a9 United States

US 20120221710A1

a2y Patent Application Publication o) Pub. No.: US 2012/0221710 A1

Tsirkin 43) Pub. Date: Aug. 30, 2012
(54) MECHANISM FOR VIRTUAL MACHINE (52) US.Cl .ot 709/224
RESOURCE REDUCTION FOR LIVE
MIGRATION OPTIMIZATION (57) ABSTRACT
(76) Inventor: Michael S. Tsirkin, Yokneam (IL) A mechanism for virtual machine resource reduction for live
migration optimization is disclosed. A method of the inven-
(21) Appl. No.: 13/036,732 tion includes monitoring a rate of state change of a virtual
. machine (VM) undergoing a live migration, determining that
(22) Filed: Feb. 28, 2011 the rate of state change of the VM exceeds a rate of state
A . . transfer of the VM during the live migration process, and
Publication Classification adjusting one or more resources of the VM to decrease the rate
(51) Int.CL of state change of the VM to be less than the rate of state
GO6F 15/173 (2006.01) transfer of the VM.
S
HOST CONTROLLER 105
Controller Migration
Agent
107
! ‘n
| i
Y Y
vwmﬂl Twiziz L. [Nz ‘VMQL’ZW w2122 |, ., | VMN12
I 1 I/ 1 |
E Hypervisor 115 1 Network Channel\| Hypervisor 125
Host Migration Migrating Host Migration ‘ Migrating |
| Agent117 VM 140 Agent 127 L VMg

Origin Host Machine 110

Destination Host Machine 120

Aug. 30,2012 Sheet 1 of 5 US 2012/0221710 A1

Patent Application Publication

0TV eulyoe} 1SOH Uoheunsaq

oM WA | 721 ueby
| Bunesbiy uoleIBbI 150H
_IIIIMMIIIII
Gel losinisdAy
J 1
ZINWA| T T | T.N.:s_‘

} "OI4
OTT 8ulyoel JsoH ubuo
01 WA 717 Jueby
Bune.Bipy uone.Bipy 1soH
(33 @ , \
[puUEyD HIOMIBN TJT Josinadiy
|
ZUUNWA [°°° 0 ZTzun | T LA

201
Jusby

uoielbip Jejjonuon

GO0} ¥3TI0YLNOD LSOH

Patent Application Publication

Monitor a rate of VM state change and a rate of VM state transfer during a live
migration of the VM

210
I
|
/‘!\\
NO ///lé/state change raté\>\\\
n g state transfer rate? >
T 220 /”//
— =
\\\ //,/‘
‘ YES
E
e Y
Reduce one or more VM resources by a constant factor »
230
,/!\
//// \\\\\\
// T
_—"ls state change rate . yEg
< still > state transfer rate? >
S 240 o
~ o
—
NOT
i
/1 R
// \\\‘\\
NO /////'/Live migration complete’?\\\/ YES
T 250 g -
\‘\\ 7 TN
e — END)
. I

Aug. 30,2012 Sheet 2 of 5 US 2012/0221710 A1

Patent Application Publication

Aug. 30,2012 Sheet 3 of 5 US 2012/0221710 A1

Monitor a rate of VM state change and a rate of VM state transfer during a live

migration of the VM

10

NO

-

~

~—

o o \\\
7 ™

T \\\
_—1s state change rate >

state transfer rate?
~— 320

—

—
Tyes
v

Adjust one or more VM resources based on ratio of VM state
migration to VM state change

-t

3

o

y

Further adjust one or more VM resources by dividing by constant

factor

LS

3

-
~

NO

~

~

Fig. 3

o S
s state change rate ™-.__

e

i1

/’/

7

.

L

YES

still > state transfer rate?
350

~

Tive migration complet@\\\/j’_E_S_

-

Patent Application Publication Aug. 30, 2012 Sheet 4 of 5 US 2012/0221710 A1

Monitor a rate of VM state change and a rate of VM state transfer during a live
» migration of the VM

410

- ~

NO //Ié/étate change ratg\i\\\

state transfer rate? /\/>
T 420 e

™ L
~. L

a

~— P
o

' YES
Y
Adjust one or more VM resources by introducing delay each time
a pagefault occurs on the VM <
430

h 4

~
N
=)

o

Multiply delay by constant factor

. l

e \\\‘\\
__~ls state change rate ™. YES
< sfill > state transfer rate? >

~—_ 450 -
\\\\ -

7

. 1//
NO |
T /!\\\

//// \\\\

NO ///ljve migration Complete’.\?\\\\ YES
460 7

\\ o
T e
\‘\\\ _,// /" T \\
e LNI END |

Fig. 4

Patent Application Publication Aug. 30,2012 Sheet 5 of 5 US 2012/0221710 A1

500 ,.\
Processor 502
- ol g . Video Display
Processing Logic - T o 510
526
Main Memory 504
Alpha-Numeric
) < > [- Input Device
Instructions 512
522
Static Memory B o > _ Cursor (?ontrol
506 h Lol B B > Device
o 514
(3]
wn
[}
3
@
Network Interface Signal Generation
Device - > . Device
508 516
Data Storage Device 518
Machine-Accessible
. . Storage Medium 528
Instructions
522

Fig. 5

US 2012/0221710 Al

MECHANISM FOR VIRTUAL MACHINE
RESOURCE REDUCTION FOR LIVE
MIGRATION OPTIMIZATION

TECHNICAL FIELD

[0001] The embodiments of the invention relate generally
to virtualization systems and, more specifically, relate to vir-
tual machine resource reduction for live migration optimiza-
tion.

BACKGROUND

[0002] In computer science, a virtual machine (VM) is a
portion of software that, when executed on appropriate hard-
ware, creates an environment allowing the virtualization of an
actual physical computer system. Each VM may function as a
self-contained platform, running its own operating system
(OS) and software applications (processes). Typically, a vir-
tual machine monitor (VMM) manages allocation and virtu-
alization of computer resources and performs context switch-
ing, as may be necessary, to cycle between various VMs.
[0003] A host machine (e.g., computer or server) is typi-
cally enabled to simultaneously run multiple VMs, where
each VM may be used by a local or remote client. The host
machine allocates a certain amount of the host’s resources to
each of the VMs. Each VM is then able to use the allocated
resources to execute applications, including operating sys-
tems known as guest operating systems. The VMM virtual-
izes the underlying hardware of the host machine or emulates
hardware devices, making the use of the VM transparent to
the guest operating system or the remote client that uses the
VM.

[0004] Often times, a VM may need to be migrated from
one host machine to another host machine for a variety of
reasons. This migration process may be a “live” migration
process, referring to the fact that the VM stays running and
operational (i.e., “live”’) during most of the migration process.
During live migration, the entire state of a VM is transferred
from one host machine to another host machine. A critical
piece of this transmission of state is the transfer of memory of
the VM. The entire memory of aVM can often times fall in the
order of gigabytes, which can result in a lengthy live migra-
tion transfer process. In addition, because the VM is “live”
during this transfer, memory may become “dirty” during the
transfer. This means that a particular page of the memory that
was already transferred has been modified on the VM that is
still residing on the source host. Typically, these “dirty” pages
are marked so that those particular pages of memory can be
transferred again during the live migration process.

[0005] Currently, a problem with the live migration occurs
when the rate of state change for a VM is faster than the rate
of migration. For instance, with respect to memory, live
migration will not be completed as long as the rate of pages
being dirtied is faster than the rate of page migration. The
solutions to this problem have either involved (1) continue
transfer pages and dirtying pages at the full speed of the VM
and hope that migration will eventually complete, or (2) stop
the VM and complete migration. These solutions are imple-
mented without regard to the number of CPUs on a migrating
VM or an ability to limit computing resources implemented
by the VM.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The invention will be understood more fully from
the detailed description given below and from the accompa-

Aug. 30, 2012

nying drawings of various embodiments of the invention. The
drawings, however, should not be taken to limit the invention
to the specific embodiments, but are for explanation and
understanding only.

[0007] FIG. 1 is a block diagram of an exemplary virtual-
ization architecture in which embodiments of the present
invention may operate;

[0008] FIG. 2 is a flow diagram illustrating a method for
VM resource reduction for live migration optimization
according to an embodiment of the invention;

[0009] FIG. 3 is a flow diagram illustrating another method
for VM resource reduction for live migration optimization
according to an embodiment of the invention;

[0010] FIG. 4 is a flow diagram illustrating a further
method for VM resource reduction for live migration optimi-
zation according to an embodiment of the invention; and
[0011] FIG. 5 illustrates a block diagram of one embodi-
ment of a computer system.

DETAILED DESCRIPTION

[0012] Embodiments ofthe invention provide a mechanism
for virtual machine (VM) resource reduction for live migra-
tion optimization. A method of embodiments of the invention
includes monitoring a rate of state change of'a virtual machine
(VM) undergoing a live migration, determining that the rate
of'state change ofthe VM exceeds a rate of state transfer of the
VM during the live migration process, and adjusting one or
more resources of the VM to decrease the rate of state change
of'the VM to be less than the rate of state transfer of the VM.
[0013] In the following description, numerous details are
set forth. It will be apparent, however, to one skilled in the art,
that the present invention may be practiced without these
specific details. In some instances, well-known structures and
devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.
[0014] Some portions of the detailed descriptions which
follow are presented in terms of algorithms and symbolic
representations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps leading to
a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements, sym-
bols, characters, terms, numbers, or the like.

[0015] Itshould be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such

2 < 2 2 <

as “sending”, “receiving”, “attaching”, “forwarding”, “cach-
ing”, “monitoring”, “determining”, “adjusting”, or the like,
refer to the action and processes of a computer system, or
similar electronic computing device, that manipulates and
transforms data represented as physical (electronic) quanti-
ties within the computer system’s registers and memories into

other data similarly represented as physical quantities within

US 2012/0221710 Al

the computer system memories or registers or other such
information storage, transmission or display devices.

[0016] The presentinventionalso relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a machine read-
able storage medium, such as, but not limited to, any type of
disk including optical disks, CD-ROMs, and magnetic-opti-
cal disks, read-only memories (ROMs), random access
memories (RAMs), EPROMs, EEPROMs, magnetic or opti-
cal cards, or any type of media suitable for storing electronic
instructions, each coupled to a computer system bus.

[0017] The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure for
a variety of these systems will appear as set forth in the
description below. In addition, the present invention is not
described with reference to any particular programming lan-
guage. It will be appreciated that a variety of programming
languages may be used to implement the teachings of the
invention as described herein.

[0018] The present invention may be provided as a com-
puter program product, or software, that may include a
machine-readable medium having stored thereon instruc-
tions, which may be used to program a computer system (or
other electronic devices) to perform a process according to
the present invention. A machine-readable medium includes
any mechanism for storing or transmitting information in a
form readable by a machine (e.g., a computer). For example,
a machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium (e.g., read only memory (“ROM”), random access
memory (“RAM”), magnetic disk storage media, optical stor-
age media, flash memory devices, etc.), a machine (e.g., com-
puter) readable transmission medium (non-propagating elec-
trical, optical, or acoustical signals), etc.

[0019] Embodiments ofthe invention provide a mechanism
for VM resource reduction for live migration optimization.
Specifically, embodiments of the invention throttle comput-
ing resources on a VM in a manner to ensure that the rate of
state change of a VM is no larger than the rate of migration of
the VM. For example, if during live migration a VM is gen-
erating more dirty pages than pages being transferred, then
embodiments of the invention reduce the amount of resources
(e.g., CPU, memory, networking, etc.) dedicated to the VM so
that the number of the pages transferred will be higher than of
those being dirtied. In some cases, the computing resources
are reduced by a constant factor. In other cases, the computing
resources are reduced based on the relation between pages
dirtied to pages transterred. In some other cases, a pagefault
event is reported to the hypervisor when the memory is modi-
fied. In this case, the computing resources may be delayed on
each pagefault by an amount related to time needed to migrate
a page.

[0020] FIG. 1 illustrates an exemplary virtualization archi-
tecture 100 in which embodiments of the present invention
may operate. The virtualization architecture 100 may include
one or more host machines 110, 120 to run one or more virtual
machines (VMs) 112, 122. Each VM 112, 122 runs a guest

Aug. 30, 2012

operating system (OS) that may be different from one
another. The guest OS may include Microsoft Windows,
Linux, Solaris, Mac OS, etc. The host 110, 120 may include
a hypervisor 115, 125 that emulates the underlying hardware
platform for the VMs 112, 122. The hypervisor 115, 125 may
also be known as a virtual machine monitor (VMM), a kernel-
based hypervisor or a host operating system.

[0021] In one embodiment, each VM 112, 122 may be
accessed by one or more of the clients over a network (not
shown). The network may be a private network (e.g., a local
area network (LAN), wide area network (WAN), intranet,
etc.) or a public network (e.g., the Internet). In some embodi-
ments, the clients may be hosted directly by the host machine
110, 120 as a local client. In one scenario, the VM 112, 122
provides a virtual desktop for the client.

[0022] As illustrated, the host 110, 120 may be coupled to
a host controller 105 (via a network or directly). In some
embodiments, the host controller 105 may reside on a desig-
nated computer system (e.g., a server computer, a desktop
computer, etc.) or be part of the host machine 110, 120 or
another machine. The VMs 112, 122 can be managed by the
host controller 105, which may add a VM, delete a VM,
balance the load on the server cluster, provide directory ser-
vice to the VMs 112, 122, and perform other management
functions.

[0023] Inoneembodiment, hostcontroller 105 may include
a controller migration agent 107 that is responsible for migra-
tion of a VM 122 between host machines 110, 120 via net-
work channel 130. In addition, each host machine 110, 120
may include a host migration agent 117, 127 to assist con-
troller migration agent 107 in the migration process, or to
handle the migration process directly themselves.

[0024] For purposes of the following explanation, host
machine 110 may be known as the origin host machine 110
from which a VM 140 is migrating from, and host machine
120 may be known as the destination host machine 120 to
which the VM 140 is migrating to. Assume VM 140 on origin
host machine 110 is live migrating to destination host
machine 120. In embodiments of the invention, when it is
decided to initiate a live migration process for VM 140
between origin host machine 110 and destination host
machine 120, the state of VM 140 will be transferred between
the two host machines 110, 120. VM 140 remains operational
on origin host machine 110 during this transfer of state.
[0025] Embodiments of the invention provide a solution to
optimize the VM live migration process by reducing or elimi-
nating VM 140 downtime incurred during the live migration
process. In one embodiment, a solution is provided for reduc-
ing or throttling resources of a VM 140 in order to allow
migration of VM state to complete at a rate greater than the
rate that the state of the VM changes. In most cases, the state
of the VM refers to the memory of the VM, and the rate of
state change includes the rate of dirtying pages of the VM. In
embodiments of the invention, instead of stopping the migrat-
ing VM 140 completely to finish the migration process, the
host migration agent 107, 117 may instead reduce one or
more of the VM’s 140 resources in such a way so that the VM
140 only utilizes a fraction of the resources allowed by an
administrator of the VM 140. The VM 140 resources are
reduced so that the amount of state change generated by the
VM 140 will not exceed the rate that the VM’s 140 state is
migrated.

[0026] In one embodiment, the resources of the VM 140
that may be reduced or throttled may include, but are not

US 2012/0221710 Al

limited to, the CPU, network card, or a graphics card. For
purposes of the following explanation, embodiments of the
invention will be described in terms of adjusting the VM
resource of the CPU. However, one skilled in the art will
appreciate that other VM 140 resources may also be adjusted
utilizing embodiments of the invention. Furthermore,
embodiments of the invention may also be applicable and
useful to the process of fault tolerance in a virtualization
system, such as providing redundancy for a VM 140 with
replicated VMs in the same or different host machines 110,
120.

[0027] Inembodiments ofthe invention, the host migration
agent 107, 117 may initially determine that the rate of VM
140 state change is exceeding the rate of migration ofthe VM
state. The rate of change can be determined by querying the
origin hypervisor 115, while the rate of transfer can be deter-
mined by querying either of the origin or the destination
hypervisors 115, 125. Once this is determined, the host
migration agent 107, 117 may utilize various methods to
determine the percentage of the VM 140 resource, for
example the amount of CPU processing speed, which will be
reduced.

[0028] Inoneembodiment,the VM 140 resource is reduced
by a constant factor. For example, the current CPU speed may
be divided by a constant factor, such as 1, 2, and so on. If over
time the host migration agent 107, 117 determines that this
CPU reduction still does not reduce of VM state change to less
than the rate of VM state migration, then the host migration
agent may continue to divide the CPU speed by a constant
factor until the VM state change rate is less than the VM state
migration rate.

[0029] In another embodiment, the VM 140 resource may
be adjusted based on the ratio of VM state migration (memory
pages sent) to VM state change (memory pages dirtied). For
example, the CPU speed may be adjusted by multiplying the
current CPU speed by the quotient of the number of memory
pages transferred divided by the number of memory pages
dirtied. In some embodiments, this quotient may be further
divided by a constant factor in order to give an additional
buffer to the CPU speed adjustment.

[0030] Ina further embodiment, the VM 140 resource may
be adjusted by introducing a delay each time a pagefault
occurs on the VM 140. When the VM 140 generates new state
or new state is generated for the VM 140 by the resource (for
example, a network card modifying the VM memory), the
VM 140 exits to the hypervisor 115 and the hypervisor 115
may intervene and slow the VM or the resource by introduc-
ing a small delay. This delay may then account for the greater
speed of state change over migration speed. The delay may be
equal to the amount of time it takes to copy the state change
via migration. In some embodiments, the delay may be mul-
tiplied by a constant factor (e.g., 1, 2, etc.) to provide an added
advantage to state transfer over state change.

[0031] Embodiments of the invention may utilize a combi-
nation of one or more of the above methods of VM resource
adjustment calculations. In addition, embodiments of the
invention may further apply different adjustments to multiple
resources of the VM 140 based on individual characteristics
of each of the multiple resources. For instance, if the VM 140
has multiple virtual CPUs, different adjustments may be
made to each virtual CPU of the VM based on individual
performance of the virtual CPU. Each virtual CPU can then
be adjusted to a different rate.

Aug. 30, 2012

[0032] FIG. 2 is a flow diagram illustrating a method 200
for VM resource reduction for live migration optimization
according to an embodiment of the invention. Method 200
may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (such as instructions run on
a processing device), firmware, or a combination thereof. In
one embodiment, method 200 is performed by host migration
agent 107, 117 of FIG. 1.

[0033] Method 200 begins at block 210 where the rate of
state change ofa VM is monitored during the live migration of
the VM. Then, at decision block 220, itis determined whether
the rate of state change of the VM exceeds the rate of state
transfer for the live migration of the VM. If the rate of state
change does not exceed the rate of state transfer, then pro-
cessing returns to block 210 to continue monitoring the rate of
state change during the live migration process.

[0034] If the rate of state change does exceed the rate of
state transfer at decision block 220, then at block 230, a
resource of the VM is reduced by a constant factor. For
example, the current CPU speed of the VM may be divided by
a constant factor, such as 1, 2, and so on. In one embodiment,
the host migration agent instructs the hypervisor to reduce the
VM resource by this constant factor. At decision block 240, it
is determined whether the rate of state change still exceeds the
rate of state transfer. If so, then method 200 returns to block
230 to continue to reduce the VM resource by a constant
factor. For example, the CPU speed will again be divided by
a constant factor until the VM state change rate is less than the
VM state migration rate.

[0035] Ifthe rate of state change no longer exceeds the rate
of state transfer at decision block 240, the method 200 con-
tinues to decision block 250 where it is determined whether
live migration is complete. If the live migration is not com-
plete at decision block 250, then method 200 returns to block
210 to continue monitoring the rate of state change of the VM
during the live migration process. If the live migration pro-
cess is complete at decision block 250, then method 200 ends.
[0036] FIG. 3 is a flow diagram illustrating another method
300 for VM resource reduction for live migration optimiza-
tion according to an embodiment of the invention. Method
300 may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (such as instructions run on
a processing device), firmware, or a combination thereof. In
one embodiment, method 300 is performed by host migration
agent 107, 117 of FIG. 1.

[0037] Method 300 begins at block 310 where the rate of
state change ofa VM is monitored during the live migration of
the VM. Then, at decision block 320, itis determined whether
the rate of state change of the VM exceeds the rate of state
transfer for the live migration of the VM. If the rate of state
change does not exceed the rate of state transfer, then pro-
cessing returns to block 310 to continue monitoring the rate of
state change during the live migration process.

[0038] If the rate of state change does exceed the rate of
state transfer at decision block 320, then at block 330, a
resource of the VM is adjusted based on the ratio of VM state
migration to VM state change. For example, the CPU speed
may be adjusted by multiplying the current CPU speed by the
quotient of the number of memory pages transferred divided
by the number of memory pages dirtied. At block 340, the
resource of the VM is further adjusted by dividing the
resource allocation by a constant factor. For instance, the

US 2012/0221710 Al

altered CPU speed from block 330 is divided by a constant
factor in order to give an additional buffer to the CPU speed
adjustment.

[0039] At decision block 350, it is determined whether the
rate of state change still exceeds the rate of state transfer. If so,
then method 300 returns to block 330 to continue to adjust the
VM resource based on the ratio of VM state migration to VM
state change. I the rate of state change no longer exceeds the
rate of state transfer at decision block 350, the method 300
continues to decision block 360 where it is determined
whether live migration is complete. If the live migration is not
complete at decision block 360, then method 300 returns to
block 310 to continue monitoring the rate of state change of
the VM during the live migration process. Ifthe live migration
process is complete at decision block 360, then method 300
ends.

[0040] FIG. 4 is a flow diagram illustrating a further
method 400 for VM resource reduction for live migration
optimization according to an embodiment of the invention.
Method 400 may be performed by processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (such as instructions
run on a processing device), firmware, or a combination
thereof. In one embodiment, method 400 is performed by host
migration agent 107, 117 of FIG. 1.

[0041] Method 400 begins at block 410 where the rate of
state change ofa VM is monitored during the live migration of
the VM. Then, at decision block 420, it is determined whether
the rate of state change of the VM exceeds the rate of state
transfer for the live migration of the VM. If the rate of state
change does not exceed the rate of state transfer, then pro-
cessing returns to block 410 to continue monitoring the rate of
state change during the live migration process.

[0042] If the rate of state change does exceed the rate of
state transfer at decision block 420, then at block 430, a
resource of the VM is adjusted by introducing a delay each
time a pagefault occurs on the VM. Each time the VM gen-
erates new state, the VM exits to the hypervisor and the
hypervisor may intervene and slow the CPU by introducing a
small delay. This delay may then account for the greater speed
of'state change over migration speed. The delay may be equal
to the amount of time it takes to copy the state change via
migration. At block 440, the delay is multiplied by a constant
factor (e.g., 1, 2, etc.) to provide an added advantage to state
transfer over state change.

[0043] At decision block 450, it is determined whether the
rate of state change still exceeds the rate of state transfer. If so,
then method 400 returns to block 430 to continue to adjust the
VM resource by introducing a delay each time a pagefault
occurs on the VM. If the rate of state change no longer
exceeds the rate of state transfer at decision block 450, the
method 400 continues to decision block 460 where it is deter-
mined whether live migration is complete. If the live migra-
tion is not complete at decision block 460, then method 400
returns to block 410 to continue monitoring the rate of state
change of'the VM during the live migration process. If the live
migration process is complete at decision block 460, then
method 400 ends.

[0044] FIG. 5 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 500
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other

Aug. 30, 2012

machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of aserver or aclient
machine in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

[0045] Theexemplary computer system 500 includes a pro-
cessing device 502, a main memory 504 (e.g., read-only
memory (ROM), flash memory, dynamic random access
memory (DRAM) (such as synchronous DRAM (SDRAM)
or Rambus DRAM (RDRAM), etc.), a static memory 506
(e.g., flash memory, static random access memory (SRAM),
etc.), and a data storage device 518, which communicate with
each other via a bus 530.

[0046] Processing device 502 represents one or more gen-
eral-purpose processing devices such as a microprocessor,
central processing unit, or the like. More particularly, the
processing device may be complex instruction set computing
(CISC) microprocessor, reduced instruction set computer
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, or processor implementing other instruction
sets, or processors implementing a combination of instruction
sets. Processing device 502 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
orthe like. The processing device 502 is configured to execute
the processing logic 526 for performing the operations and
steps discussed herein.

[0047] The computer system 500 may further include a
network interface device 508. The computer system 500 also
may include a video display unit 510 (e.g., a liquid crystal
display (LCD) or a cathode ray tube (CRT)), an alphanumeric
input device 512 (e.g., a keyboard), a cursor control device
514 (e.g., a mouse), and a signal generation device 516 (e.g.,
a speaker).

[0048] The data storage device 518 may include a machine-
accessible storage medium 528 on which is stored one or
more set of instructions (e.g., software 522) embodying any
one or more of the methodologies of functions described
herein. For example, software 522 may store instructions to
perform VM resource reduction for live migration optimiza-
tion by host migration agent 107, 117 described with respect
to FIG. 1. The software 522 may also reside, completely or at
least partially, within the main memory 504 and/or within the
processing device 502 during execution thereof by the com-
puter system 500; the main memory 504 and the processing
device 502 also constituting machine-accessible storage
media. The software 522 may further be transmitted or
received over a network 520 via the network interface device
508.

[0049] The machine-readable storage medium 528 may
also be used to store instructions to perform methods 200,
300, and 400 for VM resource reduction for live migration
optimization described with respect to FIGS. 2, 3, and 4,

US 2012/0221710 Al

and/or a software library containing methods that call the
above applications. While the machine-accessible storage
medium 528 is shown in an exemplary embodiment to be a
single medium, the term “machine-accessible storage
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The term “machine-accessible stor-
age medium” shall also be taken to include any medium that
is capable of storing, encoding or carrying a set of instruction
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
invention. The term “machine-accessible storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, and optical and magnetic media.
[0050] Whereas many alterations and modifications of the
present invention will no doubt become apparent to a person
of ordinary skill in the art after having read the foregoing
description, it is to be understood that any particular embodi-
ment shown and described by way of illustration is in no way
intended to be considered limiting. Therefore, references to
details of various embodiments are not intended to limit the
scope of the claims, which in themselves recite only those
features regarded as the invention.

What is claimed is:

1. A computer-implemented method, comprising:

monitoring, by a host machine managing a virtual machine

(VM), a rate of state change of the VM undergoing a live
migration;
determining, by the host machine, that the rate of state
change of the VM exceeds a rate of state transfer of the
VM during the live migration process; and

adjusting, by the host machine, one or more resources of
the VM to decrease the rate of state change of the VM to
be less than the rate of state transfer of the VM.

2. The method of claim 1, wherein the one or more
resources of the VM are one or more virtual CPUs.

3. The method of claim 2, wherein a speed of each of the
one or more virtual CPUs is adjusted separately from the
other one or more virtual CPUs based on the individual per-
formance of the virtual CPU.

4. The method of claim 1, wherein adjusting the one or
more resources includes reducing the one or more resources
by a constant factor.

5. The method of claim 1, wherein adjusting the one or
more resources includes reducing the one or more resources
based on a ratio of the rate of state transfer of the VM to the
rate of state change of the VM.

6. The method of claim 5, further comprising dividing the
adjusted VM resource by a constant factor.

7. The method of claim 1, wherein adjusting the one or
more resources includes introducing a delay each time a
pagefault occurs on the VM.

8. The method of claim 1, further comprising multiplying
the adjusted VM resource by a constant factor.

9. A system, comprising:

amemory;

a processor communicably coupled to the memory;

a hypervisor to execute one or more virtual machines

(VMs) from the memory that share use of the processing
device; and

Aug. 30, 2012

a host migration agent executed from the memory and the
processor and communicably coupled to the hypervisor,
the memory sharing agent configured to:
monitor arate of state change of a VM of the one or more
VMs undergoing a live migration;

determine that the rate of state change of the VM exceeds
a rate of state transfer of the VM during the live
migration process; and

adjust one or more resources of the VM to decrease the
rate of state change of the VM to be less than the rate
of state transfer of the VM.

10. The system of claim 9, wherein the one or more
resources of the VM are one or more virtual CPUs, and
wherein a speed of each of the one or more virtual CPUs is
adjusted separately from the other one or more virtual CPUs
based on the individual performance of the virtual CPU.

11. The system of claim 9, wherein adjusting the one or
more resources includes reducing the one or more resources
by a constant factor.

12. The system of claim 9, wherein adjusting the one or
more resources includes reducing the one or more resources
based on a ratio of the rate of state transfer of the VM to the
rate of state change of the VM.

13. The system of claim 12, wherein the host migration
agent further configured to divide the adjusted VM resource
by a constant factor.

14. The system of claim 9, wherein adjusting the one or
more resources includes introducing a delay each time a
pagefault occurs on the VM.

15. The system of claim 14, wherein the host migration
agent further configured to multiply the adjusted VM
resource by a constant factor.

16. An article of manufacture comprising a machine-read-
able storage medium including data that, when accessed by a
machine, cause the machine to perform operations compris-
ing:

monitoring a rate of state change of a virtual machine (VM)
undergoing a live migration;

determining that the rate of state change of the VM exceeds
a rate of state transfer of the VM during the live migra-
tion process; and

adjusting one or more resources of the VM to decrease the
rate of state change of the VM to be less than the rate of
state transfer of the VM.

17. The article of manufacture of claim 16, wherein the one
or more resources of the VM are one or more virtual CPUs,
and wherein a speed of each of the one or more virtual CPUs
is adjusted separately from the other one or more virtual
CPUs based on the individual performance of the virtual
CPU.

18. The article of manufacture of claim 16, wherein adjust-
ing the one or more resources includes reducing the one or
more resources by a constant factor.

19. The article of manufacture of claim 16, wherein adjust-
ing the one or more resources includes reducing the one or
more resources based on a ratio of the rate of state transfer of
the VM to the rate of state change of the VM.

20. The article of manufacture of claim 16, wherein adjust-
ing the one or more resources includes introducing a delay
each time a pagefault occurs on the VM.

sk sk sk sk sk

