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(57)摘要

本发明公开了一种锂离子电池RUL时间序列

预测方法 ,包括以下步骤；采用灰色关联分析方

法确定预测模型的输入变量；然后重构确定的输

入变量，恢复系统多维非线性状态空间；最后通

过混沌优化算法使KECA的核参数达到全局最优，

利用KECA对重构后的相空间时间序列进行特征

提取，并将特征向量作为NARX神经网络的输入，

得到最终的车用锂离子电池RUL预测值，本发明

具有较优的非线性动态预测能力,较高的精确度

及泛化能力。
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1.一种锂离子电池RUL时间序列预测方法,通过灰色关联分析方法选取KECA‑NARX模型

的输入量，并进行相空间重构；采用KECA算法提取多维状态相空间的样本数据时间序列的

主成分，并作为NARX模型的输入，采用混沌优化算法使KECA的核参数达到全局最优，得到锂

离子电池最终的使用寿命预测值；包括如下方法步骤：

(1)采集锂离子电池退化状态监测到的数据；

(2)采用灰色关联从采集到的数据中选择KECA‑NARX预测模型的输入变量；

(3)采用C‑C法确定嵌入维数和时间延迟，经计算，最后确定τ＝3和m＝8，利用上述结果

通过相空间重构确定训练样本集为{(xi,yi)}，xi∈RN×M,yi∈RN×1
，测试样本集为{(xt,yt)},

xt∈RN×M,yt∈RN×1
；

(4)利用x∈RN×M
，通过混沌优化算法确定KECA的全局最优核参数；

(5)采用KECA方法提取x∈RN×M
的核主成分集t，xt∈RNt×M

的核主成分集tt；

(6)通过相空间重构重新构造训练样本集(t,y)；

(7)以核主成分集tt作为NARX输入，得到NARX预测模型的预测输出值；

步骤(4)所述的确定KECA的全局最优核参数,其步骤如下：

1)令k＝0,r＝0,f*＝f(0) ,c′i＝ai,d′i＝bi‑ai，任取n个初始值h0,i，h0,i∈(0,1)，使h0,i

之间相互差异不大，令 由此可得n条不同初始值的轨迹，其混沌变量为hi；

2)载波，利用下式(1)以载波的形式将n个hk,i变成zk,i变量，也即

zk,i＝c′i+d′ihk,i     (1)

3)将以上n个zk,i变量代入式zn+1＝4zn(1‑zn)，进行如下的迭代搜索，

If  f(zk,i)＜f*，then  f*＝f(zk,i)，else放弃zk,i；

4)k＝k+1，zk+1,i＝4zk,i(1‑zk,i)；

5)循环执行步骤2)和步骤4)，如果在有限的循环步骤内，使f*的值维持不变，则执行下

面步骤；

6)通过式(2)得到新的变量hk,i，再次循环执行步骤2)和步骤4)，如果f*的值在一定循环

步骤内固定不便，则执行以下步骤7)；

7)令r＝r+1，利用式(3)缩小迭代搜索的范围，继续循环执行步骤2)和步骤4)，如果f*的

值在一定循环步骤内固定不便，则再一次执行步骤7)，如此往复执行若干次，通常为6‑10次

后结束优化， 即为径向基核函数的r核参数最优值，

步骤(5)所述KECA方法，其步骤如下：

1)输入训练样本集{(xi,yi)}，xi∈RN×M,yi∈RN×1
；

2)求解核矩阵K，同时对其进行中心化处理；

3)求解特征值问题；

4)求特征值对应的Renyi熵，并降幂排序，E(λ1,v1)>E(λ2,v2)>…>E(λN,vN)，按Renyi熵

大小，同样，将提取到的RUL时间序列的特征值及其向量进行降幂排序；

5)根据累积熵值贡献率>86％的原则，确定核主元个数k；
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6)选择前k个特征向量，提取KECA‑NARX预测模型的训练样本集的核主成分集t；

7)输入测试样本集 并标准化测试样本集；

8)计算得到核矩阵Kt，由此得到KECA‑NARX预测模型的测试样本集的核主成分集tt；

步骤(7)所述NARX模型是具有动态反馈性的非线性自回归网络，对历史状态信息有较

强的记忆功能，将其应用于锂离子电池RUL时间序列预测中能够很好反映RUL时间序列预测

的时变特性，较适合于对锂离子电池RUL时间序列预测研究，NARX模型结构如图1所示，NARX

模型统一的数学结构为：

y(t)＝f[y(t‑1) ,...,y(t‑na) ,u(t‑nk) ,...,u(t‑nk‑nb+1)]

式中：u(t)、y(t)分别为系统的输入和输出；f为非线性函数；na,nb分别为模型输出及输

入阶次；nk为延时量。

2.根据权利要求1所述的一种锂离子电池RUL时间序列预测方法，其特征在于步骤(1)

所述采集锂离子电池退化状态监测到的数据，是锂离子电池在(20±5)℃的环境中进行充

放电，实验过程中同步采集终端电压、输出电流、温度、充电器电压及充电器电流数据，并记

录数据采集时间及最大可用容量，电池的阻抗采用电化学阻抗谱法获取，其频率扫描范围

为0.1HZ～5HZ。

3.根据权利要求1所述的一种锂离子电池RUL时间序列预测方法，其特征在于步骤(2)

所述灰色关联分析是通过研究不同的曲线的几何接近性来评估它们之间的关系，接近性越

高则意味着相关性越紧密。

4.根据权利要求1所述的一种锂离子电池RUL时间序列预测方法，其特征在于步骤(3)

所述相空间重构是依据Takens定理，对于采集到的锂离子电池系统时间序列{x(i) ,i＝1,

2,…,N}，N为输入数据量,只要找到一个恰当的嵌入维m，使得m≥2d+1，d为混沌吸引子的关

联维数，则可通过时间延迟τ重构相空间Rm。
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一种锂离子电池RUL时间序列预测方法

技术领域:

[0001] 本发明涉及一种锂离子电池参数据的预测算方法 ,特别是一种锂离子电池RUL时

间序列预测方法。

背景技术:

[0002] 锂电池存在绿色环保、比能量大及使用寿命长等诸多优势，目前正广泛应用于新

能源汽车、手机通信、智能电网及医疗器械等多个领域。但随着锂离子电池的频繁使用，会

出现内阻增加、容量减少等老化现象，并引发一系列安全问题，因此锂离子电池必须进行及

时维护，准确在线估计锂电池剩余使用寿命(RUL)，以保证其具有较好的安全工作能力。但

由于锂电池RUL与电压、电流及温度等电池模型外部参数呈现高度复杂的非线性关系，因此

使得对RUL的精确预测不容易。近年来，对锂离子电池剩余寿命比较热门的研究大概可归纳

为基于数据驱动及各种预测算法的融合等方法。如王竹晴等学者采用核主成分分析(KPCA)

对相关数据进行特征提取，然后将自适应神经网络与模糊推理系统进行有效融合，得到预

测模型，并用于实时预测锂电池RUL，实验结果显示剩余寿命预测精度得到了显著提高；胡

天中等提出了多尺度深度神经网络预测模型，利用经验模态分解方法及相关性分析将实验

数据分解成主趋势数据和波动数据，然后深度置信网络和长短期记忆网络分别进行训练及

预测，获得了较好的预测性能。

[0003] 以上研究多数采用一维数据样本或者单变量时间序列对模型进行训练及预测，包

含的信息比较单一，不够全面。KPCA能够从实验采集到的一维状态空间数据中提炼出与系

统密切相关的非线性特征量，同时还具有降噪及消除实验数据变量之间的相关性等功能，

但它是通过方差的形式评价系统主成分所携带的信息量，并且它的核函数及相应参数的选

取存在一定的不确定性，致使在主成分提取过程中出现丢失信息的现象。因此,如何采用灰

色关联分析方法确定预测模型的输入变量；然后重构确定的输入变量，恢复系统多维非线

性状态空间；最后通过混沌优化算法使KECA的核参数达到全局最优，利用KECA对重构后的

相空间时间序列进行特征提取，并将特征向量作为NARX神经网络的输入，得到最终的车用

锂离子电池RUL预测值。

发明内容:

[0004] 针对现有技术的不足,本发明提供了一种锂离子电池RUL时间序列预测方法：采用

灰色关联分析方法确定预测模型的输入变量；然后重构确定的输入变量，恢复系统多维非

线性状态空间；最后通过混沌优化算法使KECA的核参数达到全局最优，利用KECA对重构后

的相空间时间序列进行特征提取，并将特征向量作为NARX神经网络的输入，得到最终的车

用锂离子电池RUL预测值，包括以下步骤：

[0005] (1)采集锂离子电池退化状态监测到的数据；

[0006] (2)采用灰色关联从采集到的数据中选择KECA‑NARX预测模型的输入变量；

[0007] (3)采用C‑C法确定嵌入维数和时间延迟，经计算，最后确定τ＝3和m＝8，利用上述
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结果通过相空间重构确定训练样本集为{(xi,yi)}，xi∈RN×M,yi∈RN×1
，测试样本集为{(xt,

yt)},xt∈RN×M,yt∈RN×1
；

[0008] (4)利用x∈RN×M
，通过混沌优化算法确定KECA的全局最优核参数；

[0009] (5)采用KECA方法提取x∈RN×M
的核主成分集t，xt∈RNt×M

的核主成分集tt；

[0010] (6)通过相空间重构重新构造训练样本集(t,y)；

[0011] (7)以核主成分集tt作为NARX输入，得到NARX预测模型的预测输出值。

[0012] 优选的，步骤(1)所述锂离子电池退化状态监测到的数据，是锂离子电池在(20±

5)℃的环境中进行充放电，实验过程中同步采集终端电压、输出电流、温度、充电器电压及

充电器电流等数据，并记录数据采集时间及最大可用容量。电池的阻抗采用电化学阻抗谱

法获取，其频率扫描范围为0.1HZ～5HZ。

[0013] 优选的，步骤(2)所述灰色关联分析是通过研究不同的曲线的几何接近性来评估

它们之间的关系，接近性越高则意味着相关性越紧密。

[0014] 优选的，步骤(3)所述相空间重构是依据Takens定理，对于采集到的锂离子电池系

统时间序列{x(i) ,i＝1,2,…,N}，只要找到一个恰当的嵌入维m，使得m≥2d+1，d为混沌吸

引子的关联维数，则可通过时间延迟τ重构相空间Rm。

[0015] 优选的，步骤(4)所述的确定全局最优核参数,其步骤如下：

[0016] 1)令k＝0,r＝0,f*＝f(0) ,ci′＝ai,di′＝bi‑ai，任取n个初始值h0,i，h0,i∈(0,1)，

使h0,i之间相互差异不大，令hi
*
＝h0,i，由此可得n条不同初始值的轨迹，其混沌变量为hi；

[0017] 2)载波，利用下式(1)以载波的形式将n个hk,i变成zk,i变量，也即hi
*
＝zi

*
；

[0018] zk,i＝c′i+d′ihk,i                          (1)

[0019] 3)将以上n个zk,i变量代入式zn+1＝4zn(1‑zn)，进行如下的迭代搜索，

[0020] If  f(zk,i)＜f*,then  f*＝f(zk,i) ,else放弃zk,i；

[0021] 4)k＝k+1，zk+1,i＝4zk,i(1‑zk,i)；

[0022] 5)循环执行步骤2)和步骤4)，如果在有限的循环步骤内，使f*的值维持不变，则执

行下面步骤；

[0023] 6)通过式(2)得到新的变量hk ,i，再次循环执行步骤2)和步骤4)，如果f*的值在一

定循环步骤内固定不便，则执行以下步骤7)；

[0024]

[0025] 7)令r＝r+1，利用式(3)缩小迭代搜索的范围，继续循环执行步骤2)和步骤4)，如

果f*的值在一定循环步骤内固定不便，则再一次执行步骤7)，如此往复执行若干次，通常为

6‑10次后结束优化， 即为径向基核函数的r核参数最优值。

[0026]

[0027] 优选的，步骤(5)所述KECA方法，其步骤如下：

[0028] 1)输入训练样本集{(xi,yi)}，xi∈RN×M,yi∈RN×1
；

[0029] 2)求解核矩阵K，同时对其进行中心化处理；

[0030] 3)求解特征值问题；

[0031] 4)求特征值对应的Renyi熵，并降幂排序，E(λ1 ,v1)>E(λ2 ,v2)>…>E(λN，vN)，按

Renyi熵大小，同样，将提取到的RUL时间序列的特征值及其向量进行降幂排序；
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[0032] 5)根据累积熵值贡献率>86％的原则，确定核主元个数k；

[0033] 6)选择前k个特征向量，提取KECA‑NARX预测模型的训练样本集的核主成分集t；

[0034] 7)输入测试样本集 并标准化测试样本集；

[0035] 8)计算得到核矩阵Kt，由此得到KECA‑NARX预测模型的测试样本集的核主成分集

tt。

[0036] 优选的，步骤(7)所述NARX模型是具有动态反馈性的非线性自回归网络，对历史状

态信息有较强的记忆功能，将其应用于锂离子电池RUL时间序列预测中能够很好反映RUL时

间序列预测的时变特性，较适合于对锂离子电池RUL时间序列预测研究，NARX模型结构如图

1所示，NARX模型统一的数学结构为：

[0037] y(t)＝f[y(t‑1) ,...,y(t‑na) ,u(t‑nk) ,...,u(t‑nk‑nb+1)]

[0038] 式中：u(t)、y(t)分别为系统的输入和输出；f为非线性函数；na,nb分别为模型输出

及输入阶次；nk为延时量。

[0039] 本发明提供的一种锂离子电池RUL时间序列预测方法，采用上述方法具有如下有

益效果：

[0040] (1)KECA在数据信息量的提取及其降维具有独特的优越性，它是根据数据信息量

的熵值贡献率大小来提取数据信息的主成分，其选取的数据信息主成分所对应的特征值不

一定是较大的特征值及特征向量，且提取的系统数据信息主成分具有一定的角度结构，因

此可以更有效地保留数据信息的固有的非线性特征，当系统处在较低维数时KECA具有更好

的降维效果，由此KECA可以有效避免信息丢失的现象；

[0041] (2)KECA‑NARX模型算法具有更高的精确度，同时利用混沌优化算法可以使KECA的

核参数达到全局最优，较好地避免的局部最优，提高了模型的预测精度及实时性，同时有效

克服了小样本数据对模型预测精度的影响。

附图说明:

[0042] 为了使本发明的目的、技术方案和优点更加清楚，下面将结合附图对本发明作优

选的详细描述，其中：

[0043] 图1,本发明的NARX模型结构示意图；

[0044] 图2，本发明的KECA‑NARX的预测模型结构示意图；

[0045] 图3，本发明采用B5电池容量的预测结果示意图；

[0046] 图4，本发明采用B6电池容量的预测结果示意图；

[0047] 图5，本发明采用B7电池容量的预测结果示意图。

具体实施方式:

[0048] 下面结合实施例对本发明作进一步的详细说明。本发明公开的一种锂离子电池

RUL时间序列预测方法；采用灰色关联分析方法确定预测模型的输入变量；然后重构确定的

输入变量，恢复系统多维非线性状态空间；最后通过混沌优化算法使KECA的核参数达到全

局最优，利用KECA对重构后的相空间时间序列进行特征提取，并将特征向量作为NARX神经

网络的输入，得到最终的车用锂离子电池RUL预测值，包括以下步骤：

[0049] (1)采集锂离子电池退化状态监测到的数据：
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[0050] 一是NASA  PCoE研究中心在爱达荷州国家实验室测试获得B5、B6及B7电池各有168

组数据；

[0051] 二是自主试验平台锂离子电池退化状态监测数据，采用额定容量为2AH的18650型

号的单体锂离子电池在(20±5)℃的环境中进行充放电，其中：

[0052] 1)充电过程：以1C(2A)电流对18650型号的单体锂离子电池进行恒流充电至端电

压上升至最大截止电压4.2V，使I≤20mA，将充电电压(4.2±0.05)V维持不变，继续充电，当

I≤36mA时，则整个充电过程结束，并使电池静置60min；

[0053] 2)放电过程：以小倍率(0.2C)恒流对18650型号的单体锂离子电池进行恒流放电，

当到截止电压2.5V时，则整个放电过程结束，并使电池静置60min；

[0054] 3)以上2操作记为一次循环过程，整个试验共完成200次循环，采样频率设置为

1HZ，实验过程中同步采集终端电压、输出电流、温度、充电器电压及充电器电流等数据，并

记录数据采集时间及最大可用容量，电池的阻抗采用电化学阻抗谱法获取，其频率扫描范

围为0.1HZ～5HZ。

[0055] (2)采用灰色关联从自主试验平台锂离子电池退化状态监测到的数据中选择

KECA‑NARX预测模型的输入变量：

[0056] 假设参考序列X0表示为：

[0057] X0＝{x0(1)，x0(2)，...，x0(i)，....，x0(n)}             (4)

[0058] 假设比较序列Xk表示为：

[0059] Xk＝{xk(1)，xk(2)，...，xk(i)，...，xk(n)}               (5)

[0060] 则通过对参考序列X0和比较序列Xk进行初始化，以减少所有参数在维度上存在的

差异性，初始化后的参考序列Y0和比较序列Yk表示为：

[0061]

[0062] 假设ξi(h)为Y0与Yk在h时刻的灰关联系数，可得：

[0063]

[0064] 式中，ρ为分辨系数，常取ρ＝0.5。

[0065] Yk与Y0的灰色关联度ζi为：
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[0066]

[0067] 式中，i＝1，2，，...，n，h＝1，2，...，N。

[0068] 通过上述过程计算求得灰色关联度后，根据指定阈值的方法能确定比较序列Xk。

[0069] (3)采用C‑C法确定嵌入维数和时间延迟，经计算，最后确定τ＝3和m＝8，利用上述

结果通过相空间重构确定训练样本集为{(xi,yi)}，xi∈RN×M,yi∈RN×1
，测试样本集为{(xt,

yt)},xt∈RN×M,yt∈RN×1。

[0070] 依据Takens定理，对于采集到的锂离子电池系统时间序列{x(i) ,i＝1 ,2,…,N}，

只要找到一个恰当的嵌入维m，使得m≥2d+1,d为混沌吸引子的关联维数，则可通过时间延

迟τ重构相空间Rm，如下式：

[0071] Y(i)＝{x(i) ,x(i+τ) ,x(i+2τ) ,…,x(i+(m‑1)τ)}，i＝1,2,3…,M   (10)

[0072] 其中：相点总数为M＝N+(m‑1)τ；Y(i)为第i个相点。

[0073] 最后的相点为：

[0074] Y(M)＝{x(M) ,x(M+τ) ,…,x(N)}                          (11)

[0075] 由此可以从一维时间序列中提取和恢复出系统固有的m维时间序列，并与原动力

系统保持胚胎一致，利用小数据量方法计算得maxλLyapunov＝0.0163>0，由此可判定电池系统

存在非线性动力学混沌特性，同时采用C‑C法确定m和τ，经计算得到τ＝3、m＝8，因此可通过

m和τ值对实验采集到的一维多变量电池系统的时间序列进行相空间重构，恢复系统固有的

多维非线性状态空间。

[0076] (4)利用x∈RN×M
，通过混沌优化算法确定KECA的全局最优核参数。

[0077] 由于径向基核函数在处理多元逼近问题上具有较好的优越性能，且具有计算简

单、配置灵活及精度高等特点，因此，选取径向基核函数为核熵成分分析的核函数，径向基

核函数如下：

[0078] K(xi,xj)＝exp(‑||xi‑xj||
2/r)                      (12)

[0079] 式中，r为核参数；||g||为求范数运算。

[0080] KECA核参数选择十分重要，为了使核参数达到全局最优，采用混沌优化算法对上

式(12)中的r值进行全局寻优，选择Logistic映射模型对核参数r进行优化，其数学模型如

下式：

[0081] zn+1＝4zn(1‑zn)                                    (13)

[0082] 设优化问题为:

[0083]

[0084] S.t:ai≤zi≤bi
[0085] 式中,f(zi)为径向基核函数回归，y为实际值，f(x)为径向基核函数回归值，zi为需

要优化的核参数变量，具体步骤如下：

[0086] 1)令k＝0,r＝0,f*＝f(0) ,c′i＝ai,d′i＝bi‑ai，任取n个初始值h0,i(h0,i∈(0,1))，

使h0,i之间相互差异不大。令 由此可得n条不同初始值的轨迹，其混沌变量为hi。
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[0087] 2)载波，利用下式(15)以载波的形式将n个hk,i变成zk,i变量，也即

[0088] zk,i＝c′i+d′ihk,i                               (15)

[0089] 3)将以上n个zk,i变量代入式(10)，进行如下的迭代搜索，

[0090] If  f(zk,i)＜f*,then  f*＝f(zk,i) ,else放弃zk,i。

[0091] 4)k＝k+1，zk+1,i＝4zk,i(1‑zk,i)；

[0092] 5)循环执行步骤2)和4)。如果在有限的循环步骤内，使f*的值维持不变，则执行下

面步骤；

[0093] 6)通过式(16)得到新的变量hk,i，再次循环执行步骤2)和4)，如果f*的值在一定循

环步骤内固定不便，则执行以下步骤7)，

[0094]

[0095] 7)令r＝r+1，利用式(17)缩小迭代搜索的范围，继续循环执行步骤2)和4)，如果f*

的值在一定循环步骤内固定不便，则再一次执行步骤7)，如此往复执行若干次，通常为6‑10

次后结束优化， 即为径向基核函数的r核参数最优值。

[0096]

[0097] (5)采用KECA方法提取x∈RN×M
的核主成分集t， 的核主成分集tt,具体步

骤如下：

[0098] 1)输入训练样本集{(xi,yi)}，xi∈RN×M,yi∈RN×1
；

[0099] 2)求解核矩阵K，同时对其进行中心化处理；

[0100] 3)求解特征值问题；

[0101] 4)求特征值对应的Renyi熵，并降幂排序，E(λ1，v1)＞E(λ2，v2)＞…＞E(λN，vN)，按
Renyi熵大小，同样，将提取到的RUL时间序列的特征值及其向量进行降幂排序；

[0102] 5)根据累积熵值贡献率>86％的原则，确定核主元个数k；

[0103] 6)选择前k个特征向量，提取KECA‑NARX预测模型的训练样本集的核主成分集t；

[0104] 7)输入测试样本集 并标准化测试样本集；

[0105] 8)计算得到核矩阵Kt，由此得到KECA‑NARX预测模型的测试样本集的核主成分集

tt。

[0106] (6)通过相空间重构重新构造训练样本集(t,y)。

[0107] (7)以核主成分集tt作为NARX输入，得到NARX预测模型的预测输出值:

[0108] NARX神经网络是具有动态反馈性的非线性自回归网络，对历史状态信息有较强的

记忆功能，其应用于锂离子电池RUL时间序列预测中能够很好反映RUL时间序列预测的时变

特性，较适合于对锂离子电池RUL时间序列预测研究。NARX模型结构如图1所示，NARX模型统

一的数学结构为：

[0109] y(t)＝f[y(t‑1) ,...,y(t‑na) ,u(t‑nk) ,...,u(t‑nk‑nb+1)]             (18)

[0110] 式中：u(t)、y(t)分别为系统的输入和输出；f为非线性函数；na,nb分别为模型输出

及输入阶次；nk为延时量。

[0111] NARX模型结构包括回归分析器及非线性估计器，其中非线性估计器包括非线性模

块及线性模块两部分，将回归分析器和NARX模型的输出之间建立了一种非线映射关系，非
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线性估计器的函数表达式为：

[0112] y＝F(u)＝LT(u‑r)+d+g(Q(u‑r))                     (19)

[0113] 式中:y为NARX神经网络的输出值；u为输入变量；L为线性模块中线性系数；LT(u‑

r)+d为线性模块的输出；d为输出偏置量；g(Q(u‑r))为非线性模块的输出；r为回归矢量的

平均值；Q为非线性子空间。

[0114] 选择小波神经网络作为非线性估计器，因此式(18)可表示为如下形式：

[0115]

[0116] 式中:asi、awi分别为比例系数和小波系数；bsi、bwi分别为比例膨胀和小波膨胀；

[0117] f(g)和g(g)均为径向函数，其表达式为：

[0118]

[0119] 选取B5电池前80组数据及利用自主试验平台锂离子电池退化状态监测到的数据，

通过相空间重构及核熵成分分析后得到的训练样本集一起作为NARX神经网络的训练集，利

用自主试验平台锂离子电池退化状态监测到的数据及相空间重构及核熵成分分析后得到

的测试集与后88组数据一起作为NARX神经网络的测试集，失效阈值为1.382A·h。

[0120] 同理，选取B6、B7电池前60组数据及利用自主试验平台锂离子电池退化状态监测

到的数据，通过相空间重构及核熵成分分析后得到的训练样本集一起作为NARX神经网络的

训练集。利用自主试验平台锂离子电池退化状态监测到的数据及相空间重构及核熵成分分

析后得到的测试集与后108组数据一起作为NARX神经网络的测试集，B6、B7电池的失效阈值

分别设置为1.4A·h、1.463A·h。图3为B5电池容量的预测结果示意图；图4为B6电池容量的

预测结果示意图；图5为B7电池容量的预测结果示意图。

[0121] 误差分析和比较；将选取的电池前80组数据和利用自主试验平台锂离子电池退化

状态监测到的数据，通过相空间重构及核熵成分分析后得到的训练样本集一起作为NARX神

经网络的训练集，利用自主试验平台锂离子电池退化状态监测到的数据及相空间重构及核

熵成分分析后得到的测试集与后88组数据一起作为NARX神经网络的测试集，获得电池的失

效阈值。

[0122] 采用平均绝对误差(M)、均方根误差(R)及平均相对误差(E)函数表达式如下：

[0123]
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[0124] 式中：Si为实测值， 为预测值，N为数据个数。

[0125] 通过表1和表2的RUL预测结果对比及容量预测误差对比，可知KECA‑NARX模型比

Elman模型的RUL预测值的均方根误差提高了近5个百分点，比KPCA‑ANFIS算法提高了近2个

百分点。

[0126] 表1B5、B6及B7电池RUL预测结果对比

[0127]

[0128] 表2B5、B6及B7电池容量预测误差对比

[0129]

[0130] 说明1)针对车用锂离子电池剩余寿命预测中信息利用不完善，对系统的主成分提

取过程中出现丢失信息的现象，建立了KECA‑NARX预测模型。通过混沌动力学特性判别，表

明锂离子电池系统具有混沌特性，采用GRA确定了KECA‑NARX模型的输入量,并对灰关联分

析后确定的输入变量进行了重构，恢复系统多维非线性状态空间，利用KECA对重构后的相

空间时间序列进行核熵成分提取，最后用非线性自回归神经网络对核熵成分进行预测。

[0131] 2)结果显示KECA‑NARX模型算法的RUL预测结果的均方根误差比Elman网络提高了

近6个百分点,比KPCA‑ANFIS算法提高了近2个百分点。表明了KECA‑NARX模型算法具有更高

的精确度，同时利用混沌优化算法可以使KECA的核参数达到全局最优，较好地避免的局部

最优，提高了模型的预测精度及实时性，同时有效克服了小样本数据对模型预测精度的影

响。

[0132] 最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照最

佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技

术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明

的权利要求范围中。

说　明　书 8/8 页

11

CN 113689039 B

11



图1

图2

图3

说　明　书　附　图 1/2 页

12

CN 113689039 B

12



图4
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