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METHOD AND SYSTEM OF DIAGNOSING A PROCESSING SYSTEM USING
ADAPTIVE MULTIVARIATE ANALYSIS

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
[0001] The present invention relates to a method of diagnosing a processing system
using principal components analysis (PCA), and more particularly to the utilization of
an updated PCA.

DESCRIPTION OF RELATED ART

[0002] Modeling and control of material processing systems, such as in
semiconductor manufacturing, historically has been a very challenging task. Material
processing systems typically run a variety of process recipes and products, each with
unique chemical, mechanical, and electrical characteristics. Material processing
systems also undergo frequent maintenance cycles wherein key parts are cleaned or
replaced, and when periodic problems occur they are addressed with new hardware
designs. In addition, there are particular process steps which have few substrate
quality metrics directly related to their performance. Without integrated metrology,
these measurements are delayed and often not measured for every substrate. These
issues contribute to a complicated processing system that is already difficult to model
with simple tools.

[0003] One approach to capture the behavior of a processing system in a model is to
apply multivariate analysis, such as principal component analysis (PCA), to
processing system data. However, due to process system drifts as well as changes in
the trace data, a static PCA model is not sufficient to enable monitoring for a single
processing system over a long horizon. Additionally, models developed for one
processing system cannot carry over to another processing system, e.g., from one etch

process chamber to another etch process chamber of the same design.

SUMMARY OF THE INVENTION
[0004] One object of the present invention is to solve or mitigate any or all of the

above described problems, or other problems in the prior art.
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[0005] Another object of the present invention is to provide a robust PCA model that
enables monitoring for a single processing system over a long horizon.

[0006] Yet another object of the present invention is to provide a robust PCA model
that is capable of useful application to more than one processing system.

[0007] These and other objects of the present invention may be met by a method of
diagnosing a processing system using adaptive multivariate analysis in accordance
with the present invention.

[0008] According to one aspect, a method of monitoring a processing system for
processing a substrate during the course of semiconductor manufacturing is described.
The method includes: acquiring data from the processing system for a plurality of
observations, the data comprising a plurality of data parameters; constructing a
principal components analysis (PCA) model from the data, including centering
coefficients; acquiring additional data from the processing system, the additional data
having an additional observation of the plurality of data parameters; adjusting the
centering coefficients to produce updated adaptive centering coefficients for each of
the data parameters in the PCA model; applying the updated adaptive centering
coefficients to each of data parameters in the PCA model; determining at least one
statistical quantity from the additional data using the PCA model; setting a control
limit for the at least one statistical quantity; and comparing the at least one statistical
quantity to the control limit. Additionally, the method can further include:
determining scaling coefficients from the PCA model; adjusting the scaling
coefficients to produce updated adaptive scaling coefficients for each of the data
parameters in the PCA model; and applying the updated adaptive scaling coefficients
to each of the data parameters in the PCA model.

[0009] According to another aspect, in a principal components analysis (PCA) model
for monitoring a processing system for processing a substrate during the course of
semiconductor manufacturing, an improvement is described including: an adaptive
centering coefficient for each data parameter during a current observation of the given
data parameter, the adaptive centering coefficient combining an old value of the
adaptive centering coefficient and the current value of the data parameter for the
current observation, wherein the old value includes the mean value of the data
parameter during a plurality of observations preceding the current observation.
Additionally, the improvement can further include: an adaptive scaling coefficient for

each data parameter during a current observation of the given data parameter, the
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adaptive scaling coefficient comprising application of a recursive standard deviation
filter, the formula combining an old value of the adaptive scaling coefficient, the
current value of each data parameter for the current observation, and an old value of
the adaptive centering coefficient, wherein the old value of the adaptive scaling
coefficient comprises the standard deviation of the data parameter during a plurality
of observations preceding the current observation and the old value of the adaptive
centering coefficient comprises the mean value of the data parameter during a
plurality of observations preceding the current observation.

[0010] Additionally, according to another aspect, a processing system for processing
a substrate during the course of semiconductor manufacturing including: a process
tool; and a process performance monitoring system coupled to the process tool having
a plurality of sensors coupled to the process tool, and a controller coupled to the
plurality of sensors and the process tool, wherein the controller includes means for
acquiring data from the plurality of sensors for a plurality of observations, the data
including a plurality of data parameters; means for constructing a principal
components analysis (PCA) model from the data, including centering coefficients;
means for acquiring additional data from the plurality of sensors; means for adjusting
the centering coefficients to produce updated adaptive centering coefficients for each
of the data parameters; means for applying the updated adaptive centering coefficients
to each of the data parameters in the PCA model; means for determining at least one
statistical quantity from the additional data using the PCA model; means for setting a
control limit for the at least one statistical quantity; and means for comparing the at
least one statistical quantity to the control limit. Additionally, the processing system
can further include: means for determining scaling coefficients from the PCA model;
means for adjusting the scaling coefficients to produce updated adaptive scaling
coefficients for each of the data parameters in the PCA model; and means for
applying the updated adaptive scaling coefficients to each of the data parameters in
the PCA model.

[0011] According to another aspect, a process performance monitoring system to
monitor a processing system for processing a substrate during the course of
semiconductor manufacturing is described including: a plurality of sensors coupled to
the processing system; and a controller coupled to the plurality of sensors and the
processing system, wherein the controller includes means for acquiring data from the

plurality of sensors for a plurality of observations, the data having a plurality of data
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variables; means for acquiring data from the plurality of sensors for a plurality of
observations, the data comprising a plurality of data parameters; means for
constructing a principal components analysis (PCA) model from the data, including
centering coefficients; means for acquiring additional data from the plurality of
sensors; means for adjusting the centering coefficients to produce updated adaptive
centering coefficients for each of the data parameters; means for applying the updated
adaptive centering coefficients to each of the data parameters in the PCA model;
means for determining at least one statistical quantity from the additional data using
the PCA model; means for setting a control limit for the at least one statistical
quantity; and means for comparing the at least one statistical quantity to the control
limit. Additionally, the processing system can further include: means for determining
scaling coefficients from the PCA model; means for adjusting the scaling coefficients
to produce updated adaptive scaling coefficients for each of the data parameters in the
PCA model; and means for applying the updated adaptive scaling coefficients to each
of the data parameters in the PCA model.

[0012] According to another aspect, a method of monitoring a first processing system
for processing a substrate during the course of semiconductor manufacturing is
described. The method includes: acquiring data from a second processing system for
a plurality of observations, the data having a plurality of data parameters; constructing
a principal components analysis (PCA) model from the data for the second processing
system, including centering coefficients; acquiring additional data from the first
processing system, the additional data includes an additional observation of the
plurality of data parameters; adjusting the centering coefficients to produce updated
adaptive centering coefficients for each of the data parameters in the PCA model;
applying the updated adaptive centering coefficients to each of the data parameters in
the PCA model; determining at least one statistical quantity from the additional data
using the PCA model; setting a control limit for the at least one statistical quantity;
and comparing the at least one statistical quantity to the control limit. Additionally,
the method can further include: determining scaling coefficients from the PCA model;
adjusting the scaling coefficients to produce updated adaptive scaling coefficients for
each of the data parameters in the PCA model; and applying the updated adaptive
scaling coefficients to each of the data parameters in the PCA model.

[0013] According to another aspect, a method for classifying a process fault

occurring during a plurality of substrate runs in a processing system is described. The
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method includes: monitoring a plurality of data parameters from the processing
system for each substrate run within the plurality of substrate runs; identifying a fault
substrate run, within the plurality of substrate runs using multivariate analysis, in
which the process fault occurred; selecting a first substrate run preceding the fault
substrate run; calculating a first plurality of mean values for each of the plurality of
data parameters during the first substrate run; selecting a second substrate run
following the fault substrate run; calculating a second plurality of mean values for
each of the plurality of data parameters during the second substrate run; determining
the absolute value of a plurality of differences between the second plurality of mean
values and the first plurality of mean values for each of the plurality of data
parameters; calculating a plurality of standard deviations for each of the plurality of
data parameters during at least one of the first substrate run and the second substrate
run; normalizing the plurality of differences by the plurality of standard deviations for
each of the plurality of data parameters; determining the largest value of the
normalized differences; and identifying the data parameter amongst the plurality of
data parameters corresponding to the largest value of the differences.

[0014] According to another aspect, a method for classifying a process fault
occurring during a plurality of substrate runs in a processing system is described. The
method includes: monitoring a plurality of data parameters from the processing
system for each substrate run within the plurality of substrate runs; identifying a fault
substrate run, within the plurality of substrate runs using multivariate analysis, in
which the process fault occurred; selecting a first substrate run preceding the fault
substrate run; calculating a first plurality of standard deviations for each of the
plurality of data parameters during the first substrate run; selecting a second substrate
run following the fault substrate run; calculating a second plurality of standard
deviations for each of the plurality of data parameters during the second substrate run;
determining the absolute value of a plurality of differences between the second
plurality of standard deviations and the first plurality of standard deviations for each
of the plurality of data parameters; calculating a plurality of mean values for each of
the plurality of data parameters during one of the first substrate run and the second
substrate run; normalizing the plurality of differences by the plurality of mean values
for each of the plurality of data parameters; determining the largest value of the
normalized differences; and identifying the data parameter amongst the plurality of

data parameters corresponding to the largest value of the differences.
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BRIEF DESCRIPTION OF THE DRAWINGS
[0015] In the accompanying drawings,
[0016] FIG. 1 shows a material processing system according to a preferred
embodiment of the present invention;
[0017] FIG. 2 shows a material processing system according to one embodiment of
the present invention;
[0018] FIG. 3 shows a material processing system according to another embodiment
of the present invention;
[0019] FIG. 4 shows a material processing system according to a further embodiment
of the present invention;
[0020] FIG. 5 shows a material processing system according to an additional
embodiment of the present invention;
[0021] FIG. 6A presents an exemplary calculated Q-statistic using static centering
and scaling coefficients;
[0022] FIG. 6B presents an exemplary calculated Q-statistic using adaptive centering
and scaling coefficients following the first 500 substrates;
[0023] FIG. 7 presents an exemplary Q contribution plot;
[0024] FIG. 8 presents an exemplary summary statistic for two data parameters;
[0025] FIG. 9A presents an exemplary model mean movement metric plot for two
substrate ranges;
[0026] FIG. 9B presents an exemplary summary statistic for the highest values in the
movement metric plot of FIG. 9A;
[0027] FIG. 10 presents an exemplary calculated Q-statistic using static centering and
scaling coefficients applied to a second processing system;
[0028] FIG. 11 presents an exemplary calculated Q-statistic using adaptive centering
and scaling coefficients applied to a second processing system;
[0029] FIG. 12 illustrates a computer system for implementing various embodiments
of the present invention; and
[0030] FIG. 13 presents a method of monitoring a processing system according to an

embodiment of the present invention.

DETAILED DESCRIPTION OF AN EMBODIMENT
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[0031] According to an embodiment of the present invention, a material processing
system 1 is depicted in FIG. 1 that includes a process tool 10 and a process
performance monitoring system 100. The process performance monitoring system
100 includes a plurality of sensors 50 and a controller 55. Alternately, the material
processing system 1 can include a plurality of process tools 10. The sensors 50 are
coupled to the process tool 10 to measure tool data and the controller 55 is coupled to
the sensors 50 in order to receive tool data. Alternately, the controller 55 is further
coupled to process tool 10. Moreover, the controller 55 is configured to monitor the
performance of processing system 1 using the (tool) data parameters. The process
performance can, for example, include the detection of process faults.

[0032] In the illustrated embodiment depicted in FIG. 1, the material processing
system 1 utilizes a plasma for material processing. Desirably, the material processing
system 1 includes an etch chamber. Alternately, the material processing system 1
includes a photoresist coating chamber such as, for example, a photoresist spin
coating system; a photoresist patterning chamber such as, for example, an ultraviolet
(UV) lithography system; a dielectric coating chamber such as, for example, a spin-
on-glass (SOG) or spin-on-dielectric (SOD) system; a deposition chamber such as, for
example, a chemical vapor deposition (CVD) system or a physical vapor deposition
(PVD) system; a rapid thermal processing (RTP) chamber such as, for example, a
RTP system for thermal annealing; or a batch-processing vertical furnace.

[0033] According to the illustrated embodiment of the present invention depicted in
FIG. 2, the material processing system 1 includes process tool 10, substrate holder 20,
upon which a substrate 25 to be processed is affixed, gas injection system 40, and
vacuum pumping system 58. Substrate 25 can be, for example, a semiconductor
substrate, a wafer, or a liquid crystal display (LCD). Process tool 10 can be, for
example, configured to facilitate the generation of plasma in processing region 45
adjacent a surface of substrate 25, where plasma is formed via collisions between
heated electrons and an ionizable gas. An ionizable gas or mixture of gases is
introduced via gas injection system 40, and the process pressure is adjusted.
Desirably, plasma is utilized to create materials specific to a predetermined materials
process, and to aid either the deposition of material to substrate 25 or the removal of
material from the exposed surfaces of substrate 25. For example, controller 55 can be

used to control vacuum pumping system 58 and gas injection system 40.
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[0034] Substrate 25 can be, for example, transferred into and out of process tool 10
through a slot valve (not shown) and chamber feed-through (not shown) via robotic
substrate transfer system where it is received by substrate lift pins (not shown) housed
within substrate holder 20 and mechanically translated by devices housed therein.
Once substrate 25 is received from substrate transfer system, it is lowered to an upper
surface of substrate holder 20.

[0035] For example, substrate 25 can be affixed to the substrate holder 20 via an
electrostatic clamping system 28. Furthermore, substrate holder 20 can further
include a cooling system including a re-circulating coolant flow that receives heat
from substrate holder 20 and transfers heat to a heat exchanger system (not shown), or
when heating, transfers heat from the heat exchanger system. Moreover, gas can be
delivered to the back-side of the substrate via a backside gas system 26 to improve the
gas-gap thermal conductance between substrate 25 and substrate holder 20. Such a
system can be utilized when temperature control of the substrate is required at
elevated or reduced temperatures. For example, temperature control of the substrate
can be useful at temperatures in excess of the steady-state temperature achieved due
to a balance of the heat flux delivered to the substrate 25 from the plasma and the heat
flux removed from substrate 25 by conduction to the substrate holder 20. In other
embodiments, heating elements, such as resistive heating elements, or thermo-electric
heaters/coolers can be included.

[0036] As shown in FIG. 2, substrate holder 20 includes an electrode through which
RF power is coupled to plasma in processing region 45. For example, substrate
holder 20 can be electrically biased at an RF voltage via the transmission of RF power
from RF generator 30 through impedance match network 32 to substrate holder 20.
The RF bias can serve to heat electrons to form and maintain plasma. In this
configuration, the system can operate as a reactive ion etch (RIE) reactor, where the
chamber and upper gas injection electrode serve as ground surfaces. A typical
frequency for the RF bias can range from 1 MHz to 100 MHz and is preferably 13.56
MHz.

[0037] Alternately, RF power can be applied to the substrate holder electrode at
multiple frequencies. Furthermore, impedance match network 32 serves to maximize

the transfer of RF power to plasma in processing chamber 10 by minimizing the
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reflected power. Various match network topologies (e.g., L-type, m-type, T-type, etc.)
and automatic control methods can be utilized.

[0038] With continuing reference to FIG. 2, process gas can be, for example,
introduced to processing region 45 through gas injection system 40. Process gas can,
for example, include a mixture of gases such as argon, CF4 and O,, or argon, C4Fs and
O for oxide etch applications, or other chemistries such as, for example,
02/CO/Ar/C4F3, 0o/CO/Ar/CsFs, Oo/CO/Ar/C4Fg, 0o/ Ar/CsFes, No/H,. Gas injection
system 40 includes a showerhead, where process gas is supplied from a gas delivery
system (not shown) to the processing region 45 through a gas injection plenum (not
shown), a series of baffle plates (not shown) and a multi-orifice showerhead gas
injection plate (not shown).

[0039] Vacuum pump system 58 can, for example, include a turbo-molecular vacuum
pump (TMP) capable of a pumping speed up to 5000 liters per second (and greater)
and a gate valve for throttling the chamber pressure. In conventional plasma
processing devices utilized for dry plasma etch, a 1000 to 3000 liter per second TMP
is generally employed. TMPs are useful for low pressure processing, typically less
than 50 mTorr. At higher pressures, the TMP pumping speed falls off dramatically.
For high pressure processing (i.e., greater than 100 mTorr), a mechanical booster
pump and dry roughing pump can be used. Furthermore, a device for monitoring
chamber pressure (not shown) is coupled to the process chamber 16. The pressure
measuring device can be, for example, a Type 628B Baratron absolute capacitance
manometer commercially available from MKS Instruments, Inc. (Andover, MA).
[0040] As depicted in FIG. 1, process performance monitoring system 100 includes
plurality of sensors 50 coupled to process tool 10 to measure tool data and controller
55 coupled to the sensors 50 to receive tool data. The sensors 50 can include both
sensors that are intrinsic to the process tool 10 and sensors extrinsic to the process
tool 10. Sensors intrinsic to process tool 10 can include those sensors pertaining to
the functionality of process tool 10 such as the measurement of the Helium backside
gas pressure, Helium backside flow, electrostatic chuck (ESC) voltage, ESC current,
substrate holder 20 temperature (or lower electrode (LEL) temperature), coolant
temperature, upper electrode (UEL) temperature, forward RF power, reflected RF
power, RF self-induced DC bias, RF peak-to-peak voltage, chamber wall temperature,

process gas flow rates, process gas partial pressures, chamber pressure, capacitor
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settings (i.e., C; and C; positions), a focus ring thickness, RF hours, focus ring RF
hours, and any statistic thereof. Alternatively, sensors extrinsic to process tool 10 can
include those not directly related to the functionality of process tool 10 such as a light
detection device 34 for monitoring the light emitted from the plasma in processing
region 45 as shown in FIG. 2, or an electrical measurement device 36 for monitoring
the electrical system of process tool 10 as shown in FIG. 2.

[0041] The light detection device 34 can include a detector such as a (silicon)
photodiode or a photomultiplier tube (PMT) for measuring the total light intensity
emitted from the plasma. The light detection device 34 can further include an optical
filter such as a narrow-band interference filter. In an alternate embodiment, the light
detection device 34 includes a line CCD (charge coupled device) or CID (charge
injection device) array and a light dispersing device such as a grating or a prism.
Additionally, light detection device 34 can include a monochromator (e.g.,
grating/detector system) for measuring light at a given wavelength, or a spectrometer
(e.g., with a rotating grating) for measuring the light spectrum such as, for example,
the device described in U.S. Patent No. 5,888,337.

[0042] The light detection device 34 can include a high resolution OES sensor from
Peak Sensor Systems. Such an OES sensor has a broad spectrum that spans the
ultraviolet (UV), visible (VIS) and near infrared (NIR) light spectrums. In the Peak
Sensor System, the resolution is approximately 1.4 Angstroms, that is, the sensor is
capable of collecting 5550 wavelengths from 240 to 1000 nm. In the Peak System
Sensor, the sensor is equipped with high sensitivity miniature fiber optic UV-VIS-
NIR spectrometers which are, in turn, integrated with 2048 pixel linear CCD arrays.
[0043] The spectrometers in one embodiment of the present invention receive light
transmitted through single and bundled optical fibers, where the light output from the
optical fibers is dispersed across the line CCD array using a fixed grating. Similar to
the configuration described above, light emitting through an optical vacuum window
is focused onto the input end of the optical fibers via a convex spherical lens. Three
spectrometers, each specifically tuned for a given spectral range (UV, VIS and NIR),
form a sensor for a process chamber. Each spectrometer includes an independent A/D
converter. And lastly, depending upon the sensor utilization, a full emission spectrum
can be recorded every 0.1 to 1.0 seconds.

[0044] The electrical measurement device 36 can include, for example, a current

and/or voltage probe, a power meter, or spectrum analyzer. For example, plasma
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processing systems often employ RF power to form plasma, in which case, an RF
transmission line, such as a coaxial cable or structure, is employed to couple RF
energy to the plasma through an electrical coupling element (i.e., inductive coil,
electrode, etc.). Electrical measurements using, for example, a current-voltage probe,
can be exercised anywhere within the electrical (RF) circuit, such as within an RF
transmission line. Furthermore, the measurement of an electrical signal, such as a
time trace of voltage or current, permits the transformation of the signal into
frequency space using discrete Fourier series representation (assuming a periodic
signal). Thereafter, the Fourier spectrum (or for a time varying signal, the frequency
spectrum) can be monitored and analyzed to characterize the state of material
processing system 1. A voltage-current probe can be, for example, a device as
described in detail in pending U.S. Application Serial No. 60/259,862 filed on January
8, 2001, and U.S. Patent No. 5,467,013, each of which is incorporated herein by
reference in its entirety.

[0045] In alternate embodiments, electrical measurement device 36 can include a
broadband RF antenna useful for measuring a radiated RF field external to material
processing system 1. A commercially available broadband RF antenna is a broadband
antenna such as Antenna Research Model RAM-220 (0.1MHz to 300MHz).

[0046] In general, the plurality of sensors 50 can include any number of sensors,
intrinsic and extrinsic, which can be coupled to process tool 10 to provide tool data to
the controller 55.

[0047] Controller 55 includes a microprocessor, memory, and a digital I/O port
(potentially including D/A and/or A/D converters) capable of generating control
voltages sufficient to communicate and activate inputs to material processing system
1 as well as monitor outputs from material processing system 1. As shown in FIG. 2,
controller 55 can be coupled to and exchange information with RF generator 30,
impedance match network 32, gas injection S};stem 40, vacuum pump system 58,
backside gas delivery system 26, electrostatic clamping system 28, light detection
device 34, and electrical measurement device 36. A program stored in the memory is
utilized to interact with the aforementioned components of a material processing
system 1 according to a stored process recipe. One example of controller 55 is a
DELL PRECISION WORKSTATION 530™, available from Dell Corporation,
Austin, Texas. Controller 55 can be locally located relative to the material processing

system 1, or it can be remotely located relative to the material processing system 1.
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For example, controller 55 can exchange data with material processing system 1 using
at least one of a direct connection, an intranet, and the internet. Controller 55 can be
coupled to an intranet at, for example, a customer site (i.e., a device maker, etc.), or it
can be coupled to an intranet at, for example, a vendor site (i.e., an equipment
manufacturer). Additionally, for example, controller 55 can be coupled to the
internet. Furthermore, another computer (i.e., controller, server, etc.) can, for
example, access controller 55 to exchange data via at least one of a direct connection,
an intranet, and the internet. |

[0048] As shown in FIG. 3, material processing system 1 can include a magnetic
field system 60. For example, the magnetic field system 60 can include a stationary,
or either a mechanically or electrically rotating DC magnetic field in order to
potentially increase plasma density and/or improve material processing uniformity.
Moreover, controller 55 can be coupled to magnetic field system 60 in order to
regulate the field strength or speed of rotation.

[0049] As shown in FIG. 4, the material processing system can include an upper
electrode 70. For example, RF power can be coupled from RF generator 72 through
impedance match network 74 to upper electrode 70. A frequency for the application
of RF power to the upper electrode preferably ranges from 10 MHz to 200 MHz and
is preferably 60 MHz. Additionally, a frequency for the application of power to the
lower electrode can range from 0.1 MHz to 30 MHz and is preferably 2 MHz.
Moreover, controller 55 can be coupled to RF generator 72 and impedance match
network 74 in order to control the application of RF power to upper electrode 70.
[0050] As shown in FIG. 5, the material processing system of FIG. 1 can include an
inductive coil 80. For example, RF power can be coupled from RF generator 82
through impedance match network 84 to inductive coil 80, and RF power can be
inductively coupled from inductive coil 80 through dielectric window (not shown) to
plasma processing region 45. A frequency for the application of RF power to the
inductive coil 80 preferably ranges from 10 MHz to 100 MHz and is preferably 13.56
MHz. Similarly, a frequency for the application of power to the chuck electrode
preferably ranges from 0.1 MHz to 30 MHz and is preferably 13.56 MHz. In
addition, a slotted Faraday shield (not shown) can be employed to reduce capacitive
coupling between the inductive coil 80 and plasma. Moreover, controller 55 can be
coupled to RF generator 82 and impedance match network 84 in order to control the

application of power to inductive coil 80. In an alternate embodiment, inductive coil
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80 can be a “spiral” coil or “pancake” coil in communication with the plasma
processing region 45 from above as in a transformer coupled plasma (TCP) reactor.
[0051] Alternately, the plasma can be formed using electron cyclotron resonance
(ECR). In yet another embodiment, the plasma is formed from the launching of a
Helicon wave. In yet another embodiment, the plasma is formed from a propagating
surface wave.

[0052] As discussed above, the process performance monitoring system 100 includes
plurality of sensors 50 and controller 55, where the sensors 50 are coupled to process
tool 10 and the controller 55 is coupled to the sensors 50 to receive tool data. The
controller 55 is further capable of executing at least one algorithm to optimize the tool
data received from the sensors 50, determine a relationship (model) between the tool
data, and use the relationship (model) for fault detection.

[0053] When encountering large sets of data involving a substantive number of
variables, multivariate analysis (MVA) is often applied. For example, one such MVA
technique includes Principal Components Analysis (PCA). In PCA, a model can be
assembled to extract from a large set of data a signal exhibiting the greatest variance
in the multi-dimensional parameter space.

[0054] For example, each set of data parameters for a given substrate run, or instant

in time, can be stored as a row in a matrix X and, hence, once the matrix X is
assembled, each row represents a different substrate run, or instant in time (or

observation), and each column represents a different data parameter (or data variable)

corresponding to the plurality of sensors 50. Therefore, matrix X isa rectangular
matrix of dimensions q by r, where q represents the row dimension and r represents
the column dimension. Once the data is stored in the matrix, the data is generally
mean-centered and/or normalized. The process of mean-centering the data stored in a
matrix column involves computing a mean value of the column elements and
subtracting the mean value from each element. Moreover, the data residing in a
column of the matrix can be normalized by determining the standard deviation of the
data in the column. For example, a PCA model can be constructed in a manner
similar to that described in United States Provisional Application Serial no.
60/470,901, entitled “A process system health index and method of using the same”,
filed on May 16, 2002. The entire content of this application is hereby incorporated

herein by reference.

-13 -



WO 2005/036314 PCT/US2004/025599

[0055] Using the PCA technique, the correlation structure within matrix X is

determined by approximating matrix X with a matrix product (ﬁ’?) of lower

dimensions plus an error matrix E, viz.

[0056] X=TP"+E, (1a)

[0057] where

[0058] Xy =| XX | (1b)
o) X.j

[0059] “i” represents the i™ row, “j” represents the ™ column, subscript “M”

— —_—
represents mean value, ¢ represents standard deviation, X isatheraw data, T' isa

(q by p) matrix of scores that summarizes the X —variables, and P isa (r by p, where

p<r) matrix of loadings showing the influence of the variables.

[0060] In general, the loadings matrix P can be shown to comprise the eigenvectors
of the covariance matrix of X , where the covariance matrix S can be shown to be
[0061] S=X X. )

[0062] The covariance matrix S is areal, symmetric matrix; and, therefore, the

covariance matrix can be described as

—T
2

[0063] S=UAU 3)

[0064] where the real, symmetric eigenvector matrix U comprises the normalized

eigenvectors as columns and A is a diagonal matrix comprising the eigenvalues
corresponding to each eigenvector along the diagonal. Using equations (1a) and (3)

(for a full matrix of p=r; i.e. no error matrix), one can show that

[0065] P=U @
[0066] and
[0067] T T=A. (5)

[0068] A consequence of the above eigen-analysis is that each eigenvalue represents
the variance of the data in the direction of the correspohding eigenvector within n-
dimensional space. Hence, the largest eigenvalue corresponds to the greatest variance
in the data within the multi-dimensional space whereas the smallest eigenvalue
represents the smallest variance in the data. By definition, all eigenvectors are

orthogonal, and therefore, the second largest eigenvalue corresponds to the second
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greatest variance in the data in the direction of the corresponding eigenvector, which
is, of course, normal to the direction of the first eigenvector. In general, for such
analysis, the first several (three to four, or more) largest eigenvalues are chosen to
approximate the data and, as a result of the approximation, an error E is introduced to
the representation in equation (1a). In summary, once the set of eigenvalues and their
corresponding eigenvectors are determined, a set of the largest eigenvalues can be
chosen and the error matrix E of equation (1a) can be determined.

[0069] An example of commercially available software which supports PCA
modeling is MATLAB™ (commercially available from The Mathworks, Inc., Natick,
MA), and PLS Toolbox (commercially available from Eigenvector Research, Inc.,
Manson, WA). ‘

[0070] Additionally, once a PCA model is established, commercially available
software, such as MATLAB™, is further capablé of producing as output other
statistical quantities such as the Hotelling T? parameter for an observation, or the Q-

statistic. The Q-statistic for an observation can be calculated as follows

[0071] 0=E E, (62)
[0072] where

[0073] E= 32(7 - PP ) (6b)
[0074] and I is the identity matrix of appropriate size. For example, a PCA model
(loadings matrix P, etc.) can be constructed using a “training” set of data (i.e.
assemble X for a number of observations and determine a PCA model using
MATLAB™). Once the PCA model is constructed, projections of a new observation
onto the PCA model can be utilized to determine a residual matrix E , as in equation
(1a).

[0075] Similarly, the Hotelling T can be calculated as follows

d Tzia
[0076] T% =) 5, (7a)

[0077] where
[0078] T=XP, (7b)
[0079] and Ti, is the score (from equation (7b)) for the i observation (substrate run,

instant in time, etc.; i.e., i=1 to q) and the a® model dimension (i.., a=1 to p), and s4a

is the variance of 7. For example, a PCA model (loadings matrix P, etc.) can be
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constructed using a “training” set of data (i.e. assemble X for a number of
observations and determine a PCA model using MATLAB™). Once the PCA model
is constructed, projections of a new observation onto the PCA model can be utilized
to determine a new scores matrix T .

[0080] Typically, a statistical quantity, such as the Q-statistic, or the Hotelling T?, is
monitored for a process, and, when this quantity exceeds a pre-determined control
limit, a fault for the process is detected.

[0081] FIG. 6A shows an example of conventional use of a PCA model to monitor
the Q-statistic (Q-factor) of a process in order to determine faults in the process. In
the example of FIG. 6A, the model is applied to process data acquired from Unity II
DRM (Dipole Ring Magnet) CCP (Capacitively Coupled Plasma) processing systems
(commercially available from Tokyo Electron Limited; see FIG. 3) that perform a
patterned oxide etch with a C4Fg/CO/Ar + O, based chemistry. This processing
system operates in a batch mode with a fixed process recipe for each lot. Typically, a
single recipe is utilized from lot to lot for a particular process step in the manufacture
of a device. The same processing system is frequently utilized for many different
device layers and steps, but for each process step, the recipe remains the same.
[0082] The data parameters collected include the chamber pressure, applied power,
various temperatures, and many other variables relating to the pressure, power, and
temperature control as shown in Table 1.

[0083] The process recipe used in this example has three main steps: a photoresist
cleaning step, a main etch step, and a photoresist stripping step. The scope of this
example applied to the main etch step, but it is not limited to this particular step or
any particular step and is, therefore, applicable to other steps as well.

[0084] For each process step, an observation mean and observation standard
deviation of a time trace for each data parameter (or tool variable) was calculated
from roughly 160 samples for each substrate. The beginning portion of the time trace
for each data parameter, where the RF power increases, was trimmed in these
statistical calculations in an attempt to remove the variation due to the power when it
is turned on.

[0085] In the example of FIG. 6A, a PCA model was performed for the first 500
substrates using the same recipe in a single processing system. The standard PCA

methods implemented in MATLAB™ were used, with mean centering and unit
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variance scaling. Also, the standard Q residuals (SPE) and Q contributions were
calculated using the Eigenvector Research PLS Toolbox offered by Eigenvector
Research as an add-on to MATLAB™,

[0086] In the example of FIG. 6A, the PCA model was constructed from the first 500
substrates in a first processing system and was applied to all 3200 substrates from this
processing system. As seen in this figure, the resulting Q statistic exceeds the 95%
confidence limit in the model within less than 250 substrates after the PCA model was
built (i.e. by substrate number 750), and never returns to below that level. In addition,
distinct outliers and distinct step-like changes are apparent. Thus, FIG. 6A
demonstrates that while a conventional PCA model constructed as described above
can be used to monitor the Q-statistic, there exist periods of time where the statistical
parameter deviates above the control limit never to return below. Indeed, any of the
above described statistics (e.g., the Q-statistic, or the Hotelling T2 parameter) can be
monitored using a given model for a specific process in a specific processing system,
but will eventually deviate above the control limit never to return below. Thereafter,
the model is no longer applicable to the given process and given processing system.
[0087] While methods are known for preserving the usefulness of the PCA model
over long process runs, the present inventors have recognized that these methods are
not practical for commercial application to “semiconductor manufacturing process
control. For example, using an adaptive model technique, the PCA model can be
actually rebuilt with each process run in order to update the model on the fly during
the process. While this adaptive modeling technique may generally stabilize the
statistical monitoring within a given control limit, it requires computational resources
not practical for commercial processes.

[0088] Another technique for maintaining the usefulness of the statistical monitoring
of FIG. 6A is to employ a more complicated control limit scheme. Specifically, the
control limit can be reset for each process run based on a predicted degradation of the
PCA model. While this method will avoid the indication of an out-of-process
condition due to degradation of the PCA model, changing the control limit with each
process run requires a complex scheme that is also impractical for commercial
processes.

[0089] Thus, the present inventors have recognized that conventional methods for
adapting a PCA model to enable statistical monitoring over long process runs is

impractical for commercial processes. More specifically, the present inventors have
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discovered that the standard approach to centering and scaling the data in a PCA
matrix has not enabled the development of a robust model capable of use for long
periods of time (i.e., substantive number of substrate runs).

[0090] In an embodiment of the present invention, an adaptive multivariate analysis
is described for preparing a robust PCA model. Therein, the centering and scaling
coefficients are updated using an adaptation scheme. The mean values (utilized for
centering) for each summary statistic are updated from one observation to the next
using a filter, such as an exponentially weighted moving average (EWMA) filter

shown as follows:
[0091] Xtyn = AX st jmt + (1= A)X s, (8)
[0092] where Xt jn represents the calculated model mean value (“M”) of the jth data

parameter at the current run (or observation “n”), EM, -1 represents the calculated
model mean value (“M”) of the j™ data parameter at the previous run (or observation
“n-17), X j» represents the current value of the jth data parameter for the current run,
and M is a weighting factor ranging from a value of 0 to 1. For example, when A=1,
the model mean value utilized for centering each data parameter is the previously
used value, and, when A=0, the model mean value utilized for centering each data
parameter is the current measured value.

[0093] The model standard deviations (utilized for scaling) for each summary
statistic are updated using the following recursive standard deviation filter

[0094] O-X,j,n = \/(O'X,j,n—l )2 (]]i_i%) + % (Yj’" - EM’j’" )2 ’ (9)

[0095] where o ;, represents the calculated model standard deviation of the j" data

parameter for the current run (or observation “n”), o ;| represents the calculated

model standard deviation of the j™ data parameter for the previous run (or observation
“n-1"), n represents the run (or observation) number, and k represents a filter constant.
The filter constant k can, for example, be selected as a constant less than or equal to
N, where N represents the number of substrate runs, or observations, utilized to

construct the PCA model.
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TABLE 1.
Area Variable Description
Gas Flow and |PRESSURE Chamber Pressure
Pressure APC Throttle Valve Angle
Ar Ar Flow Rate
C4F8 C4F8 Flow Rate
CO CO Flow Rate

Power and RF-FORWARD-LO |Lower Electrode Power

Matching C1-POSITION-LO  |Matching Network Capacitor 1

C2-POSITION-LO  |Matching Network Capacitor 2

MAGNITUDE Matcher Magnitude

PHASE Matcher Phase

RF-VDC-LO Lower Electrode DC Voltage
RF-VPP-LO Lower Electrode Peak to Peak Voltage

ES Chuck ESC-CURRENT Electrostatic Chuck Current

ESC-VOLTAGE Electrostatic Chuck Voltage

Temperature |LOWER-TEMP Lower Electrode Temperature
and Cooling |UPPER-TEMP Upper Electrode Temperature
WALL-TEMP Wall Temperature

COOL-GAS-FLOW1 {He Edge Cooling Flow Rate

COOL-GAS-FLLOW2 |He Center Flow Rate

COOL-GAS-P1 He Edge Cooling Gas Pressure

COOL-GAS-P2 He Center Cooling Gas Pressure

[0096] FIG. 6B shows the same example of using a PCA model to monitor the Q-
statistic that was presented in FIG. 6A, except that the centering and scaling
coefficients are updated using an adaptation scheme in accordance with the present
invention. As seen in this figure, after the first 500 wafers, when the centering and
scaling constants are adapted using adaptive centering and scaling coefficients
described above (A=0.92; k=500), the Q-statistic chart is substantially more stable
across all of the remaining substrates, and the data predominantly resides within the
same limit. The inventive adaptation scheme provides similar irhprovement to other
statistical monitoring schemes (e.g., the Hotelling T? parameter). Thus, adaptation of
the PCA model in accordance with the present invention allows for a more robust
PCA model that can be used for long process runs.

[0097] Referring now to FIGs. 6A and 6B together, the first excursion of substantive

magnitude is the run with the largest Q value in the adaptive case, which occurs for
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substrate 1492. In the residual contribution plots for both the static and adaptive cases
(see FIG. 7), C1-POSITION-LO mean, RF-VPP-LO mean, and ESC-CURRENT are
the extreme values. The arbitrarily scaled summary statistics for the latter two data
parameters are plotted in FIG. 8. These three data parameters account for the large
spikes in the data at four points, which could indicate an issue with the impedance
match network system. This type of outlier is clear in both Q charts, but only the
adaptive case allows for a fixed limit (e.g., 95% confidence limit) for all time.
[0098] In another embodiment, the relative change in the centering and scaling
coefficients can be calculated to alert the operator or engineer that step summary
statistics have shifted between two runs, or observations. For each centering
coefficient, this is done by subtracting the estimate at an initial run from the estimate
at a final run, then scaling each difference by the standard deviation used for scaling

that step statistic for the initial run, viz.

Xum,jb—XM,ja

Oja

[0099] M- =|' , (10)

[0100] where M 7 is the model mean movement metric, X J.a represents the model

mean value for the jth data parameter for the a'" substrate, X 1,4 represents the model
mean value for the j™ data parameter for the b substrate, and o .« Tepresents the

model standard deviation for the j™ data parameter for the a™ substrate.
[0101] For the scaling coefficient, the calculation is the difference in standard
deviations scaled with the mean used for centering that step statistic, viz.

J,a

XM, ja

O-j,b -0 ;
[0102] M, =Lt —te

a

; (11)

[0103] where o;, represents the model standard deviation for the j™ data parameter

for the b™ substrate. \

[0104] These results are then displayed in a Pareto chart to identify the variables that
exhibited the largest relative change during the period. For example, this supplement
to the typical contribution plot can give the operator insight on the global changes in
the set of data parameters. In contrast, the contribution plot indicates the local
deviation in a particular run.

[0105] Referring again to FIGs. 6A and 6B, the next type of excursion is observed at

steps in the input summary data. In the static case, these excursions are clearly
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evident in the Q chart, although automating detection of these changes proves to be
quite difficult. In the adaptive case, there are only 4 periods where the Q statistic
violates the confidence limit for more than 5 consecutive substrates (starting at
substrates 1880, 2535, 2683, and 2948). When the model mean movement metric is
calculated about each of these four periods (from the substrate before the period to the
substrate after the period), the most extreme values occur for 1880 and 2946 on C1-
POSITION-LO mean and WALL-TEMP mean, respectively. FIG. 9A presents the
model mean movement metric and the model standard deviation metric for all of the
data parameters. The arbitrarily scaled summary data for the two data parameters is
displayed in FIG. 9B. The two major changes in the Q statistic seem to be dominated
by these two data parameters. For example, the shift in these data parameters may
have been caused by a tool cleaning, e.g., replacing key parts and changing the
electrical or heat transfer characteristics of the processing system. Although the
temperature is regulated in the processing system, this is done only at the upper
electrode and walls. The lower temperature is not controlled and could be affected by
different materials or part configurations in the processing system. The contribution
plots for the static case and the adaptive case for substrate 1880 both are dominated
by the C1-POSITION-LO. For substrate 2948, WALL-TEMP is the dominant
contribution in the adaptive case, but in the static case it is only slightly larger than
the C1-POSITION-LO value (which does not change at this run).

[0106] In addition to providing a more robust PCA model that can be used for
statistical monitoring over long process runs, the adaptive technique also provides use
of the same PCA model among different processing systems. FIGs. 10 and 11
illustrate a second example of the present invention wherein, after looking at the
major changes over time for one processing system, the same model from the first 500
substrates was then applied to a set of 800 substrates from a second processing
system. As seen in FIG. 10, the plot of the Q statistic for the static model is many
orders of magnitude greater than the confidence limit for the model. Thus, statistical
parameters derived from one conventional model for a given process in a given
processing system are not transferable for the same process to another processing
system. Moreover, as with the example of FIG. 6A described above, rebuilding the
PCA model for each processing system or employing a complex control limit scheme
to adapt the PCA model of one system to another system is impractical. FIG. 11

shows the same model with the adaptive centering and scaling coefficients of the
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present invention applied. The data returns below the confidence limit after only 25
substrates (the typical load for a single cassette). Increasing A may provide an even
faster recovery, but may result in overshoot problems. Once below the confidence
limit, the same gross outliers are still evident, but other variations such as the region
between substrate 445 and 455 are highlighted as well.

[0107] With this same model applied to a second processing system, again a
contribution plot can be used to identify the cause of the single point excursions as
described above. The contribution plot based on the static model provides a number
of data parameters with no clear single cause, and few of those data parameters
identified exhibit the large outlier characteristics. The contribution based on the
adaptive scheme clearly indicates two parameters: RF-VPP-LO mean and APC
standard deviation. These outliers are consistent with a f)lasma leak where the voltage
has a high value throughout the step and the pressure control is very choppy as it tries
to control an unstable plasma.

[0108] In order to investigate the sudden shifts of the system, periods of consecutive
violations were noted from the data in FIG. 11. Three different regions occurring at
substrates 1, 91, and 446 had more than five consecutive points exceeding the
confidence limit. The movement metric for the first 22 substrates, where the model
was adapting to the new processing system values, highlighted significant changes in
RF-VPP-LO mean, ESC_VOLTAGE mean, C2-POSITION-LO mean, ESC-
CURRENT mean, and RF-FORWARD-LO standard deviation, indicating that many
of the electrical characteristics have offset between the two processing systems. The
period beginning with substrate 91 has two of the large spikes within 5 runs, causing
the movement metric to identify adaptation to the outliers. In the final region starting
at substrate 446, the metric points to the APC mean and the COOL-GAS-FLOW1
standard deviation. The substrate summary data for these variables exhibit a crisp
jump at this time. Further analysis would be necessary to speculate on a type of
problem that would be characterized by a shift in the throttle valve angle used to
control pressure and the variability in the helium flow used to control temperature on
the lower electrode.

[0109] Thus, the present inventors have recognized that a static PCA model is
inadequate for monitoring and detecting local faults on an industrial material
processing system. The confidence limit on the model is quickly exceeded after the

model is constructed; furthermore, the confidence limit is inappropriate when the
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model is applied to another processing system. The mean and standard deviation
values, used for univariate scaling, can be slowly adapted with new data. The
adaptive centering and scaling method is sufficient to keep the distance to the model
in the residual space (Q) stable, and the original model confidence limit is appropriate
for detecting excursions. In addition, the Q contributions calculated from the adaptive
method help discriminate the root cause data parameters of the local deviation instead
of being coupled to the contributions of those data parameters that have global
changes. Supplemental to the contribution plot, the movement metric identified input
data parameters that had sharp step changes during periods of consecutive confidence
limit violations.

[0110] FIG. 13 presents a flow chart describing a method of monitoring a processing
system for processing a substrate during the course of semiconductor manufacturing.
The method 500 begins at 510 with acquiring data from the processing system for a
plurality of observations. The processing system can, for example, be an etch system,
or it may be another processing system as described in FIG. 1. The data from the
processing system can be acquired using a plurality of sensors coupled to the
processing system and a controller. The data can, for example, comprise any
measurable data parameter, and any statistic thereof (e.g., mean, standard deviation,
skewness, kurtosis, etc.). Additional data can, for example, include optical emission
spectra, RF harmonics of voltage and/or current measurements or radiated RF
emission, etc. Each observation can pertain to a substrate run, instant in time, time
average, etc.

[0111] At 520, a PCA model is constructed from the acquired data parameters by
determining one or more principal components to represent the data at 530 and
applying static centering and scaling coefficients, as described above, to the data
parameters of the acquired data at 540. For example, a commercially available
software such as MATLAB™ and PLS Toolbox can be utilized to construct the PCA
model.

[0112] At 550, additional data is acquired from a processing system, and, at 555,
adaptive centering and scaling coefficients are utilized when applying the PCA model
to the acquired data parameters. At 560, at least one statistical quantity is determined
from the additional data and the PCA model. For example, the additional data can be
forward projected onto the one or more principal components to determine a set of

scores, and the set of scores can be backward projected onto the principal components
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to determine one or more residual errors. Utilizing either the set of scores in
conjunction with the model set of scores, or the one or more residual errors, at least
one statistical quantity can be determined, such as the Q-statistic, or the Hotelling T2
parameter, for each additional observation.

[0113] At 570, a control limit can be set, and, at 580, at least one statistical quantity
can be compared with the control limit. The control limit can be set using either
subjective methods or empirical methods. For example, when using the Q-statistic,
the control limit can be set at the 95% confidence limit (see, for instance, FIGs. 6A,
6B, and 11). Additionally, for example, when using the Hotelling T? parameter, the
control limit can be set at the 95% confidence limit. Alternatively, for example, the
control limit can be established by assuming a theoretical distribution for the
statistical quantity, such as a xz-distribution; however, the observed distribution
should be verified with the theory. If the at least one statistical quantity exceeds the
control limit, then a fault for the processing system is detected at 590, and an operator
can be notified at 600.

[00100] FIG. 12 illustrates a computer system 1201 for implementing various
embodiments of the present invention. The computer system 1201 may be used as the
controller 55 to perform any or all of the functions of the controller described above.
The computer system 1201 includes a bus 1202 or other communication mechanism
for communicating information, and a processor 1203 coupled with the bus 1202 for
processing the information. The computer system 1201 also includes a main memory
1204, such as a random access memory (RAM) or other dynamic storage device (e.g.,
dynamic RAM (DRAM), static RAM (SRAM), and synchronous DRAM (SDRAM)),
coupled to the bus 1202 for storing information and instructions to be executed by
processor 1203. In addition, the main memory 1204 may be used for storing
temporary variables or other intermediate information during the execution of
instructions by the processor 1203. The computer system 1201 further includes a read
only memory (ROM) 1205 or other static storage device (e.g., programmable ROM
(PROM), erasable PROM (EPROM), and electrically erasable PROM (EEPROM))
coupled to the bus 1202 for storing static information and instrﬁctions for the
processor 1203.

[00101] The computer system 1201 also includes a disk controller 1206 coupled to

the bus 1202 to control one or more storage devices for storing information and
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instructions, such as a magnetic hard disk 1207, and a removable media drive 1208
(e.g., floppy disk drive, read-only compact disc drive, read/write compact disc drive,
compact disc jukebox, tape drive, and removable magneto-optical drive). The storage
devices may be added to the computer system 1201 using an appropriate device
interface (e.g., small computer system interface (SCSI), integrated device electronics
(IDE), enhanced-IDE (E-IDE), direct memory access (DMA), or ultra-DMA).
[00102] The computer system 1201 may also include special purpose logic devices
(e.g., application specific integrated circuits (ASICs)) or configurable logic devices
(e.g., simple programmable logic devices (SPLDs), complex programmable logic
devices (CPLDs), and field programmable gate arrays (FPGAs)).

[00103] The computer system 1201 may also include a display controller 1209
coupled to the bus 1202 to control a display 1210, such as a cathode ray tube (CRT),
for displaying information to a computer user. The computer system includes input
devices, such as a keyboard 1211 and a pointing device 1212, for interacting with a
computer user and providing information to the processor 1203. The pointing device
1212, for example, may be a mouse, a trackball, or a pointing stick for communicating
direction information and command selections to the processor 1203 and for
controlling cursor movement on the display 1210. In addition, a printer may provide
printed listings of data stored and/or generated by the computer system 1201.

[00104] The computer system 1201 performs a portion or all of the processing steps
of the invention (such as for example those described in relation to Figure 13). in
response to the processor 1203 executing one or more sequences of one or more
instructions contained in a memory, such as the main memory 1204. Such
instructions may be read into the main memory 1204 from another computer readable
medium, such as a hard disk 1207 or a removable media drive 1208. One or more
processors in a multi-processing arrangement may also be employed to execute the
sequences of instructions contained in main memory 1204. In alternative
embodiments, hard-wired circuitry may be used in place of or in combination with
software instructions. Thus, embodiments are not limited to any specific combination
of hardware circuitry and software.

[00105] As stated above, the computer system 1201 includes at least one computer
readable medium or memory for holding instructions programmed according to the
teachings of the invention and for containing data structures, tables, records, or other

data described herein. Examples of computer readable media are compact discs, hard
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disks, floppy disks, tape, magneto-optical disks, PROMs (EPROM, EEPROM, flash
EPROM), DRAM, SRAM, SDRAM, or any other magnetic medium, compact discs
(e.g., CD-ROM), or any other optical medium, punch cards, paper tape, or other
physical medium with patterns of holes, a carrier wave (described below), or any
other medium from which a computer can read.

[00106] Stored on any one or on a combination of computer readable media, the
present invention includes software for controlling the computer system 1201, for
driving a device or devices for implementing the invention, and for enabling the
computer system 1201 to interact with a human user (e.g., print production
personnel). Such software may include, but is not limited to, device drivers, operating
systems, development tools, and applications software. Such computer readable
media further includes the computer program product of the present invention for
performing all or a portion (if processing is distributed) of the processing performed
in implementing the invention.

[00107] The computer code devices of the present invention may be any interpretable
or executable code mechanism, including but not limited to scripts, interpretable
programs, dynamic link libraries (DLLs), Java classes, and complete executable
programs. Moreover, parts of the processing of the present invention may be
distributed for better performance, reliability, and/or cost.

[00108] The term “computer readable medium” as used herein refers to any medium
that participates in providing instructions to the processor 1203 for execution. A
computer readable medium may take many forms, including but not limited to, non-
volatile media, volatile media, and transmission media. Non-volatile media includes,
for example, optical, magnetic disks, and magneto-optical disks, such as the hard disk
1207 or the removable media drive 1208. Volatile media includes dynamic memory,
such as the main memory 1204. Transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that make up the bus 1202. Transmission
media also may also take the form of acoustic or light waves, such as those generated
during radio wave and infrared data communications.

[00109] Various forms of computer readable media may be involved in carrying out
one or more sequences of one or more instructions to processor 1203 for execution.
For example, the instructions may initially be carried on a magnetic disk of a remote
computer. The remote computer can load the instructions for implementing all or a

portion of the present invention remotely into a dynamic memory and send the
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instructions over a telephone line using a modem. A modem local to the computer
system 1201 may receive the data on the telephone line and use an infrared transmitter
to convert the data to an infrared signal. An infrared detector coupled to the bus 1202
can receive the data carried in the infrared signal and place the data on the bus 1202.
The bus 1202 carries the data to the main memory 1204, from which the processor
1203 retrieves and executes the instructions. The instructions received by the main
memory 1204 may optionally be stored on storage device 1207 or 1208 either before
or after execution by processor 1203.

[00110] The computer system 1201 also includes a communication interface 1213
coupled to the bus 1202. The communication interface 1213 provides a two-way data
communication coupling to a network link 1214 that is connected to, for example, a
local area network (LAN) 1215, or to another communications network 1216 such as
the Internet. For example, the communication interface 1213 may be a network
interface card to attach to any packet switched LAN. As another example, the
communication interface 1213 may be an asymmetrical digital subscriber line
(ADSL) card, an integrated services digital network (ISDN) card or a modem to
provide a data communication connection to a corresponding type of communications
line. Wireless links may also be implemented. In any such implementation, the
communication interface 1213 sends and receives electrical, electromagnetic or
optical signals that carry digital data streams representing various types of
information.

[00111] The network link 1214 typically provides data communication through one
or more networks to other data devices. For example, the network link 1214 may
provide a connection to another computer through a local network 1215 (e.g., a LAN)
or through equipment operated by a service provider, which provides communication
services through a communications network 1216. The local network 1214 and the
communications network 1216 use, for example, electrical, electromagnetic, or
optical signals that carry digital data streams, and the associated physical layer (e.g.,
CAT 5 cable, coaxial cable, optical fiber, etc). The signals through the various
networks and the signals on the network link 1214 and through the communication
interface 1213, which carry the digital data to and from the computer system 1201
maybe implemented in baseband signals, or carrier wave based signals. The baseband
signals convey the digital data as unmodulated electrical pulses that are descriptive of

a stream of digital data bits, where the term “bits” is to be construed broadly to mean
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symbol, where each symbol conveys at least one or more information bits. The digital
data may also be used to modulate a carrier wave, such as with amplitude, phase
and/or frequency shift keyed signals that are propagated over a conductive media, or
transmitted as electromagnetic waves through a propagation medium. Thus, the
digital data may be sent as unmodulated baseband data through a “wired”
communication channel and/or sent within a predetermined frequency band, different
than baseband, by modulating a carrier wave. The computer system 1201 can
transmit and receive data, including program code, through the network(s) 1215 and
1216, the network link 1214, and the communication interface 1213. Moreover, the
network link 1214 may provide a connection through a LAN 1215 to a mobile device
1217 such as a personal digital assistant (PDA) laptop computer, or cellular telephone.
[0114] Although only certain exemplary embodiments of this invention have been
described in detail above, those skilled in the art will readily appreciate that many
modifications are possible in the exemplary embodiments without materially
departing from the novel teachings and advantages of this invention. Accordingly, all

such modifications are intended to be included within the scope of this invention.
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CLAIMS:

1. A method of monitoring a processing system for processing a substrate
during the course of semiconductor manufacturing, comprising:

acquiring data from said processing system for a plurality of observations, said
data comprising a plurality of data parameters;

constructing a principal components analysis (PCA) model from said data,
including centering coefficients;

acquiring additional data from said processing system, said additional data
comprising an additional observation of said plurality of data parameters;

adjusting said centering coefficients to produce updated adaptive centering
coefficients for each of said data parameters in said PCA model;

applying said updated adaptive centering coefficients to each of said data
parameters in said PCA model;

determining at least one statistical quantity from said additional data using
said PCA model;

setting a control limit for said at least one statistical quantity; and

comparing said at least one statistical quantity to said control limit.

2. The method of claim 1, wherein said adjusting said centering coefficients
comprises:

updating the adaptive centering coefficient for each data parameter by
combining an old value of the adaptive centering coefficient for each data parameter
and a current value of each data parameter for said additional observation, wherein
said old value comprises a mean value of the data parameter during said plurality of

observations.

3. The method of claim 2, wherein said combining said old value of said
adaptive centering coefficient and said current value of said data parameter for said
additional observation comprises:

applying an exponentially weighted moving average (EWMA) filter.

4, The method of claim 3, wherein said applying said EWMA filter comprises:

setting a weighting factor.
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5. The method of claim 4, wherein said setting said weighting factor
comprises:

setting said weighting factor to a value ranging from 0.5 to 1.0.

6. The method of claim 5, wherein said setting said weighting factor
comprises:

setting said weighting factor to a value ranging from 0.8 to 0.95.

7. The method of claim 1, wherein said applying said updated adaptive
centering coefficients to each of said data parameters comprises:
subtracting said updated centering coefficients from each of said data

parameters.

8. The method of claim 1, further comprising:

determining scaling coefficients for the PCA model,;

adjusting the scaling coefficients to produce updated adaptive scaling
coefficients for each of said data parameters in said PCA model; and

applying said updated adaptive scaling coefficients to each of said data

parameters in said PCA model.

9. The method of claim 8, wherein said adjusting said scaling coefficients
comprises:

applying a recursive standard deviation filter, said filter combining an old
value of the adaptive scaling coefficient for each data parameter, a current value of
each data parameter for said additional observation, and an old value of the adaptive
centering coefficient for each data parameter,

wherein said old value of said adaptive scaling coefficient comprises a
standard deviation of said data parameter during said plurality of observations and
said old value of said adaptive centering coefficient comprises a mean value of said

data parameter during said plurality of observations.

10. The method of claim 9, wherein said applying said recursive standard

deviation filter comprises setting a filter constant.
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11. The method of claim 1, wherein said applying said updated adaptive
scaling coefficients to each of said data parameters comprises dividing each of said

data parameters by said updated scaling coefficients.

12. The method of claim 1, wherein said constructing said PCA model
comprises:
determining one or more principal components of said data for said plurality

of observations using principal components analysis.

13. The method of claim 1, further comprising:
detecting a process fault has occurred when said at least one statistical quantity

exceeds said control limit.

14. The method of claim 1, wherein said plurality of data parameters
comprises at least one of a capacitor position, a forward radio frequency (RF) power,
a reflected RF power, a voltage, a current, a phase, an impedance, a RF peak-to-peak
voltage, a RF self-induced direct current bias, a chamber pressure, a gas flow rate, a
temperature, a backside gas pressure, a backside gas flow rate, an electrostatic clamp
voltage, an electrostatic clamp current, a focus ring thickness, RF hours, a process

step duration, focus ring RF hours, an optical emission spectrum, and RF harmonics

15. The method of claim 1, wherein said plurality of data parameters
comprises at least one of an instantaneous value, a time average, a standard deviation,

a third moment, a fourth moment, and a variance.

16. The method of claim 1, wherein said statistical quantity comprises at least

one of a Q-statistic and a Hotelling T2 parameter.

17. The method of claim 1, further comprising:
accessing at least one of said data, said additional data, said adaptive centering
coefficients, said at least one statistical quantity, and said control limit via at least one

of an intranet and an internet.

18. The method of claim 8, further comprising:
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accessing said adaptive scaling coefficients via at least one of an intranet and

an internet.

19. In a principal components analysis (PCA) model for monitoring a
processing system for processing a substrate during the course of semiconductor
manufacturing, the improvement comprising:

an adaptive centering coefficient for each data parameter during a current
observation of a given data parameter,

said adaptive centering coefficient combining an old value of said adaptive
centering coefficient and a current value of said data parameter for said current
observation, wherein said old value comprises a mean value of the data parameter

during a plurality of observations preceding said current observation.

20. The improvement of claim 19, wherein said combining said old value of
said adaptive centering coefficient and said current value of said data parameter for
said current observation comprises applying an exponentially weighted moving
average (EWMA) filter.

21. The improvement of claim 20, wherein said applying said EWMA filter

comprises setting a weighting factor.

22. The improvement of claim 21, wherein said setting said weighting factor

comprises setting said weighting factor to a value ranging from 0 to 1.

23. The improvement of claim 22, wherein said setting said weighting factor

comprises setting said weighting factor to a value ranging from 0.8 to 0.95.

24. The improvement of claim 19, further comprising:

an adaptive scaling coefficient for each data parameter during a current
observation of the given data parameter,

said adaptive scaling coefficient comprising application of an exact recursive
standard deviation formula, said formula combining an old value of the adaptive
scaling coefficient, a current value of each data parameter for said current

observation, and an old value of the adaptive centering coefficient,
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wherein said old value of said adaptive scaling coefficient comprises a
standard deviation of said data parameter during a plurality of observations preceding
said current observation and said old value of said adaptive centering coefficient
comprises the mean value of said data parameter during a plurality of observations

preceding said current observation.

25. A processing system for processing a substrate during the course of
semiconductor manufacturing, comprising:

a process tool; and

a process performance monitoring system coupled to said process tool and
comprising a plurality of sensors coupled to said process tool and a controller coupled
to said plurality of sensors and said process tool,

wherein said controller includes,

means for acquiring data from said plurality of sensors for a plurality of
observations, said data comprising a plurality of data parameters,

means for constructing a principal components analysis (PCA) model from
said data, including centering coefficients,

means for acquiring additional data from said plurality of sensors,

means for adjusting said centering coefficients to produce updated adapative
centering coefficients for each of said data parameters,

means for applying said updated adaptive centering coefficients to each of said
data parameters in said PCA model,

means for determining at least one statistical quantity from said additional data
using said PCA model,

means for setting a control limit for said at least one statistical quantity, and

means for comparing said at least one statistical quantity to said control limit.

26. The processing system of claim 25, wherein said means for adjusting said
centering coefficients comprises:

means for combining an old value of the adaptive centering coefficient for
each data parameter and a current value of each data parameter for said additional
observation, wherein said old value comprises a mean value of the data parameter

during said plurality of observations.

-33-



WO 2005/036314 PCT/US2004/025599

27. The processing system of claim 25, further comprising:

means for determining scaling coefficients for the PCA model;

means for adjusting the scaling coefficients to produce updated adaptive
scaling coefficients for each of said data parameters in said PCA model; and

means for applying said updated adaptive scaling coefficients to each of said

data parameters in said PCA model.

28. The processing system of claim 27, wherein said means for adjusting said
scaling coefficients comprises:

means for applying a recursive standard deviation filter to said adaptive
scaling coefficients, said filter combining an old value of the adaptive scaling
coefficient for each data parameter, a current value of each data parameter for said
additional observation, and an old value of the adaptive centering coefficient for each
data parameter,

wherein said old value of said adaptive scaling coefficient comprises a
standard deviation of said data parameter during said plurality of observations and
said old value of said adaptive centering coefficient comprises a mean value of said

data parameter during said plurality of observations.

29. The processing system of claim 25, further comprising:
means for accessing at least one of said data, said additional data, said
adaptive centering coefficients, said at least one statistical quantity, and said control

limit,

30. The processing system of claim 29, wherein said means for accessing

comprises at least one of an intranet and an internet.

31. The processing system of claim 27, further comprising:
means for accessing at least one of said data, said additional data, said
adaptive centering coefficients, said adaptive scaling coefficients, said at least one

statistical quantity, and said control limit.

32. The processing system of claim 31, wherein said means for accessing

comprises at least one of an intranet and an internet.
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33. A processing performance monitoring system to monitor a processing
system for processing a substrate during the course of semiconductor manufacturing,
comprising:

a plurality of sensors coupled to said processing system; and

a controller coupled to said plurality of sensors and said processing system,
wherein said controller includes,

means for acquiring data from said plurality of sensors for a plurality of
observations, said data comprising a plurality of data variables,

means for acquiring data from said plurality of sensors for a plurality of
observations, said data comprising a plurality of data parameters,

means for constructing a principal components analysis (PCA) model from
said data, including centering coefficients,

means for acquiring additional data from said plurality of sensors,

means for adjusting said centering coefficients to produce updated centering
coefficients for each of said data parameters, |

means for applying said updated adaptive centering coefficients to each of said
data parameters in said PCA model,

means for determining at least one statistical quantity from said additional data
using said PCA model,

means for setting a control limit for said at least one statistical quantity, and

means for comparing said at least one statistical quantity to said control limit.

34. The process performance monitoring system of claim 33, wherein said
means for adjusting said centering coefficients comprises:

means for combining an old value of the adaptive centering coefficient for
each data parameter and a current value of each data parameter for said additional
observation,

wherein said old value comprises a mean value of the data parameter during

said plurality of observations.

35. The process performance monitoring system of claim 33, further
comprising:

means for determining scaling coefficients for the PCA model;
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means for adjusting the scaling coefficients to produce updated adaptive
scaling coefficients for each of said data parameters in said PCA model; and
means for applying said updated adaptive scaling coefficients to each of said

data parameters in said PCA model.

36. The process performance monitoring system of claim 35, wherein said
means for adjusting said scaling coefficients comprises:

means for applying a recursive standard deviation filter to said adaptive
scaling coefficients,

said filter combining an old value of the adaptive scaling coefficient for each
data parameter, a current value of each data parameter for said additional observation,
and an old value of the adaptive centering coefficient for each data parameter,

wherein said old value of said adaptive scaling coefficient comprises a
standard deviation of said data parameter during said plurality of observations and
said old value of said adaptive centering coefficient comprises a mean value of said

data parameter during said plurality of observations.

37. The process performance monitoring system of claim 33, further
comprising:

means for accessing at least one of said data, said additional data, said
adaptive centering coefficients, said at least one statistical quantity, and said control

limit.

38. The process performance monitoring system of claim 37, wherein said

means for accessing comprises at least one of an intranet and an internet.

39. The process performance monitoring system of claim 35, further
comprising:

means for accessing at least one of said data, said additional data, said
adaptive centering coefficients, said adaptive scaling coefficients, said at least one

statistical quantity, and said control limit.

40. The process performance monitoring system of claim 39, wherein said

means for accessing comprises at least one of an intranet and an internet.
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41. A method of monitoring a first processing system for processing a
substrate during the course of semiconductor manufacturing, comprising:

acquiring data from a second processing system for a plurality of observations,
said data comprising a plurality of data parameters;

constructing a principal components analysis (PCA) model from said data for
said second processing system including centering coefficients;

acquiring additional data from said first processing system, said additional
data comprises an additional observation of said plurality of data parameters;

adjusting said centering coefficients to produce updated adaptive coefficients
for each of said data parameters in said PCA model;

applying said updated adaptive centering coefficients to each of said data
parameters in said PCA model;

determining at least one statistical quantity from said additional data using
said PCA model;

setting a control limit for said at least one statistical quantity; and

comparing said at least one statistical quantity to said control limit.

42. The method of claim 41, further comprising:

determining scaling coefficients for the PCA model;

adjusting the scaling coefficients to produce updated adaptive scaling
coefficients for each of said data parameters in said PCA model; and

applying said updated adaptive scaling coefficients to each of said data

parameters in said PCA model.

43, A method for classifying a process fault occurring during a plurality of
substrate runs in a processing system, comprising:

monitoring a plurality of data parameters from said processing system for each
substrate run within said plurality of substrate runs;

identifying a fault substrate run, within said plurality of substrate runs using

'multivariate analysis, in which said process fault occurred,;
selecting a first substrate run preceding said fault substrate run;
calculating a first plurality of mean values for each of said plurality of data

parameters during said first substrate run;
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selecting a second substrate run following said fault substrate run;

calculating a second plurality of mean values for each of said plurality of data
parameters during said second substrate run;

determining an absolute value of a plurality of differences between said
second plurality of mean values and said first plurality of mean values for each of said
plurality of data parameters;

calculating a plurality of standard deviations for each of said plurality of data
parameters during at least one of said first substrate run and said second substrate run;

normalizing said plurality of differences by said plurality of standard
deviations for each of said plurality of data parameters;

determining the largest value of said normalized differences; and

identifying the data parameter amongst said plurality of data parameters

corresponding to said largest value of said differences.

44. The method of claim 43, wherein said calculating each of said first
plurality of mean values for each of said plurality of data parameters during said first
substrate run comprises:

combining a first old mean value for each data parameter and a current value
of each data parameter for said first substrate run,

wherein said first old mean value comprises a mean value of the data
parameter during a substrate run preceding said first substrate run, and said
calculating each of said second plurality of mean values for each of said plurality of
data parameters during said second substrate run comprises combining a second old
mean value for each data parameter and a current value of each data parameter for
said second substrate run,

wherein said second old mean value comprises a mean value of the data

parameter during a substrate run preceding said second substrate run.

45. The method of claim 44, wherein said combining said first old mean value
and said current value of said data parameter during said first substrate run and said
combining said second old mean value and said current value of said data parameter
during said second substrate run comprises:

applying an exponentially weighted moving average (EWMA)) filter.
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46. A method fdr classifying a process fault occurring during a plurality of
substrate runs in a processing system, comprising:

monitoring a plurality of data parameters from said processing system for each
substrate run within said plurality of substrate runs;

identifying a fault substrate run, within said plurality of substrate runs using
multivariate analysis, in which said process fault occurred;

selecting a first substrate run preceding said fault substrate run;

calculating a first plurality of standard deviations for each of said plurality of
data parameters during said first substrate run;

selecting a second substrate run following said fault substrate run;

calculating a second plurality of standard deviations for each of said plurality
of data parameters during said second substrate run;

determining an absolute value of a plurality of differences between said
second plurality of standard deviations and said first plurality of standard deviations
for each of said plurality of data parameters;

calculating a plurality of mean values for each of said plurality of data
parameters during one of said first substrate run and said second substrate run;

normalizing said plurality of differences by said plurality of mean values for
each of said plurality of data parameters;

determining the largest value of said normalized differences; and

identifying the data parameter amongst said plurality of data parameters

corresponding to said largest value of said differences.

47. A computer readable medium containing program instructions for
execution on a computer system, which when executed by the computer system, cause
the computer system to perform the steps of

acquiring data from a processing system for a plurality of observations, said
data comprising a plurality of data parameters;

constructing a principal components analysis (PCA) model from said data,
including centering coefficients;

acquiring additional data from said processing system, said additional data
comprising an additional observation of said plurality of data parameters;

adjusting said centering coefficients to produce updated adaptive centering

coefficients for each of said data parameters in said PCA model;
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applying said updated adaptive centering coefficients to each of said data
parameters in said PCA model;

determining at least one statistical quantity from said additional data using
said PCA model;

setting a control limit for said at least one statistical quantity; and

comparing said at least one statistical quantity to said control limit.

48. A computer readable medium containing program instructions for
execution on a computer system, which when executed by the computer system, cause
the computer system to perform the steps of:

acquiring data from a second processing system for a plurality of observations,
said data comprising a plurality of data parameters;

constructing a principal components analysis (PCA) model from said data for
said second processing system, including centering coefficients;

acquiring additional data from a first processing system, said additional data
comprises an additional observation of said plurality of data parameters;

adjusting said centering coefficients to produce updated adaptive centering
coefficients for each of said data parameters in said PCA model;

applying said updated adaptive centering coefficients to each of said data
parameters in said PCA model;

determining at least one statistical quantity from said additional data using
said PCA model;

setting a control limit for said at least one statistical quantity; and

comparing said at least one statistical quantity to said control limit.

49. A computer readable medium containing program instructions for
execution on a computer system, which when executed by the computer system, cause
the computer system to perform the steps of:

monitoring a plurality of data parameters from a processing system for each
substrate run within said plurality of substrate runs;

identifying a fault substrate run, within said plurality of substrate runs using
multivariate analysis, in which said process fault occurred;

selecting a first substrate run preceding said fault substrate run;
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calculating a first plurality of mean values for each of said plurality of data
parameters during said first substrate run;

selecting a second substrate run following said fault substrate run;

calculating a second plurality of mean values for each of said plurality of data
parameters during said second substrate run;

determining an absolute value of a plurality of differences between said
second plurality of mean values and said first plurality of mean values for each of said
plurality of data parameters;

calculating a plurality of standard deviations for each of said plurality of data
parameters during at least one of said first substrate run and said second substrate run;

normalizing said plurality of differences by said plurality of standard
deviations for each of said plurality of data parameters;

determining the largest value of said normalized differences; and

identifying the data parameter amongst said plurality of data parameters

corresponding to said largest value of said differences.

50. A computer readable medium containing program instructions for
execution on a computer system, which when executed by the computer system, cause
the computer system to perform the steps of:

monitoring a plurality of data parameters from said processing system for each
substrate run within said plurality of substrate runs;

identifying a fault substrate run, within said plurality of substrate runs using
multivariate analysis, in which said process fault occurred;

selecting a first substrate run preceding said fault substrate run;

calculating a first plurality of standard deviations for each of said plurality of
data parameters during said first substrate run;

selecting a second substrate run following said fault substrate run;

calculating a second plurality of standard deviations for each of said plurality
of data parameters during said second substrate run;

determining the absolute value of a plurality of differences between said
second plurality of standard deviations and said first plurality of standard deviations
for each of said plurality of data parameters;

calculating a plurality of mean values for each of said plurality of data

parameters during one of said first substrate run and said second substrate run;
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normalizing said plurality of differences by said plurality of mean values for

each of said plurality of data parameters;
determining the largest value of said normalized differences; and

identifying the data parameter amongst said plurality of data parameters

corresponding to said largest value of said differences.
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b) Calculated Q - mean and center adaptation applied to second chamber
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