Film mode progressive scan conversion

A system (22) and method for converting progressive scan interlaced video data (28) that was originally produced on film to interlaced data. The most recent previous field and the second most recent field are stored in field delays (24 and 26). The most recent previous field is compared to the current field and the second most recent field to generate two motion signals. The field that generates the smallest motion signal when compared to the most recent previous field is then used to perform field insert for that field. The field insert results in progressive frames of data of the image that was produced originally on film. The system (22) also determines whether the film conversion is necessary on whether the data is used for conventional-format progressive scan conversion.
Description

FIELD OF THE INVENTION

This invention relates to television systems with interlaced input, more particularly to television systems that convert interlaced input to progressive scanned data.

BACKGROUND OF THE INVENTION

Most typical broadcast television standards consist of interlaced fields. A typical video frame is transmitted in two fields, the first field normally contains the odd numbered lines of the frame, the second contains the even numbered lines. Typical display systems use the incoming data for display on a cathode-ray tube, but other options are available for displaying the data.

Spatial light modulators typically consist of arrays of individual elements, each addressable by memory cells. The addressing is typically done along columns of the array. This makes the addressing necessary to accommodate interlaced data very difficult and often too slow. Progressively scanned pictures result in a better utilization of the modulators. Also, progressively scanned pictures result in better picture quality, especially with larger projection size images as are available with spatial light modulators.

A special problem arises when the desired data to be converted to progressive scan is from film sources. Film is an inherently progressive, 24 MHz material. Systems operating in NTSC typically convert to 60 Hz interlace by means of a 3:2 pulldown as shown in Figure 1 (prior art). The frame input arrives with complete frames as shown at frame boundaries 12 and 14. The first frame between boundaries 12 and 14 is scanned such that the even numbered lines go to frame 1, even, between boundaries 18 and 20, and the odd numbered lines go to frame 1, odd, between boundaries 20 and 22.

The even numbered lines from the first film frame also go to the even numbered lines for frame 2, even. Frame 2, odd, is made up of the odd numbered lines from the second film frame, between boundaries 14 and 16. The even numbered lines for frame 3 come from the second film frame. Frame 3, odd, would then be from the third film frame. As can be seen by this example, it is referred to as 3:2 pulldown, because every other frame contributes 3 fields to the interlaced input, and the offset frames contribute 2 fields to the interlaced input. For 50 Hz sources, such as PAL, the film is merely run at 25 Hz and doubled to fill the 50 Hz interlaced requirement.

Some methods for converting back from the interlaced to progressively scanned sources include a means for detecting which field is from the 3-segment frame and which is from the 2-segment frame, by incorporating a code into the data driving the 3:2 pulldown operation. This code can then be read by the processor at the display end and it can use the appropriate fields to regain the original film data at 60 Hz. A second solution uses a processor to implement a pattern detector that detects the 3-2-3-2 pattern of 3:2 pulldown and marks the corresponding fields to recover the original film. These solutions are more completely discussed in U.S. Patent Nos. 4,876,596 and 4,982,280 assigned to Faroudja, Inc. These approaches require either an explicit specification of 3:2 pulldown, or the ability to detect the pattern. A more general approach is needed that is general enough to work without requiring explicit specification at the transmission end or detection of the 3-2-3-2 pattern.

Additionally, one problem with these solutions lies in the area of motion detection. Incorrect motion detection leads to visual artifacts, such as tearing on moving areas, blurriness in the presence of motion due to line averaging, and blocky reconstruction of oriented edges. Current progressive scan processes can eliminate these problems, but require extra processing time and more memory, leading to increased costs.

SUMMARY OF THE INVENTION

A system and method for converting interlaced video data produced from images originally produced on film is disclosed. The system includes a processor and two field memories that store the most recent previous video field and the second most recent video field. The processor performs a comparison between the most recent previous field and both the current incoming field and the second most previous field to determine which field to use for generating progressive video frames.

It is an advantage of the invention in that it does not require either insertion of a code for identification of the film format at the transmission end, nor a decoder at the receiving end.

It is a further advantage of the invention in that it does not require any user input when the incoming video is not data that was originally produced on film, since the invention is transparent to the user.

It is a further advantage of the invention in that it does not require a field-level detection of the 3-2 pattern.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and for further advantages thereof, reference is now made to the following Detailed Description taken in conjunction with the accompanying Drawings in which:

Figure 1 shows a prior art implementation of a 3:2 pulldown method of converting a film source to progressive scan;
Figures 2a and 2b show block diagrams of circuitry which allows the interlaced to progressive scan conversion of film sources; and Figure 3 shows a graphical representation of the operation of a circuit which performs interlaced to progressive scan conversion for film sources.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Film sources are inherently progressive, yet must be converted to interlaced fields for display in most broadcast television formats. For progressively scanned displays, it seems more logical to try to recover that original progressive nature than to convert to a third format. Viewers would see a better picture and a closer approximation of movie theater quality. One way of offering this higher quality would be to include a special feature on the television system that allows the viewer to select "film mode" when watching a movie not made for television. The inclusion of this feature can be accomplished with a minimal extra cost, and the extra circuitry put to other uses when the set is not in film mode.

Figure 2 shows a block diagram of a circuit which is capable of implementing an improved procedure for converting interlaced data originally shot on film back to progressively scanned data from interlaced data. Circuit 20 consists of a scan-line video processor (SVP) or other processor 21, and two field delays, 24 and 26. The incoming data on line 28 is the data for the current field, A. The most recent previous field has been held in field delay 26, and will be referred to as field C. The second most previous field has been held in field delay 24, and will be referred to as field B.

The processes performed by this circuit 20 are shown in graphical form in Figure 3 and in flowchart form in Figure 2b. If, for example, progressive scan is to be performed on a pixel in field B, a motion signal results from a comparison of fields B and C, signal M1. A second motion signal is found by comparing field B with the following field, field A, for a second motion signal M2. Finding the motion signals between two fields next to each other in interlaced data requires some processing. Recalling that field B will have either the even or odd numbered lines of a frame, and fields A and C will have the even numbered lines of the same frame or the just previous frame.

The scalar motion signal M1 has been defined as the motion difference between fields B and C. The arrangement of part of the lines from these two fields would be similar to:

```
| Field C | Field B |
```

The motion signal M1 corresponding to Pixel 2 would be found using the minimum of the absolute values of the quantities (Pixel 2 - Pixel 1) and (Pixel 2 - Pixel 3).

\[M1 = \min(\|\text{Pixel } 2 - \text{Pixel } 1\|, \|\text{Pixel } 2 - \text{Pixel } 3\|) \]

In this embodiment of the invention, a second scalar motion signal, M2, would be found in a like manner between field B and field A.

```
Field B       Field A
```

\[M2 = \min(\|\text{Pixel } 2 - \text{Pixel } 4\|, \|\text{Pixel } 2 - \text{Pixel } 5\|) \]

If the source is film converted using 3:2 pulldown, each field will have at least one neighbour from the same frame, as seen in Figure 3. Looking at line 2 and line 3, INTERLACE, in Figure 3, field C would have field B from the same frame as its neighbour; field B has both fields C and A as neighbours; and field A has field B as a neighbour from the same frame. The motion signal between those pairs would be zero except for noise or high spatial frequency patterns. The minimum of M1 and M2 would be close to zero, as in \(k = \min(M1, M2) \).

Line 4, PROGRESSIVE OUTPUT, in contrast, has two fields from the first frame, shown by the heavy vertical lines, and two fields from the second frame, positioned as shown by the lighter lines.

This implementation of 3:2 pulldown detection remains transparent to the user. The viewer has no need to know whether the picture being viewed came from a source that was originally film or not. A threshold value, \(T \), is set for the value \(k \), described above. The threshold can also be set in a manner so as to reduce noise in the system.

If the motion signal, \(k \), is below the threshold value, \(T, (k < T) \), the system performs the film conversion described above, using field insert. Field insert takes a pixel at the same location as the pixel being created from either field A or field C and inserts it into field B.

The selection of fields A or C depends upon which scalar motion signal, M1 or M2, is smaller. For example, if \(M1 < M2 \), then the field insert would be performed from field A.

If the motion signal, \(k \), is above the threshold value, \(T, (k > T) \), the system simply uses it as the motion signal for a conventional-format progressive scan conversion. Additionally, the selection of the threshold value, \(T \), can be performed so as to limit the noise effects in the system.
Clayms

1. A progressively scanned display system, including:
 - an input line for transmitting a current video field of data originally produced on film;
 - a first memory for storing data for a most recent previous video field;
 - a second memory for storing data for a second most previous video field;
 - a processor for comparing said most recent previous video field with said current video field and with said second most previous video field such that a minimum motion signal is selected by comparing motion signals between said current video field and said most recent previous video field, and between said most recent previous video field and said second most previous video field, wherein said minimum motion signal is used to generate progressive frames of said data originally produced on film; and
 - a spatial light modulator for displaying said progressive frames of video data as an image.

2. The system of claim 1 wherein said processor is further operable to perform field insert for said most recent previous video field using said minimum motion signal to generate said progressive frames.

3. The system of claim 2 wherein said processor is further operable to set a minimum threshold for said minimum motion signal to reduce noise effects in said image.

4. The system of claim 3 wherein said data originally produced on film is interlaced video data.

5. The system of claim 4 wherein said progressively scanned display system is a television system.

6. A method of converting video data originally produced on film to progressively scanned video data, comprising the steps of:
 - storing a most recent previous video field and a second most previous video field in a memory;
 - receiving a current video field;
 - generating motion signals between said current video field and said most recent previous video field and between said most recent previous video field and said second most previous video field;
 - comparing said motion signals and selecting that which has smaller magnitude;
 - performing field insert for said most recent previous field using whichever of said current video field and said second most previous video field generated the smallest magnitude motion signal when compared with said most recent previous video field, such that said field insert results in a sequence of progressive video frames from said video data originally produced on film; and
 - displaying said progressive video frames on a spatial light modulator to create an image.

7. The method of claim 6 wherein said comparing step includes the step of setting a minimum threshold for said smallest magnitude motion signal to reduce noise effects in said image.

8. The method of claim 7 wherein said generating step includes the step of comparing said most recent previous video field with said current video field and with said second most previous video field to generate said motion signals.

9. The method of claim 8 wherein said video data originally produced on film is interlaced video data.
FIG. 1
(PRIOR ART)

FIG. 2a

FIG. 2b

FIG. 3
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (Int.CL.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, vol. 40, no. 3, 1 August 1994, pages 735-741, XPO00471243</td>
<td>1-9</td>
<td>H04N5/44</td>
</tr>
<tr>
<td></td>
<td>MARKANDEY V ET AL: "MOTION ADAPTIVE DEINTERLACER FOR DMD (DIGITAL MICROMIRROR DEVICE) BASED DIGITAL TELEVISION"</td>
<td></td>
<td>H04N9/31</td>
</tr>
<tr>
<td></td>
<td>* page 739, column 2, line 20 - page 740, column 1 *</td>
<td></td>
<td>H04N7/01</td>
</tr>
<tr>
<td>Y</td>
<td>EP-A-0 316 231 (FRANCE ETAT ;TELEDIFFUSION FSE (FR)) 17 May 1989</td>
<td>1,2,4-6,8,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 14, line 59 - column 16, line 14 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>GB-A-2 261 569 (N V PHILIPS' GLOEILAMPENFABRIEKEN) * page 3, line 9 - page 5, line 6 *</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US-A-5 291 280 (FAROUDJA ET AL.) * column 5, line 36 - column 6, line 51 *</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>D,A</td>
<td>US-A-4 982 280 (LYON ET AL.) * column 5, line 8 - column 8, line 56 *</td>
<td>1-9</td>
<td>H04N</td>
</tr>
<tr>
<td>D,A</td>
<td>US-A-4 876 596 (FAROUDJA) * column 6, line 27 - column 7, line 63 *</td>
<td>1-9</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: BERLIN

Date of completion of the search: 9 July 1996

Examiner: Materne, A

CATEGORY OF CITED DOCUMENTS

- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **O**: non-written disclosure
- **P**: intermediate document
- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **A**: member of the same patent family, corresponding document