PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(22) International Filing Date: 30 December 1998 (30.12.98)

(30) Priority Data:

974665 31 December 1997 (31.12.97) FI

(71) Applicant (for all designated States except US): SSH COM-
MUNICATIONS SECURITY OY [FI/FI]; Tekniikantie 12,
FIN-02150 Espoo (FI).

(72) Inventor; and .
(75) Inventor/Applicant (for US only): YLONEN, Tatu [FI/FI];
Taysikuu 10 C 88, FIN-02210 Espoo (FI).

(74) Agent: BERGGREN OY AB; P.O. Box 16, FIN-0010 Helsinki
(FI).

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/35799
HO04L 29/06 A2 . o

(43) International Publication Date: 15 July 1999 (15.07.99)

(21) International Application Number: PCT/FI98/01032 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, T™M, TR, TT, UA, UG, US, UZ, VN, YU,
ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

PROTOCOL CONVERSIONS

(57) Abstract
INi

For achieving packet authentication ac-

(54) Title: A METHOD FOR PACKET AUTHENTICATION IN THE PRESENCE OF NETWORK ADDRESS TRANSLATIONS AND

u RESPONDER
1001

cording to an applicable security policy between
a sending node (903) and a receiving node (902) r

ISAKMP EXCHANGE

in a network, the following steps are taken: the
transformations occurring to a packet en route be-

¢ 1002

tween the sending node and the receiving node
are discovered dynamically (1003, 1004), the dis-

IPSEC SA CREATION

covered transformations are checked (1004) to
be acceptable based on the applicable security
policy, and the dynamically discovered, accept-

SEND FIRST DATA PACKET
WITH PROBING INFORMATION

1004

able transformations are compensated for (1004, (INCLUDED (IN-LINE PROBING) \ co?dﬁiﬁ?&%hs
1006) before authenticating packets transmitted INFORMATION, PRODUCE
from the sending node to the receiving node. 1003 INVERSE TRANSFORMATION
SEND REPLY PACKETW
RECEIVE PACKET, 1008
COMPARE TO PROBING
INFORMATION, PRODUCE
INVERSE TRANSFORMATION
1008
1007

AUTHENTICATED PACKET EXCHANGE

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ

BY
CA
CF
CG
CH
CI
CM
CN
Cu
CzZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
I8
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
Us
UZ
VN
YU
VA4

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/35799 PCT/F198/01032

1

A Method for Packet Authentication in the Presence of Network Address
Translations and Protocol Conversions

This invention concerns the authentication of data packets in a digital data transfer
network. Specifically the invention concerns the authentication in a network where
transformations are performed on packets while they are in transit, which renders
the use of prior art authentication methods difficult or impossible.

Internet security has received major scientific and commercial attention in recent
years due to the vast growth of the Internet and the rapidly increasing number of
organizations joining the network. The network has become a critical part of the
operation of many commercial organizations. Commercial exploitation of the
Internet is being severely limited by security problems in existing Internet protocols,
and improving Internet security is thus imperative.

The IP security protocol (IPSEC) is being standardized by the IETF (Internet
Engineering Task Force) for adding security to the IP protocol. It provides crypto-
graphic authentication and confidentiality of traffic between two communicating
network nodes. It can be used in both end-to-end mode, directly between the
communicating nodes or hosts, or in tunnel mode between firewalls or VPN (Virtual
Private Network) devices. Asymmetric connections, where one end is a host and the
other end is a firewall or VPN are also possible.

IPSEC performs authentication and encryption on packet level by adding new
protocol headers to each packet. IPSEC authentication is performed by computing
an authentication code over all data and most of the header of the data packet. The
authentication code further depends on a secret key, known only to the communic-
ating parties. The authentication code is then stored in the packet, appropriately
wrapped in a well-defined header or trailer.

The secret key for authentication can be configured manually for each pair of
communicating hosts. However, in practice, special key management protocols are
used to dynamically generate and exchange the secret keys. In IPSEC, the standard
protocol for doing this is called the ISAKMP/Oakley protocol, where ISAKMP
means Internet Security Association Key Management Protocol.

IPSEC authentication protection includes the source and destination addresses of the
packet, which means that they can not be changed en route if the authentication

10

15

20

25

30

35

WO 99/35799 PCT/F198/01032

2

code is to remain valid. However, many organizations currently use private IP
addresses within their own organization, and translate the private addresses to
globally unique addresses at an external gateway (e.g. router or firewall). This
process is called network address translation (NAT). Such translation typically
involves changing both IP addresses and TCP or UDP port numbers.

A NAT device 100 in Fig. 1 takes in packets 101 transmitted by a transmitting node
102 in an internal private network 103. It converts the IP addresses and port
numbers in these packets from those belonging to an internal, private address space
to globally unique external Internet addresses in outgoing packets 104 before
sending the packets through the external network 105 to a receiving node 106. The
address conversion takes place on the other way round for packets that go across the
NAT device 100 in the other direction. Typically, a NAT 100 will map IP address
and port combinations to different IP address and port combinations. The mapping
will remain constant for the duration of a network connection, but may change
(slowly) with time. In practice, NAT functionality is often integrated into a firewall
or router.

Furthermore, there are other types of devices on the Internet that may legally modify
packets as they are transmitted. A typical example is a protocol converter, whose
main job is to convert the packet to a different protocol without disturbing normal
operation. Using them leads to problems very similar to the NAT case. A protocol
converter converts packets from one protocol to a different protocol. A fairly simple
but important example is converting between IPv4 and Ipv6, which are different
versions of the Internet Protocol. Such converters will be extremely important and
commonplace in the near future. A packet may undergo several conversions of this
type during its travel, and it is possible that the endpoints of the communication
actually use a different protocol. Like NAT, protocol conversion is often performed
in routers and firewalls. The layout of an IPv4 packet header is illustrated in Figure
2, and the layout of an IPv6 packet header in Figure 3. Column numbers in Figs. 2
and 3 correspond to bits.

In Fig. 2, the fields of the known IPv4 header are as follows: Version Number 201,
IHL 202, Type of Service 203, Total Length 204, Identification 205, Flags 206,
Fragment Offset 207, Time to Live 208, Protocol 209, Header Checksum 210,
Source Address 211, Destination Address 212, Options 213 and Padding 214. In
Fig. 3, the fields of the known proposed IPv6 header are as follows: Version
Number 301, Traffic Class 302, Flow Label 303, Payload Length 304, Next Header
305, Hop Limit 306, Source Address 307 and Destination Address 308. The use of

10

15

20

25

30

WO 99/35799 PCT/F198/01032
3

the fields in the headers is known to the person skilled in the art. An IP packet
consists of a header like that of Fig. 2 or 3 accompanied by a data portion. In IPv6,
there may be a number of so-called Fxtension headers between the main header
shown in Fig. 3 and the data portion.

The security features desired of a network security protocol include authenticity (the
packet was actually sent by the node it claims to have been sent by), integrity (the
packet was not modified in transit), non-repudiation (the sending node cannot deny
having sent the packet) and privacy (no third party can read the contents of the
packet). In the IPSEC protocol, authenticity, integrity, and non-repudiation are
achieved by having a shared secret key that is used to authenticate each packet. The
authentication is performed by computing a message authentication code (MAC)
using the contents of the packet and the shared secret, and sending the computed
MAC as a part of the packet in an AH (Authentication Header) or ESP
(Encapsulating Security Payload) header. Privacy is typically implemented using
encryption, and the ESP header is used. The AH header is illustrated in Fig. 4,
where column numbers correspond to bits. The fields of the known AH header are
as follows: Next Header 401, Length 402, Reserved 403, Security Parameters 404
and Authentication Data 405. The length of the last field 405 is a variable number of
32-bit words.

The Encapsulating Security Payload (ESP) may appear anywhere in an IP packet
after the IP header and before the final transport-layer protocol. The Internet
Assigned Numbers Authority has assigned Protocol Number 50 to ESP. The header
immediately preceding an ESP header will always contain the value 50 in its Next
Header (IPv6) or Protocol (IPv4) field. ESP consists of an unencrypted header
followed by encrypted data. The encrypted data includes both the protected ESP
header fields and the protected user data, which is either an entire IP datagram or an
upper-layer protocol frame (e.g., TCP or UDP). A high-level diagram of a secure IP
datagram is illustrated in Fig. S5a, where the fields are IP Header 501, optional other
IP headers 502, ESP header 503 and ecrypted data 504. Fig. 5b illustrates the two
parts of an ESP header , which are the 32-bit Security Association Identifier (SPD)
505 and the Opaque Transform Data field 506, whose length is variable.

There are several ways of computing a MAC, well known in the literature. One
commonly used method is computing a keyed cryptographic hash function (e.g.
HMAC-SHAT1) over the data to be authenticated, using the shared secret as the key.

10

15

20

25

30

35

WO 99/35799 PCT/F198/01032
4

We will call authenticity, integrity, and non-repudiation of packets jointly as packet
authentication. In IPSEC, this function is achieved by computing a message
authentication code (MAC) for the packet at the sending node, including the
computed message authentication code with the packet in an AH or ESP header, and
verifying the message authentication code at the receiving node. The verification
will succeed if both nodes know the same shared secret and the received packet is
identical to the packet from which the MAC was computed.

NATs and protocol converters by their very nature modify packets as they are being
transferred. However, the very purpose of packet authentication is to prevent
modifications to the packet, and any transformations on the packet will cause the
authentication to fail. NAT changes the source and/or destination addresses of a
packet, thus invalidating the IPSEC authentication code. Several solutions have been
proposed for performing authentication in such an environment, such as not
including the addresses in the authentication code, performing authentication
between each pair of adjacent NAT gateways, or wrapping the packets in an IP-in-
IP encapsulation. However, no solution is known that would allow end-to-end
authentication in the presence of an unknown number of intermediate NAT
gateways, without requiring complex directories or manual configuration, or
reauthenticating at each gateway that modifies the packet.

The ESP authentication method does not include the packet header in the computed
MAC. The original goal of this was to make ESP work across NAT. However, there
are serious problems with this approach. First, TCP/IP header contains a checksum
which includes, in addition to the actual TCP payload, a pseudo-header which
includes the network addresses and port numbers of the packet. Thus, the TCP/IP
checksum changes when NAT is performed. Normally a NAT device would
automatically correct the checksum, but this is impossible when the packet is
protected using a security protocol. The same situation is encountered with the UDP

protocol. Thus, TCP and UDP cannot be reliably used even over ESP with existing
methods.

There is a strong force driving vendors and corporations towards using technologies
which modify data packets: the IPv4 address space is running out. Thus,
corporations will no longer be able to obtain sufficiently many IP addresses at a
reasonable cost. Another force driving corporations in the same direction is that
renumbering IP addresses is very costly, and corporations may need to change their
external numbers if they change to a different Internet service provider.

10

15

20

25

30

WO 99/35799 PCT/F198/01032

5

These forces are driving the Internet towards two possible alternative solutions:
increasing use of NAT, or a transition to IPv6 (implying a long transition period
during which protocol conversion is commonplace). The present IPSEC protocol
cannot cope with either of these solutions without major compromises in flexibility
or security.

It is an object of this invention to provide a method for packet authentication that is
insensitive to address transformations and protocol conversions en route of the
packet. It is a further object of the invention to provide a transmitting network
device and a receiving network device that are able to take advantage of the
aforementioned method.

The objects of the invention are achieved by first dynamically discovering the
address translations and/or protocol conversions that are performed on packets
between the communicating hosts, and compensating for these changes when the
packet authentication code is computed or verified.

It is characteristic to the method according to the invention that it comprises the
steps of

- dynamically discovering the transformations occurring to a packet en route
between the sending node and the receiving node,

- checking that the discovered transformations are acceptable based on the
applicable security policy, and

- compensating for the dynamically discovered, acceptable transformations before
authenticating packets transmitted from the sending node to the receiving node.

The invention also applies to a network device, the characteristic feature of which is
its ability to take advantage of the aforementioned method.

A first part of the invention is that the network devices or nodes taking part in the
communication where packets need to be authenticated dynamically discover the
network address translation and or protocol conversion characteristics of a network
path by exchanging a probe, and comparing information in the received probe
against its known form at the moment of sending.

A second part of the invention is that, after discovering the network address trans-
lation and or protocol conversion characteristics of a network path, the transmitting
node and/or the receiving node compensates for all address translations and/or
protocol conversions performed on the packet, so that packet authentication can still

10

15

20

25

WO 99/35799 PCT/F198/01032
6

be achieved securely in the presence of address translations and/or protocol
conversions.

The novel features which are considered as characteristic of the invention are set
forth in particular in the appended Claims. The invention itself, however, both as to
its construction and its method of operation, together with additional objects and
advantages thereof, will be best understood from the following description of
specific embodiments when read in connection with the accompanying drawings.

Fig. 1 illustrates a known NAT device between an internal network and an
external network,

Fig. 2 illustrates a known IPv4 packet header,
Fig. 3 illustrates a known Ipv6 packet header,
Figs. 4, 5a and 5b illustrate known packet headers,
Fig. 6 illustrates separate probing according to the invention,

Fig. 7 and 8 illustrate different ways of manipulating a packet to be transmitted
according to the invention,

Fig. 9 illustrates in-line probing according to the invention,

Fig. 10 illustrates an embodiment of the invention as a flow diagram,
Fig. 11 illustrates a detail of Fig. 10,

Fig. 12 illustrates an embodiment of the invention as a state machine and
Fig. 13 illustrates a block diagram of a device according to the invention.

Figs. 1 to 5b were referred to in the description of prior art, so the following
discussion will mainly refer to Figs. 6 to 13.

The invention is described in the context of the IP protocol and IPSEC and
ISAKMP/Oakley mechanisms. However, the present invention is equally applicable
to other network protocols and other security mechanisms by replacing the protocol-
and mechanism-specific denominations and specifications in the following
description with the corresponding counterparts in the other network protocols and
other security mechanisms.

10

15

20

25

30

WO 99/35799 PCT/F198/01032
7

The present invention concerns a method for performing packet authentication when
there are NAT (Network Address Translation) devices and/or protocol converters
that modify the packet while it is in transit. The invention is also equally applicable
to many other types of transformations that might be performed on the packet, such
as removing certain IP options (e.g. source routing) or adding security options (e.g.
IPSO or CIPSO).

The invention is based on the fact that it is possible to make authentication work
over address transformations and/or protocol conversions by compensating for them
either beforehand when generating the authentication code at the sending node or
afterwards when verifying it at the receiving node. However, such compensation
requires knowing the exact transformations that will be performed on the packet
between the comraunicating peers. Many transformations are time dependent - for
instance, the external addresses given by a NAT may vary over time on a first-come
first-served basis. Even when the transformations are constant, configuring and
maintaining the transformation information in a static manner for every pair of
possible communicating nodes would be extremely operose.

In the method according to the invention one can dynamically discover which
transformations are performed on any particular network connection at the time the
communication takes place, and compensate for the transformations when
performing packet authentication. The problem is thus divided to a number of
subproblems: how can the discovery be done reliably and securely, which
discovered transformations are considered acceptable, and how does one
compensate for the transformations that occur while the packet is in transit.

The transformation characteristics of the path between the communicating nodes
must be determined at a sufficiently small granularity. Here, sufficiently small
granularity refers to ranges of network addresses (e.g. IP subnets, individual IP
addresses, or even port numbers). For example, many NATs may map an IP address
and port combination to another IP address and port combination. In such a case, the
granularity is to a port. On the other hand, in a different environment the same fixed
transformation might apply to an entire IP subnet or set of subnets. The
implementation must ensure that the transformation characteristics are always
determined separately for each "granule". Effectively, a granule here is the largest
unit of network addresses (IP addresses, port numbers) within which the trans-
formation can be guaranteed to be uniform.

10

15

20

25

30

35

WO 99/35799 PCT/F198/01032

8

Let us first consider the first subproblem named above, namely the dynamic
discovery of the transformations that occur in transit. Such transformations may
depend on the contents of the IP packet, particularly TCP and UDP port numbers.
There is no easy method to explicitly compute the transformations beforehand,
because the information needed (e.g. internal configuration and state of NATS) for
such computation is not and cannot easily be made available.

In the method according to the invention the communicating peers probe the trans-
formations that occur by sending at least one probing packet through the whole
communication path between them, and watching what happens. The probing packet
- or "probe” for short - must be sufficiently similar to real data packets so that the
transformations performed on it are the same as those performed on actual data
packets. The system receiving the probe must also be able to recognize it as a probe.
Alternatively, this part of the invention can be implemented by mcluding the
probing information in the first data packet sent in each direction. We will call these
two alternatives separate probing and in-line probing.

In some cases the transformation information may be manually configured for some
destinations (possibly including the "default" destination). In such cases, there is no
need to determine the characteristics by probing; instead, they can be directly
determined from the configuration information. The setup in Figure 1, for example,
is sufficiently simple that manual configuration may be feasible in this case.
However, manual configuration is generally not possible, as the needed information
about e.g. IPv4 vs. IPv6 conversions might not be available at all.

Of the alternatives of separate or in-line probing, let us first look into separate
probing. Here, the sending node 601 sends a separate probe packet 602 to the
receiving node 603 according to Fig. 6. The receiving node must recognize the
probe packet as such. The possibilities for this are limited, as the packet must use
the same protocol (e.g. AH, ESP, TCP or UDP) and port numbers (when applicable)
as the data packets. Alternatives for determining that it is a probe packet include:

- Special contents in the data portion 702 of the packet 701 (e.g., a so-called magic
cookie 703 negotiated by the key manager, or a derivation of such). This is
illustrated in Figure 7. The magic cookie 703 can be a sufficiently long bit string so
that the probability of it occurring in a normal packet is extremely low (virtually
ZEr0).

- Special flags in the headers of the packet (e.g., use a reserved flag in the IP, TCP,
or UDP header), or have a strange value in some field.

10

15

20

25

30

WO 99/35799 PCT/F198/01032

9

- Special options in the IP, TCP or UDP header 802 (e.g. an IP option number
reserved expressly for this purpose). This is illustrated in Figure 8. A special option
number is used for the option of identifying the packet as a probe.

- The receiving node is put to a state where it will consider the next packet to a
certain protocol, address and port combination as a probe. The state could be set and
cleared by the key manager in communication with the sending node.

The invention does not limit the method that is used to recognise a probe in the
receiving node.

After the separate probe has traveled the whole communication path and the
receiving node has recognised it as a probe, the determination of which trans-
formations occurred in transit can be done by comparing the original contents
(headers, typically) of the probe against those seen at the receiving end. This
comparison can be done either by the sending node or the receiving node. If it is
done by the receiving node, sufficient information must be passed to it to make the
comparison (either in the data portion of the probe packet itself, or by other
communication, e.g. using the key manager). If it is done by the sending node, the
receiving node must send back sufficient information about the received packet to
enable the comparison. One possible form for passing the information is to send the
full original or received headers to the other side in a packet’s data portion.
(Transformations that would modify the data portion of the packet are rare, and
usually unacceptable from a security point of view.)

In the in-line probing embodiment of Fig. 9, the probing information is sent with the
first data packet 901. There are two possible forms of in-line probing: non-
disruptive and disruptive probing. In non-disruptive probing, the packet 901 will
look like a completely normal data packet for the receiving node 902, and if the
receiving node does not know of the probing mechanism used, it will ignore the
probing information and process it as a normal data packet. In disruptive probing,
on the other hand, the receiving node 902 will not be able process the packet
normally if it does not know of the probing method.

Disruptive probing is similar to using a separate probe packet, except that the data
for the first data packet is also included in the same IP packet as the probing
information.

A non-disruptive probe is ignored by the receiving node 902 if it does not
understand it, in which case the invention is not applicable: Packet authenticated

10

15

20

25

30

35

WO 99/35799 PCT/F198/01032
10

communications will not be possible if the nodes do not support a suitable method
for coping with them. If the receiving node in that case sends back a reply packet, it
will not contain reply information for the probe. This can be used by the original
sending node 903 to determine that the receiving node did not support probing.
(Note that the receiving node will probably ignore the packet if transformations
actually occurred.) If the receiving node did understand the probing information, the
invention is applicable and the reply packet to the original sending node will include
any reply information that needs to be sent to the original sending node, and its
probe information if appropriate. From the viewpoint of the invention, this packet
may or may not be non-disruptive, as the original sending node's capabilities are
already partly known to the original receiving node when it sends its first reply
packet.

The role of the reply packet is to confirm to the sending node 903 that the probe has
been received and that the receiving node supports packet authenticated communic-
ations. If the original probing packet or the reply packet is lost in the network, it
may need to be resent multiple times, forever or until a retry count is exceeded.

As explained above, non-distruptive in-line probing is a possible method for
negotiating whether the other end supports the methods described in this disclosure,
and performing the dynamic discovery at the same time. There are also other
methods for negotiating whether the other end supports these methods, including;

- it is negotiated using the key manager (e.g., with ISAKMP/Oakley,

using vendor id payloads and/or extensions to the base protocol)

- it is preconfigured on a per-network or per-host basis.

Irrespective of whether separate probing or in-line probing was used, a necessary
requirement for being able to compensate for the transformations that occur is that
the node (sending or receiving node) performing the compensation knows which
transforms occurred. In a two-way connection compensation could be performed for
each packet by the respective sending node, by the respective receiving node, or
always by the same side regardless of the direction of the packet. Determining the
transformations can most easily be done by comparing the received packet (header)
against the packet (header) that was sent. To do this, either the received header must
be communicated to the sending node or the sent header in its original form must be
communicated to the receiving node. This communication may take place either as
part of an in-line probing exchange, or through key manager communications, or by
other methods. Both sending the original header to the receiving node and returning
the received header to the sending node are viable options.

10

15

20

25

30

35

WO 99/35799 PCT/F198/01032

11

Let us now consider comparing the sent and received packet headers as a part of the
second subproblem defined above: which transformations are acceptable for
compensation. There are several kinds of transformations that may occur on the
packet, such as:

- IP addresses and port numbers may change. This is typically caused by NAT. The
mapping between "internal" and "external" addresses is fixed during a particular
communication; however, the mapping might be different if/when the same
addresses and ports are later reused.

- IP options might be removed. E.g., some gateways may remove all source routing
information.

- IP options might be added. E.g., some gateways may add IPSO or CIPSO options
to packets.

- The packet is converted between IPv4 and IPv6. This involves changing the basic
header layout, changing the order of IP options, translating addresses (though this
may sometimes be fairly straightforward), and may change the way MACs are
computed. This may also involve adding/removing some options, while some
options might be transferred to the packet. The packet might undergo several such
transformations back and forth, especially in the transition period that is likely to
occur during the next several years. The sending node and receiving node may be
using a different protocol for communication (e.g. one uses IPv4, and the other
IPv6). One must also consider that different gateway implementations might process
some options differently or order them differently.

- The packet might be converted between IP and some completely different
protocol, or might be converted between two completely different protocols. It may
become extremely difficult or infeasible to maintain packet authentication across
such conversions, but that is still a possible application of this invention.

- The data portion of the packet might be modified in some situations, such as
modifying the IP addresses contained therein in NAT devices to make the so-called
DNS information correspond to the IP addresses seen inside the NAT.

The comparison can be performed by first checking against a conversion from one
major protocol to another (e.g. IPv4 vs. IPv6). For IP, the rest of the comparison can
be performed as follows:

- The header is divided into fields, e.g. IP source address, IP destination address,
protocol (TCP/UDP/other), source port, destination port, IP options, TCP/UDP
options, etc.

- Most fields can be simply compared (e.g., addresses, protocol, ports). Some
transformations are clearly always unacceptable (e.g., the protocol number

10

15

20

25

30

WO 99/35799 PCT/F198/01032
12

changing), and will cause the comparison to fail. Other restrictions may be imposed
by security considerations.
- IP options may undergo several types of changes, such as addition, removal, or
reordering. Typically, however, most packets do not have IP options, and very few
options are commonly used or allowed by the local security policy. Even fewer
options are likely to be changed. Most likely security considerations will permit
only very specific types of changes.

- TCP headers are probably seldom changed by normal network gateways. Most
implementations can probably disallow changes in them.

Security considerations mean that one determines the risks of the authentication
procedure either giving a false alarm, i.e. denies authentication despite that only
legal transformations took place, or lets an illegal transformation go unnoticed. The
acceptable level of risk may vary according to the importance of the data being
transferred. Suitable risk levels and the consequent restrictions on what is
considered a legal transformation may be found by experimenting without specific
inventive activity.

It is conceivable that the transformations that occur on a path through a network
might suddenly change while a communication is active. This might happen e.g. if a
link is upgraded to use IPv6 instead of IPv4. Such changes will be rare, and can
probably be ignored. However, if one wants to cope with them, it is possible to run
the dynamic discovery procedure again when receiving incorrectly authenticated
packets in the middle of an active communication. Care must be taken if such
rediscovery is supported, however, in order to avoid denial-of-service attacks by
sending just a few incorrectly authenticated packets.

Security considerations are critical in performing dynamic discovery of the trans-
formations. Only some types of transformations are acceptable. If arbitrary trans-
formations were allowed, attackers could fake source IP addresses and ports at will
by making the other end think that a transformation occurred in the network.

The security problem is complicated by the fact that NATs often hide the actual IP
addresses of the sending node and the receiving node. Each party will then only see
addresses belonging to the other end's firewall, not addresses of actual machines.

If we assume that compensating for transformations is done by one end substituting
the address seen at the other end during MAC computation or verification, the node
doing the substition will need to know the other node's real IP address.

10

15

20

25

30

35

WO 99/35799 PCT/F198/01032

13

There is a way to avoid this requirement though. If each node behind a NAT can
learn the IP address (and other information) that it will have outside the NAT gate-
way, it can compute the MAC using that information, and can communicate that
information to the receiving node as its real address. A similar procedure applies to
the receiving node.

Let us now return to security considerations. Basically, we want to authenticate that
the received packets actually originated at the sending node that we think they are
from. There are several possible sources of information about the true sending node,
including:

- It may be sent with the packet (in-line probing) by the sending node, authenticated
by using whatever authentication key the peers have agreed upon. The identity of
the sending node wus brought to the knowledge of the receiving node when they
agreed upon the authentication key.

- It may have been communicated using the key manager as the identity associated
with the particular security association. The information was authenticated during
the key exchange between key managers.

- It may be sent in a probe packet, authenticated by whatever authentication key has
been agreed for the security association.

Assuming the packet is sufficiently protected by cryptographic means (both packet
authentication and privacy protection), we do not really care which way it passes
through the network. In that sense, we do not care about the IP addresses or ports in
the packet, as long as we are sure that the keying information was negotiated with
the appropriate real endpoint. That information must be (regardless of whether we
apply the present invention) authenticated by means other than IP addresses, as IP
addresses are unreliable.

There are several known methods currently used for authenticating the other
communicating node and verifying its authorization to communicate, including;

- manually configured, fixed keys ("you are allowed to communicate with anyone
who knows the key")

- dynamically agreed keys, authenticated by a preshared secret ("you are allowed to
communicate with anyone who knows the secret")

- certificate by a trusted CA ("you are allowed to communicate with anyone who
has a certificate by the trusted CA")

- certificate by a trusted CA for a particular network address range ("you are
allowed to communicate with anyone who can present a certificate by a trusted CA
for the IP address they are using")

10

15

20

25

30

WO 99/35799 PCT/F198/01032
14

- certificate by a trusted authorizer giving the other node the authorization to
communicate with another node (e.g. using a SPKI certificate)

- other forms and policies are also possible, and are likely to evolve in the coming
years.

Some of these methods directly yield the identity of the communicating remote node
or user (e.g., in the form of a name associated with the certificate by a trusted CA);

some only yield authorization but say nothing about the identity of the remote node
Or user.

In any case, the IP address and port number used by the remote node has little value
for authentication purposes when NAT is used, as the address will be more or less
random (within an address range typically).

It is thus the case that the IP address and port are not really usable for authentication
in the presence of NAT, even if traffic is otherwise authenticated. Authentication of
the communicating nodes must be done using certificates or other information
exchanged as part of the key exchange protocol.

Thus, we do not really care about the IP address that is shown to the receiving node.
That address need not be authenticated (and there isn't much that could be done to
authenticate it, short of requiring a certificate listing the range of addresses the NAT
gateway might translate it to).

The information communicated to the node performing compensation, however,
should be authenticated to avoid attacks where a bogus address is passed to
compensate for changes elsewhere in the packet. It can be argued that a good MAC
would not allow determination of a compensating address, but it is safer to always
authenticate the address. It may be convenient to authenticate the information

communicated using the same authentication key that is used to authenticate the rest
of the packet.

A node's local security policy determines which transformations it will consider
acceptable for each form of authentication obtained. Many such policies are
possible. One possible policy is outlined below:

- Do not allow changes in protocols other than IPv4 and IPv6.

- Accept IPv4 vs. IPv6 transformation, compensating for format changes.

- Accept arbitrary changes in the source address and port of the initiator of the
communication; do not allow changes in the destination address of the initiator or in
the source address of the responder, unless explicitly allowed by the responder's

10

15

20

25

30

WO 99/35799 PCT/F198/01032
15

certificate. However, the translation between an IPv4 and the corresponding IPv6
address (as specified in the IPv6 address definitions) is always allowed.

- Do not allow changes in the protocol number (TCP vs. UDP vs. other); ignore port
numbers for protocols other than TCP and UDP.

- Do not accept changes in IP options, TCP options, or other parts of a packet.

The invention does not limit the choice of policy.

The security policy is usually implemented as a check against a configuration
database. However, in many applications the security policy or some aspects of it
are static. Such static aspects are often implemented implicitly in the code. For
example, allowing any change in some header field could be implemented as just
not checking for that field. Likewise, requiring some field (or protocol) to have a
specific value may be a simple comparison, and may even be made implicitly by
e.g. packet routing code or other unrelated code on the platform where the method is
implemented.

Once the transformations that occur have been determined, they must be
compensated for by one or both of the communicating nodes, which is the third
subproblem defined above. If in-line probing is used, the probe packet itself
contains enough information for the receiving node to compensate for any
acceptable transformations; however, including such information in every packet is
not desirable because it wastes network bandwidth. Thus, it is probably desirable to
keep record in the compensating node about the transformations that occur, and
compensate for the transformations using recorded information, instead of including
explicit compensation information in every packet.

Compensation may be performed either when computing the MAC when sending a
packet, or when verifying the MAC after receiving a packet.

The MAC is normally computed from the packet contents and a secret key by using
a suitable cryptographically strong hash function (or other function that mixes bits
together in an intractable way) as follows:

- The secret key is included in the MAC.

- The packet data is included in the MAC.

- All applicable parts of the packet header are included in the MAC. There are some
fields that normally change while a packet is being transmitted, such as the TTL
field. These are not included in the MAC computation (or are zeroed before MAC
computation). Most other fields are included in MAC computation.

10

15

20

25

30

WO 99/35799 PCT/F198/01032
16

- Source and destination addresses are normally included in MAC computation.

In ESP, the MAC normally only covers packet data, not the header. However,
higher-level protocol checksums (e.g., TCP or UDP checksums) may contain data
from the header.

The MAC is typically a bit vector where every bit depends on every bit included in
the MAC in an intractable way. The number of bits in the MAC is sufficiently large
(in other words, the MAC is sufficiently strong) so that it is not feasible to find data
matching a particular MAC. The idea is that it is not possible to produce a MAC
that could be successfully verified with a particular key without knowing the key.

To compensate for transformations at the sending node, the sending node applies the
transformations seen by the receiving node before it computes the MAC. Thus, the
MAC in the transmitted packet does not match the packet that the sending node
sends, but it will match the packet that the receiving node sees.

To compensate for transformations at the receiving node, the receiving node applies
reverse transformations to the received data before computing the MAC. Thus, the
sending node will send a packet that has a correct MAC, and the receiving node will
convert the packet to the form sent by the sending node before verifying the MAC.

In addition to compensating for changes just in the MAC, the compensating node
may perform additional compensation operations that would normally be performed
by the NAT device if packet authentication was not happening. For example, TCP
or UDP checksums may be updated according to the changes that occurred on the
packet. Such update may be implemented either as an incremental update
(essentially deducting old values and adding new values to the checksum), or by
recomputing the entire checksum.

In the case of ESP packets, it is sometimes possible to avoid the dynamic discovery
and MAC compensation subprocess entirely. This is because the ESP packet header
is not included in the MAC, and thus the MAC need not be computed. The security
policy may state that any transformation in the packet header (IP addresses) is
acceptable, as long as a valid MAC was present in the packet. If operation over
NAT only needs to be supported for ESP and only with a fixed security policy that
allows any change in the outer IP header, then this invention can be implemented as
simply recomputing the checksum of any received TCP or UDP packet.

10

15

20

25

30

35

WO 99/35799 PCT/F198/01032

17

Sometimes the authenticated/encrypted packet contains network addresses within
the data portion. An example is a DNS (Domain Name System) packet; such packets
are used to map host names into IP addresses. Many NATSs perform transformations
on the contents of DNS packets; such transformations become impossible if the
packet contents are protected. In such a case, it may be necessary to perform some
or all of the transformation on the packet contents as part of the compensation
phase.

Some NATs may also recognize the security protocol, such as IPSEC, and perform
special mappings on the SPI (Security Parameter Index) values in the packets. The
compensation may also include changing the SPI value to that in the original value.
In such a situation, the original SPI value would be communicated in the probe
packet.

Let us now consider one possible implementation of this invention in detail with
reference to the flow diagram in Fig. 10. For simplicity, this implementation only
deals with the IPv4 protocol, and is only intended to cope with IPv4 NATs (IP
address and port transformations for TCP and UDP protocols). However, it will be
obvious to those skilled in the art how this could be extended to cope with [Pv4-
IPv6 protocol conversions or other types of transformations. We assume that the
IPSEC mechanism is used for authentication of IPv4 packets. We do not consider
encryption; however, the authentication can equally well be performed using ESP
headers, potentially combined with encryption, as it is here described using AH
headers.

Let us call the communicating nodes Initiator and Responder. Initiator is the node
that sends the first packet to start communications; Responder is the one that the
first packet is sent to (and typically it will respond to that packet by sending one or
more reply packets back). In the description below, we will restrict ourselves to the
case where a NAT gateway separates the Initiator from the Internet, and the
Responder is visible on the Internet using its own IP address and real port numbers.
This general setup is known as such and was illustrated in Figure 1.

When the Initiator wishes to communicate with the Responder, and they haven't
communicated recently (i.e., there is no security association set up between them
yet), the Initiator first starts an ISAKMP exchange generally designated as 1001
with the Responder. This is normally done by sending an UDP packet to port 500
(where 500 is the port number and not a reference designator) at the Responder's IP
address. The NAT will replace the source address and source port in the packet. The

10

15

20

25

30

WO 99/35799 PCT/F198/01032

18

key managers of both the Initiator and the Responder exchange ISAKMP packets
and set up a ISAKMP security assocition between the key managers. As part of this

process, they authenticate (or authorize) each other using any method supported by
ISAKMP.

Next, an IPSEC SA (security association) is created between the Initiator and
Responder (actually two, one in each direction) at the stage generally designated as
1002. A shared secret is associated with each SA, which is used to derive keying
material for the IPSEC transforms (encryption and authentication algorithms) used
to protect traffic sent using the SA.

It is possible that some transformations occurred on the ISAKMP packets during the
key exchange. However, those transformations cannot be used to determine the
transformations that will occur on data packets, as data is transferred using a
different port number and might have a different mapping. Up to this point the
connection setup has proceeded according to prior art.

The first data packet is then sent from the Initiator to the Responder at stage 1003.
The packet will be authenticated and otherwise protected using the AH and ESP
headers as negotiated during key exchange. Additionally, a special IP option is
added to the packet. This IP option has a special, reserved number, and is used to
probe the transformation characteristics of the communications channel between the
Initiator and the Responder. This is a variation of non-disruptive in-line probing.
The format and contents of this option are described in Figure 11. The MAC 1101
can be for instance the first 96 bits of HMAC-SHAI of the rest of the option using
the same key as the authentication transform used for the packet. The value of the
"Probe received" field 1102 will be FALSE to indicate that we have not yet received
a probe packet from the other side. Implementation-specific data 1103 can be any
data that needs to be communicated to the other side, such information about the
features supported by the Initiator. The original IP header when the packet was
transmitted 1104 is also shown.

It is interesting to note that even though NATSs change port numbers, the AH/ESP
encapsulation will hide the TCP/UDP header from the NAT, and thus the NAT will
most likely not be able to modify port numbers. This may also turn out to have an
adverse effect on NAT performance, as they must now allocate one external address
for every internal address that has a connection open, instead of multiplexing
several to the same address by modifying port numbers. This invention is also

10

15

20

25

30

WO 99/35799 PCT/FI198/01032

19

applicable in those cases where a NAT changes port numbers inside an AH/ESP
header.

If other packets are sent by the Initiator to the Responder before receiving a probe
reply, those packets will contain a similar probe option.

When the Responder receives a packet of this format at stage 1004, it compares data
in the received probe option against information in the received IP packet. It uses
this comparison to produce an inverse transformation for the transformation that
occurred while the packet was in transit. This data is recorded for use in processing
future packets received using the same SA, and for replying to the Initiator when the
first packet is sent to it.

When the Responder sends its first packet to the Initiator at stage 1005, it checks
whether a probe option was present in the first packet received from the Initiator. If
so, 1t includes a probe option of its own. This probe option is identical to that sent
by the Initiator, except that the "probe received" field will be TRUE to indicate that

the Responder has already received a probe and no more probes need to be sent by
the Initiator.

In its next packet after receiving this packet at stage 1006, the Initiator will still
include a probe option, which will now have "probe received" TRUE to indicate
that the responder need not send more probes. If the exchange of packets has
proceeded smoothly, the dynamic discovery of address translations (and protocol
conversions, although not specifically discussed with reference to Fig. 10) 1s
complete and the Initiator and Responder may continue exchanging packets,
processing future packets received using the same SA in accordance with the
information about the address translations (and protocol conversions) stored at
stages 1004 and 1006.

However, there might be complications. The system needs to be able to deal with
lost packets. There is also a small chance that the Responder might spontaneously
want to send a packet to the Initiator after the SAs between them have been set up
but before it has received the first packet from the Initiator.

The proper operation with regards to sending probes can be summarized by the state
machine of Figure 12. The concept of state appertains separately for each SA.

A problem which was not addressed above is the granularity of security associations
vs. the granularity of transformation information. An SA could be between entire

10

15

20

25

30

WO 99/35799 PCT/FI98/01032
20

subnets, covering multiple hosts, or could be e.g. for one TCP/IP port pair only.
Tranformation information, on the other hand, is typically constant only per-host or
even only per-port (it cannot be per-port if port information is not visible to the
NAT due the AH and ESP headers).

This raises the question where to store information about the transformations, in the
SA or in as separate data structure that records the transformation information for
each host/port, possibly linked to the SA. Both approaches are possible. Here, we
assume that a separate data structure is used to record transformation information
separately for each host covered by the SA.

Fig. 13 is a simplified block diagram of a network device 1300 that can act as the
Initiator or the Responder in the method of Fig. 10. Network interface 1301
connects the network device 1300 physically to the network. Address management
block 1302 keeps track of the correct network addresses, port numbers and other
essential public identification information of both the network device 1300 itself
and its peer (not shown). ISAKMP block 1303 is responsible for the key
management process and other activities related to the exchange of secret
information. Encryption/decryption block 1304 implements the encryption and
decryption of data once the secret key has been obtained by the ISAKMP block
1303. Compensation block 1305 is used to compensate for the permissible trans-
formations in the transmitted and/or received packets according to the invention.
Packet assembler/disassembler block 1306 is the intermediator between blocks 1302
to 1305 and the physical network interface 1301. All blocks operate under the
supervision of a control block 1307 which also takes care of the routing of
information between the other blocks and the rest of the network device, for
example for diaplaying information to the user through a display unit (not shown)
and obtaining commands from the user through a keyboard (not shown). The blocks
of Fig. 13 are most advantageously implemented as pre-programmed operational
procedures of a microprocessor, which implementation is known as such to the
person skilled in the art. Other arrangements that that shown in Fig. 13 may as well
be used to reduce the invention into practice.

10

15

20

25

30

WO 99/35799 PCT/F198/01032

21
Claims

1. A method for achieving packet authentication according to an applicable
security policy between a sending node (903) and a receiving node (902) in a
network, characterised in that it comprises the steps of

- dynamically discovering (1003, 1004) the transformations occurring to a packet en
route between the sending node and the receiving node,

- checking (1004) that the discovered transformations are acceptable based on the
applicable security policy, and

- compensating (1004, 1006) for the dynamically discovered, acceptable trans-
formations before authenticating packets transmitted from the sending node to the
receiving node.

2. A method according to claim 1, characterised in that each packet transmitted
from the sending node (903) to the receiving node (902) includes a cryptographic
authentication code (1101) derived from a secret key and the contents of the original
packet.

3. A method according to claim 2, characterised in that to compensate for the
dynamically discovered transformations the contents of an original packet' are
manipulated at the sending node (903) before computing said cryptographic
authentication code (1101).

4. A method according to claim 2, characterised in that to compensate for the
dynamically discovered transformations the contents of a received packet are
manipulated at the receiving node (902) before verifying said cryptographic
authentication code (1101).

5. A method according to claim 4, characterised in that at least one data packet
(602, 901) transferred from the sending node (903) to the receiving node (902)
contains a saved copy of at least a part of the original packet header (1104), and the
receiving node uses the saved copy in the packet header when verifying said crypto-
graphic authentication code of a received packet.

6. A method according to claim 5, characterised in that said saved copy is stored
in a special option of the packet header.

7. A method according to claim 6, characterised in that said special option is an
IP option.

10

15

20

25

30

WO 99/35799 PCT/F198/01032

22

8. A method according to claim 5, characterised in that said saved copy is
cryptographically authenticated.

9. A method according to claim 1, characterised in that the underlying protocol
applied in transferring packets from the sending node to the receiving node is the
IPv4 protocol, and packet authentication is done using the IPSEC protocol.

10. A method according to claim 1, characterised in that the underlying protocol
applied in transferring packets from the sending node to the receiving node is the
IPv6 protocol.

11. A method according to claim 1, characterised in that the transformations
include IP address translations (100).

12. A method according to claim 1, characterised in that the transformations
include TCP/UDP port translations.

13. A method according to claim 1, characterised in that the step of compensating
(1004, 1006) for the dynamically discovered, acceptable transformations comprises
the substep of updating a TCP or UDP checksum.

14. A method according to claim 1, characterised in that the transformations
include conversion between the IPv4 and IPv6 protocols.

15. A method according to claim 1, characterised in that the dynamic discovery is
made using a probing method taken from the following: non-disruptive in-line
probing, disruptive in-line probing, separate probing.

16. A method according to claim 15, where the probing method comprises the step
of sending a probe (1003) from the sending node to the receiving node, character-
ised in that the probe is a packet sent to the same network address as normal data
packets.

17. A method according to claim 16, characterised in that as a response to
receiving the probe the receiving node sends a probe reply (1005) to the sending
node.

18. A method according to claim 1, characterised in that the communicating

nodes negotiate whether they both support authentication in the presence of in-
transit transformations.

10

15

20

25

30

WO 99/35799 PCT/F198/01032
23

19. A method according to claim 1, characterised in that it comprises the step of
ensuring that the translation characteristics are determined at a sufficiently small
granularity to account for the finest-granularity transformations on the path between
the communicating nodes.

20. A method for achieving packet authentication for packets comprising a header
according to an applicable security policy between a sending node (903) and a
receiving node (902) in a network, characterised in that it comprises

- the use of an authentication code mechanism that does not include the packet
header in the message authentication code

- a check (1004) that the discovered transformations occurring to a packet en route
between the sending node and the receiving node are acceptable based on the
applicable security policy, and

-a compensation (1004, 1006) for the acceptable transformations before
authenticating packets transmitted from the sending node to the receiving node.

21. A network device (1300) for transmitting digital information in packet
authenticated form according to an applicable security policy to an other network
device in a network, characterised in that it comprises means (1305, 1306, 1307)
for

- dynamically discovering the transformations occurring to a packet en route
between it and the other network device,

- checking that the discovered transformations are acceptable based on the
applicable security policy, and

- compensating for the dynamically discovered, acceptable transformations before
transmitting packets to be authenticated to the other network device.

22. A network device (1300) for receiving digital information in packet
authenticated form according to an applicable security policy from an other network
device in a network, characterised in that it comprises means (1305, 1306, 1307)
for

- dynamically discovering the transformations occurring to a packet en route
between it and the other network device,

- checking that the discovered transformations are acceptable based on the
applicable security policy, and

- compensating for the dynamically discovered, acceptable transformations before
atheticating packets received from the other network device.

WO 99/35799 PCT/F198/01032

1/6 105
103
100
101 { 104
=) 1 =)
NAT
102 . 106
Fig. 1
PRIOR ART
o 201 202 ;203 L 204)
01(2345(6789012[34567890123[45678901
[} I} I} !
= m——
25— | - 0
- 210
209 b=
~ 211
—L 212
23— T 214
Fig. 2
PRIOR ART
o 301 302 1) 303 3
01[2345[678901234567890123(45678901
| [} !
- 305
U+ —l 306
~++—307
=Ll 308
Fig. 3

PRIOR ART

WO 99/35799 PCT/F198/01032

2/6

401 402 403
0 1 2 3
01[23456789012[34567890123[45678901
I I

1

~ 404
~ L1405

Fig. 4
PRIOR ART

501 502 503

(44

—_—N
(e}
E

Fig. 5a
PRIOR ART

505 506

Fig. 5b
PRIOR ART

WO 99/35799 PCT/F198/01032

3/6
602
_
PROBE
601 603
Fig. 6
701

& .
IP HEADER IP HEADER
TCP HEADER OPTION:

OPTION NUMBER, LENGTH

OPTIONAL
E\H ESP HEADER) /,703 MAC OF OPTION DATA

7 ORIGINAL HEADER
MAGIC COOKIE AND OTHER DATA
AS DATA
ORIGINAL HEADER y 702 TCP HEADER
AND OTHER DATA

NORMAL DATA MAY FOLLOW
J
Fig. 7 Fig. 8

Fig. 9

WO 99/35799 PCT/F198/01032

416
INITIATOR RESPONDER
— 1001
ISAKMP EXCHANGE
¢’ — 1002
IPSEC SA CREATION
SEND FIRST DATA PACKET 1004

WITH PROBING INFORMATION
INCLUDED (IN-LINE PROBING) RECEIVE PACKET,
(COMPARE TO PROBING
INFORMATION, PRODUCE

1003 INVERSE TRANSFORMATION

v

SEND REPLY PACKET'\

1005
RECEIVE PACKET,
COMPARE TO PROBING

INFORMATION, PRODUCE
(INVERSE TRANSFORMATION

1006

— 1007

AUTHENTICATED PACKET EXCHANGE

Fig. 10

WO 99/35799 PCT/F198/01032

5/6

IP OPTION NUMBER AND LENGTH

MAC (96 BITS) HMAC-SHA1-96 T — 1101

PROBE RECEIVED T — 1102

IMPLEMENTATION-SPECIFIC DATA | — 1103

ORIGINAL IP HEADER WHEN
THE PACKET WAS TRANSMITTED T — 1104

Fig. 11

NEW SA

PROBES SENT WITH
FALSE PROBES NOT SENT

PACKET RHCEIVED WITH
"PROBE REGEIVED"TRUE
PACKET RECEIVED WITH

" " PACKET RECEIVED
PROBE RECEIVED"FALSE
ALS WITHQUT PROBE

PACKET/SENT
WITH PROBE
WITH "PROBE RECEIVED" PROBES SENT WITH
] TRUE

Fig. 12

WO 99/35799

6/6

PCT/F198/01032

1303 —
1302 —

[

CONTROL

—t 41307

- 1304

" ADDR. || ISAKMP | |EN/DECR.

COMPENS.|

— L4 1305

1300

{ v

¢

¢

PACKET ASSEMBL. / DISASSEMBL.

"""+ 1306

NETW. IF

1301

Fig. 13

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

