GRAPH-BASED KEYWORD EXPANSION

FIG. 1
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
Given a keyword, there are many situations (particularly in information retrieval technology) in which it is useful to expand the keyword into other related keywords, which is referred to as keyword expansion. For example, the keyword "Microsoft" may be expanded to "Windows", "Office", and so on. This facilitates returning more relevant search results, for example, such as when insufficient results are returned because of a limited search term or terms.

Previously, keyword expansion was accomplished by leveraging search engines. One such approach feeds a keyword to a Web search engine, receives results in response, and extracts related words from snippets generated from the returned results. These related words are used as the expanded keywords.

However, the above-described approach depends on the quality of the external search engine, and is further dependent on the availability and performance of the search engine. Further, the expansion depends on which algorithm
is used to generate the snippets, none of which have heretofore worked particularly well.

SUMMARY

[0004] This Summary is provided to introduce a selection of representative concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used in any way that would limit the scope of the claimed subject matter.

[0005] Briefly, various aspects of the subject matter described herein are directed towards a technology by which a set of terms (comprising words and/or phrases) such as present in a plurality of documents (e.g., web pages) are processed into a graph from which an expanded set of terms may be determined given an input keyword (including an input phrase). In one aspect, each keyword is selected from among the terms in a document, and the other terms associated with that keyword are determined, such as based on proximity in the document to that keyword (e.g., within ten words). Each time a keyword is associated with a particular term, a weight indicative of that relationship
is increased. After a number of terms from a number of documents have been processed in this manner, a data structure is built that corresponds to a graph, in which the keyword and terms are represented by nodes and an association between the keyword and each term is represented by an edge. The accumulated weight value, which is indicative of the relevance of the relationship between the keyword and each term, is associated with each edge.

[0006] In one aspect, keyword processing logic selects terms from a set of documents, and for each selected term, determines its related terms, and increases an association weight indicative of an association between that selected term and each related term. The result of the keyword processing logic is a data structure that corresponds to a graph, having nodes representative of the terms, and edges between the nodes representative of the association weights.

[0007] In one aspect, the data structure comprises a plurality of nodes, with each node representing a term. The data structure further includes a plurality of edges, with each edge representing a relationship between two of the nodes, and each edge having a corresponding weight value that indicates a relevance of the two nodes to one
another. When the data structure is accessed with a keyword corresponding to a keyword node, the edges from the keyword node are used to determine which other nodes are most relevant to the keyword node based on the edges' weight values. The most relevant other nodes provide the expanded keywords. The other nodes may be limited to only those having a direct edge to the keyword node, or alternatively may include nodes having indirect relationships to the keyword, that is, through other nodes.

[0008] Other advantages may become apparent from the following detailed description when taken in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:

[0010] FIGURE 1 is a block diagram representing example components for generating a keyword based expansion graph from a set of documents.
[0011] FIG. 2 is a representation of a simplified example graph generated from a set of documents.

[0012] FIGS. 3A and 3B comprise a flow diagram showing example steps taken to generate a keyword-based expansion graph from a set of documents.

[0013] FIG. 4 is a flow diagram showing example steps taken to use a keyword-based expansion graph.

[0014] FIG. 5 shows an illustrative example of a computing environment into which various aspects of the present invention may be incorporated.

DETAILED DESCRIPTION

[0015] Various aspects of the technology described herein are generally directed towards a standalone, high-performance keyword expansion mechanism that generates expanded keywords and maintains them in a data structure such as a graph. In one example, keyword-to-keyword relationships are extracted from a set of web pages, with the keywords and their relationships stored as an undirected graph. For example, the keywords are maintained as nodes, with each edge in the graph describing a weight.
of the relationship between those two associated keywords. When a keyword needs to be expanded, expansion takes place by accessing the graph to find the input keyword's connected keywords, which may then be sorted by their weights as indicated by their edges. Alternative data structures may be used, such as a directed graph in which at least some of the edges are directed between nodes.

[0016] While the examples herein are directed towards processing text-based documents (e.g., web pages) to develop a keyword expansion graph, it is understood that these are only examples. For example, data other than text may benefit from similar technology, such as when analyzing relationships of numerical patterns. Further, while a graph is described herein for maintaining the keyword relationships, it is understood that other data structures may be alternatively maintained.

[0017] As such, the present invention is not limited to any particular embodiments, aspects, concepts, structures, functionalities or examples described herein. Rather, any of the embodiments, aspects, concepts, structures, functionalities or examples described herein are non-limiting, and the present invention may be used various
ways that provide benefits and advantages in computing, information retrieval and/or document processing in general.

[0018] Turning to FIG. 1, there are shown example components for processing a set of documents 102 into a data structure from which a given keyword may be expanded into related terms comprising other words and/or phrases. Note that in general, keyword processing logic 104 scans through the documents in an offline building process, and based on parameters 106 which may be default values or optionally provided, generates a keyword expansion graph 108. When scanning, or optionally in a document pre-filtering operation, certain frequently appearing words that are known to the keyword processing logic 104 as typically being not meaningful keywords, such as "and" "the" and "a" (sometimes referred to as stop words 110), may be excluded from the graph 108.

[0019] FIG. 2 shows a simplified example expansion graph 208, in which each word and/or phrase is represented by one of the nodes N1-N7. Each word (nodes N1-N6) and/or phrase (node N7) is associated with at least one other word and/or phrase, with associations between word and/or phrases represented by edges between the nodes N1-N7; (note that in an actual graph there are also separate nodes for "video"
and "card" but these are not shown in this simplified example). For purposes of brevity, "term" will be used to refer to a word and/or a phrase except where otherwise noted; also terms / words need not correspond to actual words, but may be any letter or combination of letters, e.g., names including proper names, as well as the acronym "AGP" each may be considered a word / term. Further, a "keyword" is a term, and may actually be a phrase rather than a single word or other character grouping.

[0020] As described below, the keyword processing logic creates the associations based on proximity in the documents, and also weighs the associations (e.g., as counts) based on their frequency of occurrence. Thus, in the example of FIG. 2, it is seen that "Microsoft" has an association with "Company" having a weight equal to nine (9), with "Office" having a weight equal to eight (8), with "Windows" having a weight equal to ten (10), and with "Computer" having a weight equal to five (5). These associations are first-level relationships in that there is a single direct edge between the "Microsoft" node N1 and these other words represented by nodes N2-N5. In contrast, the node N1 has a second-level relationship with the phrase
"video card" (node N7), and a third-level relationship with the word (actually acronym) "AGP" (node N6).

[0021] It should be noted that the number of documents 102 that are processed is typically on the order of millions. As such, relative to those exemplified in FIG. 2, an actual typical keyword expansion graph contains an extremely large number of nodes (terms) and edges (associations), with similarly much larger association weights. Depending on resources, it may be necessary to partition the graph into sub-parts; further, distributed computing and/or storage may be employed to deal with the large amount of data.

[0022] Returning to FIG. 1, once the graph 108 has been built, given an input keyword or phrase 120, a keyword expansion mechanism 122 accesses the graph 108 to locate associated terms. These may be ranked according to their score such as to find a "best" subset comprising a desired number (e.g., on the order of one-hundred or two-hundred) of associated terms (e.g., words and/or phrases), which may then be output in some way as a set of expanded keywords 124.
Turning to FIGS. 3A and 3B, there is shown an example process for building a keyword expansion graph from a set of documents, typically correspond to web pages. In general, each document is scanned word by word, and for each word \(x \), the \(n \) (e.g., ten, which may be a default value or input as a parameter 106) words thereafter are considered to have an association comprising a relationship (of weight one) with the word \(x \). By way of example, given a set of terms "A B C D E F G" it is seen that with A as a keyword, the associated terms B, C, D, E, F and G each have a weight (count) of one; (as described below, actual proximity or other criteria may be used to assign a different weight to each term).

Note that the weight is increased (e.g., incremented) each time the same such pair of words is found.

Further note that \((x, y)\) and \((y, x)\) are considered to be the same with respect to their association. When the documents have been processed in this manner, the graph is built.

In the more particular example of FIG. 3, step 302 represents selecting the first document of a (typically very large) set, and step 304 represents selecting the first two words in the document, the first as the keyword.
and the second, subsequent word as an associated word.
When selecting words during scanning, certain words such as "the" and "a" (sometimes referred to as stop words) need not be included, but may be included depending on the desired results; in one alternative such words may be filtered from the document before scanning. Thus, the selection of a keyword and term at step 304 may inherently include excluding any stop word or words. Note that while such words may not be selected as keywords with respect to the graph, they may be used when counting the \(n \) (e.g., ten) words proximate the currently selected keyword being processed.

[0026] Step 306 determines whether the keyword already has an entry (node) in the graph; if not, step 308 is executed to create a node for the term. Optional step 309 may be performed for purposes of tracking the frequency of occurrence of each keyword, such as for removing rarely occurring terms as described below. Step 310 determines whether the associated term already has an entry (node) in the graph; if not, step 312 is executed to create a node for the associated term.

[0027] Step 314 evaluates whether the keyword and associated term already have a defined association,
corresponding to an edge. If not, such as association is
created at step 316. At step 318, the association weight
is increased, e.g., its count is incremented by one.

[0028] Steps 320 and 322 repeats the process until the
number \(n \) of subsequent terms reaches a limit, e.g., the ten
subsequent terms have been processed with respect to the
currently selected keyword. Alternatively, the processing
of this keyword ends at step 320 when there are no more
associated terms in the document to select for processing
with the keyword, e.g., the last associated term was the
last term in the document.

[0029] Steps 330 and 332 of FIG. 3B represent advancing
to the next keyword in the document, which continues as
long as there is at least one keyword and an associated
term to associate with that keyword. Step 322 returns to
step 306 of FIG. 3A to process this next keyword and its
subsequent associated term, as described above.

[0030] When step 330 determines that the end of the
document has been reached, step 330 branches to step 334.
As can be understood, steps 334 and 336 repeat the process
for other documents by returning to step 304 of FIG. 3A.
When no documents remain, the graph is complete and may be
output in some way, such as persisted to a database file, as represented via step 338. Note that as also represented by step 338, some processing may be performed on the graphs, e.g., to compress it or prune it in some way, such as by removing nodes and/or edges that are statistically unlikely to ever be needed.

[0031] The above-described graph-building process was only one example, and it may be readily appreciated that the process may be tuned and/or otherwise varied to provide additional accuracy. For example, rather than weighting each keyword and associated term with a weight of one, a weight may be relative to its position with respect to the keyword, e.g., the closer the keyword is to a term, (e.g., one word away, two words away, and so forth) the higher the weight added to the association weight. As another example, a larger weight may be given to two terms that appear together in a particular (e.g., title) section of a document, as opposed to another section (e.g., in the main body). Alternatively, or in addition, the weight on an edge may be divided by the frequency of the two words.

[0032] FIG. 4 represents example operations for handling a keyword received from some requesting entity once the graph has been built. For example, a search engine may
comprise the entity that provides the keyword, such as for generating additional search terms to respond to a query. As represented by step 402, when a keyword is received, the process accesses the graph (step 404) to find the edges that are connected to that keyword. The nodes at the other ends of the edges represent the associated terms, which are the candidates for the expanded keywords; the weights corresponding to the edges provide their relative weights.

[0033] Step 406 ranks the associated terms according to their weights. Step 408 returns the top \(M \) terms as the expanded keywords.

[0034] In another aspect, when locating (at step 404) a keyword's associated terms in the graph, the process may go beyond a single direct edge and consider one or more indirect edges, whereby the expansion result may contain indirectly related words. For each additional step, the actual weight may be reduced (e.g., as part of step 406) in some way, such as by percentage, square root or the like to reflect the level of indirection. Note that such indirect terms may be always considered when locating terms, or instead may be done only selectively, such as when the number of direct terms is less than some desired number, or if there is a large disparity in weights among the direct
terms such that it is likely that an indirect term may have more weight than a direct term.

[0035] By way of an example using the simplified graph 208 of FIG. 2, consider that "Microsoft" was given as a keyword. If only direct related terms are returned, (that is, a first-level / one-step relationship), the expanded keywords and their weights correspond to the following table:

<table>
<thead>
<tr>
<th>Expanded word</th>
<th>Weight</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Computer</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

[0036] If instead the keyword expansion mechanism allows up to a second-level / two-step indirect relationship, the expanded keywords and their weights correspond to the following table (with an example fifty-percent weight reduction for the second-level indirection; as described below such a percentage reduction may not be suitable but is shown herein for purposes of an example explanation of reduction):

<table>
<thead>
<tr>
<th>Expanded word</th>
<th>Weight</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td>9</td>
<td>"Office"-to-"Company" second-level edge is ignored because</td>
</tr>
</tbody>
</table>
If in another alternative the keyword expansion mechanism allows up to a third-level / three-step indirect relationship, the expanded keywords and their weights correspond to the following table, in which another fifty percent reduction, is used for the third level (now twenty-five percent):

<table>
<thead>
<tr>
<th>Expanded word</th>
<th>Weight</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td>9</td>
<td>“Office”-to-“Company” edge is ignored because “Company” is already selected in a one step relationship with input term.</td>
</tr>
<tr>
<td>Office</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Computer</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Video Card</td>
<td>3</td>
<td>Weight is multiplied by 50% because of the two step relationship.</td>
</tr>
<tr>
<td>AGP</td>
<td>1</td>
<td>Weight is multiplied by 25% because of the three-step relationship.</td>
</tr>
</tbody>
</table>

It should be noted that the exemplified percentage reduction is only an example, and does not work well unless the weights are first normalized in some way.
For example, the terms "computer" and "video card" may have a large weight between them; a weight of "300" between nodes N5 and N7 results in a weight of "150" if simply multiplying by one-half, which is larger than any direct relationship in this example and is likely not intended to outweigh the first-level direct relationship (with a weight of five) from which it was reached. To avoid such situations, normalization and/or more sophisticated computations may be used, e.g., an indirect relationship's weight may be no larger than its more direct relationship's weight, and so on, although some consideration may be given to how large the indirect weight is.

[0039] Another aspect / alternative relates to accumulating or otherwise factoring in weights of multiple paths to the same node. For example, unlike the latter two tables which ignored the "Office" to "Company" edge because "Microsoft" already had a direct edge to the "Company" node, the Microsoft" to "Company" relationship weight may be enhanced by the indirect relationship thereto via the "Office" node. While this particular example of FIG. 2 shows multiple paths comprising a first and second-level indirect relationship, it is understood that third-level and even greater indirect relationships may be considered
in determining a final relative weight. Moreover, as above, some reduction in weight for the indirect path and/or paths is likely appropriate, and it should be noted that the weight reduction (or reductions) for multiple paths (e.g., node N1 to N3, and node N1 to N2 to N3) need not be the same formula or the like as is used for the weight reduction or reductions for an indirect path e.g., node N1 to N5 to N7 to N6.

[0040] Yet another aspect is that network flow algorithms may be applied to a graph for both directed graphs and undirected graphs. For example, for a directed graph, the requested keyword is considered as a source node, with a virtual target node (logically inserted) that is connected directly to the other nodes that are in range (up to the appropriate level). Note that there is no level restriction that is required, however; e.g., all other nodes in the graph may be connected with the target virtual node, with flow taking place to the extent possible.

[0041] While many of the examples herein referred to one-word terms, support for phrases as keywords / expanded keywords is also provided. Note that a "maximum phrase word count" is defined such that any combination of words found in a document that is less than or equal to the count
are considered as a term to be processed and may be
maintained as a node in the graph (subject to removal for
size purposes).

[0042] By way of example, given a word sequence of "A B
C D E F G" with a maximum phrase word count of three, not
only will individual words for A, B, C, D, E, F and G
become nodes, but also pairs and triplets will become nodes.
For example, AB will be associated with C, AB will be
associated with D, AB will be associated with E, AB will be
associated with F, BC will be associated with A, BC will be
associated with D, and so forth. Note that stop words may
be considered part of a phrase or not, depending on desired
results, e.g., the text "A and B" may not be considered a
phrase "A B" because of the stop word "and" between them,
or alternatively may be, but possibly with a lesser weight
with respect to associated terms "C" and so on.

[0043] As can be readily appreciated, when supporting
phrases, the resulting amount of data may become
impractically large to store and use for keyword expansion.
However, many words and/or phrases will only occur
relatively rarely among the documents. Thus, as part of
building the graph, a count or the like corresponding to
the frequency of a word or phrase frequency may be
accumulated and recorded (e.g., at step 309 of FIG. 3A) whereby words / phrases having a low occurrence frequency may be cut (e.g., at step 338 of FIG. 3B). Cutting may be accomplished by using two-pass statistics, e.g., a first pass may consider word / phrase frequency, and the second pass may consider relationships, e.g., relationships with relatively low weights may be eliminated.

EXEMPLARY OPERATING ENVIRONMENT

[0044] FIGURE 5 illustrates an example of a suitable computing and networking environment 500 on which the examples of FIGS. 1-4 may be implemented. For example, the keyword processing logic 104 and/or keyword expansion mechanism 122 may be implemented in the computer system 510. The computing system environment 500 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should the computing environment 500 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 500.
[0045] The invention is operational with numerous other
general purpose or special purpose computing system
environments or configurations. Examples of well known
computing systems, environments, and/or configurations that
may be suitable for use with the invention include, but are
not limited to: personal computers, server computers, hand-
held or laptop devices, tablet devices, multiprocessor
systems, microprocessor-based systems, set top boxes,
programmable consumer electronics, network PCs,
minicomputers, mainframe computers, distributed computing
environments that include any of the above systems or
devices, and the like.

[0046] The invention may be described in the general
context of computer-executable instructions, such as
program modules, being executed by a computer. Generally,
program modules include routines, programs, objects,
components, data structures, and so forth, which perform
particular tasks or implement particular abstract data
types. The invention may also be practiced in distributed
computing environments where tasks are performed by remote
processing devices that are linked through a communications
network. In a distributed computing environment, program
modules may be located in local and/or remote computer storage media including memory storage devices.

[0047] With reference to FIG. 5, an exemplary system for implementing various aspects of the invention may include a general purpose computing device in the form of a computer 510. Components of the computer 510 may include, but are not limited to, a processing unit 520, a system memory 530, and a system bus 521 that couples various system components including the system memory to the processing unit 520. The system bus 521 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.

[0048] The computer 510 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by the computer 510 and includes both volatile and nonvolatile media, and removable and non-removable media. By way of example, and
not limitation, computer-readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by the computer 510. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term "modulated data signal" means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.
Combinations of the any of the above may also be included within the scope of computer-readable media.

[0049] The system memory 530 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 531 and random access memory (RAM) 532. A basic input/output system 533 (BIOS), containing the basic routines that help to transfer information between elements within computer 510, such as during start-up, is typically stored in ROM 531. RAM 532 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 520. By way of example, and not limitation, FIG. 5 illustrates operating system 534, application programs 535, other program modules 536 and program data 537.

[0050] The computer 510 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, FIG. 5 illustrates a hard disk drive 541 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 551 that reads from or writes to a removable, nonvolatile magnetic disk 552, and an optical disk drive 555 that reads from or writes to a removable, nonvolatile
optical disk 556 such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 541 is typically connected to the system bus 521 through a non-removable memory interface such as interface 540, and magnetic disk drive 551 and optical disk drive 555 are typically connected to the system bus 521 by a removable memory interface, such as interface 550.

[0051] The drives and their associated computer storage media, described above and illustrated in FIG. 5, provide storage of computer-readable instructions, data structures, program modules and other data for the computer 510. In FIG. 5, for example, hard disk drive 541 is illustrated as storing operating system 544, application programs 545, other program modules 546 and program data 547. Note that these components can either be the same as or different from operating system 534, application programs 535, other program modules 536, and program data 537. Operating system 544, application programs 545, other program modules
546, and program data 547 are given different numbers herein to illustrate that, at a minimum, they are different copies. A user may enter commands and information into the computer 510 through input devices such as a tablet, or electronic digitizer, 564, a microphone 563, a keyboard 562 and pointing device 561, commonly referred to as mouse, trackball or touch pad. Other input devices not shown in FIG. 5 may include a joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 520 through a user input interface 560 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). A monitor 591 or other type of display device is also connected to the system bus 521 via an interface, such as a video interface 590. The monitor 591 may also be integrated with a touch-screen panel or the like. Note that the monitor and/or touch screen panel can be physically coupled to a housing in which the computing device 510 is incorporated, such as in a tablet-type personal computer. In addition, computers such as the computing device 510 may also include other peripheral output devices such as speakers 595 and printer 596, which
may be connected through an output peripheral interface 594 or the like.

[0052] The computer 510 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 580. The remote computer 580 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 510, although only a memory storage device 581 has been illustrated in FIG. 5. The logical connections depicted in FIG. 5 include one or more local area networks (LAN) 571 and one or more wide area networks (WAN) 573, but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.

[0053] When used in a LAN networking environment, the computer 510 is connected to the LAN 571 through a network interface or adapter 570. When used in a WAN networking environment, the computer 510 typically includes a modem 572 or other means for establishing communications over the WAN 573, such as the Internet. The modem 572, which may be internal or external, may be connected to the system bus...
521 via the user input interface 560 or other appropriate mechanism. A wireless networking component 574 such as comprising an interface and antenna may be coupled through a suitable device such as an access point or peer computer to a WAN or LAN. In a networked environment, program modules depicted relative to the computer 510, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIG. 5 illustrates remote application programs 585 as residing on memory device 581. It may be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.

[0054] An auxiliary subsystem 599 (e.g., for auxiliary display of content) may be connected via the user interface 560 to allow data such as program content, system status and event notifications to be provided to the user, even if the main portions of the computer system are in a low power state. The auxiliary subsystem 599 may be connected to the modem 572 and/or network interface 570 to allow communication between these systems while the main processing unit 520 is in a low power state.
CONCLUSION

[0055] While the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.
WHAT IS CLAIMED IS:

1. In a computing environment, a method comprising:
 processing (304) a set of terms, including selecting a keyword from among the terms and determining at least one other term associated with that keyword;
 including the keyword (308) and each associated term (312) into a data structure corresponding to a graph, in which the keyword and terms are represented by nodes and an association between the keyword and each term is represented by an edge.

2. The method of claim 1 further comprising, associating (316, 318) a weight value with each association.

3. The method of claim 1 wherein processing the set of terms comprises selecting at least some of the words or phrases, or words and phrases, from a plurality of documents (302, 336).

4. The method of claim 1 wherein determining the at least one other term associated with the keyword comprises selecting terms (322) based on proximity in a document to the keyword.
5. The method of claim 1 further comprising, removing (338) at least one node from the graph based on frequency data.

6. The method of claim 1 further comprising, associating (316, 318) a weight value with each edge, and removing (338) at least one edge from the graph based on its associated weight value.

7. The method of claim 1 wherein selecting the keyword from among the terms comprises excluding a stop word (110) by selecting a word subsequent the stop word.

8. In a computing environment, a system comprising, keyword processing logic (104) coupled to a plurality of documents (102), the keyword processing logic (104) selecting terms from the documents, and for each selected term, determining related terms associated with that selected term and increasing an association weight indicative of an association between that selected term and each related term, the keyword processing logic building a data structure (108) corresponding to a graph (208) with nodes representative of the terms and edges between the nodes representative of the association weights.
9. The system of claim 8 wherein the terms include at least one phrase comprising a plurality of words.

10. The system of claim 9 wherein each phrase contains fewer words than a value that is based on a word count parameter (106) provided to the keyword processing logic.

11. The system of claim 8 wherein the related terms comprise terms within a certain number of words (106) of a selected term.

12. The system of claim 8 wherein the related terms comprise terms within a certain number of words (106) of each selected term.

13. The system of claim 12 wherein the certain number of words is provided as a parameter (106) to the keyword processing logic.

14. The system of claim 8 wherein the keyword processing logic (104) is configured to detect a set of
stop words (110) that are excluded with respect to being selected for nodes in the graph (108).

15. The system of claim 8 wherein the keyword processing logic (108) includes means for reducing data in the data structure based on term-related frequency data, or based on low association weights, or based on both term-related frequency data and low association weights.

16. The system of claim 8 further comprising a keyword expansion mechanism (122) coupled to the data structure (108), the keyword expansion mechanism (122) configured to access the data structure (108) in response to receiving a received keyword (120), and to select a subset (124, 408) of the related terms associated with that keyword by ranking (406) the related terms relative to one another based on their association weights with respect to the node representative of the received keyword.

17. The system of claim 16 wherein the keyword expansion mechanism (122) reduces a weight for a term that has only an indirect association with the received keyword.
18. One or more computer-readable media having stored thereon a data structure, comprising:

a plurality of nodes (N1-N7), each node representing a term;

a plurality of edges, each edge representing a relationship between two of the nodes, and each edge having a corresponding weight value that indicates a relevance of the two nodes to one another; and

wherein the data structure is accessed with a keyword (120) corresponding to a keyword node, and wherein the edges from the keyword node are used to determine which other nodes are most relevant to the keyword node based on the edges' weight values to provide a set of at least one expanded keyword (124).

19. The one or more computer-readable media of claim 18 wherein only the edges from the keyword node directly to another node are used to determine which other nodes are most relevant to the keyword node.

20. The one or more computer-readable media of claim 18 wherein at least one of the other nodes that are most relevant to the keyword node does not have a direct edge to the keyword node.
```
begin
302

Select First Document
304

Select First Term in Document as Keyword to Process, Select Subsequent Term as Associated Term
306

Keyword Already Has an Entry?
309

yes
Increase Count for this Keyword

no

P2 (from FIG. 3B)

Create Entry for Keyword
308

 Associated Term Already Has an Entry?
310

no

Create Entry for Associated Term
312

yes

Does Association Exist Between Terms?
314

no

Create Association; Weight = 0
316

yes

Increase Association Weight

P1 (to FIG. 3B)

Select Next Subsequent Term as Associated Term
322

More Terms to Scan for this Keyword?
320

no

P1 (to FIG. 3B)

Select Next Subsequent Term as Associated Term
322

```
FIG. 3B

P1 (from FIG. 3A)

At Least Two Terms Until End of Document?

yes

Select Next Term in Document as Keyword to Process, Select Subsequent Term as Associated Term

no

Select Next Document

Another Document?

yes

P3 (to FIG. 3A)

no

Process / Output Graph

end

P2 (to FIG. 3A)
FIG. 4

begin

Receive Keyword

Access Graph to Locate Associated Terms (Expanded Keyword Candidates)

Rank Associated Terms by Association Weights

Return Top M Associated Words as Expanded Keywords

end

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

G06F 17/30(2006.01), G06F 17/26(2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility models and applications for Utility models since 1975

Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

KOMPASS/KIPO (internal) & keywords "information retrieval, word, document, graph data structure, node represent, edge represent, term, keyword, query, phrase, frequency data, weight value"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>see abstract, claims 1-17, paragraphs 54-73,91-99 figures 4,7-9</td>
<td>4.6,8-20</td>
</tr>
<tr>
<td>A</td>
<td>see abstract, claims 1, paragraphs 59-65 figures 1-3,8</td>
<td>2.4-20</td>
</tr>
<tr>
<td>A</td>
<td>US 2006-0074870 A1 (BRILL et al) 06 April 2006</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>see abstract, paragraphs 31,49-53 figures 4-7</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

* * Special categories of cited documents
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

10 AUGUST 2009 (10 08 2009)

Date of mailing of the international search report

10 AUGUST 2009 (10.08.2009)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seoansa-ro, Seogu, Daejeon 302-701, Republic of Korea

Facsimile No 82-42-472-7140

Authorized officer

KIM, Sung Hoon

Telephone No 82-42-481-8505

Form PCT/ISA/210 (second sheet) (My 2008)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2007-0282826 A1</td>
<td>06.12.2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1643389 A3</td>
<td>10.05.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2006-0048824 A</td>
<td>18.05.2006</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (My 2008)