

(19) United States

(12) Patent Application Publication Barton et al.

(10) Pub. No.: US 2014/0056572 A1

Feb. 27, 2014 (43) Pub. Date:

(54) DIGITAL VIDEO RECORDING SYSTEM

Applicant: TiVo Inc., Alviso, CA (US)

Inventors: James M. Barton, Alviso, CA (US); Alan Moskowitz, Oakland, CA (US);

> Andrew Martin Goodman, Menlo Park, CA (US); Tapani Otala, San Jose, CA (US); Eric Vannier, Fremont, CA (US)

Assignee: TiVo Inc., Alviso, CA (US)

Appl. No.: 14/072,678

(22) Filed: Nov. 5, 2013

Related U.S. Application Data

Continuation of application No. 10/418,646, filed on Apr. 18, 2003, now Pat. No. 8,577,205, which is a continuation-in-part of application No. 09/827,029, filed on Apr. 5, 2001, now abandoned, which is a continuation of application No. 09/126,071, filed on Jul. 30, 1998, now Pat. No. 6,233,389.

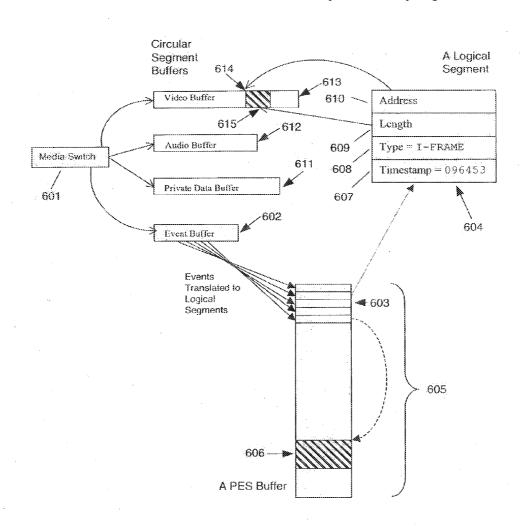
Provisional application No. 60/374,101, filed on Apr. 19, 2002.

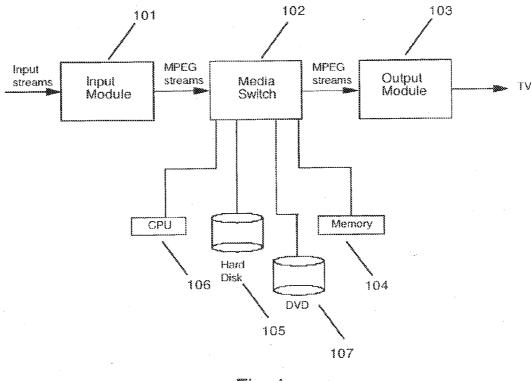
Publication Classification

(51) **Int. Cl.** H04N 9/808

(2006.01)

G11B 20/10


(2006.01)


(52) U.S. Cl.

CPC H04N 9/8081 (2013.01); G11B 20/10527

ABSTRACT (57)

A digital video recorder (DVR) system processes digital streams and associates stream information with segments of video and audio components. Segments of video and audio components from memory are sent to one or more decoders essentially simultaneously with the storing of the segments of video and audio components from the memory on one or more storage devices. The decoder converts the video and audio components into output signals.

<u>Fig. 1</u>

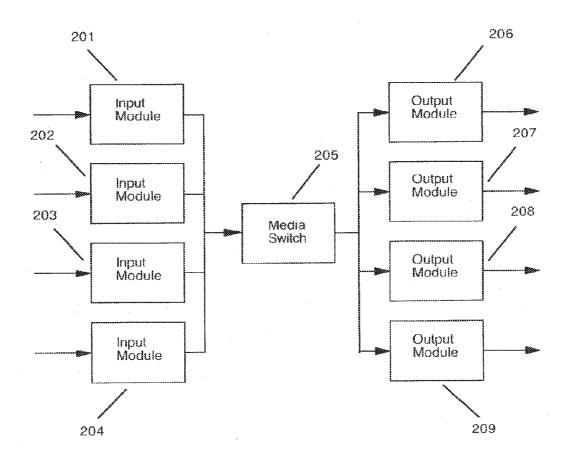
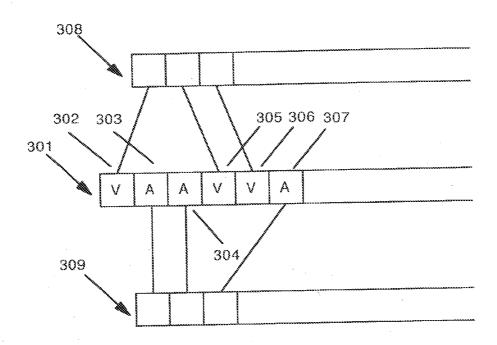



Fig. 2

<u>Fig. 3</u>

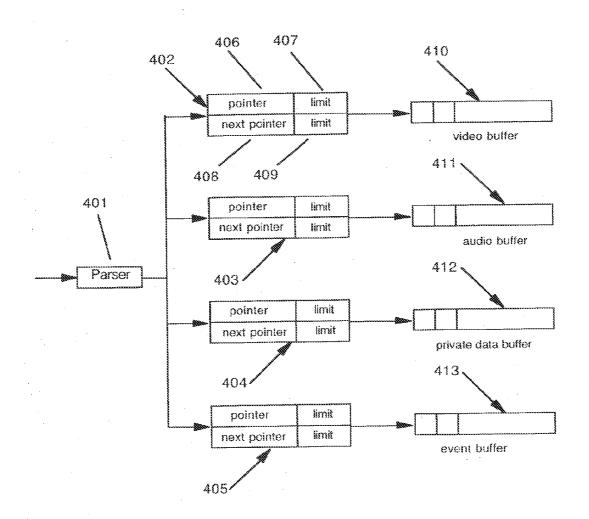
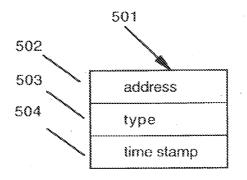



Fig. 4

<u>Fig. 5</u>

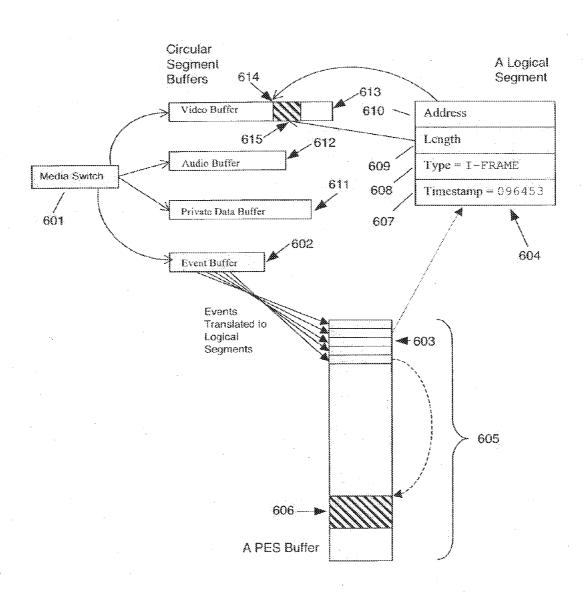


Fig. 6

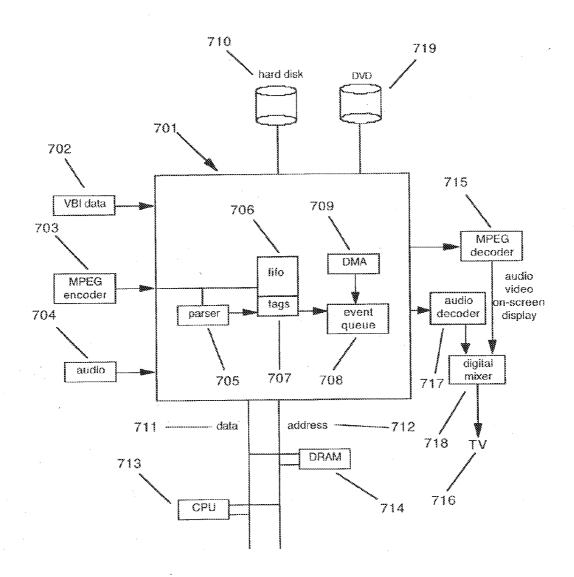


Fig. 7

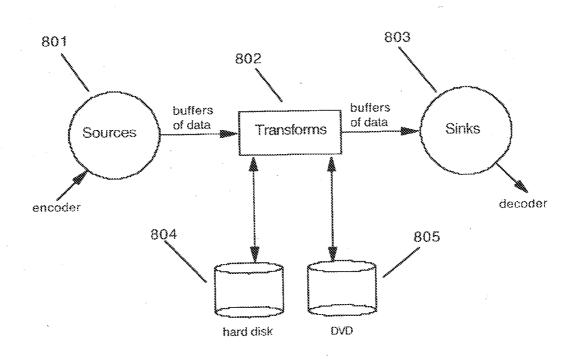


Fig. 8

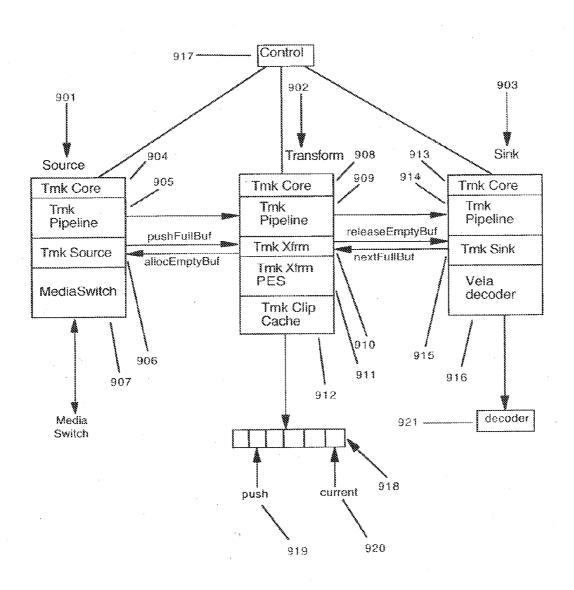


Fig. 9

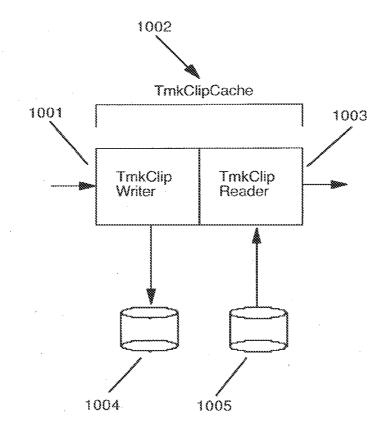


Fig. 10

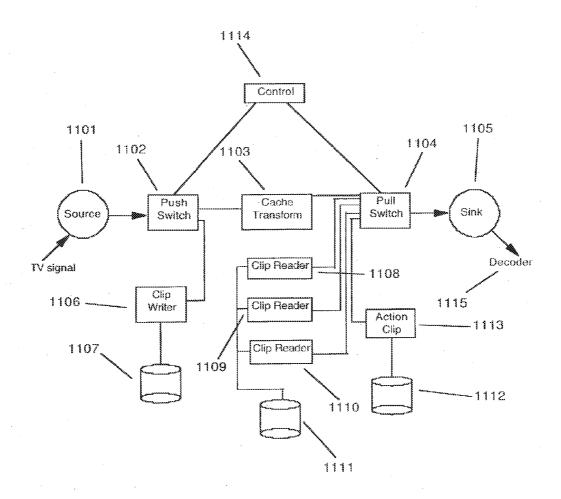


Fig. 11

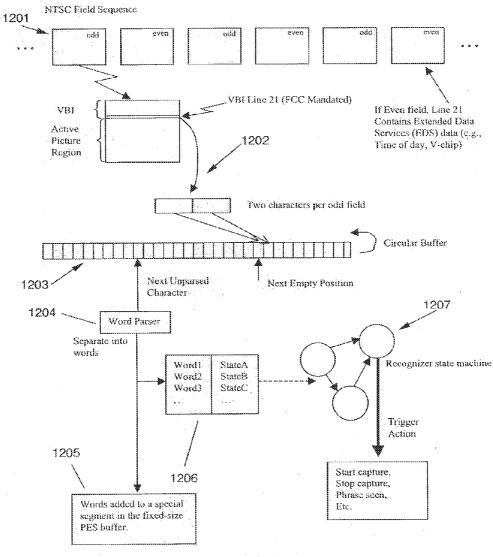


Fig. 12

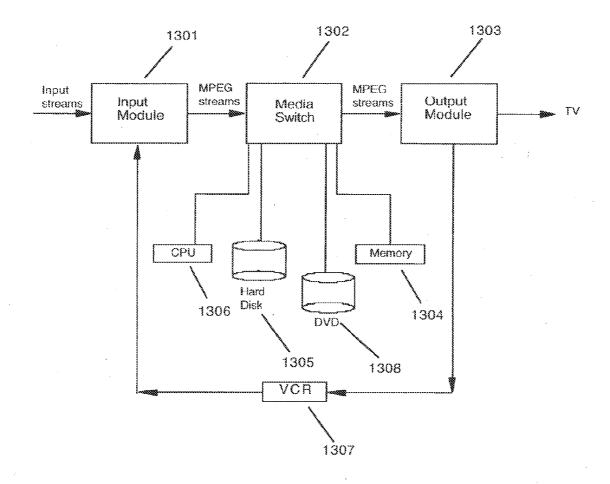


Fig. 13

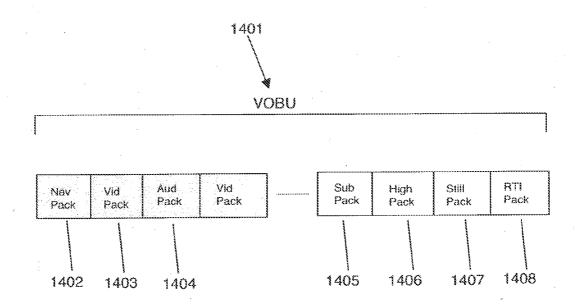
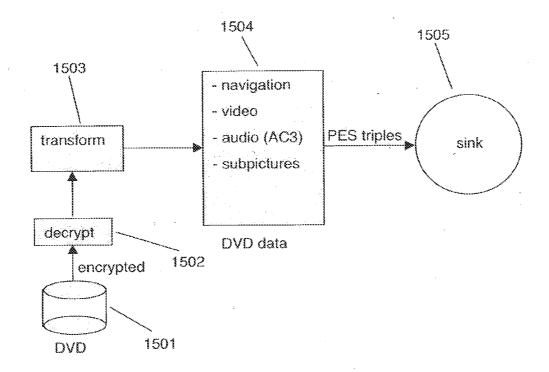
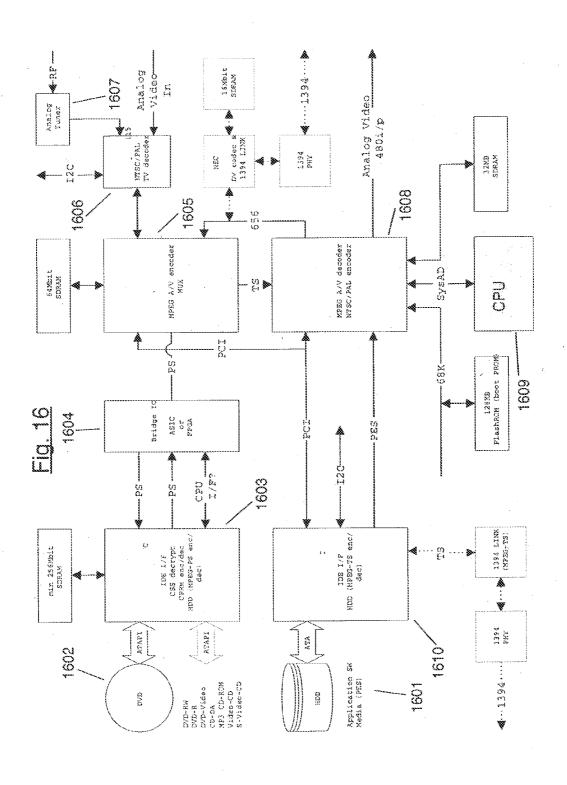




Fig. 14
Prior Art

<u>Fig. 15</u>



Fig. 17

DIGITAL VIDEO RECORDING SYSTEM

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit as a Continuation of U.S. application Ser. No. 10/418,646, filed Apr. 18, 2003, now U.S. Pat. No. 8,577,205, issued Nov. 5, 2013, which claims benefit as a Continuation-in-part of U.S. patent application Ser. No. 09/827,029, filed Apr. 5, 2001, which claims benefit as a Continuation of U.S. application Ser. No. 09/126, 071, filed Jul. 30, 1998, now U.S. Pat. No. 6,233,389. U.S. patent application Ser. No. 09/827,029 further claims benefit of U.S. Provisional Patent Application Ser. No. 60/374,101, filed Apr. 19, 2002, the entire contents of the aforementioned are hereby incorporated by reference as if fully set forth herein, under 35 U.S.C. §120. The applicant(s) hereby rescind any disclaimer of claim scope in the parent application(s) or the prosecution history thereof and advise the USPTO that the claims in this application may be broader than any claim in the parent application(s).

BACKGROUND OF THE INVENTION

[0002] 1. Technical Field

[0003] The invention relates to the time shifting of television broadcast signals. More particularly, the invention relates to the real time capture, storage, and display of television broadcast signals and the transfer and playback of said television broadcast signals from a DVD player/recorder.

[0004] 2. Description of the Prior Art

[0005] The Video Cassette Recorder (VCR) has changed the lives of television (TV) viewers throughout the world. The VCR has offered viewers the flexibility to time shift TV programs to match their lifestyles.

[0006] The viewer stores TV programs onto magnetic tape using the VCR. The VCR gives the viewer the ability to play, rewind, fast forward and pause the stored program material. These functions enable the viewer to pause the program playback whenever he desires, fast forward through unwanted program material or commercials, and to replay favorite scenes. However, a VCR cannot both capture and play back information at the same time.

[0007] One approach to solving this problem is to use several VCRs. For example, if two video tape recorders are available, it might be possible to Ping-Pong between the two. In this case, the first recorder is started at the beginning of the program of interest. If the viewer wishes to rewind the broadcast, the second recorder begins recording, while the first recorder is halted, rewound to the appropriate place, and playback initiated. However, at least a third video tape recorder is required if the viewer wishes to fast forward to some point in time after the initial rewind was requested. In this case, the third recorder starts recording the broadcast stream while the second is halted and rewound to the appropriate position. Continuing this exercise, one can quickly see that the equipment becomes unwieldy, unreliable, expensive, and hard to operate, while never supporting all desired functions. In addition, tapes are of finite length, and may potentially end at inconvenient times, drastically lowering the value of the solution.

[0008] The use of digital computer systems to solve part of this problem has been suggested. U.S. Pat. No. 5,371,551 issued to Logan et al., on 6 Dec. 1994, teaches a method for concurrent video recording and playback using a fixed length

circular buffer. It presents a microprocessor controlled broadcast and playback device. Said device compresses and temporarily stores video data onto a hard disk. However, this approach is difficult to implement because the processor requirements for keeping up with the high video rates makes the device expensive and problematic. The microprocessor must be extremely fast to keep up with the incoming and outgoing video data. Further, the circular buffer is meant to function as a delay circuit and does not take into account storing an entire program for longer than the length of the circular buffer.

[0009] More recently, digital videos recorders (DVR) have emerged in the marketplace that are based on structures beyond what was previously conceived. One example is U.S. Pat. No. 6,233,389 owned by the Applicant. There are a number of technology trends in force today that are continuing to expand the opportunities for DVR functionality. One such trend is the ability to record data onto a recordable DVD as well as a recordable CD. Currently, DVDs offer a platform that can store up to 15.9 GBs of video and audio data on a single disc. However, a typical recordable DVD can only store approximately five GBs of data.

[0010] Although video rates can be highly variable, the average five GB single-sided DVD translates to approximately two hours of video. As the capacity of recordable DVDs increases, the capability to use the media to store broadcast audio and video program material becomes more cost-effective. Even with the lower storage capacities of current recordable DVDs, recordable and pre-recorded DVDs still offer an opportunity to extend the storage and playback capabilities of a DVR.

[0011] Some VCR manufacturers have combined dual VCRs into one set-top box in order to facilitate easy transfer of content from one VCR to another. Other manufacturers have integrated DVD players into their VCR set-top boxes in an attempt to offer to two playback mediums. However, these approaches do not take advantage of the recordable DVD and further do not take advantage of storing large amounts of information on a hard disk.

[0012] It would be advantageous to provide a digital video recorder system with an integrated DVD recording device that gives a user the ability to record and play back TV broadcast programs and digital video in a set-top box. It would further be advantageous to provide a digital video recorder system with an integrated DVD recording device that integrates a recordable DVD for backing up and playing recorded program material.

SUMMARY OF THE INVENTION

[0013] The invention provides a digital video recorder (DVR) system with an integrated DVD recording device. The invention gives a user the ability to record and play back TV broadcast programs and digital video in a set-top box. In addition, the invention integrates a recordable DVD into the set-top box for backing up and playing recorded program material.

[0014] A preferred embodiment of the invention accepts television (TV) input streams in a multitude of forms, for example, analog forms such as National Television Standards Committee (NTSC) or PAL broadcast, and digital forms such as Digital Satellite System (DSS), Digital Broadcast Services (DBS), or Advanced Television Standards Committee (ATSC). Analog TV streams are converted to an Moving Pictures Experts Group (MPEG) formatted stream for inter-

nal transfer and manipulation, while pre-formatted MPEG streams are extracted from the digital TV signal and presented in a similar format to encoded analog streams.

[0015] The invention parses the resulting MPEG stream and stores the stream in temporary buffers. Events are recorded that indicate the type of component that has been found, where it is located, and when it occurred. The program logic is notified that an event has occurred and the data is extracted from the buffers. Indexes within the MPEG stream are determined and saved at predefined intervals. The indexes are stored along with the MPEG stream program material and used to create navigation packets when writing to a DVD inserted into an integrated DVD player/recorder.

[0016] The parser and event buffer decouple the CPU from having to parse the MPEG stream and from the real time nature of the data streams. This decoupling allows for slower CPU and bus speeds which translate to lower system costs.

[0017] The program material are stored on a hard disk. When a program is requested for display from the hard disk or the integrated DVD player/recorder, the program material are extracted from the hard disk or the integrated DVD player/recorder and reassembled into an MPEG stream. The MPEG stream is sent to a decoder. The decoder converts the MPEG stream into TV output signals and delivers the TV output signals to a TV receiver.

[0018] User control commands are accepted and sent through the system. These commands affect the flow of the MPEG stream and allow the user to view stored programs with at least the following special functions: reverse, fast forward, play, pause, index, fast/slow reverse play, and fast/slow play.

[0019] The invention can cache the program material being played from the integrated DVD player/recorder onto the hard disk to allow for better control of the special functions. [0020] The user can select program material stored on the hard disk to be written to a DVD inserted in the integrated DVD player/recorder. The invention writes the selected program material to the DVD using the associated stored indexes to create navigation packets. The user can also select program material stored on a DVD to be transferred to the hard disk.

[0021] The invention also provides a copyright protection scheme that provides a registration server. The user registers each DVR device that he owns with the registration server. The list of user owned DVRs is distributed to each device on the list. When a DVD is created on a DVR, the DVR's unique serial number or encrypted key is written to the DVD. When the DVD is placed in a DVR, the DVR reads the unique serial number or encrypted key and verifies that the unique serial number or encrypted key is on the user owned DVR list. If the unique serial number or encrypted key is on the list, then the DVR allows reading from the DVD. Otherwise, the DVD is locked out.

[0022] Other aspects and advantages of the invention will become apparent from the following detailed description in combination with the accompanying drawings, illustrating, by way of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] FIG. 1 is a block schematic diagram of a high level view of a preferred embodiment of the invention according to the invention;

[0024] FIG. 2 is a block schematic diagram of a preferred embodiment of the invention using multiple input and output modules according to the invention;

[0025] FIG. 3 is a schematic diagram of an Moving Pictures Experts Group (MPEG) data stream and its video and audio components according to the invention;

[0026] FIG. 4 is a block schematic diagram of a parser and four direct memory access (DMA) input engines contained in the Media Switch according to the invention;

[0027] FIG. 5 is a schematic diagram of the components of a packetized elementary stream (PES) buffer according to the invention:

[0028] FIG. 6 is a schematic diagram of the construction of a PES buffer from the parsed components in the Media Switch output circular buffers;

[0029] FiG. 7 is a block schematic diagram of the Media Switch and the various components that it communicates with according to the invention;

[0030] FIG. 8 is a block schematic diagram of a high level view of the program logic according to the invention;

[0031] FIG. 9 is a block schematic diagram of a class hierarchy of the program logic according to the invention;

[0032] FIG. 10 is a block schematic diagram of a preferred embodiment of the clip cache component of the invention according to the invention;

[0033] FIG. 11 is a block schematic diagram of a preferred embodiment of the invention that emulates a broadcast studio video mixer according to the invention;

[0034] FIG. 12 is a block schematic diagram of a closed caption parser according to the invention;

[0035] FIG. 13 is a block schematic diagram of a high level view of a preferred embodiment of the invention utilizing a VCR as an integral component of the invention according to the invention;

[0036] FIG. 14 is a block schematic diagram of an MPEG standard Video Object Unit (VOBU) layout;

[0037] FIG. 15 is a block schematic diagram of a DVD interface with the invention's transform and sink architecture according to the invention;

[0038] FIG. 16 is a block schematic diagram of an exemplary hardware implementation of a hard disk based digital video recorder with an integrated DVD player/recorder according to the invention; and

[0039] FIG. 17 is a block schematic diagram of a digital video recorder DVD copyright protection scheme according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0040] The invention is embodied in a digital video recorder system with an integrated DVD recording device. A system according to the invention gives a user the ability to record and play back TV broadcast programs and digital video in a set-top box. The invention additionally integrates a recordable DVD into the set-top box for backing up, transferring, and playing recorded program material.

[0041] Referring to FIG. 1, a preferred embodiment of the invention has an Input Section 101, Media Switch 102, and an Output Section 103. The Input Section 101 takes television (TV) input streams in a multitude of forms, for example, National Television Standards Committee (NTSC) or PAL broadcast, and digital forms such as Digital Satellite System (DSS), Digital Broadcast Services (DBS), or Advanced Television Standards Committee (ATSC). DBS, DSS and ATSC are based on standards called Moving Pictures Experts Group 2 (MPEG2) and MPEG2 Transport. MPEG2 Transport is a standard for formatting the digital data stream from the TV source transmitter so that a TV receiver can disassemble the

input stream to find programs in the multiplexed signal. The Input Section 101 produces MPEG streams. An MPEG2 transport multiplex supports multiple programs in the same broadcast channel, with multiple video and audio feeds and private data. The Input Section 101 tunes the channel to a particular program, extracts a specific MPEG program out of it, and feeds it to the rest of the system. Analog TV signals are encoded into a similar MPEG format using separate video and audio encoders, such that the remainder of the system is unaware of how the signal was obtained. Information may be modulated into the Vertical Blanking Interval (VBI) of the analog TV signal in a number of standard ways; for example, the North American Broadcast Teletext Standard (NABTS) may be used to modulate information onto lines 10 through 20 of an NTSC signal, while the FCC mandates the use of line 21 for Closed Caption (CC) and Extended Data Services (EDS). Such signals are decoded by the input section and passed to the other sections as if they were delivered via an MPEG2 private data channel.

[0042] The Media Switch 102 mediates between a microprocessor CPU 106, hard disk or storage device 105, DVD player/recorder 107, and memory 104. Input streams are converted to an MPEG stream and sent to the Media Switch 102. The Media Switch 102 buffers the MPEG stream into memory. It then performs two operations if the user is watching real time TV: the stream is sent to the Output Section 103 and it is written simultaneously to the hard disk or storage device 105.

[0043] The Output Section 103 takes MPEG streams as input and produces an analog TV signal according to the NTSC, PAL, or other required TV standards. The Output Section 103 can also take MPEG streams as input and produce a digital signal that is compatible with digital monitors. The Output Section 103 contains an MPEG decoder, On-Screen Display (OSD) generator, analog TV encoder and audio logic. The OSD generator allows the program logic to supply images which will be overlaid on top of the resulting analog TV signal. Additionally, the Output Section can modulate information supplied by the program logic onto the VBI of the output signal in a number of standard formats, including NABTS, CC and EDS.

[0044] The Media Switch 102 allows a user to playback program material stored on the hard disk 105 and also stored on a DVD inserted into the DVD player/recorder 107. The user can transfer program material between the hard disk 105 and the DVD player/recorder 107. The DVD player/recorder 107 records program material stored on the hard disk 105 onto a recordable DVD. The Media Switch 102 also transfers program material from the DVD player/recorder 107 onto the hard disk 105.

[0045] With respect to FIG. 2, the invention easily expands to accommodate multiple Input Sections (tuners) 201, 202, 203, 204, each can be tuned to different types of input. Multiple Output Modules (decoders) 206, 207, 208, 209 are added as well. Special effects such as picture in a picture can be implemented with multiple decoders. The Media Switch 205 records one program while the user is watching another. This means that a stream can be extracted off the disk while another stream is being stored onto the disk.

[0046] Referring to FIG. 3, the incoming MPEG stream 301 has interleaved video 302, 305, 306 and audio 303, 304, 307 segments. These elements must be separated and recombined to create separate video 308 and audio 309 streams or buffers. This is necessary because separate decoders are used

to convert MPEG elements back into audio or video analog components. Such separate delivery requires that time sequence information be generated so that the decoders may be properly synchronized for accurate playback of the signal. [0047] The Media Switch enables the program logic to associate proper time sequence information with each segment, possibly embedding it directly into the stream. The time sequence information for each segment is called a time stamp. These time stamps are monotonically increasing and start at zero each time the system boots up. This allows the invention to find any particular spot in any particular video segment. For example, if the system needs to read five seconds into an incoming contiguous video stream that is being cached, the system simply has to start reading forward into the stream and look for the appropriate time stamp.

[0048] A binary search can be performed on a stored file to index into a stream. Each stream is stored as a sequence of fixed-size segments enabling fast binary searches because of the uniform timestamping. If the user wants to start in the middle of the program, the system performs a binary search of the stored segments until it finds the appropriate spot, obtaining the desired results with a minimal amount of information. If the signal were instead stored as an MPEG stream, it would be necessary to linearly parse the stream from the beginning to find the desired location.

[0049] With respect to FIG. 4, the Media Switch contains four input Direct Memory Access (DMA) engines 402, 403, 404, 405 each DMA engine has an associated buffer 410, 411, 412, 413. Conceptually, each DMA engine has a pointer 406, a limit for that pointer 407, a next pointer 408, and a limit for the next pointer 409. Each DMA engine is dedicated to a particular type of information, for example, video 402, audio 403, and parsed events 405. The buffers 410, 411, 412, 413 are circular and collect the specific information. The DMA engine increments the pointer 406 into the associated buffer until it reaches the limit 407 and then loads the next pointer 408 and limit 409. Setting the pointer 406 and next pointer 408 to the same value, along with the corresponding limit value creates a circular buffer. The next pointer 408 can be set to a different address to provide vector DMA.

[0050] The input stream flows through a parser 401. The parser 401 parses the stream looking for MPEG distinguished events indicating the start of video, audio or private data segments. For example, when the parser 401 finds a video event, it directs the stream to the video DMA engine 402. The parser 401 buffers up data and DMAs it into the video buffer 410 through the video DMA engine 402. At the same time, the parser 401 directs an event to the event DMA engine 405 which generates an event into the event buffer 413. When the parser 401 sees an audio event, it redirects the byte stream to the audio DMA engine 403 and generates an event into the event buffer 413. Similarly, when the parser 401 sees a private data event, it directs the byte stream to the private data DMA engine 404 and directs an event to the event buffer 413. The Media Switch notifies the program logic via an interrupt mechanism when events are placed in the event buffer.

[0051] Referring to FIGS. 4 and 5, the event buffer 413 is filled by the parser 401 with events. Each event 501 in the event buffer has an offset 502, event type 503, and time stamp field 504. The parser 401 provides the type and offset of each event as it is placed into the buffer. For example, when an audio event occurs, the event type field is set to an audio event and the offset indicates the location in the audio buffer 411. The program logic knows where the audio buffer 411 starts

and adds the offset to find the event in the stream. The address offset 502 tells the program logic where the next event occurred, but not where it ended. The previous event is cached so the end of the current event can be found as well as the length of the segment.

[0052] With respect to FIGS. 5 and 6, the program logic reads accumulated events in the event buffer 602 when it is interrupted by the Media Switch 601. From these events the program logic generates a sequence of logical segments 603 which correspond to the parsed MPEG segments 615. The program logic converts the offset 502 into the actual address 610 of each segment, and records the event length 609 using the last cached event. If the stream was produced by encoding an analog signal, it will not contain Program Time Stamp (PTS) values, which are used by the decoders to properly present the resulting output. Thus, the program logic uses the generated time stamp 504 to calculate a simulated PTS for each segment and places that into the logical segment timestamp 607. In the case of a digital TV stream, PTS values are already encoded in the stream. The program logic extracts this information and places it in the logical segment timestamp 607.

[0053] The program logic continues collecting logical segments 603 until it reaches the fixed buffer size. When this occurs, the program logic generates a new buffer, called a Packetized Elementary Stream (PES) 605 buffer containing these logical segments 603 in order, plus ancillary control information. Each logical segment points 604 directly to the circular buffer, e.g., the video buffer 613, filled by the Media Switch 601. This new buffer is then passed to other logic components, which may further process the stream in the buffer in some way, such as presenting it for decoding or writing it to the storage media. Thus, the MPEG data is not copied from one location in memory to another by the processor. This results in a more cost effective design since lower memory bandwidth and processor bandwidth is required.

[0054] A unique feature of the MPEG stream transformation into PES buffers is that the data associated with logical segments need not be present in the buffer itself, as presented above. When a PES buffer is written to storage, these logical segments are written to the storage medium in the logical order in which they appear. This has the effect of gathering components of the stream, whether they be in the video, audio or private data circular buffers, into a single linear buffer of stream data on the storage medium. The buffer is read back from the storage medium with a single transfer from the storage media, and the logical segment information is updated to correspond with the actual locations in the buffer 606. Higher level program logic is unaware of this transformation, since it handles only the logical segments, thus stream data is easily managed without requiring that the data ever be copied between locations in DRAM by the CPU.

[0055] A unique aspect of the Media Switch is the ability to handle high data rates effectively and inexpensively. It performs the functions of taking video and audio data in, sending video and audio data to disk or DVD and extracting video and audio data from the disk or DVD on a low cost platform. Generally, the Media Switch runs asynchronously and autonomously with the microprocessor CPU, using its DMA capabilities to move large quantities of information with minimal intervention by the CPU. [0056] Referring to FIG. 7, the input side of the Media Switch 701 is connected to an MPEG encoder 703. There are also circuits specific to MPEG audio 704 and vertical blank-

ing interval (VBI) data 702 feeding into the Media Switch 701. If a digital TV signal is being processed instead, the MPEG encoder 703 is replaced with an MPEG2 Transport Demultiplexor, and the MPEG audio encoder 704 and VBI decoder 702 are deleted. The demultiplexor multiplexes the extracted audio, video and private data channel streams through the video input Media Switch port.

[0057] The parser 705 parses the input data stream from the MPEG encoder 703, audio encoder 704 and VBI decoder 702, or from the transport demultiplexor in the case of a digital TV stream. The parser 705 detects the beginning of all of the important events in a video or audio stream, the start of all of the frames, the start of sequence headers—all of the pieces of information that the program logic needs to know about in order to both properly play back and perform special effects on the stream, e.g. fast forward, reverse, play, pause, fast/slow play, indexing, and fast/slow reverse play.

[0058] The parser 705 places tags 707 into the FIFO 706 when it identifies video or audio segments, or is given private data. The DMA 709 controls when these tags are taken out. The tags 707 and the DMA addresses of the segments are placed into the event queue 708. The frame type information, whether it is a start of a video I-frame, video B-frame, video P-frame, video PES, audio PES, a sequence header, an audio frame, or private data packet, is placed into the event queue 708 along with the offset in the related circular buffer where the piece of information was placed. The program logic operating in the CPU 713 examines events in the circular buffer after it is transferred to the DRAM 714.

[0059] The Media Switch 701 has a data bus 711 that connects to the CPU 713 and DRAM 714. An address bus 712 is also shared between the Media Switch 701, CPU 713, and DRAM 714. A hard disk or storage device 710 is connected to one of the ports of the Media Switch 701. A DVD player/recorder 719 is also connected to one of the ports of the Media Switch 701. The Media Switch 701 outputs streams to an MPEG video decoder 715 and a separate audio decoder 717. The audio decoder 717 signals contain audio cues generated by the system in response to the user's commands on a remote control or other internal events. The decoded audio output from the MPEG decoder is digitally mixed 718 with the separate audio signal. The resulting signals contain video, audio, and on-screen displays and are sent to the TV 716.

[0060] The Media Switch 701 takes in 8-bit data and sends it to the disk, while at the same time extracts another stream of data off of the disk and sends it to the MPEG decoder 715. All of the DMA engines described above can be working at the same time. The Media Switch 701 can be implemented in hardware using a Field Programmable Gate Array (FPGA), ASIC, or discrete logic.

[0061] Rather than having to parse through an immense data stream looking for the start of where each frame would be, the program logic only has to look at the circular event buffer in DRAM 714 and it can tell where the start of each frame is and the frame type. This approach saves a large amount of CPU power, keeping the real time requirements of the CPU 713 small. The CPU 713 does not have to be very fast at any point in time. The Media Switch 701 gives the CPU 713 as much time as possible to complete tasks. The parsing mechanism 705 and event queue 708 decouple the CPU 713 from parsing the audio, video, and buffers and the real time nature of the streams, which allows for lower costs. It also allows the use of a bus structure in a CPU environment that

operates at a much lower clock rate with much cheaper memory than would be required otherwise.

[0062] The CPU 713 has the ability to queue up one DMA transfer and can set up the next DMA transfer at its leisure. This gives the CPU 713 large time intervals within which it can service the DMA controller 709. The CPU 713 may respond to a DMA interrupt within a larger time window because of the large latency allowed. MPEG streams, whether extracted from an MPEG2 Transport or encoded from an analog TV signal, are typically encoded using a technique called Variable Bit Rate encoding (VBR). This technique varies the amount of data required to represent a sequence of images by the amount of movement between those images. This technique can greatly reduce the required bandwidth for a signal, however sequences with rapid movement (such as a basketball game) may be encoded with much greater bandwidth requirements. For example, the Hughes DirecTV satellite system encodes signals with anywhere from 1 to 10 Mb/s of required bandwidth, varying from frame to frame. It would be difficult for any computer system to keep up with such rapidly varying data rates without this structure.

[0063] The parser 705 parses the output from the DVD player 719. The parser 705 can parse the DVD output to the hard disk 710, which allows the DVD output to be buffered. The buffering allows DVD events to be recognized (described below) which allows the system to perform special effects on the DVD output stream. The DVD output can also be sent through the same route as live input streams without the having to cache DVD output onto the hard disk 710, thus bypassing any copyright concerns.

[0064] The DVD output can also be from a DVD prerecorded by the invention containing pre-parsed information that allows the invention to perform special effects without caching content onto the hard disk 710 and display program information (e.g., program title, actor's names, genre, program description, etc.).

[0065] Referring to FIG. 14, DVD-video and DVD-audio information is laid out on the DVD in Video Object Units (VOBU). A VOBU for a DVD-video format can have a navigation packet 1402, one or more video packets 1403, one or more audio packets 1404, and one or more subpicture packets 1405. DVD-audio formats use the highlight packets 1406, still packets 1407, and RT text packets 1408. A VOBU does not always contain video.

[0066] Navigation packets 1402 contain information that determines how the physical data is accessed. The video 1403 and audio 1404 packets carry the video and audio content in recording order. Subpicture information 1405 overlays the video for subtitles, captions, menus, etc.

[0067] The video VOBUs are compliant with the MPEG program stream standard. VOBUs that contain video are organized as an MPEG group of pictures (GOP). This means that the parser 705 receives the same information format from the DVD player 719 as it does from the MPEG encoder 703.

[0068] With respect to FIG. 8, the program logic within the CPU has three conceptual components: sources 801, transforms 802, and sinks 803. The sources 801 produce buffers of data. Transforms 802 process buffers of data and sinks 803 consume buffers of data. A transform is responsible for allocating and queuing the buffers of data on which it will operate. Buffers are allocated as if "empty" to sources of data, which give them back "full". The buffers are then queued and given to sinks as "full", and the sink will return the buffer "empty".

[0069] A source 801 accepts data from encoders, e.g., a digital satellite receiver. It acquires buffers for this data from the downstream transform, packages the data into a buffer, then pushes the buffer down the pipeline as described above. The source object 801 does not know anything about the rest of the system. The sink 803 consumes buffers, taking a buffer from the upstream transform, sending the data to the decoder, and then releasing the buffer for reuse.

[0070] There are two types of transforms 802 used: spatial and temporal. Spatial transforms are transforms that perform, for example, an image convolution or compression/decompression on the buffered data that is passing through. Temporal transforms are used when there is no time relation that is expressible between buffers going in and buffers coming out of a system. Such a transform writes the buffer to a file 804 on the storage medium. The buffer is pulled out at a later time, sent down the pipeline, and properly sequenced within the stream.

[0071] The transform 802 is used for writing buffers to a recordable DVD in the DVD player/recorder 805. Sequenced buffers are written to the recordable DVD in several formats: a standard DVD format containing periodic navigation packets that allow the DVD to be played by any DVD player; and/or a custom format that the invention understands which contains information needed for program information display and special effects.

[0072] The system must create navigation packs when writing to a DVD. When recording a show from any source the system can create index marks which are needed for the navigation pack. The index marks are pointers to frames indexed at predefined time intervals in the program material and are stored as overhead with the program material. Later on, when the user selects program material to be written from the hard drive to a DVD, the navigation data already exists to set up the navigation pack data for recording. The indexes can also be created on-the-fly when the program material is being read from the hard drive and written to the DVD. Further, navigation packets can be arbitrarily placed within a program material stream and stored in a VOBU on the DVD.

[0073] Transform 802 also pulls buffers from the DVD player/recorder 805 when playing a DVD. The buffers are identified and sent down the pipeline in the same manner as when buffers are pulled from files on the storage medium 804. [0074] With respect to FIG. 15, DVD 1501 acts as a source to DVD transform 1503. Encrypted data stream from the DVD 1501 is decrypted 1502 before being routed to the DVD transform 1503. Buffers of data are sent to the DVD transform 1503.

[0075] The DVD transform 1503 receives data that contains navigation, video, audio, and subpicture information 1504 and transforms the data into PES triples. The PES triples are sent to the sink 1505. The sink 1505 operates as described throughout.

[0076] DVD data can be prefetched from the DVD 1501 before processing through the system to make up for DVD latencies. For special effects, the system looks at GOP frames. In fast forward (3×), the system jumps to the next frame using the GOP info. For faster speeds, the system needs to scan ahead for the GOP frames. This method is needed when the program material is not allowed to touch the hard disk.

[0077] Otherwise, data can be buffered on the hard disk. The data gets decrypted and sent through the transform 1503 and stored on the hard disk. If there is a problem (such as copyright issues) with the program material being on the hard

disk in raw form, then the system can store the data on the hard disk after it runs the data through the encrypter, thereby preserving the copy protection of the data. Data are decrypted before sending to the sink 1505.

[0078] Referring to FIG. 9, a C++ class hierarchy derivation of the program logic is shown. The TiVo Media Kernel (Tmk) 904, 908, 913 mediates with the operating system kernel. The kernel provides operations such as: memory allocation, synchronization, and threading. The TmkCore 904, 908, 913 structures memory taken from the media kernel as an object. It provides operators, new and delete, for constructing and deconstructing the object. Each object (source 901, transform 902, and sink 903) is multi-threaded by definition and can run in parallel.

[0079] The TmkPipeline class 905, 909, 914 is responsible for flow control through the system. The pipelines point to the next pipeline in the flow from source 901 to sink 903. To pause the pipeline, for example, an event called "pause" is sent to the first object in the pipeline. The event is relayed on to the next object and so on down the pipeline. This all happens asynchronously to the data going through the pipeline. Thus, similar to applications such as telephony, control of the flow of MPEG streams is asynchronous and separate from the streams themselves. This allows for a simple logic design that is at the same time powerful enough to support the features described previously, including pause, rewind, fast forward and others. In addition, this structure allows fast and efficient switching between stream sources, since buffered data can be simply discarded and decoders reset using a single event, after which data from the new stream will pass down the pipeline. Such a capability is needed, for example, when switching the channel being captured by the input section, or when switching between a live signal from the input section and a stored stream.

[0080] The source object 901 is a TmkSource 906 and the transform object 902 is a TmkXfrm 910. These are intermediate classes that define standard behaviors for the classes in the pipeline. Conceptually, they handshake buffers down the pipeline. The source object 901 takes data out of a physical data source, such as the Media Switch, and places it into a PES buffer. To obtain the buffer, the source object 901 asks the down stream object in his pipeline for a buffer (allocEmptyBuf). The source object 901 is blocked until there is sufficient memory. This means that the pipeline is self-regulating; it has automatic flow control. When the source object 901 has filled up the buffer, it hands it back to the transform 902 through the pushFullBuf function.

[0081] The sink 903 is flow controlled as well. It calls nextFullBuf which tells the transform 902 that it is ready for the next filled buffer. This operation can block the sink 903 until a buffer is ready. When the sink 903 is finished with a buffer (i.e., it has consumed the data in the buffer) it calls releaseEmptyBuf. ReleaseEmptyBuf gives the buffer back to the transform 902. The transform 902 can then hand that buffer, for example, back to the source object 901 to fill up again. In addition to the automatic flow-control benefit of this method, it also provides for limiting the amount of memory dedicated to buffers by allowing enforcement of a fixed allocation of buffers by a transform. This is an important feature in achieving a cost-effective limited DRAM environment.

[0082] The MediaSwitch class 909 calls the allocEmpty-Buf method of the TmkClipCache 912 object and receives a PES buffer from it. It then goes out to the circular buffers in the Media Switch hardware and generates PES buffers. The

MediaSwitch class **909** fills the buffer up and pushes it back to the TmkClipCache **912** object.

[0083] The TmkClipCache 912 maintains a cache file 918 on a storage medium. It also maintains two pointers into this cache: a push pointer 919 that shows where the next buffer coming from the source 901 is inserted; and a current pointer 920 which points to the current buffer used.

[0084] The buffer that is pointed to by the current pointer is handed to the Vela decoder class 916. The Vela decoder class 916 talks to the decoder 921 in the hardware. The decoder 921 produces a decoded TV signal that is subsequently encoded into an analog TV signal in NTSC, PAL or other analog format. When the Vela decoder class 916 is fmished with the buffer it calls releaseEmptyBuf.

[0085] The structure of the classes makes the system easy to test and debug. Each level can be tested separately to make sure it performs in the appropriate manner, and the classes may be gradually aggregated to achieve the desired functionality while retaining the ability to effectively test each object. [0086] The control object 917 accepts commands from the user and sends events into the pipeline to control what the pipeline is doing. For example, if the user has a remote control and is watching TV, the user presses pause and the control object 917 sends an event to the sink 903, that tells it pause. The sink 903 stops asking for new buffers. The current pointer 920 stays where it is at. The sink 903 starts taking buffers out again when it receives another event that tells it to play. The system is in perfect synchronization; it starts from the frame that it stopped at.

[0087] The remote control may also have a fast forward key. When the fast forward key is pressed, the control object 917 sends an event to the transform 902, that tells it to move forward two seconds. The transform 902 finds that the two second time span requires it to move forward three buffers. It then issues a reset event to the downstream pipeline, so that any queued data or state that may be present in the hardware decoders is flushed. This is a critical step, since the structure of MPEG streams requires maintenance of state across multiple frames of data, and that state will be rendered invalid by repositioning the pointer. It then moves the current pointer 920 forward three buffers. The next time the sink 903 calls nextFullBuf it gets the new current buffer. The same method works for fast reverse in that the transform 902 moves the current pointer 920 backwards.

[0088] A system clock reference resides in the decoder. The system clock reference is sped up for fast play or slowed down for slow play. The sink simply asks for full buffers faster or slower, depending on the clock speed.

[0089] With respect to FIG. 10, two other objects derived from the TmkXfrm class are placed in the pipeline for disk access. One is called TmkClipReader 1003 and the other is called TmkClipWriter 1001. Buffers come into the TmkClipWriter 1001 and are pushed to a file on a storage medium 1004. TmkClipReader 1003 asks for buffers which are taken off of a file on a storage medium 1005. A TmkClipReader 1003 provides only the allocEmptyBuf and pushFullBuf methods, while a TmkClipWriter 1001 provides only the nextFullBuf and releaseEmptyBuf methods. A TmkClipReader 1003 therefore performs the same function as the input, or "push" side of a TmkClipCache 1002, while a TmkClipWriter 1001 therefore performs the same function as the output, or "pull" side of a TmkClipCache 1002.

[0090] Referring to FIG. 11, a preferred embodiment that accomplishes multiple functions is shown. A source 1101 has

a TV signal input. The source sends data to a PushSwitch 1102 which is a transform derived from TmkXfrm. The PushSwitch 1102 has multiple outputs that can be switched by the control object 1114. This means that one part of the pipeline can be stopped and another can be started at the users whim. The user can switch to different storage devices. The PushSwitch 1102 could output to a TmkClipWriter 1106, which goes onto a storage device 1107 or write to the cache transform 1103.

[0091] An important feature of this apparatus is the ease with which it can selectively capture portions of an incoming signal under the control of program logic. Based on information such as the current time, or perhaps a specific time span, or perhaps via a remote control button press by the viewer, a TmkClipWriter 1106 may be switched on to record a portion of the signal, and switched off at some later time. This switching is typically caused by sending a "switch" event to the PushSwitch 1102 object.

[0092] An additional method for triggering selective capture is through information modulated into the VBI or placed into an MPEG private data channel Data decoded from the VBI or private data channel is passed to the program logic. The program logic examines this data to determine if the data indicates that capture of the TV signal into which it was modulated should begin. Similarly, this information may also indicate when recording should end, or another data item may be modulated into the signal indicating when the capture should end. The starting and ending indicators may be explicitly modulated into the signal or other information that is placed into the signal in a standard fashion may be used to encode this information.

[0093] With respect to FIG. 12, an example is shown which demonstrates how the program logic scans the words contained within the closed caption (CC) fields to determine starting and ending times, using particular words or phrases to trigger the capture. A stream of NTSC or PAL fields 1201 is presented. CC bytes are extracted from each odd field 1202, and entered in a circular buffer 1203 for processing by the Word Parser 1204. The Word Parser 1204 collects characters until it encounters a word boundary, usually a space, period or other delineating character. Recall from above, that the MPEG audio and video segments are collected into a series of fixed-size PES buffers. A special segment is added to each PES buffer to hold the words extracted from the CC field 1205. Thus, the CC information is preserved in time synchronization with the audio and video, and can be correctly presented to the viewer when the stream is displayed. This also allows the stored stream to be processed for CC information at the leisure of the program logic, which spreads out load, reducing cost and improving efficiency. In such a case, the words stored in the special segment are simply passed to the state table logic 1206.

[0094] During stream capture, each word is looked up in a table 1206 which indicates the action to take on recognizing that word. This action may simply change the state of the recognizer state machine 1207, or may cause the state machine 1207 to issue an action request, such as "start capture", "stop capture", "phrase seen", or other similar requests. Indeed, a recognized word or phrase may cause the pipeline to be switched; for example, to overlay a different audio track if undesirable language is used in the program.

[0095] Note that the parsing state table 1206 and recognizer state machine 1207 may be modified or changed at any time. For example, a different table and state machine may be

provided for each input channel Alternatively, these elements may be switched depending on the time of day, or because of other events.

[0096] Referring to FIG. 11, a PullSwitch is added 1104 which outputs to the sink 1105. The sink 1105 calls nextFullBuf and releaseEmptyBuf to get or return buffers from the PullSwitch 1104. The PullSwitch 1104 can have any number of inputs. One input could be an ActionClip 1113. The remote control can switch between input sources. The control object 1114 sends an event to the PullSwitch 1104, telling it to switch. It will switch from the current input source to whatever input source the control object selects.

[0097] An ActionClip class provides for sequencing a number of different stored signals in a predictable and controllable manner, possibly with the added control of viewer selection via a remote control. Thus, it appears as a derivative of a TmkXfrm object that accepts a "switch" event for switching to the next stored signal.

[0098] This allows the program logic or user to create custom sequences of video output. Any number of video segments can be lined up and combined as if the program logic or user were using a broadcast studio video mixer. TmkClip-Readers 1108, 1109, 1110 are allocated and each is hooked into the PullSwitch 1104. The PullSwitch 1104 switches between the TmkClipReaders 1108, 1109, 1110 to combine video and audio clips. Flow control is automatic because of the way the pipeline is constructed. The Push and Pull Switches are the same as video switches in a broadcast studio. [0099] The derived class and resulting objects described here may be combined in an arbitrary way to create a number of different useful configurations for storing, retrieving, switching and viewing of TV streams. For example, if multiple input and output sections are available, one input is viewed while another is stored, and a picture-in-picture window generated by the second output is used to preview previously stored streams. Such configurations represent a unique and novel application of software transformations to achieve the functionality expected of expensive, sophisticated hardware solutions within a single cost-effective

[0100] With respect to FIG. 13, a high-level system view is shown which implements a VCR backup. The Output Module 1303 sends TV signals to the VCR 1307. This allows the user to record TV programs directly on to video tape. The invention allows the user to queue up programs from disk to be recorded on to video tape and to schedule the time that the programs are sent to the VCR 1307. Title pages (EPG data) can be sent to the VCR 1307 before a program is sent. Longer programs can be scaled to fit onto smaller video tapes by speeding up the play speed or dropping frames.

[0101] The VCR 1307 output can also be routed back into the Input Module 1301. In this configuration the VCR acts as a backup system for the Media Switch 1302. Any overflow storage or lower priority programming is sent to the VCR 1307 for later retrieval.

[0102] The Input Module 1301 can decode and pass to the remainder of the system information encoded on the Vertical Blanking Interval (VBI). The Output Module 1303 can encode into the output VBI data provided by the remainder of the system. The program logic may arrange to encode identifying information of various kinds into the output signal, which will be recorded onto tape using the VCR 1307. Playing this tape back into the input allows the program logic to read back this identifying information, such that the TV sig-

nal recorded on the tape is properly handled. For example, a particular program may be recorded to tape along with information about when it was recorded, the source network, etc. When this program is played back into the Input Module, this information can be used to control storage of the signal, presentation to the viewer, etc.

[0103] One skilled in the art will readily appreciate that such a mechanism may be used to introduce various data items to the program logic which are not properly conceived of as television signals. For instance, software updates or other data may be passed to the system. The program logic receiving this data from the television stream may impose controls on how the data is handled, such as requiring certain authentication sequences and/or decrypting the embedded information according to some previously acquired key. Such a method works for normal broadcast signals as well, leading to an efficient means of providing non-TV control information and data to the program logic.

[0104] Additionally, one skilled in the art will readily appreciate that although a VCR is specifically mentioned above, any multimedia recording device (e.g., a Digital Video Disk-Random Access Memory (DVD-RAM) recorder) is easily substituted in its place.

[0105] Although the invention is described herein with reference to the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. For example, the invention can be used in the detection of gambling casino crime. The input section of the invention is connected to the casino's video surveillance system. Recorded video is cached and simultaneously output to external VCRs. The user can switch to any video feed and examine (i.e., rewind, play, slow play, fast forward, etc.) a specific segment of the recorded video while the external VCRs are being loaded with the real-time input video.

[0106] Referring to FIG. 16, an exemplary block diagram of a hardware interface between a hard disk, DVD and encoding/decoding section of the invention is shown. The system is bi-directionally connected to a hard disk 1601 via an IDE interface 1610. A DVD player/recorder 1602 is also bi-directionally connected via an IDE interface 1603.

[0107] The CPU 1609 selects the source or the destination for data flow. The hard disk 1601 stores application software and recorded program material. When the hard disk 1601 is selected for output, program material flows from the hard disk 1601 through the IDE interface 1610 to the MPEG decoder 1608. The program material can be output to the viewer from the MPEG decoder 1608.

[0108] Program information can also flow between (to and from) the hard disk 1601 and the DVD player/recorder 1602. Data can be transferred from the DVD player/recorder 1602 via the IDE interface 1603 through the bridge 1604 to the MPEG encoder 1605. The data are passed through the MPEG encoder 1605 to the hard disk 1601 via the IDE interface 1610. The pass through occurs for MPEG data in both directions (DVD player/recorder 1602 to hard disk 1601 and hard disk 1601 to DVD player/recorder 1602).

[0109] Broadcast input enters through the tuner 1607 and is decoded by the NTSC/PAL decoder 1606. The decoded input is encoded into MPEG by the MPEG encoder 1605. The MPEG output is directed to the hard disk 1601 for storage and can be passed from the hard disk 1601 to the MPEG decoder 1608 for live TV feed to the viewer.

[0110] When the DVD player/recorder 1602 is used for playback of program material, the program material path flows through the MPEG decoder 1608 to the viewer or is stored temporarily on the hard disk 1601 before being sent through the MPEG decoder 1608 to the viewer.

[0111] The application software stored on the hard disk 1601 allows the CPU 1609 to display the contents of program material stored on the hard disk 1601 and a DVD inserted into the DVD player/recorder 1602 to the user. The user has full control of program material transferred between the hard disk 1601 and the DVD player/recorder 1602 through the application software.

[0112] A system as described in U.S. patent application Ser. No. 10/339,698 entitled *Electronic Content Distribution and Exchange System*, also owned by the Applicant, can be used to enhance the invention's DVD interface. DVDs that are recorded by the invention can be created in a way that prevents the DVD from being played on other DVRs or DVD players unless the DVR or DVD player is registered to the same user.

[0113] With respect to FIG. 17, a user owns DVR1 1703 and DVR2 1704. The user registers the DVR1 1703 and DVR2 1704 serial numbers with a central registry or license database server 1702. The central registry server 1702 creates a list of the DVRs owned by the user.

[0114] DVR1 1703 and DVR2 1704 are periodically updated with program guide information from distribution servers 1701. The distribution servers 1701 notify the user's DVRs of the DVRs that the user owns by sending the list created by the central registry server 1702. In this example, DVR1 1703 is aware that the user also owns DVR2 1704 and vice versa.

[0115] When a DVD 1705 is created on DVR1 1703, for example, the DVD 1705 has DVR1's serial number or encoded key written to the DVD 1705. When the DVD 1705 is inserted into DVR2 1704 for playback, DVR2 1704 reads the serial number or encoded key and verifies that the DVD 1705 was created by a DVR that the user owns by comparing the serial number or encoded key to the registry list. If the serial number or encoded key was not from a DVR that the user owns, then access to the DVD is denied. Here, DVR2 1704 finds that the DVD 1705 was created by DVR1 1703 which is on DVR2's list of valid DVRs. DVR2 1704 then plays or reads the DVD 1705.

[0116] This approach protects the copyright holder's material by enforcing a fair use of the material that the user has recorded. The user is not able to pass recorded DVDs to other users. The user can only use his recorded DVDs for his own backing up of program material and viewing or restoring of the backed up material.

[0117] Although the invention is described herein with reference to the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. Accordingly, the invention should only be limited by the Claims included below.

1. A method for the simultaneous storage and play back of multimedia data, comprising:

receiving a digital stream that includes video and audio components;

buffering by a media switch segments of video and audio components in a memory;

associating stream information with each segment of a plurality of segments of video and audio components;

- storing by the media switch the buffered video and audio components from the memory on one or more storage devices which contain previously stored segments of video and audio components that have associated stream information, the memory separate from the one or more storage devices;
- sending by the media switch a particular segment of video and audio components from the memory to one or more decoders essentially simultaneously with the storing of the particular segment of video and audio components from the memory on the one or more storage devices;
- decoding the particular segment of video and audio components into display output signals with the one or more decoders:

receiving a control command;

- processing with at least a CPU the received control command and stream information associated with the previously stored video and audio components to send the previously stored video and audio components to the one or more decoders; and
- mediating, by the media switch, between the CPU, the one or more storage devices, and the memory, the media switch operates asynchronously from the CPU.
- 2. The method of claim 1, further comprising separating the video and audio components for storage and play back.
- 3. The method of claim 1, wherein the associated stream information includes any of:

location of I-frames, time stamps, random access information, or index information.

- **4**. The method of claim **1**, further comprising converting television signals from analog signals to digital streams and formatting the digital streams in accordance with an MPEG standard.
- **5**. The method of claim **1**, further comprising parsing at least the video components to generate associated stream information.
- **6**. The method of claim **5**, wherein the parsing is performed by the media switch.
- 7. The method of claim 1, wherein the receiving step receives television signals via a tuner.
- **8**. The method of claim **1**, wherein the receiving step receives digital streams via an input device.
- **9**. A method for simultaneous storage and play back of multimedia data, comprising:
 - accepting multimedia data including video and audio data from an input device;
 - requesting, by a source object, a buffer and filling, by the source object, the buffer with the video and audio data;
 - transferring, by a transform object, the video and audio data from the buffer to a storage device, the storage device is separate from the buffer;
 - storing the video and audio data from the buffer on the storage device;
 - controlling automatically, by the transform object, flow of the video and audio data from the at least one tuner to the storage device;
 - placing, by the transform object, a particular segment of video and audio data from the buffer into data stream buffers essentially simultaneously with the storing of the particular segment of video and audio data from the buffer on the storage device;
 - requesting, by a sink object to the transform object, for the data stream buffers that contain the particular segment of video and audio data;

- supplying, by the transform object to the sink object, the data stream buffers that contain the particular segment of video and audio data;
- outputting the particular segment of video and audio data from the data stream buffers to a decoder by the sink object, the sink object is automatically flow controlled by the transform object;
- converting with the decoder the particular segment of video and audio data into display signals;

sending the display signals for display;

- receiving control commands with a control object; and
- sending by the control object, in response to the control commands, flow command events to control flow of video and audio data through the source object, the transform object, and the sink object.
- 10. The method of claim 9, further comprising analyzing the video and audio data to generate stream information.
- 11. The method of claim 10, wherein the stream information includes any of: location of I-frames, time stamps, random access information, or index information.
- 12. The method of claim 9, wherein the source object obtains the buffer from the transform object.
- **13**. An apparatus for the simultaneous storage and play back of multimedia data, comprising:
 - a stream receiver that receives a digital stream that includes video and audio components;
 - a stream information associate that associates stream information with each segment of a plurality of segments of video and audio components;
 - a memory for buffering by a media switch segments of video and audio components;
 - one or more storage devices where the media switch stores the buffered video and audio components from the memory and which contain previously stored segments of video and audio components that have associated stream information, the memory separate from the one or more storage devices;
 - one or more decoders that receive a particular segment of video and audio components from the memory from the media switch essentially simultaneously with the media switch storing the particular segment of video and audio components from the memory on the one or more storage devices;
 - wherein the one or more decoders decode the particular segment of video and audio components into display output signals;
 - a control command receiver that receives a control command;
 - a CPU that processes the received control command and stream information associated with the previously stored video and audio components to send the previously stored video and audio components to the one or more decoders; and
 - wherein the media switch mediates between the CPU, the one or more storage devices, and the memory and wherein the media switch operates asynchronously from the CPU.
- 14. The apparatus of claim 13, further comprising a video and audio component separator that separates the video and audio components for storage and play back.
- 15. The apparatus of claim 13, wherein the associated stream information includes any of: location of I-frames, time stamps, random access information, or index information.

- 16. The apparatus of claim 13, further comprising a stream converter that converts television signals from analog signals to digital streams and formats the digital streams in accordance with an MPEG standard.
- 17. The apparatus of claim 13, further comprising a parser that parses at least the video components to generate associated stream information.
- 18. The apparatus of claim 17, wherein the parser is a component of the media switch.
- 19. The apparatus of claim 13, wherein the stream receiver comprises a tuner that receives television signals.
- 20. The apparatus of claim 13, wherein the stream receiver comprises an input device that accepts the digital streams.
- 21. An apparatus for simultaneous storage and play back of multimedia data, comprising:
- at least one input device that accepts multimedia data including video and audio data;
- a buffer granted upon a request by a source object and filled with the video and audio data by the source object;
- a storage device that is separate from the buffer and receives from a transform object the video and audio data from the buffer;
- wherein the transform object automatically controls flow of the video and audio data from the at least one tuner to the storage device;
- wherein the storage device stores the video and audio data from the buffer;
- wherein the transform object places a particular segment of video and audio data from the buffer into data stream buffers essentially simultaneously with the storage device storing the particular segment of video and audio data from the buffer;
- a sink object that requests and receives from the transform object, the data stream buffers that contain the particular segment of video and audio data;
- a decoder that receives the particular segment of video and audio data from the data stream buffers from the sink object, the sink object is automatically flow controlled by the transform object;
- wherein the decoder converts the particular segment of video and audio data into display signals;
- wherein the display signals are sent for display;
- a control object that receives control commands; and
- wherein the control object sends, in response to the control commands, flow command events to control flow of video and audio data through the source object, the transform object, and the sink object.
- 22. The apparatus of claim 21, wherein the transform object analyzes the video and audio data to generate stream information.
- 23. The apparatus of claim 22, wherein the stream information includes any of:
 - location of I-frames, time stamps, random access information, or index information.
- **24**. The apparatus of claim **21**, wherein the source object obtains the buffer from the transform object.
- 25. A non-transitory computer-readable medium storing one or more sequences of instructions for simultaneous storage and play back of multimedia data, which instructions, when executed by one or more processors, cause the one or more processors to carry out the steps of:
 - accepting multimedia data including video and audio data from an at least one input device;

- requesting, by a source object, a buffer and filling, by the source object, the buffer with the video and audio data;
- transferring, by a transform object, the video and audio data from the buffer to a storage device, the storage device is separate from the buffer;
- controlling automatically, by the transform object, flow of the video and audio data from the at least one tuner to the storage device;
- storing the video and audio data from the buffer in the storage device;
- placing, by the transform object, a particular segment of video and audio data from the buffer into data stream buffers essentially simultaneously with the storing of the particular segment of video and audio data from the buffer on the storage device;
- supplying, by the transform object to a sink object, the data stream buffers that contain the particular segment of video and audio data;
- requesting, by a sink object to the transform object, for the data stream buffers that contain the particular segment of video and audio data;
- outputting the particular segment of video and audio data from the data stream buffers to a decoder by the sink object, the sink object is automatically flow controlled by the transform object;
- converting with the decoder the particular segment of video and audio data into display signals;
- sending the display signals for display;
- receiving control commands with a control object; and
- sending by the control object, in response to the control commands, flow command events to control flow of video and audio data through the source object, the transform object, and the sink object.
- **26**. The non-transitory computer-readable medium of claim **25**, further comprising analyzing the video and audio data to generate stream information.
- 27. The non-transitory computer-readable medium of claim 26, wherein the stream information includes any of: location of I-frames, time stamps, random access information, or index information.
- 28. The non-transitory computer-readable medium of claim 25, wherein the source object obtains the buffer from the transform object.
- 29. A non-transitory computer-readable medium storing one or more sequences of instructions for simultaneous storage and play back of multimedia data, which instructions, when executed by one or more processors, cause the one or more processors to carry out the steps of:
 - receiving a digital stream that includes video and audio components:
 - buffering by a media switch segments of video and audio components in a memory;
 - associating stream information with each segment of a plurality of segments of video and audio components
 - storing by the media switch the buffered video and audio components from the memory on one or more storage devices which contain previously stored segments of video and audio components that have associated stream information, the memory separate from the one or more storage devices;
 - sending by the media switch a particular segment of video and audio components from the memory to one or more decoders essentially simultaneously with the storing of

the particular segment of video and audio components from the memory on the one or more storage devices;

decoding the particular segment of video and audio components into display output signals with the one or more decoders;

receiving a control command;

processing with at least a CPU the received control command and stream information associated with the previously stored video and audio components to send the previously stored video and audio components to the one or more decoders; and

mediating, by the media switch, between the CPU, the one or more storage devices, and the memory, the media switch operates asynchronously from the CPU.

- **30**. The non-transitory computer-readable medium of claim **29**, further comprising separating the video and audio components for storage and play back.
- 31. The non-transitory computer-readable medium of claim 29, wherein the associated stream information includes

any of: location of I-frames, time stamps, random access information, or index information.

- **32**. The non-transitory computer-readable medium of claim **29**, further comprising converting television signals from analog signals to digital streams and formatting the digital streams in accordance with an MPEG standard.
- **33**. The non-transitory computer-readable medium of claim **29**, further comprising parsing at least the video components to generate associated stream information.
- **34**. The non-transitory computer-readable medium of claim **33**, wherein the parsing is performed by the media switch.
- **35**. The non-transitory computer-readable medium of claim **29**, wherein the receiving step receives television signals via a tuner.
- **36**. The non-transitory computer-readable medium of claim **29**, wherein the receiving step receives digital streams via an input device.

* * * * *