WO 20047021627 A2 || 0800000 T O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

11 March 2004 (11.03.2004)

AT Y0 O

(10) International Publication Number

WO 2004/021627 A2

HO04L

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2003/027231

(22) International Filing Date: 29 August 2003 (29.08.2003)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/407,165 30 August 2002 (30.08.2002) US
60/408,617 6 September 2002 (06.09.2002) US
60/456,260 20 March 2003 (20.03.2003) US
60/456,265 20 March 2003 (20.03.2003) US

(71) Applicant: BROADCOM CORPORATION [US/US];
16215 Alton Parkway, Irvine, CA 92618 (US).

(72) Inventors: ELZUR, Uri; 23 Santa Catalina Aisle, Irvine,
CA 92606 (US). FAN, Frankie; 22934 True Grit Place,
Diamond Bar, CA 91765 (US). LINDSAY, Steve; 22111
Stillwater, Mission Viejo, CA 92692 (US). MCDANIEL,
Scott S.,; 18762 Peppertree Drive, Villa Park, CA 92861
(US).

(74) Agent: HARNEY, Timothy, L.; McAndrews, Held &
Malloy, Ltd., 500 West Madision Street, Suite 3400,

Chicago, IL 60661 (US).

(84) Designated States (regional): European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,

IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: SYSTEM AND METHOD FOR TCP OFFLOAD

CPU
3230 210
Host Memory r/\
Memory Controller 220
Host
Interface
250 S
S 240
NIC
Tx Elastic Rx Elastic
Bufter TEEC Buffer
28(> 29(>
4
2707

3260

(57) Abstract: Aspects of the invention may comprise
receiving an incoming TCP packet at a TEEC and pro-
cessing at least a portion of the incoming packet once by
the TEEC without having to do any reassembly and/or
retransmission by the TEEC. At least a portion of the in-
coming TCP packet may be buffered in at least one inter-
nal elastic buffer of the TEEC. The internal elastic buffer
may comprise a receive internal elastic buffer and/or a
transmit internal elastic buffer. Accordingly, at least a
portion of the incoming TCP packet may be buffered in
the receive internal elastic buffer. At least a portion of
the processed incoming packet may be placed in a por-
tion of a host memory for processing by a host processor
or CPU. Furthermore, at least a portion of the processed
incoming TCP packet may be DMA transferred to a por-
tion of the host memory.

10

15

20

25

WO 2004/021627 PCT/US2003/027231

SYSTEM AND METHOD FOR TCP OFFLOAD

CROSS-REFERENCE TO RELATED
APPLICATIONS/INCORPORATION BY REFERENCE
This application makes reference to, and/or claims priority to and/or
claims the benefit of:

United States Provisional Patent Application Serial No. 60/408,617,
filed on September 6, 2002;

United States Provisional Patent Application Serial No. 60/407,165,
filed on August 30, 2002; and

United States Provisional Patent Application Serial No. 60/456,260,
filed on March 20, 2003.

The above-referenced United States provisional patent applications are

hereby incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

Certain embodiments of the present invention relate to processing of
TCP data and related TCP information. More specifically, certain

embodiments relate to a method and system for TCP/IP offload.

BACKGROUND OF THE INVENTION

The fransmission control protocol/internet protocol (TCP/IP) is a
protocol that has been widely utilized for communications. Conventional
network interface cards (NICs) typically contain specialized processors or
accelerators that may be adapted to handle the processing of packetized
information received from a transmission medium. In a typical network
interface card, the reception of data may include processing of packetized
data in a plurality of communications layers before the data is copied to its

final destination, for example, an application buffer. However, receiving,

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

buffering, processing and storing the packetized data communicated in TCP
segments can consume a substantial amount of host processing power and
memory bandwidth at the receiver. With today’s high speed communication
systems of the order of Gigabits, these conventional network interface cards

are inefficient and unable to manage such high speeds.

TCP segmentation is a technology that may permit a very small portion
of TCP processing to be offloaded to a network interface card (NIC). In this
regard, a NIC that supports TCP segmentation does not truly incorporate a full
transmission control processing offload engine. Rather, a NIC that supports
TCP segmentation only has the capability to segment outbound TCP blocks
into packets having a size equivalent to that which the physical medium
supports. Each of the outbound TCP blocks is smaller than a permissible
TCP window size. For example, an Ethemnet network interface card that
supports TCP Segmentation, may segment a 4KB block of TCP data into 3
Ethernet packets. The maximum size of an Ethernet packet is 1518 bytes
inclusive of header and a trailing CRC.

A device that supports TCP segmentation does track certain TCP state
information such as the TCP sequence number that is related to the data that
the offload NIC is segmenting. However, the device that supports TCP
segmentation does not track any state information that is related to inbound
traffic, or any state information that is required to support TCP
acknowledgements or flow control. A NIC that supports full TCP offload in the
established state is responsible for handling TCP flow control, and
responsible for handling incoming TCP acknowledgements, and generating

outbound TCP acknowledgements for incoming data.

TCP segmentation may be viewed as a subset of TCP offload. TCP
segmentation allows the protocol stack or operating system to pass
information in the form of blocks of TCP data that has not been segmented
into individual TCP packets to a device driver. The block of data may be 4
Kbytes or 16 Kbytes. A network adapter associated with the device driver
may acquire the blocks of TCP data, packetize the acquired blocks of TCP

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

data into 1518-byte Ethernet packets and update certain fields in each
incrementally created packet. For examp;ie, the network adapter may update
a corresponding TCP sequence number for each of the TCP packets by
incrementing the TCP sequence number for each of the packets. In another
example, an IP identification (IP ID) field and flag field would also have to be
updated for each packet. One limitation with TCP segmentation is that TCP
segmentation may only be done on a block of data that is less than a TCP
window size. This is due to the fact that a device implementing TCP
segmentation has no influence over TCP flow control. Accordingly, the device
implementing TCP flow control only segments outbound TCP packets.

A TCP segmentation device does not examine incoming packets and
as such, has no influence over flow control. Any received acknowledgement
packet is passed up to the host for processing. In this regard,
acknowledgement packets that are utilized for flow control are not processed
by the TCP segmentation device. Moreover, a TCP segmentation device
does not perform congestion control or flow startup and does not calculate or
modify any variables that are passed back to the operating system and/or

host system processor.

Another limitation with TCP segmentation is that information tracked by
TCP segmentation is only information that is pertinent for the lifetime of the
TCP data. In this regard, for example, the TCP segmentation device may
track TCP segmentation numbers but not TCP acknowledgement (ACK)
numbers. Accordingly, the TCP segmentation device tracks only a minimal
subset of information related to corresponding TCP data. This limits the
capability and/or functionality of the TCP segmentation device. A further
limitation with TCP segmentation is that a TCP segmentation device does not
pass TCP processed information back to an operating system and/or host
processor. This lack of feedback limits the TCP processing that otherwise

may be achieved by an operating system and/or host system proceésor.

Other limitations associated with TCP segmentation are set forth in

United States Patent Application Serial No. . (Attorney Docket No.

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

13785US02), filed August 29, 2003, which is incorporated herein by reference

in its entirety.

Since the processing of TCP segments may consume a substantial
amount of host processing power and memory bandwidth, in order to alleviate
consumption of host resources, some of the TCP processing may be
offloaded from the host as shown in FIG. 1. FIG. 1 illustrates a conventional
offload system. Referring to FIG. 1, the system may include a CPU 10, a
memory controller 20, a host memory 30, a host interface 40, a network
interface card (NIC) 50 and an Ethernet 60. The NIC 50 includes a TCP
offload engine (TOE) 70, a transmission frame buffer 80 and a reception
frame buffer 90. The CPU 10 is coupled to the memory controller 20. The
memory controller 20 is coupled to the host memory 30 and to the host
interface 40. The host interface 40 is coupled to the NIC 50 via the TOE 70.
The TOE 70 is coupled to the transmission frame buffer 80, the reception
frame buffer 90 and the Ethernet 60.

In operation, incoming frames from the Ethernet 60 are received by the
NIC 50. The TOE 70 processes the frames and stores them in the reception
frame buffer 90. When buffers are available in the host memory 30 and when
sufficient frames have been stored, the TOE 70 receives the frames stored in
the reception buffer 90 and sends the frames to host memory 30 via the host
interface 40 and the memory controller 20. Outgoing frames from the host are
sent to the TOE 70 which stores them in the transmission frame buffer 80.
When transmitting, the TOE 70 retrieves the frames stored in the transmission
frame buffer 80 and transmits them via the Ethernet 60. For high-speed
networking such as 10 Gigabits per second Ethernet (GbE), additional
copying of data may add unnecessary strain on a computer's or host’s
memory sub-system. The memory subsystem of most commercially available
servers or host computers becomes a bottleneck, thereby preventing the
system from supporting high data rates such as 10 Gigabit network traffic.
Since TCP/IP is the dominant transport protocol utilized by most applications

today, it would therefore be useful to ease the burden of this processing to

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

achieve, for example, scalable low CPU utilization when communicating with

a peer machine.

TCP/IP utilizes a datagram service at the IP layer. Under normal
operational conditions with router or switch congestion, IP datagrams may be
dropped, leading to a “hole” in the stream of datagrams that are on their way
to the receiver. The receiver may therefore receive datagrams out of order.
Packet drop may also be the result of, for example, other less frequent
transmission errors. The common way to deal with this is to buffer the
datagrams that were successfully received, while waiting to get the missing
datagram or datagrams by retransmission from the source. Retransmission
may be triggered by the sender or the receiver. The TCP protocol allows a
complete TCP Window of datagrams per connection to be on-light from the
sender to the receiver assuming a high performance configuration. The
datagrams may contain 64 KBytes of data, for example. Many applications
employ a large number of TCP connections, for example, 1000 to 100,000
TCP connections, to be supported by the receiver. At higher network speeds
such as 1 Gigabit per second and higher, it would be inefficient to discard or
drain the pipe or a portion of a received data stream every time there is a
dropped datagram. TCP bandwidth probing methodologies such as slow start
and/or congestion avoidance, which may be triggered at connection startup or
when congestion is detected, may result in the loss of precious time and is
inefficient since the congestion window is decreased and has to be gradually
increased until it is equivalent to a receiver's advertised window size.
Therefore, typical TCP implementations set aside a large buffer such as 64
MB to 6.4 GB to handle these situations. This large buffer is used to
reassemble TCP/IP data, or IP fragments. The depth of the buffer may be
dependent upon the product of connection bandwidth and network delay on
the TCP connection. This architecture is therefore sensitive to LAN or WAN
configuration and in this regard, more buffers may be utilized for a medium
bandwidth, high-delay WAN configuration than for a low delay, high-speed
LAN configuration.

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

The TCP offload architecture illustrated in FIG. 1 is also known as a
store & forward approach. It adds latencies that are utilized to store the data
in the buffers 80, 90 of the NIC 50, to manage the buffers 80, 90 and to
retrieve information in an ordered fashion out of the buffers 80, 90 and into the
host memory 30. During reception, received packets may be stored in the
receive frame buffer 90 where they are processed. When packets arrive out-
of-sequence, instead of dropping previously received associated packets, the
received packets are buffered until missing packets are subsequently
received. The received missing packets and the out-of-sequence packets are
then reassembled or reordered. The assembled or reordered packets are
then processed to determine where they should be placed on the host
system. Once the placement of the assembled packets is determined, the
assembled packets are then passed to the host where they are stored for
processing. This respective buffering, processing, reassembling or
reordering, processing and placement requires an excessive amount of

memory and consumes an extensive amount of processing resources.

Similar considerations are applicable for the transmit side. A TCP
sender maintains a transmit frame buffer 80 with all the data it has transmitted
as part of the TCP “window”. Once the remote side acknowledges reception
of the data, the sender frees the transmit frame buffer 80 and the edge of the
TCP window moves to the right. The size of the transmission frame buffer 80
is similar to that of the reception frame buffer 90, since outstanding data that
has not been acknowledged are buffered there, thereby allowing the sender to
retransmit in case the receiver on the remote side has not received one or
more of the datagrams. Similar to the receive side, this is also a store &

forward architecture.

Further limitations and disadvantages of conventional and traditional
approaches will become apparent to one of ordinary skill in the art through
comparison of such systems with some aspects of the present invention as
set forth in the remainder of the present application with reference to the

drawings.

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

BRIEF SUMMARY OF THE INVENTION

Certain embodiments of the present invention may found in a system
and method for TCP offloading. The system may comprise a host comprising
a host memory and a network interface card (NIC) coupled to the host. The
NIC may comprise at least one TCP enabled Ethernet controller (TEEC). The
TEEC may comprise at least one internal elastic buffer. In this regard, the
TEEC may comprise a receive internal elastic buffer and/or a transmit internal
elastic buffer. The TEEC may be configured to process an incoming TCP
packet once without any assembly. In this regard, the TEEC may process an
incoming TCP packet once without assembling the TCP packet data with the
TCP data from adjacent packets for the same flow, and temporarily buffer at
least a portion of the incoming TCP packet in the internal elastic buffer. At
least a portion of the incoming TCP packet may be temporarily buffered in the
receive internal elastic register. In a somewhat similar manner, at least a
portion of a TCP packet that is to be transmitted may be temporarily buffered

in the transmit internal elastic buffer.

The TEEC may be adapted to place at least a portion of the incoming
TCP packet data into at least a portion of the host memory. The TEEC may
place at least a data portion of an incoming TCP packet into a highest
hierarchy of buffer available in the host memory by performing a single copy
operation. The TEEC may DMA fransfer at least a portion of the processed
incoming TCP packet to at least a portion of the host memory. The TEEC
may also place at least a portion of the processed incoming TCP packet into
host buffers in the host memory for reassembly. The TEEC may be a single
chip, which may have at least one internal elastic buffer integrated therein. In
this regard, the receive internal elastic buffer and the transmitted internal
elastic buffers are integrated with the TEEC.

The method for offloading TCP processing may comprise receiving an
incoming TCP packet at a TEEC and processing at least a portion of the
incoming packet once by the TEEC without having to do any reassembly or
retransmission by the TEEC. At least a portion of the incoming TCP packet

10

15

20

25

WO 2004/021627 PCT/US2003/027231

may be buffered in at least one internal elastic buffer of the TEEC. The
internal elastic buffer may comprise a receive internal elastic buffer and/or a
transmit internal elastic buffer. At least a portion of the incoming TCP
packet may be buffered in the receive internal elastic buffer. At least a portion
of the processed incoming TCP packet may be placed in a portion of a host
memory. In this regard, at least a portion of the processed incoming TCP
packet may be placed in a highest hierarchy of buffer available in a host
memory by performing a single copy operation. At least a portion of the
processed incoming TCP packet may be DMA transferred to a portion of the
host memory.

In accordance with an aspect of the invention, TCP packets that are
temporarily buffered in the internal elastic buffer do not comprise packets for
reassembly and packets for retransmission. A portion of the processed
incoming TCP packet may be placed in host buffers located in a host memory
for processing by a host processor or CPU. The TEEC may be a single chip
having at least one internal elastic buffer. Notwithstanding, the receive
internal elastic buffer and the receive internal elastic buffer may be integrated

with the chip.

Another embodiment of the invention may also provide a machine-
readable storage, having stored thereon, a computer program having at least
one code section for providing TCP offload. The at least one code section
may be executable by a machine for causing the machine to perform steps as
described above for TCP offload.

These and other advantages, aspects and novel features of the
present invention, as well as details of an illustrated embodiment thereof, will

be more fully understood from the following description and drawings.

10

15

20

25

WO 2004/021627 PCT/US2003/027231

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a conventional TCP offload system.

FIG. 2 is a block diagram of an exemplary system that may be utilized
to handle TCP/IP datagrams in a flow-through manner in accordance with an

embodiment of the invention.

FIG. 3 illustrates an exemplary receive system for TCP offload system

in accordance with an embodiment of the invention.

FIG. 4 illustrates IP datagram headers for IPv4 in accordance with an

embodiment of the invention.

FIG. 5 illustrates IP datagram headers for IPv6 in accordance with an
embodiment of the invention.

FIG. 6 is an embodiment of a TCP header format in accordance with

the invention.

FIG. 7 illustrates exemplary payload options in accordance with an

embodiment of the invention.

FIG. 8A illustrates and exemplary chip set in which a TEEC is a single

chip or part of a single chip.

FIG. 8B illustrates a NIC including, for example, the TEEC of FIG. 8A
and the dedicated tuple and/or context memory in accordance with an

embodiment of the invention.

FIG. 9 illustrates an embodiment of a system that may map and copy
data of an incoming packet to a host resident buffer or buffers in accordance

with an embodiment of the invention.

FIG. 10 illustrates an exemplary transmission path in accordance with

an embodiment of the invention.

FIG. 11 is a flowchart illustrating exemplary steps for frame reception in

accordance with an embodiment of the invention.

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

10

FIG. 12 is a block diagram, illustrating an exemplary embodiment of a

receive system in accordance with an embodiment of the invention.

FIG. 13 is a block diagram illustrating an exemplary embodiment of a

receive system in accordance with an embodiment of the invention.

FIG. 14 is a block diagram illustrating an exemplary embodiment of a

receive system in accordance with an embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

Certain embodiment of the invention may be found in a system and
method for TCP offload. The method may comprise receiving an incoming
TCP packet at a TEEC and processing at least a portion of the incoming TCP
packet once by the TEEC without having to do any reassembly or
retransmission by the TEEC. At least a portion of the incoming TCP packet
may be buffered in at least one internal elastic buffer of the TEEC. The
internal elastic buffer may comprise a receive internal elastic buffer and/or a
transmit internal elastic buffer. Accordingly, at least a portion of the incoming
TCP packet may be buffered in the receive internal elastic buffer. At least a
portion of the processed incoming packet may be placed in a portion of a host
memory. In this regard, at least a portion of the processed incoming TCP
packet may be placed in a highest hierarchy of buffer available in a host
memory by performing a single copy operation. Furthermore, at least a
portion of the processed incoming TCP packet may be DMA transferred to a

portion of the host memory.

In accordance with an embodiment of the invention, out-of-order TCP
packets may be stored in a small internal elastic buffer The elastic buffer may
be a , for example, 64 KB on-chip packet buffer that is utilized to provide
elasticity as opposed to a large, for example, multi-megabyte memory that is
utilized for packet re-ordering, re-assembly and/or retransmission. The elastic
buffer in accordance with the various embodiments of the invention may be
typically by a NIC to temporarily buffer at least a portion of an incoming TCP
packet. Additionally, a NIC in accordance with an embodiment of the

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

11

invention will not comprise a dedicated memory which is to be utilized for
reordering or reassembling out-of-sequence TCP packets or IP fragments.
Furthermore, in accordance with an embodiment of the invention, the NIC will
not include a large TOE dedicated memory that is utilized for packet
retransmission and/or packet reassembly. Accordingly, no packet reassembly
and/or packet retransmission buffering need be done by a TCP enabled
Ethernet controller (TEEC).

Transmission control protocol/internet protocol (TCP/IP) is the leading
protocol for network and Internet-based data transfers. The use of TCP/IP is
expanding beyond application-to-application communications and file-based
storage such as network file system (NFS) and common Internet file system
(CIFS) to block-based networked storage such as Internet small computer
system interface (iISCSI!). TCP/IP may also be used for the transport layer for
clustering/Inter-Process-Communication (IPC) using a Remote-DMA (RDMA)
protocol.

Processing TCP/IP at wire speed may fully consume, for example, a 1
GHz processor. Using a TCP-enabled Ethernet controller (TEEC) may
provide, for example, one or more of the following advantages: reduced host
CPU utilization, for example, from approximately 100% when running TCP/IP
application to less than approximately 10%; fewer data copies; and fewer
interrupts and context switches, which free the host CPU and the system for
application processing. Such benefits become even more evident at higher
speeds. From a system perspective, using a TEEC NIC may provide a better
return-on-investment (ROI), even if some average selling price (ASP)
premium over a regular GbE NIC is present, than employing a dedicated
processor or substantial portions thereof and its associated system for TCP

processing.

Certain aspects of the invention may provide for handling of TCP/IP
datagrams in a flow-through manner by dedicating a minimal amount of
memory to the transmit path and to the receive path of the TEEC. The

respective buffering, processing, reassembling or reordering, processing and

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

12

placement methodology employed by existing offload systems, for example
FIG. 1, requires an excessive amount of memory on the receive and transmit
sides and consumes an extensive amount of processing resources. However,
in accordance with an embodiment of the invention and with reference to FIG.
2. the transmit elastic buffers 280 and the receive elastic buffers 290 operate
in a manner that provide a flow through design. In this regard, the transmit
elastic buffers 280 and the receive elastic buffers 290 of the TEEC 270 may
be adapted to temporarily buffer received packets and are utilized to provide
elasticity in order to accommodate, for example, varying data rates between
the Ethernet Interface and the host interface, for example a PCI interface, to
the computer. Accordingly, the TEEC 270 and its associated receive elastic
buffer 290 may operate in a manner so that received packets are temporarily
buffered in the receive elastic buffer 290, processed and placed in the host
memory 30. This flow-through processing eliminates any need for
reassembling or reordering out-of sequence packets in the receive elastic
buffer 290. As a result, the respective buffering, processing, reassembling or
reordering, processing and placement methodology employed by existing

offload systems is minimized to processing and placement.

In accordance with an aspect of the invention, the TEEC 270 does not
require a dedicated memory that is utilized for assembling and/or re-ordering
IP packets fragmented at the IP layer. In this regard, out-of-order TCP
packets are not stored, re-ordered and/or assembled in a TEEC buffer.
Accordingly, the NIC may comprise a single chip, having integrated therein, at
least one internal elastic buffer and no internal buffers or interfaces to external
buffers that would be utilized for packet retransmission, packet re-assembly
and packet re-ordering.

FIG. 2 is a block diagram of an exemplary system that may be utilized
to handle TCP/IP datagrams in a flow-through manner, in accordance with an
embodiment of the invention. Referring to FIG. 2, the system may comprise,
for example, a CPU 210, a memory controller 220, a host memory 230, a host
interface 240, a network interface card (NIC) 250 and an Ethernet 260.

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

13

Although illustrated, for example, as a CPU 210 and an Ethernet 260, the
present invention need not be so limited and may employ, for example, any
type of processor and any type of data link layer or physical media. The NIC
250 may comprise, for example, a TEEC 270, transmit elastic buffer 280 and
a receive elastic buffer 290. The transmit elastic buffer 280 and a receive

elastic buffer 290 may be internal elastic buffers.

Although illustrated as a controller to the Ethernet 260, the TEEC 270
may be a controller to any type of data link layer or physical media. In one
embodiment of the invention, the TEEC 270 may provide at least some
functionality of a TOE. The host interface 240 may be, for example, a
peripheral component interconnect (PCI), PCI-X, ISA, SCSI or another type of
bus. The memory controller 230 may be coupled to the CPU 220, to the
memory 230 and to the host interface 240. The host interface 240 may be
coupled to the NIC 250 via the TEEC 270. Finally, the TEEC 270 may be
coupled to the Ethernet 260.

In operation, on the receive side, a packet or frame may be received by
the NIC 250 from the Ethernet 260. In general, the TEEC 270, for example,
may parse and process the headers and may temporarily buffer the received
packet into a particular location of the receive elastic buffer 290. In this
regard, the TEEC may process each incoming packet “on the fly.” Based on,
for example, control information, header information and/or payload
information associated with the received packet, placement information may
be determined and/or ascertained. Upon determining the placement
information for the received packet, the TEEC 270 may transfer the received
packet to the host where the received packet may be stored in the host

memory 230 for processing.

In one aspect of the invention, at least a portion of the received packets
may have been processed by the TEEC 270 and may be queued in the
receive elastic buffer 290. The queued portion of the received packet may be
DMA transferred from the receive elastic buffer 290 into the host memory 230.
In this regard, the TEEC 270 may comprise suitable DMA hardware and/or

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

14

code that may be adapted to directly transfer the portions of the received
packet from the receive elastic buffer 290 to the host memory 230 via the host
interface 240. Therefore, packets may be transported from the wire of the
Ethernet 260, processed “on the fly” and temporarily buffered in the receive
elastic buffer 290. Due to the “on-the-fly” processing and temporary buffering
in the NIC 250, no reassembling or reordering of packets is done on the NIC
250.

In another aspect of the invention, the system may also handle out-of-
order frames as may occur during, for example, frame delay or frame loss.
For example, the TEEC 270 may manage the hole or holes until the correct
data is received. On the transmit path, transmission may be accomplished
from the transmit elastic buffers 280 of the NIC 250. In this regard, TCP data
that is to be sent to the Ethernet interface may be transferred from the host
memory 230 and temporarily buffered in the transmit elastic buffer 280. The
TEEC 270 may perform an “on-the-fly” transmission. The TEEC 270 may
fetch the transmit TCP data from the host, temporarily buffer the fetched data
in the transmit elastic buffer and process the data for transmission. This
comprises constructing this data into one or more Ethernet packets, by
formatting and appending higher layer protocol headers and error recovery
codes. After transmission, the data may be maintained on the host under the
ownership of, for example, the TEEC 270. In an aspect of the invention, no
copy of the packets or outstanding TCP transmit data is stored locally on the
TEEC 270 to facilitate retransmission. In this regard, the TEEC 270 may be
adapted to facilitate retransmission by fetching data again from the host
memory 230 and temporarily buffering the fetched data in the transmit elastic
buffer 280. Once data has been acknowledged by a remote peer, the host
buffers of the sender may be freed to their original owner such as an

application or a ULP.

In accordance with the invention, on the receive side, unlike the TOE
70 of FIG.1, the TEEC 270 may not have a dedicated external memory that is

utilized for re-ordering TCP traffic to deal with, for example, out-of-order

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

15

received TCP segments. Moreover, the TEEC 270 may not be adapted to
reassemble or reorder out-of-order received TCP segments. However, the
TEEC 270 may be adapted to handle out-of-order segments without utilizing
an external dedicated memory and without re-ordering the frames prior to
DMA transfer of the TCP segments in the host memory 230. In another
aspect of the invention, the internal memory utilized by the TEEC 270 is small
compared to the memory utilized by the conventional TOE 70. This smaller
internal memory utilized by the TEEC 270 provides elasticity and may, for
example, be utilized to account for the internal delays associated with “on the
fly” proéessing. The smaller internal memory of the TEEC 270 may also
provide elasticity when buffering received frames containing insufficient
placement information. Given its size, the smaller memory of the TEEC 270
is not utilized to buffer packets that may otherwise be retransmitted if a packet
is not acknowledged (ACK'd)

In certain aspects of the invention, the host memory 230 may be
utilized, for example, to re-assemble receive traffic or for transmit activity and
retransmit activity. This eliminates the need for the TEEC 270 to have
dedicated external memory. This may reduce, for example, one or more of
the following: cost, complexity, footprint and power consumption. In addition,
this may eliminate or reduce bandwidth-delay-product dependency. The host
memory 30 may be typically larger and more scalable than any memory that
can be economically and feasibly attached to a TEEC. It may also represent
the limit for the ability of a machine to buffer data since it may be the source
and destination for the data, when applications and TCP are launched. It may

also represent the limit of monolithic software stacks.‘

Certain embodiment of the invention may also provide a virtually
bufferless or reduced buffer architecture when compared to conventional
offload engines. In this regard, although not a truly bufferless design, when
compared to the conventional TOE 70 of FIG. 1, the internal memory of the
TEEC 270 is significantly smaller in size. These architectures may

contemplate maintaining a small amount of memory such as a FIFO on the

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

16

TEEC 270. In the case of a FIFO, the FIFO would provide elasticity and
replace a need for a dedicated external memory on the TEEC or the NIC.
Accordingly, this may facilitate the processing of TCP segments “on the fly.”
The processing of segments “on the fly” may be regarded as a “one touch
approach,” that may move the TCP segments, for example, into the highest
hierarchy of buffer available at the time for the protocol level that is being
processed. For example, a Layer 5 (L5) or higher application buffer may
provide better performance than a dedicated L4 TCP buffer or a generic L4
TCP buffer because using the L5 or higher application buffer may save
additional copy processing steps. It also may eliminate or reduce the need for

any intermediate buffer, for example, on the transmit path.

The virtually bufferless architecture or reduced buffer architecture for
the TEEC may be extended to as high a level of processing as may be
supported by a particular TEEC during its “one-touch” processing. Data may
be placed directly in an L5 or higher buffer if that buffer information and
protocol parsing information can be supplied to the TEEC system. The
virtually bufferless or reduced buffer architecture may support concurrent
operation, for example, of TCP Layer 2 (L2), Layer 4 (L4) and Layer 5 (L5)

with a flexible switch between them.

In an aspect of the invention, the TEEC 75 may act as a pure Ethernet
controller and provide a complete set of L2 services, unlike many
conventional TOE devices. The TEEC 75 may also act as a pure TEEC or
may have some of the traffic, for example, at L2 such as non-TCP Ethernet
traffic, and some at L4. For the L2 traffic, L2 services may be provided such
as, for example, Ethernet address comparison and CRC computation. For
the L4 traffic, additional services may be provided including, for example,
TCP/IP processing on the device. The TEEC 75 may also act as a pure L5 or
higher enabled controller. Any level of processing may also be used in any
combination for different connections passing through the TEEC 75. There
may be no limit on the traffic mix and no need for external software

intervention to help the hardware manage it. Some embodiments according

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

17

to the invention may target only L4 services. This novel approach to TCP/IP
processing may not be necessarily dependent on the Ethernet and may be
applied to any other L1/L2 interfaces.

FIG. 12, FIG. 13 and FIG. 14 are block diagrams illustrating
embodiments of receive systems in accordance with an embodiment of the
invention. Referring to FIGs. 12-14, in each illustrated embodiment, pipeline
processing may be employed and information may be split into two paths: a
control processing path and a data movement path. Referring to FIG. 12, the
Ethernet may be coupled to the first processing element 300: The first
processing element 300 may provide, for example, L1/L2 processing.
Incoming information may be parsed and at least a portion of the incoming
information may be directed to a control processing path via processing
element 310 and DMA engine 320. Another portion of the incoming
information, for example, payload data, may be directed to a data movement

path via a storage element 330 and the DMA engine 320.

The processing element 310 may further process the received control
information from the processing element 300. In one embodiment, the
processing element 310 may be adapted to perform L4/L5 or higher
processing. Context information tracked, for example, in local storage 340
may be accessed by the processing element 310. The processing element
310 may take context information tracked in local storage 340 and the control
information received from the previous processing element 300 and process
and combine the information before sending the combined information to the
DMA engine 320. The DMA engine 320 may combine the control information
from the control path and the data stored in the storage element 330 of the
data path before directly storing the data or the combined information in one

or more host buffers.

FIG. 13 and FIG. 14 also shows other multistage configurations
according to the present invention. In particular, FIG. 13 shows a plurality of
control processing stages, each with access to context information. Context

information may comprise information about a TCP connection that pertains to

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

18

the TCP connection state and generally includes connection state information
that may be utilized to characterize the TCP connection. FIG. 14 shows a
plurality of control processing stages and storage stages. Although shown
with only a single context element in FIG. 14, more than one processing
element may be coupled to a respective context element or a common
context element. In other configurations, interstage processing elements may
be coupled to a storage stage in which data may be a factor in the processing

of the data and/or the control information corresponding to the data.

FIG. 3 illustrates an exemplary receive system for TCP offload system
in accordance with an embodiment of the invention. The incoming frame may
be subject to L2 such as Ethernet processing including, for example, address
filtering, frame validity and error detection. Unlike an ordinary Ethernet
controller, the next stage of processing may comprise, for example, L3 such
as IP processing and L4 such as TCP processing. The TEEC may reduce the
host CPU utilization and memory bandwidth, for example, by processing
traffic on hardware offloaded TCP/IP connections. The TEEC may detect, for
example, the protocol to which incoming packets belong. If the protocol is
TCP, then the TEEC may detect if the packet corresponds to an offloaded
TCP connection, for example, a connection for which at least some TCP state
information may be kept by the TEEC. Once a connection has been
associated with a packet or frame, any higher level of processing such as L5
or above may be achieved. If the packet corresponds to an offloaded
connection, then the TEEC may direct data movement of the data payload
portion(s) of the frame. The destination of the payload data may be
determined from the connection state information in combination with direction
information within the frame. The destination may be a host memory, for
example. Finally, the TEEC may update its internal TCP and higher levels of
connection state and may obtain the host buffer address and length from its

internal connection state.

The receive system architecture may comprise, for example, a control

path processing and data movement engine. The system components above

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

19

the control path as illustrated in upper portion of FIG. 3, may be designed to
deal with the various processing stages used to complete, for example, the
L3/L4 or higher processing with maximal flexibility and efficiency and targeting
wire speed. The result of the stages of processing may comprise, for
example, one or more packet identification cards (PID_Cs) that may provide a
control structure that may carry information associated with the frame payload
data. This may have been generated inside the TEEC while processing the
packet in the various blocks. A data movement system as illustrated in the
lower portion of FIG. 3, may move the payload data portions of a frame along
from, for example, an on-chip packet buffer and upon control processing
completion, to a direct memory access (DMA) engine and subsequently to the

host buffer that was chosen via processing.

The receiving system may perform, for example, one or more of the
following: parsing the TCP/IP headers; associating the frame with an end-to-
end TCP/IP connection; fetching the TCP connection context; processing the
TCP/IP headers; determining header/data boundaries; mapping the data to a
host buffer(s); and transferring the data via a DMA engine into these buffer(s).
The headers may be consumed on chip or transferred to the host via the DMA

engine.

The packet buffer is a block in the receive system architecture. It may
be utilized for the same purpose as, for example, a first-in-first-out (FIFO) data
structure is used in a conventional L2 NIC or for storing higher layer traffic for

additional processing.

The packet buffer in the receive system may not be limited to a single
instance. As control path processing is performed, the data path may store
the data between data processing stages one or more times depending, for

example, on protocol requirements.

FIG. 11 is a flowchart illustrating exemplary steps for frame reception in
accordance with an embodiment of the invention. Referring to FIG. 3 and
FIG. 11, in step 100, the NIC 50 may receive a frame from, for example, the

Ethernet 60. In step 110, the frame parser may parse the frame, for example,

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

20

to find the L3 and L4 headers. The frame parser may process the L2 headers
leading up to the L3 header, for example IP version 4 (IPv4) header or IP
version 6 (IPv6) header. The IP header version field may determine whether
the frame carries an IPv4 datagram or an IPv6 datagram. FIG. 4 illustrates IP
datagram headers for IPv4 in accordance with an embodiment of the
invention. FIG. 5 illustrates [P datagram headers for IPv6 in accordance with
an embodiment of the invention. For example, if the IP header version field
carries a value of 4, then the frame may carry an IPv4 datagram. If, for
example, the IP header version field carries a value of 6, then the frame may
carry an IPv6 datagram. The IP header fields may be exiracted, thereby
obtaining, for example, the IP source (IP SRC) address, the IP destination (IP
DST) address, and the IPv4 header “Protocol” field or the IPv6 “Next Header”.
If the IPv4 “Protocol” header field or the IPv6 “Next Header” header field
carries a value of 6, then the following header may be a TCP header. The
results of the parsing are added to the PID_C and the PID_C travels with the
packet inside the TEEC.

The rest of the IP processing may subsequently take place later in a
manner similar to the processing in a conventional off-the-shelf software
stack. Implementation may vary from the use of firmware on an embedded
processor to a dedicated, finite state machine, which may be potentially
faster, or a hybrid of a processor and a state machine. The implementation
may vary with, for example, multiple stages of processing by one or more
processors, state machines, or hybrids. The IP processing may comprise, for
example, extracting information relating to, for example, length, validity,
fragmentation, etc. The located TCP header may also be parsed and
processed. FIG. 6 is a diagram illustrating a TCP header format in
accordance with an embodiment of the invention. The parsing of the TCP
header may extract information relating to, for example, the source port and

the destination port.

The TCP processing may be divided into a plurality of additional

processing stages. In step 120, the frame may be associated with an end-to-

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

21

end TCP/IP connection. After L2 processing, in one embodiment, the present
invention may provides that the TCP checksum be verified. The end-to-end
connection may be uniquely defined by, for example, the following 5 tuple: 1P
Source address (IP SRC addr); IP destination address (IP DST addr); L4
protocol above the 1P protocol (e.g., TCP, UDP or other upper layer protocol);
TCP source port number (TCP SRC); and TCP destination port nﬂmber (TCP
DST). The process may be applicable for IPv4 or IPv6 with the choice of the

relevant [P address.

As a result of the frame parsing in step 110, the 5 tuple may be
completely extracted and may be available inside the PID_C. Association
hardware may compare the received 5 tuple with a list of 5 tuples stored in the
TEEC. The TEEC may maintain a list of tuples representing, for example,
previously handled off-loaded connections or off-loaded connections being
managed by the TEEC. The memory resources used for storing the
association information may be costly for on-chip and off-chip options.
Therefore, it is possible that not all of the association information may be
housed on chip. A cache may be used to store the most active connections
on chip. If a match is found, then the TEEC may be managing the particular
TCP/IP connection with the matching 5 tuple.

FIG. 7 illustrates exemplary payload options in accordance with an
embodiment of the invention. In case of a mismatch, the TCP connection
may be managed based upon, for example, one or more offload policy
options, embodiments of which are illustrated in FIG. 7 in accordance with the

invention.

The TCP processing implementation may vary from the use of firmware
on an embedded processor to a dedicated, finite state machine, which may be
potentially faster, or a hybrid of a processor and a state machine. The
implementation may vary with multiple stages of processing by one or more
processors, state machines or hybrids. The TCP processing may comprise,
for example, extracting information relating to, for example, length, validity,

fragmentation, etc. The located TCP header may also be parsed and

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

22

processed. FIG. 6 is an embodiment of a TCP header format in accordance

with the invention.

Any higher levels of processing such as L5 and above, may take place
later in a manner similar to the processing in a conventional off-the-shelf
software stack. Implementation may vary from the use of firmware on an
embedded processor to a dedicated, finite state machine, which may be
potentially faster, or a hybrid of a processor and a state machine. The
implementation may vary with multiple stages of processing by one or more
processors, state machines or hybrids. The higher level processing may
comprise, for example, extracting security, placement and buffer management
information relating to, for example, the frame. The higher level processing is

not limited to these operations.

Referring to FIG. 7, option A comprises a monolithic software stack and
a hardware stack. The hardware stack provides, for example, normal L2
frame processing for all frames that are handled by the hardware stack and
those managed by the monolithic software stack. The hardware stack
provides, for example, higher layer offload services to some connections while
the monolithic software stack provides, for example, higher layer offload
servers to other connections. In case of a mismatch, the hardware may
assume that the monolithic software stack manages the connection.
However, this need not preclude the keeping of statistics relating to the
particular TCP connection within, for example, the TEEC or with the software
driver on the suitability of the connection for future offload from the monolithic
software stack to the hardware stack. A background task may take the most

used connections and push them into the offload state on the hardware stack.

Also referring to FIG. 7, option B comprises a monolithic software
stack, a software offload stack and a hardware stack. The hardware stack
provides, for example, normal L2 frame processing for all frames that are
handled by the hardware stack and those managed by any software stack.
The hardware stack provides, for example, higher layer offload services to

some connections. The software offload stack provides, for example, higher

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

23

layer offload services to another set of connections while the monolithic
software stack provides, for example, higher layer offload services to yet
another set of connections. In case of a mismatch in the hardware stack, the
hardware further checks to see whether the software offload stack may be
managing the connection. In the case in which the software offload stack is
managing the connection, the frame may be forwarded to the software offload
stack that may process the connection while maintaining data structures in
readiness for hardware offload. Statistics may still be maintained on these
connections. If a connection is determined to be of high use, then it may be
directly offloaded to hardware. If the software offload stack is incapable of
processing the connection, then it may be delivered to the monolithic software
stack. The software offload stack may process the frame just as the hardware
stack. Therefore, from the perspective of the monolithic software stack, the
combination of the hardware stack and the software offload stack may handle

all the connections it has off-loaded.

In step 130, TCP connection context may be fetched from, for example,
a context memory. The context information may comprise, for example, TCP
variables utilizeded to process the frame and the buffer information in the host
where the data is to be stored. FIGS. 8A-B illustrated exemplary
embodiments of some storage locations of tuple and/or context information
according to the present invention. In addition to on-chip memory, external

memory resources may be used to expand capacity.

FIG. 8A illustrates and exemplary chip set in which a TEEC is a single
chip or part of a single chip. The TEEC 75 may fetch tuple and/or context
information from a tuple and/or context buffer located in the host memory 30.
The TEEC 75 may also fetch tuple and/or context information from a

dedicated tuple and/or context memory 35 which is coupled to the chip set 55.

FIG. 8B illustrates a NIC including, for example, the TEEC of FIG. 8A
and the dedicated tuple and/or context memory in accordance with an
embodiment of the invention. The TEEC 75 may fetch tuple and/or context

information from a tuple and/or context buffer located in the host memory 30.

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

24

The TEEC 75 may also fetch tuple and/or context information from the
dedicated tuple and/or context memory 35, which may also be on the NIC 50
and be coupled to the TEEC 75.

In step 140, the TCP/IP headers may be processed. Some IP and
TCP frame validity checks, for example, IPv4 header checksum, and TCP
checksum, may be performed along with data movement from the frame
parser to the frame buffer. Results may be registered inside the PID_C. The
TCP/IP headers, the context fetched from the context memory and the
information generated thus far in the PID_C may be provided to the receiver
processing block, which may comprise one or more processors and/or finite
state machines. The receiver processing block may utilize, for example, the
context information to complete additional TCP/IP processing for the frame
including, for example, updating TCP state variables or resetting timers as set
forth in RFC 793. The receiver processing block may also use the partial
results provided by the frame parser and the association block that may have
previously been stored in the PID_C. If processing is completed with no
errors, then the data may be mapped into the host buffer for storage. The
receiver processing block may signal the transmitter side for future
transmission of TCP acknowledgements for the connection after the data has

been successfully stored in the host memory buffer.

In step 150, the header/data boundaries may be determined. The
results of the processing in the control path may determine the boundaries
between the packet portions that are treated as headers and the packet
portions that are treated as data or payload. Although the data may be
moved to a host buffer, the headers may be consumed by the TEEC or may

be moved to a separate host buffer for statistics, debug or further processing.

In step 160, the data inside the received packet belonging to a
particular 5 tuple connection may be mapped to the host resident buffer(s)
allocated for that particular connection. The allocated buffers may have been
pre-allocated by an application or a protocol processing layer (e.g., a TCP
layer). In one example, the allocated buffers are temporary buffers. FIG. 9

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

25

illustrates an embodiment of a system that may map and copy data of an
incoming packet to a host resident buffer or buffers in accordance with an
embodiment of the invention. In one example, the TEEC may copy the data
directly into the host buffer with no need to initially keep the data locally on the
NIC.

The host may describe the buffers by using a list structure that
describes each buffer with, for example, a physical address in host memory
and a length in bytes. The host may also describe the buffers in other
manners such as, for example, via a page table structure. The TEEC may
read the buffer information and may construct a mapping between TCP
sequence numbers of the incoming packets and the host buffers. A particular
TCP sequence number may be mapped, for example, to the start of a specific
buffer or into some offset into a specific buffer. The mapping may be
initialized when a buffer is assigned to an offloaded connection. As packets
are received, they are compared to the buffer mapping information based
upon, for example, length and the TCP sequence number. Based upon the
comparison, one packet may be mapped into one or more buffers. In turn,
one or more instructions may be generated to the DMA engine to move the

packet data into the host buffer or buffers.

The TEEC may map the TCP sequence number, which may be carried
in the TCP header of the packet, of the first payload byte o an offset inside
the host resident buffers provided to the TEEC. In step 170, the TEEC may
deposit the TCP segment data directly into the host buffers, for example, TCP
buffers, pre-posted application buffers. TCP data may be, for example,
reassembled in the host memory without keeping a local copy on the TEEC.
It may also save on copying the data on the host, saving precious CPU cycles
and preserving bandwidth in the memory subsystem. In this regard, zero-

copy operation may be supported.

When the TCP connection is offloaded to the TEEC, it may comprise,
for example, an anchor such as a mapping of RCV_NXT, the TCP sequence
number of the next expected byte, to a specific host address expressed as a

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

26

base and offset within a buffer. The variable RCV_NXT is adjusted each time
more bytes are accepted by TCP for reception. The buffer address
corresponding to RCV_NXT is Buffer{l]. NXT_addr and it is adjusted to point to
the first byte available in the first buffer. When a buffer is added to the tail of
an existing list, the maximum size of the available buffer is adjusted. When a
buffer is completely consumed, the buffer is returned to the host for
consumption by the buffer owner. When a buffer is returned to the host
because a PUSH bit has been set in an incoming TCP segment, the mapping
of RCV_NXT is adjusted to point to the first byte of the next buffer. This
activity may be repeated each time the list is exhausted and a new buffer is

allocated to the offloaded TCP connection.

A connection may be first offloaded and a buffer may be allocated later.
The process of mapping any TCP segment into the host buffer may begin with
computing a delta (e.g., a difference) between its TCP sequence number and
RCV_NXT number. The delta may then be added to the base and offset into
the first buffer (i.e., Buffer[l.NXT_addr). If the delta extends beyond the
length of the first buffer, then the length of the second buffer is added. This
may continue until the buffer into which the TCP Sequence number maps are
found. The computation may take into account, for example, variable sizes of
the pre-posted buffers. The TEEC may then determine whether the identified
buffer has enough memory for the whole TCP segment or whether the TCP
segment may spill over into the next buffer. In light of the determinations and
computations, a series of DMA commands are generated with offset into the
TCP segment received, host address and length. When the data in the frame
should be stored inside a buffer that may be beyond the end of the current list
owned by the TEEC, the TEEC may either drop the frame and not
acknowledge it to the peer TCP or store it temporarily until it can get another

buffer from the host.

For TCP segment received, one or more of the process steps may be

executed as set forth below. In one embodiment, the operations on the TCP

10

15

20

25

30

35

WO 2004/021627 PCT/US2003/027231

27

sequence space may be mod32 as the TCP Sequence space wraps around

every 2°2-1 bytes. However, other moduli arithmetic may be implemented.

The below-listed pseudo code describes an embodiment of a process
that moves data from the TCP segment to the buffer list according to the
present invention. For simplicity, the code handling the PUSH bit or the no

room in current buffer list has been omitted.

1. /* The TCP Sequence number range (TCP Seq # of the first byte
of TCP payload, TCP Sequence # of last byte) is checked to be within RCV
window (between RCV_NXT and RCV_NXT + TCP_Window) */

1A. /* If duplicate frame (all bytes have been received before) drop
the frame */

if TCP_Sequence # of last Byte < RCV_NXT then drop_frame;

1B. check that RCV_NXT < TCP_Sequence # of first Byte <
(RCV_NXT + TCP_window)

1C. check that RCV_NXT < TCP_Sequence # of last Byte <
(RCV_NXT + TCP_window)

1D. /* If some bytes have been received before ignore duplicate
bytes */
if TCP_Sequence # of first Byte < RCV_NXT then
TCP_Sequence # of first Byte = RCV_NXT;
2. /* Find the right entry in the buffer list */

Segment_Length = TCP Sequence # of last byte of TCP payload —
TCP Sequence # of first byte;

/* Delta holds the difference in the TCP sequence number to the
location first byte of the frame. It is also the distance in the buffer space to the
first byte that ought to used to store it */

Delta = (TCP_Sequence # of first Byte — RCV_NXTfrom context) /*
delta from anchor */

i=0; /* used to dynamically point to the buffer that corresponds to
RCV_NXT */

*| some bytes of Host_Buffer_List.Buffer[0] may have been used
already. Need to figure out how many are left */

if (Delta < (Host_Buffer_List.Buffer[0].length —
(Host_Buffer_List.Buffer[0].NXT_Addr -
Host_Buffer_List.Buffer[0].Phy_Addr)))

{

10

15

20

25

30 .

35

WO 2004/021627

PCT/US2003/027231
28

Delta + = (Host_Buffer_List.Buffer[0].NXT_Addr -
Host_Buffer_List.Buffer[0].Phy_Addr);

}

else

{

Delta - = (Host_Buffer_List.Buffer[0].length —
(Host_Buffer_List.Buffer[0].NXT_Addr -
Host_Buffer_List.Buffer[0].Phy_Addr));

5. Do while { Delta — Host_Buffer_List.Bufferfi].length > O}

{
Delta -= Host_Buffer_List.Buffer[i].length;
j-++;
}
i--:
}
6. /* The variable i points to the i buffer after the first buffer,

where data posting should start at. Delta holds the offset into this buffer */
7. Bytes_to_ DMA = Segment_length;

8. /* DMA into first buffer, syntax of DMA_Data (from address, to
address, length) */

DMA_Data (TCP Sequence of first byte,
Host_Buffer_List.Buffer[i].Phy_Address+ Delta,
Host_Buffer_List.Bufferfi].length-Delta)

10. /*is_buffer_full has the following syntax (first_byte_written,
length) and returns 1 in case it is full */

if (buff_full = is_buffer-
Full(Host_Buffer_List.Bufferi].Phy_Address+ Delta,
Host_Buffer_List.Buffer[i].length-Delta)) then return_buffer_to_owner();

11. Bytes_to_DMA -= Host_Buffer_List.Buffer[i].length- Delta; /*
bytes that have been DMA'd into 1% buffer */

12. Start_ TCP_Seq = TCP Sequence of first byte +
(Host_Buffer_List.Buffer{i].length - Delta);

/¥ DMA into next buffers if needed */
13. Do while { Bytes_to DMA > 0}
14. {

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

29

if (Bytes_to_ DMA > Host_Buffer_List.Buffer[i].Length) DMA data
(Start_TCP_Seq, Host_Buffer_List.Buffer[i].Phy_Address,
Host_Buffer_List.Buffer[i].Length)

else DMA data (Start_TCP_Seq,
Host_Buffer_List.Buffer[i].Phy_Address, Bytes_to_DMA);

Bytes_to_DMA -= Host_Buffer_List.Buffer[i].length;
Start_ TCP_Seq += Host_Buffer_List.Bufferfi].length
i++:
Ifi > max_buffers then goto no_more_buffers;
¥
The base sequence number and the host buffer information list may be
updated as buffers are consumed along with the movement of the TCP

Window to the right.

FIG. 10 illustrates an exemplary transmission path in accordance with
an embodiment of the invention. The TEEC may comprise, for example, a
physical layer (PHY) 180, a MAC layer 190, a header builder 200, a context
prefetch 210, a timer 220, a transmit processor 230, data and control blocks
240, acknowledge blocks 250, a scheduler 260 and a DMA engine 270. The
components may be coupled as set forth in FIG. 10. The timer 220 may
comprise, for example, TCP state code transmit and retransmit timers. The
scheduler 260 may be adapted for, for example, windowing and/or retransmit
arbitration. The DMA engine 270 may comprise, for example, an XSUM block
280 or other data specific processing. This may comprise inserting of data
into the data provided by the host and computing CRC values. The data

processing is not limited to these functions.

On the transmission path, the support for L4 and higher levels may
comprise additional complexity and functionality. Transmission may comprise
performing, for example, one or more of the following: scheduling
transmission flow; transferring data via DMA; fetching context; transmit
processing; adding L5 or higher and TCP/IP headers, and properly filling in all

of the fields of those headers; arming the timers; and L2 transmitting.

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

30

The scheduler 260 may decide which flow to serve next. The
scheduler 260 may also handle multiplexing L2 and L4 and higher levels of
traffic. With respect to L4 and higher levels of traffic, the decision to schedule
a particular TCP/IP flow for transmission may depend upon, for example, one
or more of the following factors: data availability for transmission on the host
side; remote end buffering state such as when a remote TCP connection has
not closed the TCP window; preventing starvation among the potentially large
number of TCP connections competing for time on the Ethernet media;
availability of TCP acknowledges from the receive side; a need to retransmit
information on behalf of a TCP connection; and flow priority or quality of

server (QoS) information passed to the TEEC from the host.

Utilizing some or all of the above-identified information or other
information, the scheduler 260 may pick the next flow to be transmitted. The
scheduler 260 may fetch the pointer to the next host resident buffer from the
context information. The scheduler 260 may also program the DMA engine
270 to get the data and store the data, for example, in an elastic buffer 281.
Although an elastic buffer 281 is shown, the invention is not so limited and an
on-chip FIFO buffer or other suitable memory or buffering device may be
utilized for storing the data in accordance with various embodiments of the

invention.

The DMA engine 270 may transfer the data from the host buffer or
buffers into, for example, an on-chip, transmit-side FIFO buffer. IP Checksum
(IPv4) and TCP Checksum may be computed on the data being transferred.
The computations may be performed concurrently with data movement.

Higher levels of data processing may be done at this stage.

Flow context may be fetched, for example, by the context prefetch 210
from a central context resource. Accessing the central context resource may
increase the usefulness of a locking mechanism among all of its consumers to
ensure data integrity and coherency. The locking mechanism may be very

efficient in minimizing undesired performance impact. The context for the

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

31

selected flow may be provided to the transmit processor 230 such as a CPU

and/or finite state machine (FSM).

The transmit processor 230 may be adapted, for example, to execute
TCP/IP and higher levels of code, to update the context and to generate the
TCP/IP and higher level header variables to be placed in the headers. The
updated context may be stored. The processing for this stage may be
performed by one or more stages including one or more processors, state

machines or hybrid processors.

The header builder 200 may use the header variables generated by
transmit processor 230 and may generate the TCP/IP and higher level
headers and may attach the TCP/IP and higher level headers in front of the
data to be transmitted. Using the partial checksum results obtained from the
DMA engine 270, the header builder 200 may finalize the checksum fields and
may place them in the respective headers. Transmit processing is not limited
to a specific number of stages and processing and may be execuied at

different stages of processing as may be optimal.

The timer 220 may be armed by the transmit processor 230 and may
update its future timer event list. When the L4 and higher levels of processing
are complete, the L2 processing and transmission may follow the

conventional steps performed by a conventional Ethernet controller.

A retransmission event is similar to a normal fransmission except, for
example, the data to be retransmitted may be fetched from the host buffers as
before or from any other temporary holding buffers. The address for this data
may be computed. The computation of the host buffer address may be more
complex. The same mapping function described in the receive path section
may be used for the retransmission TCP sequence number range. Once the
buffer address is determined, the rest of the transmit process may occur as

described above.

One or more of the embodiments of the present invention may have

one or more of the advantages as set forth below.

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

32

The reduction in foot print may enable a single-chip implementation
that may not require external memory. Foot print reduction may provide a
size that is similar to that of a conventional non-offload Ethernet controller and
therefore may allow its integration on the motherboards of servers and clients
that are restricted in the real estate allocated for the LAN component. In other
words, the soluton may be utilized for LAN-On-Motherboard (LOM)
applications. This is an advantage in the ever-shrinking form factors of clients

and servers.

Since there may be no need to interface with the external memory, the
cost of the solution may decrease. Not only may the cost of external memory
be saved, but also the TEEC may become cheaper. There may be no need
or the need may be reduced for machines that interface the memory and for -
I/O buffers to drive the machines. In turn, this may allow for a smaller

package with fewer pins and higher performance

Power and thermal concerns may be substantial growth inhibitors for
the Data Center. By eliminating or reducing the external memory, the TEEC
may reduce its power consumption. Thus, more condensed servers may be

provided as there may be less heat to dissipate.

Latencies associated with the temporary buffering of the data may be
saved. Some applications such as, for example, distributed database,
clustering, high-performance-computing (HPC), Quality-of-Service (QoS)

applications and other may appreciate the substantial savings in latencies.

There may be no speed coupling of the memory and the TEEC. As an
architectural aspect of having an external memory attached to the TEEC, the
speed and width of that memory may impact the internal architecture. The
impact is even greater for the higher wire speeds. With the possibility of no

external connection, the internal architecture is substantially simplified.

This may reduce the memory used by a TEEC on a NIC to merely the
traditional FIFO buffer used for matching wire, internal processing latencies

and host bus speeds. The memory requirements of this architecture may not

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

33

scale with the number of connections and may be less sensitive to LAN or
WAN configurations. Cost and size may be less affected by the bandwidth-

distance product that is aggravated by large (world-wide) fast networks.

Accordingly, the present invention may be realized in hardware,
software, or a combination of hardware and software. The present invention
may be realized in a centralized fashion in one computer system or in a
distributed fashion where different elements are spread across several
interconnected computer systems. Any kind of computer system or other
apparatus adapted for carrying out the methods described herein is suited. A
typical combination of hardware and software may be a general-purpose
computer system with a computer program that, when being loaded and
executed, controls the computer system such that it carries out the methods

described herein.

Portions of the present invention also may be embedded in a computer
program product, which comprises all the features enabling the
implementation of the methods described herein, and which when loaded in a
computer system is able to carry out these methods. Computer program in
the present context means any expression, in any language, code or notation,
of a set of instructions intended to cause a system having an information
processing capability to perform a particular function either directly or after
either or both of the following: a) conversion to another language, code or

notation; b) reproduction in a different material form.

While the present invention has been described with reference to
certain embodiments, it will be understood by those skilled in the art that
various changes may be made and equivalents may be substituted without
departing from the scope of the present invention. In addition, many
modifications may be made to adapt a particular situation or material to the
teachings of the present invention without departing from its scope.
Therefore, it is intended that the present invention not be limited to the
particular embodiment disclosed, but that the present invention will comprise

all embodiments falling within the scope of the appended claims

10

15

20

25

WO 2004/021627 PCT/US2003/027231

34

CLAIMS

WHAT IS CLAIMED IS:

1. A system for offloading TCP processing, the system comprising:

a host;

a network interface card (NIC) coupled to said host, said NIC
comprising,

a TCP enabled Ethernet controller (TEEC), said TEEC comprising,

at least one internal elastic buffer, wherein said TEEC processes an
incoming TCP packet once and temporarily buffers at least a portion of said
incoming TCP packet in said internal elastic buffer, said processing occurring

without reassembly.

2. The system according to claim 1, wherein said at least one
internal elastic buffer comprises at least one of a receive internal elastic buffer

and a transmit internal elastic buffer.

3. The system according to claim 2, wherein said at least a portion
of said incoming TCP packet is temporarily buffered in said receive internal

elastic buffer.

4, The system according to claim 2, wherein at least a portion of a
TCP packet to be transmitted is temporarily buffered in said transmit internal

elastic buffer.

5. The system according to claim 1, wherein said TEEC places at
least a portion of said incoming TCP packet data into at least a portion of a

host memory.

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

35

6. The system according to claim 1, wherein said NIC utilizes only
said at least one internal elastic buffer to temporarily buffer said at least a
portion of said incoming TCP packet.

7. The system according to claim 1, wherein out-of-order TCP
packets are not at least one of stored, re-ordered and re-assembled in a
TEEC buffer.

8. The system according to claim 1, wherein said NIC does not

require a dedicated memory for re-ordering out-of-sequence TCP packets.

9. The system according to claim 1, wherein said NIC does not
require a dedicated memory for assembling and re-ordering [P packets

fragmented at the [P layer.

10. The system according to claim 1, wherein said TEEC places at
least data from said incoming TCP packet into a highest hierarchy of buffer

available in a host memory by performing a single copy operation.

11. The system according to claim 1, wherein said TEEC DMA
transfers at least a portion of said processed incoming TCP packet to at least
a portion of a host memory.

12. The system according to claim 1, wherein said NIC does not
require a TOE dedicated memory for at least one of packet retransmission

and packet reassembly.

13. The system according to claim 1, wherein said TEEC places at
least a portion of said processed incoming TCP packets into host buffers in a

host memory for reassembly.

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

36

14. The system according to claim 1, wherein said TEEC comprises
a single chip, having integrated therein, said at least one internal elastic
buffer.

15. The system according to claim 1, wherein said TEEC comprises
a single chip, having integrated therein, said at least one internal elastic
buffer, and no internal buffers and interfaces to external buffers, that are
utilized for at least one of packet retransmission, packet reassembly and

packet re-ordering.

16. A method for offloading TCP processing, the method
comprising:

receiving an incoming TCP packet at a TEEC;

processing at least a portion of said incoming packet once by said
TEEC without reassembly; and

temporarily buffering said at least a portion of said incoming TCP
packet in at least one internal elastic buffer of said TEEC.

17. The method according to claim 16, wherein said at least one
internal elastic buffer comprises at least one of a receive internal elastic buffer

and a transmit internal elastic buffer.

18. The method according to claim 17, further comprising
temporarily buffering said at least a portion of said incoming TCP packet in

said receive internal elastic buffer.

19. The method according to claim 16, further comprising placing at
least a portion of said processed at least a portion of said incoming packet in

at least a portion of a host memory.

20. The method according to claim 16, wherein said placing further
comprises placing at least a portion of said processed incoming TCP packet

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

37

in a highest hierarchy of buffer available in a host memory by performing a

single copy operation.

21. The method according to claim 16, further comprising DMA
transferring at least a portion of said processed incoming TCP packet in at
least a portion of a host memory.

22. The method according to claim 16, wherein packets temporarily
buffered in said in at least one internal elastic buffer are not buffered for at

least one of reassembly and retransmission.

23. The method according to claim 16, further comprising placing at
least a portion of said processed incoming TCP packet in host buffers in a

host memory for processing.

24. The method according to claim 16, wherein said TEEC
comprises a single chip, having integrated therein, said at least one internal

elastic buffer.

25. A machine-readable storage, having stored thereon, a computer
program having at least one code section for providing TCP offload, the at
least one code section being executable by a machine for causing the
machine to perform steps comprising:

receiving an incoming TCP packet at a TEEC;

processing at least a portion of said incoming packet once by said
TEEC without reassembly; and

temporarily buffering said at least a portion of said incoming TCP

packet in at least one internal elastic buffer of said TEEC.

26. The machine-readable storage according to claim 25, wherein
said at least one internal elastic buffer comprises at least one of a receive

internal elastic buffer and a transmit internal elastic buffer.

10

15

20

25

30

WO 2004/021627 PCT/US2003/027231

38

27. The machine-readable storage according to claim 26, code for
temporarily buffering said at least a portion of said incoming TCP packet in

said receive internal elastic buffer.

28. The machine-readable storage according to claim 25, further
comprising code for placing at least a portion of said processed at least a

portion of said incoming packet in at least a portion of a host memory.

29. The machine-readable storage according to claim 25, further
comprising code for placing at least a portion of said processed incoming TCP
packet in a highest hierarchy of buffer available in a host memory by

performing a single copy operation.

30. The machine-readable storage according to claim 25, further
comprising code for DMA transferring at least a portion of said processed

incoming TCP packet in at least a portion of a host memory.

31. The machine-readable storage according to claim 25, wherein
packets temporarily buffered in said in at least one internal elastic buffer are

not buffered for at least one of reassembly and retransmission.

32. The machine-readable storage according to claim 25, further
comprising code for placing at least a portion of said processed incoming TCP

packet in host buffers in a host memory for processing.

33. The machine-readable storage according to claim 25, wherein
said TEEC comprises a single chip, having integrated therein, said at least

one internal elastic buffer.

PCT/US2003/027231

WO 2004/021627

115

(My s01d) L "OId

cmf

wn.m

fon

mow

laging Jajing

elBy Xy 0L elweld X4

OIN

ﬁev omnv
aaepsu]
1504
0c J8]j0Nju0) Kloway
Y Kowspy 1S0H
oL oe
“Y ndd

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/027231

WO 2004/021627

2115

Zolid
AP\.N
b)
fomm fcww
lsyng o33l segng
olise|a xd opse|a X4
OIN
o omww
soeyslL]
1s0H
oze 18j|onuc) FALUTET]
Y Kowsiy 150H
O
012 o€
“1 ndo

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/027231

N E |

315

WO 2004/021627

! 1
| ebeio)s !
sispesH | diuogo !
|puoydo b
pue eaty
EleQ 18%oed 1998 MEY
- yied ejeq
1eyng A _
,.ILU opseid N <
sigyng Allu_ eufug -
1s0H Yina Y ied joauod
Buptoayd ejny
(suoispaq paxiy pue sjgeliesfold
Bupeyng) [A— uwied A wonEIossy pue :Buipjing ejdn],
Buisseoold \— Weuod N—3 7 ‘Bupoeyn Loue)sisuod
jonuod ‘ xXd :Buisied $7 €121
198184 Stuely

o)X=
AHd

ajdny
pue
epod 401) uopeuo)|
8Loe ayoen Suisied 1%oed
1 dyo-uo diyo-uo
aje1s 4O erepdn :
puy yojed
[L
ﬂnnzhnxn_ oo N -
| efesols | | eBeioig b1 eBeioig abelo}g " ebeioys | “ sbeioys |
| 180H-UO |1 duoHo | diyo-uo dmo-uo ” diyo-yo | ! 1S0H-UO |
HUUNURUE S IRURUSUUURUNUUE B USHEUUIS D ISUN— R PSSR I I 4

PCT/US2003/027231

WO 2004/021627

v "Old

s e A T R L e e e M A B o T S
| Surppeq | suondo _
i T T e S M A S e B wi A s S S s
_ ssaIppy uoneunseq _
R i T e T s T T B o e T M M S o o e R 0
| ssalippy 891n0g |
B o et T Tt T B B T e o e O SO M 20 i 2 2o 2 2 2 e s

| umsyjosy) IopesH _ jocolold | eArjoyemny |
i T T o T e S o S i e S St St s o S B
| jospgO wowidery | s8epyq | TOTRONUSP] . |
e B T T i T L e e e e o o e e e e e B s s e
| wduagmoL | eo1aragjoodLy | THI |worsiaA |
s T T T T B T T e e e e e ALl A wt i ol s
Hmmwhomvmugmw\lomvmm:wmwnomvmmﬁo
[4 0

4115

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/027231

WO 2004/021627

5/15

S 'Old

T o e B T e e e e R A

SSIAPPY HOLBUNSI(I

—t —t —+
—F et —F

+_-+.+-+.+.+-+.+-+.+-+-+.+.+.+,+-+-+-+-+-+-+-+-+-+-+.+.+.+.+.+-+-
i
sseIppy 821n0g

+
_
A Tl A T P
| yur doyy | lopesH IxeN |mSBua projied |
e bbb e e e e e e
_ [3qe] MO[T | o11g | woISIoA |
TR LR R R

momwNOmvaﬁmmwhwm¢mmﬁwmwhomvmmMW

€

—t T

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/027231

WO 2004/021627

6/15

9 "Old

B T oo E T T e i T R T e e
| Swppeg | suondo _
T e e T e o e e i i A e e e e e e e
| Iopurod yuedin _ wmnsydaY)) _
s A S e S A S L e e o o e e e e S R N
ININLLIHEIO! _ _
lHXISIS|D faf peatesay | 19850 |
: lAIshaldivinl | eeq |
B T e e A s T B e o o
| JoquINN JSMSPI[MOWOY |
B e L S s B e e e e e e M Al 2
| Iaqump asuanbsg |
B T i A a S T e T T o e
|)10 uoneunsaq | 310 J 93.1m0Q |
e o e e M H S By M M S S
1068 L9SVETTI068LOSYETCTIO68LOSVYETLO
€ - C 1 0

|
| MOPUTA
_

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/027231

WO 2004/021627

M5

8 NOILdO

MOV1S
MS OIHLIMONOW

MIOVILS
avo14d40 MS

L "Old

V¥ NOLLdO

MOVYLS
MS OIHLITONOW

SUBSTITUTE SHEET (RULE 26)

WO 2004/021627

JCPU

8/15

DEDICATED
MEMORY

.

PCT/US2003/027231

S o
H 9
_ =
11
n 10,
& w0
I
(&)
>
%
o
o=
I
s

T

SUBSTITUTE SHEET (RULE 26)

FIG. 8A

60
ETHERNET “\\\\

WO 2004/021627 PCT/US2003/027231

9/15 CPU
10
MEMORY
CONTROLLER

30 zgj

HOST
INTERFACE
HOST
50
MEMORY 40
NIC
TEEC
35
75
DEDICATED)
MEMORY

60
ETHERNET /

FIG. 8B

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/027231

WO 2004/021627

1015

Z# dayng 1S0H

L Jeyng 1SoH

6 "Old

a|qe] seyng papjAcid O} JaquInN
aoushbagyyiBua 18yoed jo Buiddepy

£# 1eyng 1S0H

1xped

)
@xoed

]
1N0ed

p
19xoed

2
1exoed

q
joxoed

e
19%08d

£#
z#
Vit
1ppy shud yifue
Bu
opy shud i a|qe. J01duoseq
Ippy shyd \bue Jayng jo synsay
_ippy shud yibue
) |-
1ppv sfud ybus >

1517 ojut
Jayng 1s0H

18quInN
eousnbag
aseq

diysuojiejey paxid
10)duosaq seyng o}
Jequinp sauenbeg

sjeyoed Bupuosu}

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/027231

11115

WO 2004/021627

AYOWZANW LXILINOD OL

A
Jepng
opse|q oec 0ce
082 052~ v
/ (| 1osseoo1d
1 WNSX jwisuesy, Aot 081 /
s)yo0|g ebpamouwyoy
aujbug
! < > ovi AHd
ywa $300jg [0U0D PUE E}EQ
ON [E X]
> yorggesd sepng
\ 1 ejon JapesH 061
ove
lejnpayog] (1] %4 00¢

\

SUBSTITUTE SHEET (RULE 26)

/oww

0L "Oid

WO 2004/021627 PCT/US2003/027231

C START j
;

1215

100
RECEIVE J v
FRAME 130
| DETERMINE
l HEADER/DATA
110 BOUNDARIES
PARSE ,/
FRAME 160 v
MAP DATA TO
Y 120 HOST BUFFER
ASSOCIATE
FRAME WITH J
TCP/IP 170
CONNECTION \ TRANSFER DATA
TO THE HOST
' BUFFER
130
FETCH TCP J r
CONNECTION
CONTEXT < N)
Y 140
PROCESS
TPC/P
HEADERS

FIG. 11

SUBSTITUTE SHEET (RULE 26)

WO 2004/021627

340

1315

320

310

330

300

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/027231

STORAGE

FIG. 12

WO 2004/021627 PCT/US2003/027231

14115
[} * [] » é s_’:
[[[[no: 0
3 [} ° 'Y 5 E

SUBSTITUTE SHEET (RULE 26)

WO 2004/021627

PCT/US2003/027231
15/15
8
2
e
wn
e
F
O
L
w
[U]
e é
(]
=
w

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

