its real counterpart, causes the breech cover member to slide forwardly and thereby enclose the open top of the housing.

Yet another object of this invention is to provide a new and improved toy gun which is economical to manufacture, and is capable of mass production and interchangeability of parts thereof.

A general object of this invention is to provide a new and improved toy gun which overcomes disadvantages of prior means and methods heretofore intended to accomplish generally similar purposes.

These and other objects will be more apparent by reference to the following drawings, detailed description and appended claims.

In the drawings:

FIG. 1 is a side view, in elevation, of a toy gun in accordance with this invention;

FIG. 2 is an enlarged fragmentary vertical cross-sectional view thereof as seen at the central parting line of the breech portion of the toy gun, and showing a portion of the stock and the barrel portion;

FIG. 3 is a fragmentary vertical sectional view, with parts shown in elevation, of the forward or barrel portion thereof;

FIG. 4 is a vertical cross-sectional view, similar to FIG. 2, showing parts thereof in another position;

FIG. 5 is a fragmentary horizontal cross-sectional view as taken substantially along a line 5--5 of FIG. 4;

FIG. 6 is a fragmentary top plan view, with parts broken away, thereof;

FIG. 7 is an enlarged vertical cross-sectional view, illustrating the cap-firing means in greater detail; and

FIG. 8 is a vertical cross-sectional view as taken substantially along a line 8--8 of FIG. 7.

Referring more particularly to the drawings, there is shown by way of illustration, but not of limitation, a toy gun generally indicated by the numeral 10, including an intermediate breech portion 11 and a forwardly extending barrel portion 12.

The housing further includes, for added realism, a stock portion 13 including a shoulder piece 14 and a hand support piece 16 integral with the housing. The housing 19 may be formed of any suitable material such as plastics, metal, or the like, and is preferably molded to form a pair of substantially hollow half-members 19a and 19b which are joined and cemented, or otherwise secured, together as at a vertical parting line 17 to form a substantially hollow, elongated, integral housing. The barrel portion 12 includes an upper cylindrical member 16, simulating the rifle barrel portion of an actual rifle, and a lower cylinder storage tube 19. The members 18 and 19 may be secured to the barrel portion 16 as by a clamp, indicated at 21, with the storage tube 19 of the barrel housing extending inwardly of the housing and having an outer inner end 23 and being closed at its outer end as by a cap member 23.

A cap-firing means generally indicated by the numeral
24 is disposed within the breech portion 11 of the housing 10 for selectively and intermittently firing caps of a roll of caps 26 supported within the housing as on a support means 27. The cap firing means 24 comprises an anvil means 28 rotatably mounted within the breech housing portion 11 as on a transverse shaft 29 supported at its ends by the housing halves 10a and 10b. The anvil 28 preferably includes a cylindrical drum portion having outwardly extending conical projections 31 for engaging apertures of the perforated strip comprising the cap roll. The cap roll 26 extends from its supporting pin 32 of the roll cap support means 27 and over and around the periphery, or an arc thereof, of the anvil 28. The strip is stripped from the bottom portion thereof as by a stripper member 33 tangentially disposed adjacent the anvil 28 and suitably secured as at 34 to the housing 10. The cap roll support means 27 preferably includes a rearwardly extending extension 36 which overlies the anvil 28 and tends to keep the strip of caps in close proximity to the anvil 28 to prevent inadvertent separation thereof from the anvil during rotation of the anvil.

The anvil 28 serves to support the strip portion of the cap roll 26 in the path of a reciprocating hammer means 37 for firing of the caps and is adapted to intermittently rotate, as will hereinafter be described, on its shaft 29 to advance the strip of the cap roll whereby a subsequent charge of explosive is advanced into the path of the hammer means 37 after a previously positioned charge has been detonated.

The hammer means 37 is pivotally disposed within the breech portion 11 and adjacent the anvil means 28 and includes a downwardly extending portion 38 pivotally supported on a transverse shaft 39 secured at its ends with the half portions 10a and 10b for arcuate axial movement relative to the housing. The hammer means 37 includes an upper arcuate portion 41 having a forwardly extending serrated, or otherwise suitably faced, hammer portion 42 adapted to strike the face of the anvil means 28. A torque spring 43 is disposed around the shaft 39 having one end 44 bearing against a transverse boss 46 on the extension 38 of the hammer means, and the other end 47 thereof bearing against a transverse projection of the housing 10 to bias the hammer means 37 towards the anvil means 28 for contact therewith. The spring 43 is preferably of sufficient torque to produce a rapid and sharp impact of the hammer means 37 against the anvil means 28 to explode a cap sandwiched therebetween.

The hammer means 37 is adapted to be engaged and supported in a cocked position by a lever means for cocking, as will hereinafter be described, and is provided with an upwardly extending finger piece 49 for manual engagement thereof for manual cocking of the hammer means whereby the hammer may be manually cocked independently of the lever means, if desired.

The hammer means 37 further includes a rearwardly and downwardly extending hook member 51 which, when the hammer means is biased rearwardly against the force of the spring 43, is engageable with an upwardly extending hook portion 52 of a trigger means 53 to retain the hammer means in a cocked position.

The trigger means 53 is pivotally mounted within the housing 10 as on a transverse pin or shaft 54 secured at its ends in the housing half-portions 10a and 10b, and includes a downwardly extending finger piece 56 for selective manual engagement thereof as by a digit of the user. A torque spring 57 is mounted within the housing and circumjacent the shaft 54 having one of its ends 58 bearing against a projection 59 of the housing 10 and its other end 61 bearing against an extension 62 of the trigger means 53 to bias the upper hook portion 52 of the trigger means rearwardly and the downwardly extending finger piece 56 forwardly. The hook portion 52 of the trigger means 53 is adapted to engage the rearwardly extending hook portion 51 of the hammer means 37 to latch the hammer means in a rearward position, when so positioned, as will hereinafter be described, until the finger piece 56 is actuated against the bias of the spring 57 whereby the hook portion 52 is disengaged from the hook portion 51 thereby permitting the strip of caps in the anvil means 28 to fire the cap positioned in the path of the hammer 42.

In order to cock the hammer means, that is, to arcuately move the hammer means 37 rearwardly into a cocked position in which the hooks 51 and 52 are engaged, and to advance the anvil means, thereby to advance a new cap into position to be fired, a lever means generally indicated by the numeral 63 is pivotally secured within the housing 10 at an upwardly extending portion 64 and includes a manually engageable handle portion 66 extending downwardly and outwardly of the housing 10. The lever means 63 includes an arcuate portion 67 forming a guard for the trigger means 53 and an upwardly extending tab 68 at the rearward portion of the handle 66. The handle 66 is adapted to lie in close proximity to the shoulder piece 14 of the rifle 10 when in a non-acting position, as illustrated in FIG. 2. To retain the handle 56 in this position, a leaf spring 69 or the like is secured to the stock 13 and includes a hook portion 71 to releasably engage the tab 68.

The lever means 63 includes an upwardly extending offset arm 72 which is adapted to move arcuately in a plane substantially parallel to the plane of arcuate movement of the hammer means 37. When the lever means 63 is pivoted downwardly, or counterclockwise as viewed in FIG. 2, about the shaft 39, the upwardly extending extension 72 is brought into engagement with a transversely extending pin 73 of the hammer means 37 to impart its arcuate movement to the hammer means whereby the hammer means is pivoted rearwardly to engage the hook 51 with the hook 52 of the trigger means and thereby cock the hammer means.

In order to rotate the anvil means 28 and thereby advance the strip of the cap roll into a new position, a pawl means is operatively associated with the hammer means and the anvil means. The pawl means 74 is pivotally secured as at 76 to the hammer means 37 and includes an annular portion 77 encircling a star-shaped boss or wheel 78 integral with the anvil means 28. The star wheel 78 of the anvil means 28 includes a plurality of projections 79 engageable with a downwardly extending hook portion 81 of the pawl 74. When the hammer means 37 is pivoted rearwardly as illustrated in FIG. 4, the projection 79 is moved rearwardly to engage a projection 79 by the projection 81 to rotate the star 78 and its integral anvil means 28 until the projection 81 slips off. At this time, an upwardly extending projection 82 of the pawl 74 is brought against an opposite projection 79 to stop the star 78 from further rotation. As the trigger means 53 is actuated to unlash the hook 52 from the hook 51, and the hammer means 37 moves arcuately to strike the anvil 28, the pawl is carried forwardly or to the right as viewed in FIGS. 2, 4 and 7, to rotate over the last-engaged projection 79 without imparting a reverse rotation to the anvil 28.

As will be apparent from the foregoing description, when the lever means 63 is pivoted downwardly about its pivot point 39, the upwardly extending portion 73 thereof is moved rearwardly to engage the transverse pin 72 of the hammer means 37 to impart movement thereof to the hammer means whereby the hammer means is swung rearwardly to a position where its integral hook 52 is latched by an upwardly extending hook 53 of the trigger means 53.

As the hammer means 37 is swung rearwardly, the pawl means 74 attached thereto engages a star wheel 78 of the anvil means 28 to rotate the anvil means, thereby advancing caps of the cap roll 26 into a new position whereby an unexploded charge is placed within the path of the hammer means 37. The anvil means 28 returned to its position, into proximity with the stock 13 of the rifle 10, the handle portion 66 is latched as by the spring 69—71.
and the upwardly extending portion 73 is moved away from the projection 73 of the hammer means 37. To fire the cap firing means 24, the user of the toy gun manually actuates the finger piece 56 of the trigger means 53 to pivot the trigger means about its pivot point 54 whereby the hook member 52 releases the hook member 51, permitting the spring 63 to rotate the hammer means 37 towards the anvil means 28 to fire the newly positioned cap. On its return travel, the pawl means 74 ratchets over the star 78 to place the projection 81 in the path of a succeeding projection 79 whereby the star 75 and its associated anvil 55 will be rotated by a subsequent movement of the lever means 63.

After firing an actual rifle, the lever means normally actuates an ejection means to eject the last fired and spent cartridge. To add realism to the use of this instant invention, provision is made herein whereby downward motion of the lever effects an ejection means for ejecting simulated cartridges stored within the barrel tube portion 19.

For this purpose, an ejector means, generally designated by the numeral 63, is operatively associated between the lever means 63 and a guide means 64 which is formed on the lower portion 11 adjacent the inward open end of the tube 19. The ejector means includes a rod or shaft 86 having one end 87 thereof bent transversely and rotatably disposed in an aperture 88 of the extension 72 of the lever means 63. The rod 86 is bent transversely at its other end 89 and is provided with a projection 91 extending inwardly and forwardly towards the tube 19. The guide means 84 is provided with an open rearward end to receive manually insertable simulated cartridges 92. The cartridges 92 are generally cylindrical in configuration and include flanges at the rearward end thereof, as indicated at 93, which when inserted beyond the projection 91, is brought into abutment therewith as seen in FIG. 2.

The cartridges 92 are manually insertable through the housing 10 and into the guide means by means of a door 94 pivotally and yieldingly mounted within the housing to cover an opening 96 in a side wall of the housing portion 106. The door 94 is biased into a closed position as by a resilient leaf spring 97, or the like, and includes an inwardly extending arcuate portion 98 which forms a chute to convey a cartridge during its ejection. To insert a cartridge 92, the user places the cartridge against the door, swinging the door inwardly, whereby the cartridge may be aligned with the guide means 84 and inserted therein as by the use of a finger of the user, or the like, until the flanges of the cartridge are beyond the projection 91. A resilient leaf spring 99 is disposed adjacent the guide means 84 and is biased inwardly to press against a cartridge after it has been inserted to keep the flanges 93 of the cartridge in engagement with the projection 91 of guide means 84.

A subsequent cartridge may be inserted, its bullet nose being pressed against the previously inserted cartridge to force the previously inserted cartridge further into the guide means and eventually into the tube member 19 against a spring retainer member 101 slidingly disposed within the tube 19. The spring retainer member 101 is urged towards the guide means by a coiled spring 102 disposed between the spring retainer and the closed end of the cap 23 as best seen in FIG. 3.

The spring 102 biases the cartridges into engagement with the projection 91, while the spring 99 laterally biases the cartridge to prevent inadvertent displacement from the projection 91. An ejector pin 103 is transversely disposed adjacent the guide means 84 and is urged outwardly of the guide means 84 as by a resilient leaf spring 104 secured to the guide means 84. The pin 103 is adapted to move inwardly through an aperture 106 of the guide means 84 when actuated by a rearward movement of the transverse portion 89 of the rod 86 when the rod 86 is moved linearly rearwardly by downward actuation of the lever means 63 causing rearward movement of the extension 72 thereof. As best seen in FIG. 3, the transverse portion 89 is brought into contact with the head 107 of the pin 103 to urge the pin inwardly through the aperture 106 of the guide means 84 and against the bias of the spring 104 to displace a last inserted cartridge from the projection 91 whereby the spring 102 within the tube 19 biases the cartridge outwardly of the guide member 84 into the chute 98.

In order to eject the cartridge outwardly of the housing, the housing is provided with an open top 108 which is covered as by breech cover member generally referred to by the numeral 109.

The breech cover member 109 is slidingly disposed on the breech portion 11 of the housing 10 for longitudinal linear movement thereon to open and close the open top 108 of the housing portion 11. The breech cover member 109 comprises a pair of discrete axially disposed forward and rearward members 111 and 112, respectively, the forward member 111 being adapted to be manually and selectively longitudinally moved into an overlying relationship with the rearward member 112, as will be hereinafter described.

The forward breech cover member 111 is provided with laterally extending ribs 113 slidingly disposed in longitudinal opposing grooves 114 of the members 110a and 110b, for longitudinal back-and-forth movement therein relative to the housing 10. The member 111 further includes a downwardly extending lateral flange 116 which is adapted to abut an upwardly extending lateral flange 117 of the rearward breech cover member 112.

The rearward breech member 112 is similarly provided with laterally extending longitudinal ribs 118 which are slidingly disposed in longitudinal grooves 114a located downwardly from and substantially parallel to the grooves 114, a groove 119 being provided on the inner surface of each vertical wall of the housing members 110a and 110b, as best seen in FIGS. 6 and 8, for sliding longitudinal movement of the member 112 relative to the housing 10.

The breech cover member 112 further includes an integral resilient, centrally-located finger piece 121 which includes an upwardly extending tab portion 122 abutting the rearward face of the flange 116 of the cover member 111 to retain the flange 116 and thereby releasably securing the members 111 and 112 for simultaneous movement when uncovering and covering the open top 108.

The breech cover member 109 is actuated for longitudinal movement by arcuate movement of the lever means 63. The upwardly extending extension 72 includes an enlarged portion at its upper end 123 which is engageable with a downwardly extending yoke portion 124 integrally formed with, or attached to, the breech cover member 112, as best seen in FIGS. 7 and 8. The yoke member 124 comprises a pair of substantially parallel spaced vertical ribs which span the upper enlarged portion 123 of the extension 72 whereby the arcuate motion of the lever means 63 is transmitted into a linear motion of the breech cover member 109. As the lever means 63 is pivoted downwardly, the extension 72 is pivoted rearwardly to slide the breech cover member 109 rearwardly and thereby expose the open top 108 whereby the cartridge which has been ejected into the chute continues outwardly of the housing to simulate the ejection of a real firearm.

The linear motion of the breech cover member 109 is timed so it is almost at the end of its rearward travel when the transverse portion 89 of the rod 86 contacts the head 107 of the pin 103 to displace the cartridge from the projection 91 whereby the spring 102 pushes the last inserted cartridge into the chute 98 outwardly of the housing 10 through the open top 108.

Provision is made for easily and quickly reloading the cap roll within the cap roll support means. When the lever means 63 is in its downward position, thereby moving the breech member 109 into its rearmost position, as seen in FIG. 4, the forward breech cover member 111
may be slid rearwardly in overlying relationship relative to the rearward breech cover member 12 by exerting pressing downwardly on the finger piece 121 to remove the tab 122 thereof from the path of the downwardly extending flange 116 whereby the forward breech cover member 11 may be manually slid rearwardly over the member 111 to expose a greater portion of the open top 108, permitting the user to manually pivot the roll cap means 27 outwardly about its pivot point 126, against the bias of a torque spring 127, to a position shown in broken lines in FIG. 4. In this position, the portion of the roll cap support means 27 having the transparent pin 32 is located outwardly of the body 30 and a new cap roll like 26 may be inserted over the pin 33. The free end of the cap roll may then be wrapped over the annular means 28 in such manner whereby the apertures of the cap roll coincide with the projections 31 thereof. Therefore, the support means 27 may be released and lowered into its normal cap feeding position and cap retaining position, as illustrated in FIGS. 2, 4, 7 and 8.

If it is desired to cock the hammer means 37 independently of the lever means 63, the user may engage the finger piece 49 with a finger or thumb and draw the hammer means 37 rearwardly until the hook portion 51 latches with the hook portion 52 of the trigger means 53. Such an actuation imparted by the finger causes the pawl means 74 to rotate the annular means 28, thereby advancing the cap roll 26 to a new unexposed position and cocking the hammer into a position ready to be fired by manual actuation of the finger piece 56 of the trigger means 53 as previously described.

While the instant invention has been shown and described herein in what is conceived to be the most practical and preferred embodiment, it is recognized that departures may be made therefrom within the scope of the invention which is therefore not to be limited to the details disclosed herein but is to be accorded the full scope of the claims so as to embrace any and all equivalent methods and apparatus.

What is claimed is:

1. A toy gun comprising: a housing simulating a rifle having a breech portion having an opening and a hollow barrel portion having an open inner end and a closed outer end; cartridge means slidably insertable into said barrel portion, guide means in said breech portion adjacent said barrel portion for guiding insertion of said cartridge means into said barrel portion; a spring-actuated door means hingedly secured on said breech portion adjacent said barrel portion for closing said opening, said door means being swingable inwardly of the housing for selective manual insertion of said cartridge means into said guide means and thereby into said barrel portion; spring means in said barrel portion and having one end bearing against said cartridge means and another end bearing against said closed outer end when said cartridge means are inserted in said barrel portion so as to bias said cartridge means toward said guide means; retaining means on said guide means for engagement of a last inserted cartridge means for retaining said cartridge means in said guide means; lever means pivotally mounted in said housing and having a handle portion extending outwardly therefrom for selective manual operation thereof; ejector chute means on said door means and extending inwardly of said housing, said chute means being arcuately curved and communicating between said guide means and an upper region of said breech portion, and ejector means on said lever means and said guide means and responsive to pivotal movement of said lever means for disengaging said last inserted cartridge means from said retaining means, whereby said last inserted cartridge means is biased outwardly of said guide means and into said chute means.

2. A toy gun comprising a substantially hollow housing simulating a rifle and having a breech portion with an open top and an elongated cylindrical barrel portion extending therefrom; cartridge means slidably insertable into said barrel portion, guide means in said housing adjacent an inner open end of said barrel portion communicating with said barrel portion; means defining an opening in a side wall of said barrel portion; spring-biased door means on said barrel portion complementary to said opening for closing said barrel opening and having an arcuate chute means extending inwardly into said barrel portion, said chute means communicating between said guide means and said open top, and said door means being yieldable to manual inward swinging thereof for manual insertion of said cartridge means through said opening and into said guide means, said cartridge means when inserted into said barrel portion being urged into said barrel portion by subsequently inserted cartridge means; spring means in said barrel portion for biasing said cartridge means inwardly toward said guide means; retaining means on said guide means for retaining a last inserted cartridge means in said guide means; manually operable lever means pivotally mounted in said housing for arcuate movement in a vertical plane substantially parallel to the longitudinal axis of said housing and having a handle portion extending outwardly of said housing for selective manual actuation thereof; spring-biased releasing means on said guide means and aligned with an opening thereof; and actuator means rotatably secured at one end thereof in an extension of said lever means and having an opposite end adjacent said retaining means for engaging said releasing means whereby arcuate motion of said lever means is translated into a linear movement of said actuating means for actuating said releasing means whereby said releasing means is biased inwardly of said guide means for releasing said last-inserted cartridge means from said retaining means whereby said barrel spring means biases said last-inserted cartridge means into said chute means.

3. A toy gun in accordance with claim 2 wherein said breech portion has a breech cover means slidably disposed on said housing for longitudinal linear movement thereon substantially parallel to the longitudinal axis of said housing for selective covering and uncovering of said open top; yoke means integral with said breech cover means; and an extension on said lever means being in continuous engagement with said yoke means whereby arcuate movement of said manually operable lever means is translated into a linear movement of said breech cover means for uncovering said open top substantially simultaneously with said releasing of said last inserted cartridge means, whereby said last inserted cartridge means is ejected through said open top and outwardly of said housing.

4. A toy gun in accordance with claim 3 including cap firing means in said housing and adjacent said lever means, said cap firing means comprising anvils means rotatably mounted in said housing, hammer means pivotally mounted therein adjacent said anvils means for arcuate movement in a vertical plane substantially parallel to the longitudinal axis of said housing and having a hook, trigger means in said housing adjacent said hammer means and having a hook thereon engageable with said hammer hook, and pawl means having a stop-motion connection with said hammer means and said anvils means for translating arcuate back-and-forth movement of said hammer means into an intermittent rotary motion of said anvils means and wherein said hammer means includes a projection extending transversely therefrom for engagement thereof by said extension of said lever means so that selective arcuate movement in a downward direction of said lever means is translated into a rearward arcuate movement of said hammer means for releasably latching said hook of said hammer means with said hook of said trigger means for cocking said hammer means.

5. A toy gun comprising: a housing simulating a rifle having a breech portion and a hollow barrel portion, said
breech portion having an opening, said hollow barrel having an open inner end and a closed outer end; cartridge means slidingly insertable into said inner end of said barrel portion; a spring-urged door means hingedly secured on said breech portion adjacent said barrel portion for closing said opening, said door means being swingable inwardly of the housing for selective manual insertion of said cartridge means into said barrel portion; spring means in said barrel portion having one end bearing against said cartridge means and another end bearing against said closed outer end when said cartridge means are inserted in said barrel portion so as to bias said cartridge means towards said inner end of said barrel; retaining means adjacent said open end of said barrel for engagement of a last inserted cartridge means for retaining said cartridge means in said barrel; lever means pivotally mounted in said housing and having a handle portion extending outwardly therefrom for selective manual operation thereof; chute means on said door means and extending inwardly of said housing, said chute means being arcuately curved and communicating between said inner end of said barrel and an upper region of said breech portion; and ejector means connected to said lever means and said guide means and responsive to pivotal movement of said lever means for disengaging said last inserted cartridge means from said retaining means whereby said last inserted cartridge means is biased outwardly of said guide means and into said chute means; said breech portion of said housing including an open top communicating with said chute means, and a breech cover means slidingly disposed on said housing for longitudinal linear movement thereof; and means connecting said lever means and said breech cover means and responsive to pivotal movement of said lever means for translating pivotal movement of said lever means into a linear movement of said breech cover means rearwardly relative to said housing for selectively covering and uncovering said open top whereby disengaged cartridge means are ejected outwardly of said housing.

9. A toy gun as in claim 8, including cap firing means in said breech portion of said housing and having a rotatable anvil for supporting percussive caps; and means connecting said lever means and said cap firing means for translating arcuate motion of said lever means into an intermittent rotary motion of said anvil means.

10. A toy gun as in claim 9, wherein said cap firing means includes a cap supporting means pivotally mounted in said breech portion for pivotal movement upwardly and outwardly of the housing for loading of caps on said cap supporting Means and wherein said cap cover means includes a pair of discrete slide members longitudinally disposed on said housing for longitudinal movement thereon, the rearmost of said slide members having a downwardly extending yoke in engagement with said lever means for actuation thereof by said lever means for longitudinal movement relative to said housing; manually releasable latch means for releasably securing said rearmost of said slide members to the foremost of said slide members whereby longitudinal movement of said rearmost of said slide members is transmitted to the foremost of said slide members, said latch means being releasable for manually longitudinally retracting said foremost slide member into a position overlying said rearmost slide member of said breech cover means so as to uncover said open top for manual pivoting of said cap support means outwardly of said housing for cap loading purposes.

11. A toy gun comprising: a housing simulating a rifle and having a barrel and a breech portion at the rear of said barrel; firing means on said housing for simulating the firing of a rifle; a manually operable pivotal cocking lever for cocking said firing means; a trigger for actuating said cocked firing means; a hollow magazine fixedly mounted relative to said housing; a plurality of simulated cartridges in said magazine; and an ejector means operable by movement of said cocking lever in cocking said firing means for sequentially ejecting single cartridges directly from said magazine through said breech portion to the exterior of said housing at the rear of said barrel upon repeated actuations of said lever.

12. A toy gun as defined in claim 11 wherein said simulated cartridges are arranged in a row in said magazine; said ejector means comprising resilient means engaging one end of said row and urging said means in ejecting direction; means restraining the endmost cartridge at the other end of said row against movement by said resilient means; and means operable by said lever for releasing only said endmost cartridge from said restraining means.

13. A toy gun as defined in claim 11 including an ejection opening in said breech portion; a movable cover for said opening; means for moving said cover to open position upon actuation of said lever; and means for directing an ejected simulated cartridge from said magazine through said ejection opening.

(References on following page)
References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Invention</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>861,632</td>
<td>Brader</td>
<td>July 30, 1907</td>
</tr>
<tr>
<td>1,220,693</td>
<td>Schulze</td>
<td>Mar. 27, 1917</td>
</tr>
<tr>
<td>1,353,695</td>
<td>Abramowitz</td>
<td>Sept. 21, 1920</td>
</tr>
<tr>
<td>2,321,077</td>
<td>Gora et al.</td>
<td>June 8, 1943</td>
</tr>
<tr>
<td>2,527,254</td>
<td>Hjelm</td>
<td>Oct. 24, 1950</td>
</tr>
<tr>
<td>2,578,029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,729,011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,758,585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,808,672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,853,990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,857,699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,887,809</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

- Ahmanson: Dec. 11, 1951
- Frye: Jan. 3, 1956
- Fields: Aug. 14, 1956
- Peters: Oct. 8, 1957
- Haley: Sept. 30, 1958
- Weimer: Oct. 28, 1958
- Nichols: May 26, 1959