

(12) UK Patent (19) GB (11) 2 132/616 B

(54) Title of invention

Improvements in or relating to novel
cephalosporin intermediates

(51) INT CL⁴; C07D 501/46
A61K 31/545

(21) Application No
8333667

(22) Date of filing
16 Dec 1983

(30) Priority data

(31) **453445**

(32) **27 Dec 1982**

(33) **United States of America
(US)**

(43) Application published
11 Jul 1984

(45) Patent published
6 Aug 1986

(73) Proprietors
**Eli Lilly and Company
(USA-Indiana)**
307 East McCarty Street
Indianapolis
Indiana 46285
United States of America

(72) Inventors
Ta-Sen Chou
Perry Clark Heath

(74) Agent and/or
Address for Service
T. R. Crowther,
Erl Wood Manor,
Windlesham,
Surrey GU20 6PH

(52) Domestic classification
(Edition H)
C2C 1314 1382 1530 214 215 220
226 22Y 246 247 250 251 256 25Y
28X 290 29X 29Y 30Y 321 322 32Y
342 346 34Y 351 352 366 367 368
638 670 699 801 80Y AA KE
U1S 2410 C2C

(56) Documents cited
GB A 2052490
GB A 2025398

(58) Field of search
C2C

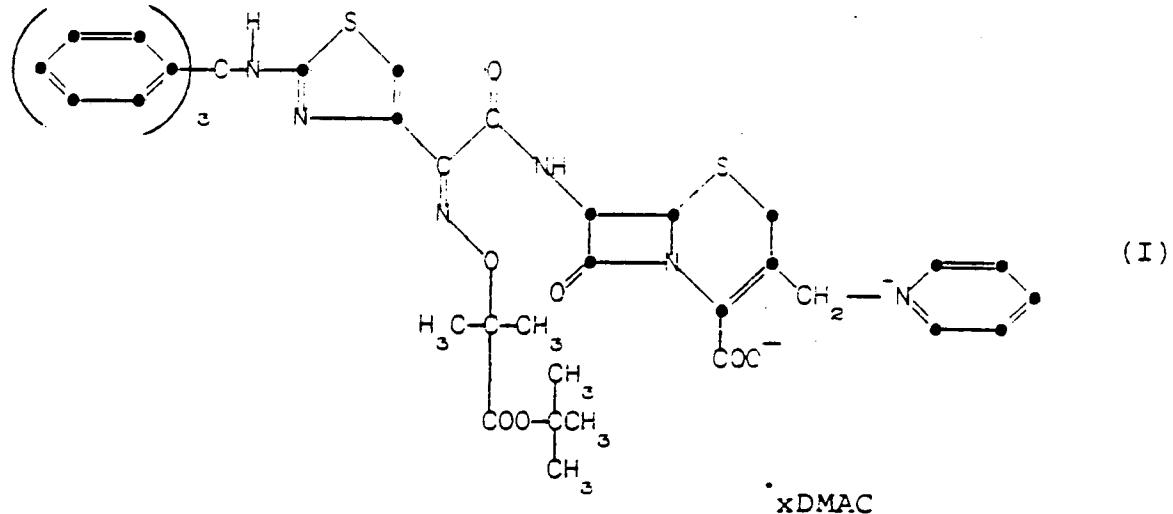
IMPROVEMENTS IN OR RELATING TO
NOVEL CEPHALOSPORIN INTERMEDIATES

This invention relates to a novel process and intermediate for the preparation of ceftazidime.

5 There is a continual need to develop new antibiotics because of the constant threat that antibiotic-specific resistant strains of pathogenic micro-organisms will emerge. Because of high development and production costs, particularly in the area of cephalosporin antibiotics, researchers are searching constantly for new and efficient means for producing these antibiotics.

10 In this regard, U.S. Patent No. 4,258,041 describes the synthesis of (6R,7R)-7-[(Z)-2-(2-aminothiazol-4-yl)-2-(2-carboxyprop-2-oxyimino)acetamido]-3-(1-pyridiniummethyl)ceph-3-em-4-carboxylate, a cephalosporin antibiotic now generically known as ceftazidime. The reported synthesis of ceftazidime comprises reacting (Z)-2-(2-tert.-butoxycarbonylprop-2-oxyimino)-2-(2-triphenylmethylaminothiazol-4-yl)-20 acetyl chloride with (6R,7R)-7-amino-3-(1-pyridiniummethyl)ceph-3-em-4-carboxylic acid in a mixture of N,N-dimethylacetamide and acetonitrile to provide the ceftazidime intermediate, (6R,7R)-7-[(Z)-2-(2-tri-25 phenylmethylaminothiazol-4-yl)-2-(2-tert.-butoxycarbonylprop-2-oxyimino)acetamido]-3-(1-pyridiniummethyl)-ceph-3-em-4-carboxylate. This ceftazidime intermediate then was recovered from the reaction mixture as an amorphous solid and subsequently purified by crystal-

lization as an N,N-dimethylformamide solvate (2 1/2 moles of DMF per mole of intermediate) from N,N-dimethylformamide. The ceftazidime intermediate then was reacted with formic acid to effect removal of the 5 protecting groups and to provide ceftazidime.


The present invention provides an improved process for preparing the ceftazidime intermediate, in which the intermediate is crystallized directly out of the reaction mixture as an N,N-dimethylacetamide solvate. 10 This invention, therefore, obviates the need for subsequent purification and provides improved yields and reduced costs in the production of ceftazidime.

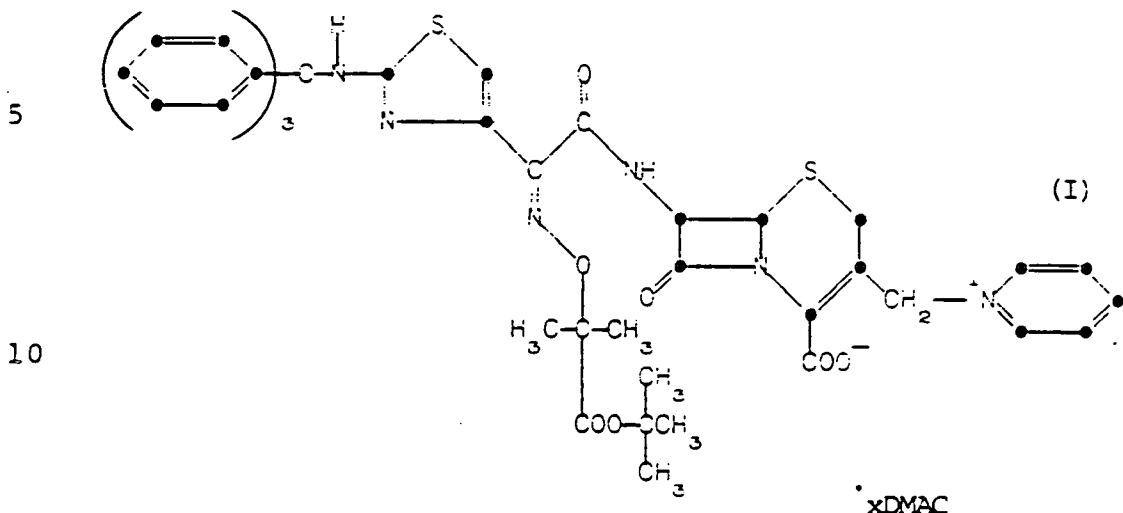
In accordance with the invention, a crystalline compound of Formula (I):

15

20

25

in which DMAC is N,N-dimethylacetamide and x is a number from 0.5 to 3.0, is a useful intermediate in 30 the synthesis of ceftazidime.


Also, there is provided a process for preparing a compound of Formula (I), as defined above, which comprises reacting in N,N-dimethylacetamide a ((Z)-2-(2-tert.-butoxycarbonylprop-2-oxyimino)-2-(2-triphenylmethylamino-thiazol-4-yl)acetyl halide with a (6R,7R)-7-amino-3-(1-pyridiniummethyl)ceph-3-em-4-carboxylic acid salt. The resulting dimethylacetamide solvate can be isolated as a crystalline solid directly from the reaction mixture. The process of this invention allows one to isolate, in good yield, substantially pure ceftazidime intermediate N,N-dimethylacetamide solvate.

As used throughout this description, "ceftazidime intermediate" means (6R,7R)-7-[(Z)-2-(2-triphenylmethylaminothiazol-4-yl)-2-(2-tert.-butoxy-carbonylprop-2-oxyimino)acetamido]-3-(1-pyridinium-methyl)ceph-3-em-4-carboxylate. The process by which this ceftazidime intermediate is prepared involves a typical acylation reaction comprising reacting a cephalosporin nucleus (i.e. a 7-amino-3-cephem derivative) with an acid halide, typically an acid chloride. The acid halide typically employed in the synthesis of the ceftazidime intermediate is a (Z)-2-(2-tert.-butoxy-carbonylprop-2-oxyimino)-2-(2-triphenylmethylamino-thiazol-4-yl)acetic acid halide. The acylation reaction generally is accomplished by reacting the acid halide with about an equimolar quantity of the 7-amino-3-cephem nucleus in an unreactive solvent such as dichloromethane, acetone, or a mixture of N,N-dimethyl-

acetamide and acetonitrile, and in the presence of a base such as triethylamine or pyridine. The present process is improved by employing N,N-dimethylacetamide as the reaction solvent thereby producing the ceftazidime intermediate directly from the acylation reaction mixture as a crystalline N,N-dimethylacetamide solvate. This improved process eliminates the separate purification step in which ceftazidime intermediate is converted to a solvate such as the N,N-dimethylformamide solvate.

5
10

In carrying out the process of this invention, the acid halide, for instance (2)-2-(2-tert.-butoxycarbonylprop-2-oxyimino)-2-(2-triphenylmethylaminothiazol-4-yl)acetyl chloride, may be prepared by reaction of the free acid with a halogenating agent such as phosphorus pentachloride in a suitable solvent such as dichloromethane or diethyl ether. Once the acid halide is formed, it normally is not isolated but rather is added to a suspension of about an equimolar 15
20
25 quantity of the cephalosporin nucleus in N,N-dimethylacetamide. A suitable base such as triethylamine is added to the reaction mixture to serve as scavenger for any free acid that might be present. The acylation reaction typically is complete within fifteen to ninety minutes when carried out at a temperature of -20 to 40°C. The ceftazidime intermediate that is thus produced is an N,N-dimethylacetamide solvate of Formula (I):

15 in which DMAC is N,N-dimethylacetamide and x is a
number from 0.5 to 3.0 and denotes the number of
moles of DMAC per mole of ceftazidime intermediate.
Preferred solvates are those in which x is 0.5 to
1.5, and especially in which x is 1.0.
20 The ceftazidime intermediate solvate can be
isolated readily by washing the reaction
mixture with water and then adding a suitable counter
solvent, i.e. a solvent in which the intermediate is
substantially insoluble. Typical counter solvents
25 include ethers, such as diethyl ether, methyl ethyl
ether, diglyme, or tetrahydrofuran; and esters such as
ethyl acetate, or methyl acetate. The counter solvent
of choice is diethyl ether, or a combination of diethyl
ether and ethyl acetate.

30

When the counter solvent is added to the N,N-dimethylacetamide reaction mixture, the ceftazidime intermediate N,N-dimethylacetamide solvate starts to precipitate within thirty to ninety minutes 5 as the solution is stirred at -10 to +10°C. The crystalline solvate is isolated by simply filtering the mixture, and generally, washing the solvate with fresh N,N-dimethylacetamide or diethyl ether is desirable. The product can be air dried at room temperature or dried in vacuum to remove any excess solvent. 10 The product produced is an N,N-dimethylacetamide solvate of ceftazidime intermediate having a purity generally greater than about ninety percent.

15 The ceftazidime intermediate solvate provided by this invention may be employed directly to produce ceftazidime. For example, the crystalline solvate may be dissolved in an acid solution, such as 98% formic acid, to cleave the triphenylmethyl protecting group on the amino group attached to the thiazolylacetamido side chain, and also to cleave the tert.-butoxy protecting group on the oxime portion of the side chain. If 20 desired, hydrochloric acid can be added so as to form the dihydrochloride salt of ceftazidime, thereby facilitating isolation of the final product as a 25 crystalline precipitate. The ceftazidime dihydrochloride produced can be employed as an antibiotic.

To further illustrate the invention the following non-limiting examples are provided.

Example 1

5 (6R,7R)-7-[(Z)-2-(2-triphenylmethylamino-thiazol-4-yl)-2-(2-tert.-butoxycarbonylprop-2-oxyimino)acetamido]-3-(1-pyridiniummethyl)ceph-3-em-4-carboxylate.

10 To a cold (-10°C) stirred solution of 8.70 g (41.8 mM) of phosphorus pentachloride in 150 ml of dichloromethane were added in one portion 21.72 g (38 mM) of (Z)-2-(2-tert.-butoxycarbonylprop-2-oxyimino)-2-(2-triphenylmethylaminothiazol-4-yl)acetic acid. The reaction mixture was stirred for thirty 15 minutes at -10°C, and then diluted with a cold solution of 100 ml of water containing 11.66 ml (83.6 mM) of triethylamine. The two-phase reaction mixture was stirred vigorously for about three minutes, and then the organic layer was removed and added to a stirred 20 cold (-10°C) suspension of 16.89 g (38.0 mM) of (6R,7R)-7-amino-3-(1-pyridiniummethyl)ceph-3-em-4-carboxylic acid dihydrochloride in 195 ml of N,N-dimethylacetamide containing 26.5 ml (190 mM) of triethylamine. The reaction mixture was stirred at 0 to -5°C for thirty 25 minutes, and then was diluted by the addition in one portion of 300 ml of water. The aqueous reaction mixture was stirred for ten minutes, and then the organic layer was separated and further diluted by the

addition of 150 ml of fresh N,N-dimethylacetamide and 300 ml of diethyl ether. The organic solution was stirred at 0 to 5°C for one hour, and the crystalline precipitate that had formed was collected by filtration, washed with fresh N,N-dimethylacetamide and then with fresh diethyl ether, and was dried at ambient temperature in vacuum for sixteen hours to produce 20.96 g (65.2% yield) of (6R,7R)-7-[(Z)-2-(2-triphenylmethylaminothiazol-4-yl)-2-(2-tert.-butoxycarbonylprop-2-oxyimino)acetamido]-3-(1-pyridiniummethyl)c₆h₃-em-4-carboxylate N,N-dimethylacetamide solvate (1 mole of N,N-dimethylacetamide), m.p. 150°C (dec). Purity as determined by high performance liquid chromatography was 95.56%.

15

Example 2

The process of Example 1 was repeated as follows:

20 To a cold (-15°C) stirred solution of 7.73 g of phosphorus pentachloride in 120 ml of dichloromethane were added in one portion 17.32 g of (Z)-2-(2-tert.-butoxycarbonylprop-2-oxyimino)-2-(2-triphenylmethylaminothiazol-4-yl)acetic acid. The reaction mixture was stirred for thirty minutes while maintaining the temperature at about -10 to -15°C,. The reaction mixture was then diluted by the addition of 80 ml of water containing 10.5 ml of triethylamine. After stirring the reaction mixture for three minutes, the organic layer was separated and the aqueous layer was

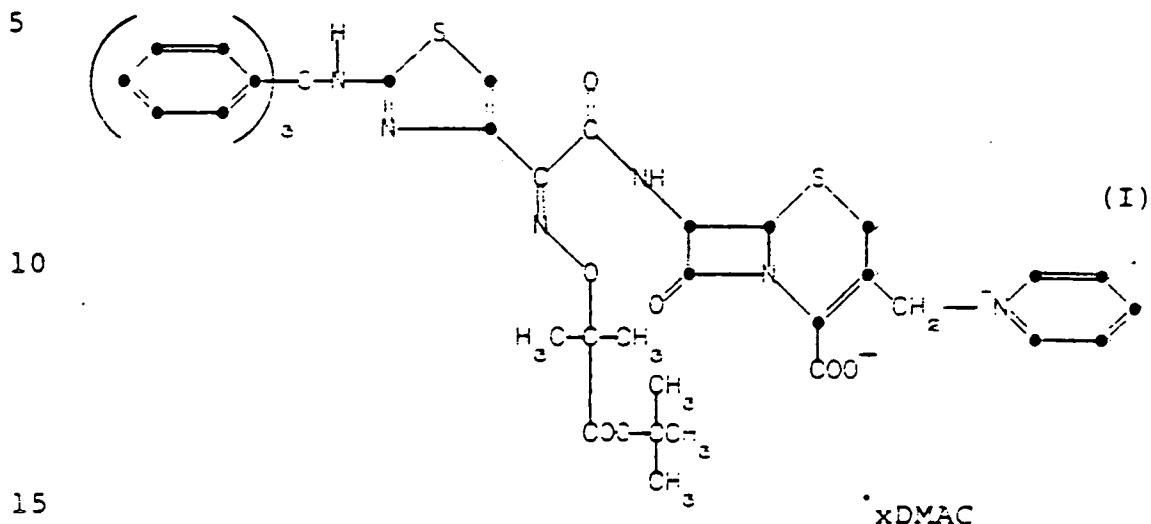
30

discarded. The organic layer was then added dropwise over ten minutes to a cold (-10°C) stirred suspension of 11.13 g of (6R,7R)-7-amino-3-(1-pyridiniummethyl)-5-ceph-3-em-4-carboxylic acid dihydrochloride in 88 ml of N,N-dimethylacetamide containing 17.5 ml of triethylamine. The reaction mixture was stirred for thirty minutes at about -5 to 0°C, and then was allowed to warm to about +5°C and was diluted by the addition of 200 ml of water. After stirring the aqueous mixture for two minutes, the organic layer was separated and the aqueous layer was discarded. The organic layer was further diluted with 200 ml of ethyl acetate and 100 ml of diethyl ether, and the mixture was vigorously stirred at about 20 to 25°C. The mixture was seeded 10 with ceftazidime intermediate N,N-dimethylacetamide solvate to initiate crystallization. After stirring the mixture for thirty minutes at 20 to 25°C, the temperature was lowered to 0°C and stirring was continued for about two hours. Filtration of the mixture 15 and washing of the filter cake with a mixture of 10 ml of N,N-dimethylacetamide and 10 ml of diethyl ether and finally with 40 ml of diethyl ether provided, following drying at 35°C under vacuum for about sixteen hours, about 78 percent yield of ceftazidime intermediate 20 and 25 N,N-dimethylacetamide solvate (1.5 mole of N,N-dimethylacetamide).

Example 3

Ceftazidime Dihydrochloride

To a 250 ml, 3-necked, round-bottom flask
5 purged with nitrogen are added 62.2 ml (75.9 g) of
formic acid which is cooled to about 15°C. To the
stirring cooled formic acid is added 32.0 g (37.9 mM)
of the ceftazidime intermediate from Example 1 or 2.
The solution is stirred for 30 minutes after which
10 13.3 ml (15.8 g) of hydrochloric acid are added while
maintaining the temperature below 20°C. The mixture
is stirred for about 3 hours and the triphenylmethanol
produced is filtered and washed with formic acid
and water. The filtrate is cooled and added to about
15 850 ml of acetone after which the cooled slurry is
stirred for about 2 hours. The product is filtered
and washed with acetone to produce the title product
in about a 62% yield.


20 NMR (DMSO-d₆): δ 1.58 (s, 2 -CH₃), δ 5.33
(d, J = 5 Hz, 6-H), δ 6.01 (dd, J = 9.5 Hz, 7-H),
δ 7.00 (s, aminothiazole), δ 8.30, 8.75 (t, J = 6 Hz),
δ 8.75 (t, J = 6 Hz), δ 9.23 (d, J = 6 Hz, pyridinium
protons), δ 9.72 (d, J = 9, acetamido proton).

25

30

CLAIMS

1. A crystalline compound of Formula (I):

in which DMAc is N,N-dimethylacetamide and x is a number from 0.5 to 3.0.

2. A compound of Formula (I) as claimed
20 in claim 1 in which x is 0.5.

3. A compound of Formula (I) as claimed in claim 1 in which x is 1.0.

4. A compound of Formula (I) as claimed in claim 1 in which x is 1.5.

25 5. A compound of Formula (I) as claimed
in claim 1 in which x is 2.0.

6. A compound of Formula (I) as claimed in claim 1 in which x is 2.5.

7. A process for preparing a compound of
30 Formula (I) as claimed in any one of claims 1 to 6
which comprises reacting in N,N-dimethylacetamide
and a water-immiscible organic solvent a

5 ((2)-2-(2-tert.-butoxycarbonylprop-2-oxyimino)-2-(2-triphenylmethylamino-thiazol-4-yl)acetyl halide with a (6R,7R)-7-amino-3-(1-pyridiniummethyl)ceph-3-em-4-carboxylic acid salt, washing the reaction mixture with water and adding an organic counter-solvent.

8. A process of claim 7 wherein the organic counter-solvent is selected from diethyl ether, methyl ethyl ether, diglyme, tetrahydrofuran, ethyl acetate or methyl acetate.

9. A process for preparing ceftazidime or a pharmaceutically acceptable salt thereof, which comprises removing the protecting groups from a compound of Formula (I) as claimed in any one of claims 1 to 6.

10. A process as claimed in claim 8 or 9 in which the protecting groups are removed by treating with acid the compound of Formula (I).

20 11. A compound of Formula (I) as claimed in
any one of claims 1 to 6 for use as an intermediate
in the preparation of ceftazidime.

12. A compound of Formula (I) as claimed
in claim 1 substantially as hereinbefore described
25 with reference to Examples 1 and 2.

13. A process for preparing a compound of Formula (I) as claimed in claim 1 substantially as hereinbefore described with reference to Examples 1 and 2.

2132616

Publication No.
2132616 A dated 11 July 1984

Patent Granted:

WITH EFFECT FROM
SECTION 26(1)
6 AUG 1986

Application No.
8333667 filed on 16 December 1983

Priority claimed:
27 December 1982 in United States of America doc: 453445

Title:

Improvements in or relating to novel cephalosporin intermediates

Applicant:

Eli Lilly and Company (USA-Indiana), 307 East McCarty Street, Indianapolis,
Indiana 46285, United States of America.

Inventors:

Ta-Sen Chou, 745 Canyon Road, Indianapolis, Indiana 46217, United States of America.

Perry Clark Heath, 7130 S Delaware Street, Indianapolis, Indiana 46227,
United States of America.

Classified to:
C2C UI8

Examination requested 16 December 1983

Address for Service:

T R Crowther, Erl Wood Manor, Windlesham, Surrey GU20 6PH.

Page 1

Last page

Printed by the Patent Office at St. Mary Cray, 16 MAY 84

2132616