ENCLOSURE APPARATUS AND METHOD OF FABRICATION THEREOF

Abstract: An envelope is formed from a single sheet of paper, which is of a standard size. The paper is folded along opposing edges and then folded along a mid-section. Content material may be placed in the envelope or printed information can be printed on desired surfaces of the envelope. The paper may also be folded so that a fold-over flap is formed. The edges are attached through a sealing mechanism such as knurling or crimping.
BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION
[001] This invention relates generally to a method and apparatus for fabricating an enclosure that may have information printed thereon or be used to enclose content material. More particularly, this invention relates to a method and apparatus for fabricating an enclosure from a single sheet of material, which is folded to enclose the content material and then sealed at selected areas to maintain the integrity of the enclosure.

BACKGROUND ART
[002] Conventional envelopes contain mail content material and typically require specialized mailing products, such as a number 3 envelope, number 10 envelope, a business reply envelope (BRE) and similar especially – manufactured materials. These materials are adapted to receive content material, such as letters, bills, and other information to be sent to a recipient. When using conventional envelopes, it is necessary to insert the content material into the envelope prior to sealing the envelope.
[003] This insertion process is difficult to perform without sophisticated equipment, since the desired content material must be associated with a corresponding envelope.
[004] Conventional “self-mailers” typically require especially-manufactured paper or other material. One example of a self-mailer is the One Step Mailer from GBR Systems Corporation, Chester Research Park, Chester, CT. The GBR mailers have glue beads dispensed on two sides of the self-mailer and glue dots are applied the across the top portion. One disadvantage to this self-mailer is that it requires specific material that must be fed into an inserter or printer device.
[005] Another conventional mail envelope is available from Nexti AB, which utilizes different sized sheets of paper material as front and back covers, respectively, to form an envelope. One disadvantage to the Nexti envelope is that it requires an over-sized sheet to be used as a base. Thus, the over-sized sheet must be inserted in a desired location so that it will be in the correct sequence to form the enclosure.
[006] Other examples of conventional mailing envelopes and methods therefor include U.S. Patent No. 5,501,392, entitled, "Folded Single Sheet Mailer", which relates to a folded single sheet mailer that comprises a rectangular sheet provided with transverse and longitudinal lines of perforation and transverse and longitudinal glue lines. The sheet is folded onto itself along a transverse fold line, which is offset with respect to the center of the sheet. The sheet is then folded along a plurality of secondary fold lines and sealed to produce an outgoing envelope that can be mailed. The mailer includes a return envelope for use when placing an order. One drawback to this mailer is that it requires specifically manufactured paper to produce the mailer.

[007] U.S. Patent No. 5,638,666, entitled, "Desk-Top Envelope Maker" relates to an apparatus and method for making an envelope from ordinary size, readily available, writing paper. The apparatus is a desk-top size machine that can be combined with an office printer, such as a laser printer, or incorporated therein to form a single machine. The apparatus enables integration of office computerized printing of letters and addressing of envelopes, by using a single paper tray. Following the printing of a letter, the subsequently fed final sheet of paper from the paper tray is routed to the envelope making apparatus, perhaps after the printing of an address on the final sheet, whereby an envelope is created. Ordinary size paper is fed into the apparatus from a tray. When the paper enters the machine, two impression lines or creases are made along the length of paper, which will subsequently serve as fold lines. These impressions are made by sharp rollers preferably mounted at the infeed to the machine so that the rollers press against the paper while the paper is fed into the apparatus. This apparatus and method has the drawback that it requires cutting and gluing to form an envelope. Secondly, it results in scrap being produced, which must be disposed of.

[008] U.S. Patent No. 6,019,280, entitled, "C-Fold Return Postcard Mailer" relates to a mailer type business form intermediate, and business form produced from the intermediate, that have an included postcard which is used as a reply piece. The mailer may be a C-fold mailer, with a window (e.g. die cut-out) formed in one of the panels, which overlies the outgoing address indicia formed on a face at the postcard. Check-off indicia is provided on the postcard to optimize response, and tear-off strips along the side edges of the mailer are held together with pressure sensitive cohesive. Tacking pressure sensitive adhesive may also be provided along edges of the die cut-out panel and the postcard-securing panel, exterior of the postcard.
Therefore, what is needed to overcome the present drawbacks of the current state of the art is a mailer that can be fabricated from a standard material and does not require special materials.

**BRIEF SUMMARY OF THE INVENTION**

In order to overcome the aforementioned drawbacks of the prior art, the instant invention utilizes a standard sheet to form an enclosure.

Accordingly, one embodiment of the present invention relates to a method for fabricating an enclosure. The method includes printing information, such as indicia data on a selected area of the sheet material and printing recipient address data on a second area of the sheet material. The sheet material is then folded along a first opposing portion and a second opposing portion. Content material is positioned on the sheet material. Next, the sheet material is attached (for example by sealing or bonding) along the first portion and the second portion. Then, the sheet material is folded at approximately a half-way portion of the sheet material and two edges of the sheet material are attached to enclose the content material within the sheet material.

Another embodiment is that the enclosure can be fabricated prior to printing indicia data and recipient address data. Also, the sheet material can be folded in half prior to the content material being placed on the sheet material.

Another embodiment of the present invention relates to a method of fabricating an enclosure comprising the steps of: creasing an enclosure material along a first edge; creasing the enclosure material along a second parallel edge; creasing the enclosure material along a perpendicular mid-section and attaching two portions of the enclosure material together. The attaching is suitably performed by knurling, gluing, crimping, tabbing, using a pressure sensitive adhesive, embossing or using a hot-melt compound.

Yet another embodiment of the present invention relates to an envelope apparatus comprising: a sheet material having folded distal and proximal portions; content material positioned within the envelope apparatus; a folded edge; and a sealed edge opposite the folded edge.

Yet another embodiment of the present invention relates to a method for fabricating an enclosure that includes a flap portion that is folded to be in contact with an external portion of the sheet material. This method includes the steps of folding first and second end portions; folding a sheet material parallel to a long edge of the sheet material, so as to form an extension portion and folding the sheet
material so that the extension portion contacts the sheet material. The extension portion is attached to the sheet material. This attaching is typically performed by sealing, gluing, crimping, knurling, embossing, using a pressure sensitive adhesive, or using a hot-melt compound.

[0016] Yet another embodiment of the present invention relates to an envelope apparatus that includes a sheet material having a folded distal portion and a folded proximal portion. Content material is positioned within the envelope apparatus. The apparatus has a folded edge, a flap portion, and a sealed edge formed by the flap portion contacting the sheet material opposite the folded edge. The content material and the sheet material have approximately the same dimensions.

**Brief Description of the Drawings**

[0017] FIG. 1 shows a process to form an enclosure according to the present invention.

[0018] FIGs. 2A and 2B show views of the enclosure formation process of the present invention.

[0019] FIG. 3 shows a process to form an enclosure with a fold-over flap.

[0020] FIGs. 4A and 4B show views of the enclosure formation process to form an enclosure with a fold-over flap.

[0021] FIGs. 5A-5C show a perspective view of an enclosure.

[0022] FIGs. 6A-6C show a perspective view of an enclosure with a fold-over flap.

**Detailed Description**

[0023] The present invention overcomes the problem that arises when inserting content material into enclosures such as envelopes. It is very difficult for an automated apparatus to complete the steps of envelope feeding, flap opening, content inserting, moistening, flap closing, and sealing of the envelope with acceptably low failure rates. It is also difficult to process envelopes that have been imprinted using laser printers since the envelopes may become warped and/or distorted during the printing process. Furthermore, oftentimes, the flap of an envelope will inadvertently seal prior to content insertion. It is apparent that the envelope, which is typically of a different size dimension of the content material must be involved in an inserter system to enable insertion of content mail into the envelope. Tolerances on the dimensions of conventional envelopes often have a wide degree of variability from batch to batch, necessitating frequent adjustments of
set-ups of the inserting apparatus. Unfortunately, present inserter systems often cause the envelope to get snagged, stuck or jammed before the insertion process is complete.

[0024] The present invention is an enclosure that can be mailed or delivered to a recipient. The enclosure may have content information printed on an inside surface and recipient information, sender information and postal indicia printed on an outside surface. The enclosure may be used to enclose content material as an alternative to inserting the content material into the enclosure. As described herein, typically insertion, inserting and other forms of the term denote positioning materials inside an enclosure after the enclosure has been formed. Enfolding and other forms of the term denote positioning materials on an enclosure sheet before or while the enclosure is formed.

[0025] The enclosure apparatus and method will enclose content material with varying thickness inside the enclosure that is fabricated from a standard sized sheet of paper. An advantage of this is that the paper is the same size as the contents prior to folding the contents. This eliminates the need to have separate envelopes fed into an inserter or printer. A preferred size paper for use in this invention is one commonly available in offices, such multi-purpose stock paper including standard sized paper, which is, for example letter size (8.5 times 11 inches), A4, B4, legal or folio. Although the above-listed paper sizes are standard, it should be apparent that other sizes of paper could also be used with the present invention.

[0026] The present method utilizes a same sized sheet that is folded in such a way as to receive content material in an insertion, enfolding and/or enclosing process. The method is typically used in conjunction with a printer attached in-line to an inserter, enfolding and/or enclosing system or could include printed material that is loaded manually into feed trays of an off-line inserter system.

[0027] As shown in Figure 1, system 10 includes a printer, photocopier or paper storage device 101 that has a first tray or stack of paper or other material 102 that is folded by folder device 105, as shown by line 151, to form content material 106. The content material 106 is typically letter, bills, or other printed data to be sent to a recipient. Device 101 also contains paper or material 104 that has a different orientation than material 102. Material 104 is not folded by folder device 105, but rather passes, as shown by line 153, to be aligned with folder 103(a) (b). Sheet material 104 has leading edge 168 and trailing edge 164 and mid-point axis 112.
[0028] In one embodiment, folded packet of content material 106 is placed on sheet material 104 prior to sheet material 104 being folded by folder 103. Other enclosure material such as business reply envelopes, cards, postcards and the like may be added to the content material 106 at this time.

[0029] Alternatively, content material 106 may be placed on sheet material 104 after the opposing edge portions 160 and 162 have been folded. Still another embodiment is that content material 106 is placed on sheet material 104 after sheet material 104 has been folded along mid-point axis 112.

[0030] Sheet material 104 is typically an 8 ½ x 11-inch piece of paper or other suitable standard sized material. Typically sheet material 104 will be oriented such that opposing shorter end portions 160 and 162 are feed into an edge fold device shown as 103(a) and 103(b) and roller devices 125(a), 125(b). Sheet material 104 is feed in the direction shown by arrow 108 and typically has a mid point on the length wise dimension shown as 112.

[0031] Once the sheet material 104 passes through the devices 103, 125, first and second opposing edge portions 160, 162 are folded over to form overlap areas 110(a) and 110(b). (Overlap area 110(b) is associated with opposed portion 160 and overlap area 110(a) is associated with opposed portion 162.) An edge 170 is formed by the fold of opposing portion 160 and edge 172 is formed by the fold of opposing portion 162. Content material 106 is typically one or more sheets of material that have been either "Z" folded or "C" folded so as to be as approximately 1/3 the length of sheet material 104 (in the unfolded state). Content material 106 may also be double folded so as to be ¼ of the size of the unfolded sheet. Sheet material 104 is then feed into folder 115 to fold sheet material 104 at approximately the mid-point 112. The half fold causes the sheet material 104 to envelope content material 106. Edge portion 116 is formed by edges 164 and 168 contacting each other. Surface 114 is shown after the sheet material 104 is folded in half.

[0032] Line 159 shows that the folded material is then passed through sealing device 121. The sealing device 121 is used to seal portions of the folded material. For example, sealing device 121 may attach the material along edge portion 116, shown as attachment 118. Sealing device 121 may seal along opposed surface portions 110(a) and 110(b). The attaching can be via knurling, crimping, embossing, gluing, pressure sensitive adhesive, hot-melt material, stapling, tabbing, double-back
adhesive tape and other attaching mechanisms to affix portions of the sheet material 104.

[0033] The sealing device 123 may seal along edge portions 116, 160, 162, or any combination thereof.

[0034] Once the sheet material 104 is folded in half, the portion 114 is available to print destination address information, sender address information and indicia information, these are shown as elements 150, 152 and 154, respectively. Printing device 123, which is typically a standard printer connected to a computer (computer not shown) or a networked printer that is authorized to print postal indicia may be used. The printer 123 may be for example connected to postage by phone technology available from Pitney Bowes, or other mechanism to permit postal indicia to be printed as well as destination address, sender address and slogan information. It should be apparent that the use of printer 123 is optional and that the device 101 may be used to print on the content material and/or the enclosure material prior to manipulation.

[0035] In an embodiment in which content material is not inserted into sheet material 104, the material 104 is folded and produced without enclosure material 106. Content material 106 may not be necessary to implement to the present invention. Indeed, content can be printed on sheet material 104 prior to the folding process described above.

[0036] Content material 106 may be manually inserted into the sheet material after the sheet material has been folded to produce the enclosure. Thus, a user at a personal computer user can print a letter, fold the letter and manually insert the letter into the enclosure.

[0037] It will also be apparent to those skilled in the art that alternate sealing methods can be used. For example leading edge 168 may contain an adhesive that is moistened and then folded to contact edge 164 and thereby form an adhesive bond between the two surfaces. Alternatively an adhesive that is heated and pressed may be used to seal edge 116. In a similar fashion, portions 110(a) and 110(b) may have an adhesive that is sealed when the mailer is fed through sealing device 123. Still another alternative is to crimp the edges discussed above.

[0038] It is another embodiment that the sheet material 104 is folded along axis 112 prior to being folded along opposing edges 160, 162.
[0039] Figure 2A shows a process 20 used to form an enclosure that contains content material. As shown in Figure 2A, line 208 shows a plurality of sheet material 202 is folded to form a packet of content material 206. This content material 206 is typically letters, bills, or any correspondence. Additional content material such as envelopes, cards and the like may be added at this time. A plurality of sheet material 204 has approximately the same dimensions as material 202, has opposed edges 260 and 262. Line 214 shows that sheet material 204 is folded such that opposed edges 260 and 262 form overlap areas 210(b) and 210(a), respectively. Folded edges 270 and 272 result from the folding. Length edges 224 and 226 and midpoint 212 are also shown.

[0040] Line 209 shows that content material 206 is positioned on sheet material 204 such that a portion underlies either one or both of fold portions 210(a) and 210(b). Length edges 224 and 226 and sealing 218 are also shown. Content material 206 is positioned onto sheet material 204 by any suitable conventional paper handling technology. For example, U.S. Patent No. 6,364,305, entitled, "System and Method for Providing Sheets to an Inserter System"; U.S. Patent No. 6,094,894, entitled, "Envelope Inserting Apparatus"; and U.S. patent No. 6,030,132, entitled, "Document Control Page Interface" discloses inserter systems. U.S. Patent Nos.: 6,364,305; 6,094,894; and 6,030,132 are hereby incorporated by reference in their entirety herein.

[0041] Line 219 shows that the sheet material is folded along axis line 212 so as to encapsulate content material 206. Edges 226 and 224 come into contact. Portions 222 and 220 are formed by the fold such that portions 210a and 210d come into contact as do 210b and 210c. Exterior surface 214 is also shown.

[0042] Line 221 shows that a surface 216 in proximity to edges 226 and 224 may be sealed, shown by knurling 218. Also, surfaces in proximity to edges 220 and 222 may also be attached, shown in Figure 1. Also, information can be printed on surface 214 as shown by destination address 252, return address 254 and postal indicia 250. This printing procedure may be performed before or after the folding operations described above.

[0043] Figure 2B shows an alternate embodiment in which the content material is placed on the enclosure material prior to the manipulations described herein. In this embodiment, line 209 shows that the content material is positioned on an unfolded
sheet material 204. The opposing edges of sheet 204 are folded and then the sheet material is folded along axis 212 to enfold the content material 206.

[0044] Figures 3, 4A and 4B show another embodiment of the present invention in which the enclosure material is folded so as to produce a fold-over flap that may then be attached to a portion of the enclosure material.

[0045] As shown in Figure 3, system 30 includes a printer or paper storage device 301 that has a first tray of material 302 that is folded by folder device 305 to form content material 306. Device 301 also contains paper or material 304 that has a different orientation than material 302. Material 304 is not folded by folder device 305, but rather passes to folder 303(a) (b).

[0046] In one embodiment, folded packet of content material 306 is placed on sheet material 304 prior to sheet material 304 being folded by folder device 303. Alternatively, folded content material 306 may be placed on sheet material 304 after sheet material 304 has been folded by folding device 303. Still another embodiment is to position content material 306 on enclosure material 304 after the enclosure material has been folded by folding device 315. The content material 306 may be positioned and/or inserted according to inserting techniques, as discussed above in relation to Figure 1.

[0047] Sheet material 304 is typically 8-⅝ inch x 11-inch paper or other suitable standard sized material. Typically sheet material 304 will be oriented such that opposing shorter ends 360 and 362 are feed into an edge fold device shown as 303(a) and 303(b) and a creasing devices 325(a), 325(b). Sheet material 304 typically has an axis on the lengthwise dimension shown as 311. This axis 311 is slightly less than half the dimension of short edge 362 to permit an offset that will form the over-fold flap.

[0048] Once the sheet material 304 passes through the devices 303, and 325, first and second opposing edge portions 360, 362 are folded over to form overlap areas 310(a) and 310(b). (Overlap area 310(b) is associated with opposed portion 360 and overlap area 310(a) is associated with opposed portion 362.) An edge 370 is formed by fold of opposing portion 360 and edge 372 is formed by fold of opposing portion 362. Area 313 is the portion of the sheet material 304 that will form the over-fold flap.

[0049] Content material 306 is typically one or more sheets of material that have been either "Z" folded or "C" folded so as to be as approximately 1/3 the length of
sheet material 304 or double folded to be approximately ¾ of the length of the unfolded material.

[0050] Sheet material 304 is then fed into folder 315 to fold sheet material 304 approximately along axis 311. These folds cause the sheet material 304 to envelope content material 306. Edge portion 364 is positioned beneath the flap formed by edge 368 folded at axis 316. Offset 313 serves as a flap.

[0051] The folded material is then passed through sealing device 321. The sealing device 321 is used to seal portions of the folded material. For example, sealing device 321 can attach the material along edge portion 316, can seal along opposed surface portions 310(a) and 310(b) to form attachment areas 319 and 327. The attaching can be via knurling, crimping, embossing, gluing, pressure sensitive adhesive, hot melt, stapling, double back adhesive tape or other attachment mechanisms.

[0052] Either before or after the sheet material 304 is folded, a portion 314 is available to print destination address information, sender address information and indicia information; these are shown as elements 350, 352 and 354, respectively. For after fold imprinting, printing device 323, which is typically a standard printer or a networked printer that is authorized to print postal indicia may be used. For pre-fold imprinting, both section 314 and the opposite surface of the enclosure can be printed on such that the printed information is positioned on both sides of the enclosure when the enclosure material is folded.

[0053] Alternatively, the reverse side of the enclosure may be printed on, after folding, so the flap portion does not interfere with the printed data.

[0054] Figure 4A shows a view of the enclosure formation process 40 to form an enclosure with a fold-over flap. Figure 4A is similar to Figure 2A discussed above except that Figure 4A shows the fold-over flap.

[0055] As shown in Figure 4A, line 408 shows the sheet material 402 is folded to form a packet of content material 406. This content material 406 is typically letters, bills, or any correspondence.

[0056] Sheet material 404 has opposed edges 460 and 462, and proximal edge 424 and distal edge 426. Line 412 shows that sheet material 404 is folded such that opposed edges 460 and 462 form overlap areas 410(b) and 410(a), respectively. Folded edges 470 and 472 result from the folding.
[0057] Sheet material 404 is folded such that distal edge 426 forms overlap portion 413.

[0058] Line 417 shows that content material 406 is positioned on sheet material 404 such that a portion underlies either one or both of fold portions 410(a) and 410(b). Proximal edge 424, folded distal edge 426, axis 411 and overlap portion 413 are also shown.

[0059] Line 419 shows that the sheet material is folded along line 411 so as to encapsulate content material 406. Portions 410a and 410d are folded to form areas 422 and 420. Exterior portion 414 and fold-over flap 413 are also shown. Fold-over flap 413 wraps around proximal edge 424.

[0060] In an alternate embodiment, sheet material 404 is folded along axis 411 prior to folding flap portion 413. Also, the content material 406 may be omitted and information can be printed on sheet 404, either on a surface that will be an interior surface, or a surface that will be an exterior surface.

[0061] Line 421 shows that a surface 416 in proximity to flap 413 may be sealed, shown by knurling 418. Surfaces in proximity to edges 420 and 422 may be attached, by knurling, crimping, embossing, double-sided tape, tabbing (i.e., using a circular tab with an adhesive on one side) or other attachment mechanism. Alternatively, portions 416, 429 and/or 422 may be attached.

[0062] Information can be printed on surface 414 as shown by destination address 452, return address 454 and postal indicia 450. This printing may occur before or after folding and attachment described herein.

[0063] Figure 4B shows an alternate embodiment in which the content material is placed on the enclosure material prior to the manipulations described herein. In this embodiment, line 407 shows that the content material is positioned on an unfolded sheet material 404. The opposing edges of sheet 404 are folded and then the sheet material is folded along axis 411 to enfold the content material 406.

[0064] Figures 5A-5C show views of an enclosure as described herein.

[0065] Figure 5A shows a perspective view of the self-mailer with content material 506 positioned within. This positioning may be performed manually or by an inserter and/or enfolding process. Surface 514, which may contain printed or handwritten information is shown as well as edges 564, 568 and 511.

[0066] Figure 5B shows that edges 568 and 564, as shown in Figure 5A, are sealed shown by seam 518. The seam 518 can be formed by knurling, crimping, gluing,
pressure sensitive adhesive, hot melt, embossing, double back tape or the like. Content material 506 is also shown.

[0067] Figure 5C shows seams 519, 527 along the opposed side portions. Seam 518 and content 506 are also shown.

[0068] Figures 6A-6C show views of an enclosure with a flap as described herein. [0069] Figure 6A shows a perspective view of the self-mailer with content material 606 positioned within. This positioning may be performed manually or by an inserter and/or enfolding process. Area 613 is the fold-over flap as described herein. Edges 664 and 668 and edge 611 are also shown.

[0070] Figure 6B shows seams 619 and 627 serve to seal the sides of the enclosure. The sealing can be formed by knurling, crimping, gluing, pressure sensitive adhesive, hot melt, embossing or the like. Fold-over flap 613 and content 606 are also shown.

[0071] Figure 6C shows side seams 619, 627, and seam 618 on flap portion 613.

[0072] It should be apparent that the invention as described herein can utilize content material that comprises different sized material. For example, a letter sized piece of paper and a postcard may be folded and inserted or enfolded into the enclosure material.

[0073] It should be apparent that the invention as described herein may use various apparatus to produce the enclosure and the content material. For example, a means for folding an enclosure material along a first edge and a second edge may be rollers, creasing devices, folding devices or the like, positioned so that the enclosure material is creased or folded at desired points. Similarly, the means for folding the enclosure material along a mid-section may be, for example, a roller, a device that presses impressions, and other devices capable of producing folds or creases at the desired points.

[0074] The means for attaching two portions of the enclosure material together that are formed by creasing the enclosure material along the mid-section may be for example, an adhesive tab that is peeled from a backing, an adhesive material, such as tape or glue, an adhesive tape with release paper, double-sided adhesive tape, staples, knurling, embossing, crimping, hot melt and pressure sensitive adhesive.

[0075] It is to be understood that the present invention is not to be considered as limited to the specific embodiments described above and shown in the accompanying drawings, which merely illustrate the best mode presently
contemplated for carrying out the invention, and which is susceptible to such changes as may be obvious to one skilled in the art, but rather that the invention is intended to cover all such variations, modifications and equivalents thereof as may be deemed to be within the scope of the claims appended hereto.
What Is Claimed Is:

1. A method for fabricating an enclosure comprising:
   positioning content material on a sheet material;
   folding the sheet material along a first opposed portion;
   folding the sheet material along a second opposed portion;
   folding the sheet material at approximately a half-way point of the sheet material;
   attaching the sheet material along the first opposed portion;
   attaching the sheet material along the second opposed portion;
   attaching at least a portion of two edges of the sheet material together to enclose the content material within the sheet material;
   printing indicia data on one selected area of the sheet material; and
   printing recipient address data on another selected area of the sheet material.

2. The method as claimed in claim 1, further comprising:
   fabricating the content material from a material that has approximately the same dimensions as the sheet material.

3. The method as claimed in claim 1, wherein the content material is fabricated from a standard sized piece of paper.

4. The method as claimed in claim 1 further comprising:
   processing the content material prior to positioning the content material on the sheet material.

5. The method as claimed in claim 1, wherein the attaching the sheet material along the first and second opposed portions further comprises knurling at least a portion of the two opposed edges of the sheet material.

6. The method as claimed in claim 1, wherein the attaching the sheet material along the first and second opposed portions further comprises crimping at least a portion of the two opposed edges of the sheet material.
7. The method as claimed in claim 1, wherein the attaching the two edges of the sheet material further comprises adhering at least a portion of the two opposed edges of the sheet material.

8. The method as claimed in claim 1, wherein the attaching at least a portion of the two edges of the sheet material further comprises crimping at least a portion of the two opposed edges of the sheet material.

9. The method as claimed in claim 1, wherein the attaching at least a portion of the two edges of the sheet material is achieved by using an adhesive.

10. The method as claimed in Claim 1, wherein the attaching at least a portion of the two edges of the sheet material is achieved by knurling.

11. The method as claimed in Claim 1, wherein the attaching at least a portion of the two edges of the sheet material is achieved by embossing.

12. The method as claimed in Claim 1, wherein the attaching at least a portion of the two edges of the sheet material is achieved by stapling.

13. The method as claimed in Claim 1, wherein the attaching at least a portion of the two edges of the sheet material is achieved by tabbing.

14. The method as claimed in Claim 1, wherein the sheet material is attached along the first portion and second portion by double sided tape.

15. A method of fabricating an enclosure comprising the steps of:
   folding an enclosure material along a first opposing edge;
   folding the enclosure material along a second opposing edge;
   folding the enclosure material along a mid-section; and
   attaching together at least part of two portions of the enclosure material that are formed by creasing the enclosure material along the mid-section.
16. The method as claimed in Claim 15, further comprising placing content material on the enclosure material prior to attaching the two portions of the enclosure material.

17. The method as claimed in Claim 15, further comprising placing content material on the enclosure material prior to folding the enclosure material.

18. The method as claimed in Claim 15, further comprising knurling the two portions of the enclosure material.

19. The method as claimed in Claim 15, further comprising sealing the two portions of the enclosure material.

20. The method as claimed in Claim 15, further comprising adhering the two portions of the enclosure material.

21. The method as claimed in Claim 15, further comprising embossing the two portions of the enclosure material.

22. The method as claimed in Claim 15, further comprising crimping the two portions of the enclosure material.

23. The method as claimed in Claim 15 wherein the attaching step comprises moistening an adhesive area of the enclosure material.

24. The method as claimed in Claim 15 wherein the attaching step comprises applying pressure to a pressure sensitive adhesive of the enclosure material.

25. The method as claimed in Claim 15 wherein the attaching step comprises activating a hot melt material of the enclosure material.

26. The method as claimed in Claim 15 further comprising:
   knurling the enclosure material along the first opposed edge; and
   knurling the enclosure material along the second opposed edge.
27. The method as claimed in Claim 15 further comprising:
gluing the enclosure material along the first opposed edge; and
gluing the enclosure material along the second opposed edge.

28. The method as claimed in Claim 15 further comprising:
crimping the enclosure material along the first opposed edge; and
crimping the enclosure material along the second opposed edge.

29. The method as claimed in Claim 15 further comprising:
embossing the enclosure material along the first opposed edge; and
embossing the enclosure material along the second opposed edge.

30. The method as claimed in Claim 15, further comprising placing the content material on the enclosure material such that a portion of the content underlies the first edge.

31. The method as claimed in Claim 15, further comprising placing the content material on the enclosure material such that a portion of the content underlies the first edge and the second edge.

32. An envelope apparatus comprising:
a sheet material having a folded distal portion;
a sheet material having a folded proximal portion;
content material positioned within the envelope apparatus;
a folded edge;
a sealed edge opposite the folded edge.

33. The apparatus of claim 32, wherein a portion of the folded distal portions are attached and a portion of the proximal portions are attached.

34. The apparatus of claim 32, wherein the folded distal and proximal portions of the sheet material are knurled.
35. The apparatus of claim 32, wherein the folded distal and proximal portions of the sheet material are crimped.

36. The apparatus of claim 32, wherein the folded distal and proximal portions of the sheet material are attached using an adhesive.

37. The apparatus of claim 32, wherein the folded distal and proximal portions of the sheet material are sealed.

38. The apparatus of claim 32, wherein the folded distal and proximal portions of the sheet material are embossed.

39. The apparatus of claim 32 wherein the content material has approximately the same dimensions as the sheet material.

40. The apparatus of claim 32 wherein the content material and the sheet material are of a standard size.

41. The apparatus of claim 32 wherein the content material includes paper sheets being more than one size.

42. A method for fabricating an enclosure comprising:
   folding a sheet material parallel to a long edge of the sheet material;
   folding a first end portion;
   folding a second end portion; and
   attaching an edge opposite the fold parallel to the long edge of the material.

43. A method for fabricating an enclosure comprising:
   folding a first end portion;
   folding a second end portion;
   folding a sheet material parallel to a long edge of the sheet material; and
   attaching an edge opposite the fold parallel to the long edge of the material.
44. The method of claim 43 further comprising:
printing address data on the sheet material.

45. The method of claim 43 further comprising:
printing indicia data on the sheet material.

46. The method of claim 43 further comprising:
placing content material on the sheet material prior to folding the first end portion.

47. An apparatus for fabricating an enclosure comprising:
   means for folding an enclosure material along a first edge;
   means for folding the enclosure material along a second edge;
   means for folding the enclosure material along a mid-section; and
   means for attaching two portions of the enclosure material together that are
   formed by creasing the enclosure material along the mid-section.

48. The apparatus as claimed in claim 47, further comprising:
   means for placing content material on the enclosure material prior to attaching
   the two portions of the enclosure material.

49. The apparatus as claimed in claim 47, further comprising:
   means for placing content material on the enclosure material prior to folding
   the enclosure material along the first edge.

50. The apparatus as claimed in claim 47, further comprising:
   means for forming a seal between the two portions of the enclosure material.

51. The apparatus as claimed in claim 47, further comprising:
   means for knurling the two portions of the enclosure material.

52. The apparatus as claimed in claim 47, further comprising:
   means for crimping the two portions of the enclosure material.
53. The apparatus as claimed in claim 47, further comprising:
   means for adhering the two portions of the enclosure material.

54. The apparatus as claimed in Claim 47, further comprising:
   means for knurling the enclosure material along the first edge; and
   means for knurling the enclosure material along the second edge.

55. The apparatus as claimed in Claim 47, further comprising:
   means for forming a seal on the enclosure material along the first edge; and
   means for forming a seal on the enclosure material along the second edge.

56. The apparatus as claimed in Claim 47, further comprising:
   means for crimping the enclosure material along the first edge; and
   means for crimping the enclosure material along the second edge.

57. The apparatus as claimed in Claim 47, further comprising:
   means for adhering the enclosure material along the first edge; and
   means for adhering the enclosure material along the second edge.

58. A method for fabricating an enclosure comprising:
   folding a first end portion;
   folding a second end portion;
   folding a sheet material substantially parallel to a long edge of the sheet
   material, so as to form an extension portion;
   folding the sheet material so that the extension portion contacts the sheet
   material; and
   attaching the extension portion to the sheet material.

59. The method of claim 58 further comprising:
   placing content material on the sheet material prior to folding the first end
   portion.
60. The method as claimed in claim 58, wherein the extension material is attached to the sheet material by crimping.

61. The method as claimed in claim 58, wherein the extension material is attached to the sheet material by an adhesive.

62. The method as claimed in claim 58, wherein the extension material is attached to the sheet material by knurling.

63. An envelope apparatus comprising:
    a sheet material having a folded distal portion;
    a sheet material having a folded proximal portion;
    content material positioned within the envelope apparatus;
    a folded edge;
    a flap portion; and
    a sealed edge formed by the flap portion contacting the sheet material opposite the folded edge,
    wherein the content material and the sheet material have approximately the same dimensions.

64. The apparatus as claimed in claim 63 wherein the sealed edge is formed by knurling.

65. The apparatus as claimed in claim 63 wherein the sealed edge is formed by crimping.

66. The apparatus as claimed in claim 63 wherein the sealed edge is formed by an adhesive.

67. A method for fabricating an enclosure comprising:
    printing indicia data on one selected area of a sheet material;
    printing recipient address data on another selected area of the sheet material;
    positioning content material on the sheet material;
    folding the sheet material along a first opposed portion;
folding the sheet material along a second opposed portion;
folding the sheet material at approximately a half-way point of the sheet material;
attaching the sheet material along the first opposed portion;
attaching the sheet material along the second opposed portion;
attaching two edges of the sheet material together to enclose the content material within the sheet material.