发明专利申请公布说明书

发明名称：蜂毒肽的提纯方法

摘要：
一种蜂毒肽的分离提纯方法，是将粗蜂毒用水浸洗，滤液用乙醇沉淀，沉淀物用氢氧化铵和正丁醇萃取，萃取液以丙酮沉淀，使沉淀物溶于酸的醋酸盐缓冲液 A 中，在离子交换柱上作洗脱层析，柱下收集溶血活性最强吸收峰 V 的层析馏份浓缩，浓缩液经葡萄糖凝胶 G-10 柱脱盐，丙酮沉淀，再溶解、脱盐沉淀处理，沉淀物溶于醋酸盐缓冲液 B 中，在葡聚糖凝胶 G-25 柱上以缓冲 C 液作梯度洗脱，柱下收集吸收峰 II 时层析馏份浓缩、脱盐冷冻干燥即得到电泳级蜂毒肽。本发明工艺简化后生产周期缩短 1.5～2 天，蜂毒肽收率比现有方法提高 7～8％，提纯成本降低约 30％，实现了蜂毒肽的工业化生产。
1. 蜂毒肽的提纯方法，是将粗蜂毒用水浸洗，溶媒萃取、凝胶过滤柱层析的方法，从蜂毒中提取蜂毒肽，其特征是：

1）将粗蜂毒加水浸洗，去除不溶物杂质，滤液用乙醇沉淀，去除乙醇水液，沉淀物1加入氢氧化铵与正丁醇溶液萃取，弃除沉淀，蒸馏回收正丁醇，浓缩物加丙酮沉淀得沉淀物2；

2）将沉淀物2溶解于脲的醋酸盐缓冲液A中，在离子交换凝胶CM-Sephrose. FF柱上，用缓冲液A梯度洗脱层析；

3）在离子交换凝胶柱上收集溶血活性最强的吸收峰V时的层析馏份进行浓缩，浓缩液通过葡聚糖凝胶G-10柱脱盐，脱盐浓缩物用丙酮沉淀得到沉淀物3；

4）将沉淀物3溶于盐酸胍、亚硫酸钠和对氯汞苯甲酸混合溶液中，再将溶液浓缩，通过葡聚糖凝胶柱脱盐，用丙酮沉淀得沉淀物4；

5）将沉淀物4溶解于醋酸盐缓冲液B中，在葡聚糖凝胶G-25柱上，用缓冲液B梯度洗脱层析，在柱下收集溶血活性最强的吸收峰II时的层析馏份进行浓缩，于葡聚糖凝胶柱G-10上脱盐、冷冻干燥即得到蜂毒肽。

2. 按照权利要求1所述的方法，其特征是缓冲液A和缓冲液B的PH=4.2~5.0，盐酸胍、亚硫酸钠和对氯汞苯甲酸混合溶液用0.15M氢氧化铵调整PH达7.0。

3. 按照权利要求1所述的方法，其特征是浸洗粗蜂毒滤液用20倍无水乙醇沉淀，中间过程中脱盐、沉淀采用3倍量的丙酮进行沉淀。
蜂毒肽的提纯方法

技术领域

本发明涉及蜂毒肽的分离提取工艺，特别是用粗蜂毒分离提取蜂毒肽的方法。

背景技术

在蜂毒的众多成份中，以蜂毒肽（melittin）的含量最高，生物活性最强，具有最为广阔的临床前景。国内外虽有其分离提纯方法的报道，但工艺复杂，条件苛刻，难以大量生产；且生产周期较长，一般至少需3天；产品损失严重，蜂毒肽收率仅30%左右，提取纯化成本高。已经公开的专利号：92114271.4“从蜂毒中快速分离蜂肽的方法”，是将粗蜂毒溶解在水中后，使用超滤膜和透析袋使蜂肽分离出来，超滤膜的截流分子量为5000以上，透析袋截流分子量为1000，该方法目的是分离出血分子量可引起过敏反应的非蛋白物质，如采用该方法，蜂毒肽四聚体（分子量为11360）在分离初期就被截流掉，而蜂毒肽四聚体在蜂毒中约占10~20%，所以使得蜂毒肽的提取率比理论提取率低20~30%；该方法为分离方法，蜂毒肽纯度达不到电泳级纯度，因此应用领域大大受到限制。

发明内容

本发明的目的是克服现有技术存在的缺陷，对现有层析分离法进行改进，提供一种工艺步骤相对少，在提取纯化过程中蜂毒肽损失少，即收率高，生产周期短，提纯后的蜂毒肽纯度达电泳级的蜂毒肽分离提纯方法。

本发明方法是将粗蜂毒用水浸洗，溶媒萃取、凝胶过滤柱层析的方法，从蜂毒中提取蜂毒肽，其特征是:
1) 将粗蜂毒加水浸洗，去除不溶物杂质，滤液用乙醇沉淀，去除乙醇水液，沉淀物 1 加入氢氧化铵与正丁醇溶液萃取，弃除沉淀，蒸馏回收正丁醇，浓缩物加丙酮沉淀得沉淀物 2；

2）将沉淀物 2 溶解于脲的醋酸盐缓冲液 A 中，在离子交换凝胶 CM-Sephrose. FF 柱上，用缓冲液 A 梯度洗脱层析；

3）在离子交换凝胶柱上收集溶血活性最强的吸收峰 V 时的层析馏份进行浓缩，浓缩液通过葡聚糖凝胶 G-10 柱脱盐，脱盐浓缩物用丙酮沉淀得到沉淀物 3；

4）将沉淀物 3 溶于盐酸胍、亚硫酸钠和对氯汞苯甲酸混合溶液中，再将溶液浓缩，再通过葡聚糖凝胶柱脱盐，用丙酮沉淀得沉淀物 4；

5）将沉淀物 4 溶解于醋酸盐缓冲液 B 中，在葡聚糖凝胶 G-25 柱上，用缓冲液 B 梯度洗脱层析，在柱下收集溶血活性最强的吸收峰 II 时的层析馏份进行浓缩，于葡聚糖凝胶柱 G-10 上脱盐、冷冻干燥即得到蜂毒肽。

在离子交换凝胶柱及葡聚糖凝胶柱上进行层析时使用的缓冲液 A 和缓冲液 B 的 PH 为 4.2~5.0，使用梯度混合仪进行梯度洗脱。盐酸胍、亚硫酸钠和对氯汞苯甲酸混合溶液用 0.15M 的氢氧化铵调整 PH 值达 7.0，盐酸胍、亚硫酸钠和对氯汞苯甲酸的浓度分别为 3M、0.055M 和 0.0023M。在浸洗粗蜂毒时的滤液用 20 倍的无水乙醇沉淀；中间过程中的脱盐、沉淀，采用 3 倍量的丙酮进行沉淀。

采用本方法生产的蜂毒肽纯度可达电泳级纯度，满足了更多领域特别是临床应用的技术要求；蜂毒肽的提取率比现有方法均高出 7~8%，工艺步骤减化，提纯生产周期比原来减少 1.5~2 天，提纯成本比原来降低约 30%。

下面结合实施例对本发明作详细描述。

取粗蜂毒 20g 加入 100ml 蒸馏水浸三次浸洗，用中性滤纸过滤，蜜蜂蛰针等不溶物杂质弃除。滤液用 20 倍无水乙醇沉淀，去除乙醇水液，沉淀物 1 溶于
1200ml 0.15M 的氢氧化铵中，再加入 800ml 正丁醇振摇 2hr。用分液漏斗分离，沉淀物弃除，蒸馏回收萃取液中正丁醇，浓缩物用三倍的丙酮沉淀，沉淀物 2 溶解于 1000 mL 含有 4 mol/L 虱的醋酸盐缓冲液中，PH 为 4.75，此为缓冲液 A，上离子交换凝胶 CM-Sepharose FF 柱，用缓冲液 A+0.5mol/L 氯化钠进行梯度洗脱。洗脱液以溶血试验进行蜂毒肽的生物活性跟踪，在离子凝胶柱下收集溶血活性作用最强的吸收峰Ⅴ时的层析馏份共 1000ml，蒸发浓缩至 100ml。浓缩液通过葡聚糖凝胶 G-10 柱脱盐，脱盐浓缩物用三倍的丙酮沉淀，沉淀物 3 溶解于 2000 mL 的含有 3 mol/L 盐酸胍、55 mmol/L 亚硫酸钠和 2.3 mmol/L 对氯汞苯甲酸的溶液中，整个溶液用 NH₄OH 调到 pH 7.0，在 37 ± 2℃下保温 2hr，蒸发浓缩溶液至 200ml，再通过葡聚糖凝胶柱 G-10 脱盐，用 3 倍的丙酮沉淀，沉淀物 4 溶解于 500 mL 醋酸铵缓冲液 (0.05 mol/L)，PH 4.75，此为缓冲液 B 中，上葡聚糖凝胶 G-25 柱，用缓冲液 B 进行梯度洗脱（用梯度混合器），洗脱液以溶血试验进行蜂毒肽的活性跟踪，在柱下收集溶血活性作用最强的吸收峰Ⅱ时的层析馏份共 800ml，浓缩至 100ml，用葡聚糖凝胶 G-10 柱脱盐，冷冻干燥，最后得到冻干物蜂毒肽 9.4g。产物蜂毒肽的收率为 47%。