(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

(43) International Publication Date

10 April 2003 (10.04.2003) PCT WO 03/028827 A2
(51) International Patent Classification’: A63F 13/00 Pine Drive, Reno, NV 89511 (US). NELSON, Dwayne,
R.; 5488 Alemen Drive, Las Vegas, NV 89113 (US).
(21) International Application Number: PCT/US02/30610 PALCHETTL Johnny; 2043 Maple Springs Drive, Las

Vegas, NV 89015 (US). BENBRAHIM, Jamal; 8455

(22) International Filing Date: Offenhauser #1022, Reno, NV 89511 (US).

25 September 2002 (25.09.2002) (74) Agent: OLYNICK, David, P.; Beyer Weaver & Thomas,

LLP, P.O. Box 778, Berkeley, CA 94704-0778 (US).
(25) Filing Language: English
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, T], TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

(26) Publication Language: English

(30) Priority Data:
60/325,998
10/041,212

28 September 2001 (28.09.2001) US
7 January 2002 (07.01.2002) US

(71) Applicant: IGT [US/US]; 9295 Prototype Way, Reno, NV

89510-0580 (US). (84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CE CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

(72) Inventors: BRECKNER, Robert, E.; 4519 Eagle Moun-
tain Drive, Sparks, NV 89436 (US). SCHLOTTMANN,
Greg, A.; 4360 Matich Drive, Reno, NV 89502 (US).
BEAULIEU, Nicole, M.; 6695 Evans Creek Drive, Reno,
NV 89509 (US). LEMAY, Steven, G.; 17085 Castle

[Continued on next page]

(54) Title: DECOUPLING OF THE GRAPHICAL PRESENTATION OF A GAME FROM THE PRESENTATION LOGIC

GAME GAME GAME
TIME LINE 120 121 START GAME END /122
b-——-—— L7 T —
GAMING GAME GAME GAME GAME
SOFTWARE 100 FLOW STATE se e STATE [ *°®*® STATE
LOGIC 104 10 114 18
GAMING @ OUTPUT
OPERATING <:> APIs 108
SYSTEM
w02 LY
PRESENTATION PRESENTATION PRESENTATION
PRESENTATION STATE STATE STATE
LOGIC 4pe 1 118 118
GRAPHICS [eraPHICS | [orAPHICS |
SOUNDS [ sounps | [ sounps |
DEVICES [ pevices | [ pevices |
MACHINE MACHINE MACHINE
INTERFACE 112 INTERFACE 116 INTERFACE 120

1o
113

5

[te} He]
17 121

(57) Abstract: A disclosed gaming machine is designed to execute a modular gaming software architecture. A plurality of gaming
software modules may be loaded into RAM on the gaming machine and executed to play a game of chance. Many of the gaming
software modules are designed to communicate via application program interfaces so that the logic in many of the gaming software
modules may be designed independently of each other. In particular, the modular gaming software architecture allows presentation
a state logic to be decoupled from implementations of presentation components, such as graphical, audio and gaming device compo-
nents, used in a presentation of the game of chance on a gaming machine.

O 03/028827 A2



w0 03/028827 A2 NN 000 00 0

Published: For two-letter codes and other abbreviations, refer to the "Guid-
—  without international search report and to be republished  ance Notes on Codes and Abbreviations"” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.



10

15

20

25

30

WO 03/028827 PCT/US02/30610

PATENT APPLICATION

DECOUPLING OF THE GRAPHICAL PRESENTATION OF A GAME FROM
THE PRESENTATION LOGIC

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119(e) from co-pending
U.S. Provisional Patent Application No. 60/325,998, filed September 28, 2001,
naming LeMay et al. as inventors, and titled "Decoupling Of The Graphical
Presentation Of A Game From The Presentation Logic."

BACKGROUND OF THE INVENTION

This invention relates to gaming software architectures for gaming machines
such as slot machines and video poker machines. More particularly, the present
invention relates to methods of decoupling the presentation logic from the graphical

presentation in the gaming software development process.

Typically, utilizing a master gaming controller, a gaming machine controls
various combinations of devices that allow a player to play a game on the gaming
machine and also encourage game play on the gaming machine. For example, a game
played on a gaming machine usually requires a player to input money or indicia of
credit into the gaming machine, indicate a wager amount, and initiate a game play.
These steps require the gaming machine to control input devices, including bill
validators and coin acceptors, to accept money into the gaming machine and
recognize user inputs from devices, including touch screens and button pads, to
determine the wager amount and initiate game play. After game play has been
initiated, the gaming machine determines a game outcome, presents the game
outcome to the player and may dispense an award of some type depending on the
outcome of the game.

As technology in the gaming industry progresses, the traditional mechanically
driven reel slot machines are being replaced with electronic counterparts having CRT,
LCD video displays or the like and gaming machines such as video slot machines and
video poker machines are becoming increasingly popular. Part of the reason for their
increased popularity is the nearly endless variety of games that can be implemented



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

on gaming machines utilizing advanced electronic technology. In some cases, newer
gaming machines are utilizing computing architectures developed for personal
computers. These video/electronic gaming advancements enable the operation of
more complex games, which would not otherwise be possible on mechanical-driven
gaming machines and allow the capabilities of the gaming machine to evolve with
advances in the personal computing industry.

To implement the gaming features described above on a gaming machine
using computing architectures utilized in the personal computer industry, a number of
requirements unique to the gaming industry must be considered. For instance, the
gaming machine on the casino floor is a highly regulated device. It is licensed,
monitored, taxed and serviced. Typically, within a geographic area allowing gaming,
i.e. a gaming jurisdiction, a governing entity is chartered with regulating the games
played in the gaming jurisdiction to insure fairness and to prevent cheating. For
instance, in many gaming jurisdictions, there are stringent regulatory restrictions for |
gaming machines requiring a time consuming approval process of 1) new gaming
hardware, 2) new gaming software and 3) any software modifications to gaming

software used on gaming machines.

As an example of the software regulation and approval process, in many
jurisdictions, to regulate gaming software on a gaming machine, a gamihg software
executable is developed and then burnt onto an EPROM. The EPROM is then
submitted to various gaming jurisdictions for approval. After the gaming software is
approved, a unique signature is determined for the gaming software stored on the
EPROM using a method such as a CRC. Then, when a gaming machine is shipped to
a local jurisdiction, the gaming software signature on the EPROM can be compared
with an approved gaming software signature prior to installation of the EPROM on
the gaming machine. The comparison process is used to ensure that approved gaming
software has been installed on the gaming machine. After installation, an access point
to the EPROM may be secured with evidence tape as a means of determining whether
illegal tampering has occurred with the EPROM. To generate a game of chance on the
gaming machine, the approved gaming software is executed from the EPROM.

The requirement to execute the gaming software from an EPROM has
strongly influenced gaming software design for gaming machines. For instance to
execute from an EPROM, monolithic software architectures, where a single gaming
software executable is developed, have been used in the gaming industry. Object
oriented software architectures used in the personal computer industry where different
software objects may be dynamically linked together prior execution to create many
different combinations of executables that perform different functions have not been

2



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

used in the gaming industry. Further, in most gaming jurisdictions, to load and to
unload software objects into RAM connected to a microprocessor and then execute
the objects to play a game of chance, there are many regulations, imposed by the
gaming jurisdictions, that must be satisfied. Because of these regulations, in the
gaming industry, operating systems that allow software objects to be loaded into a
RAM connected to a microprocessor have not been used.

Security is another factor that must be considered in the gaming industry. A
gaming machine can be capable of accepting, storing and dispensing large sums of
money. Thus, gaming machines are often the targets of theft attempts. Gaming
software and gaming hardware are designed to resist theft attempts and include many
security features not present in personal computers or other gaming platforms. For
example, gaming software and hardware are designed to make it extremely difficult to
secretly alter the gaming software to trigger an illegal jackpot.

The preservation of critical game information is another factor unique to the
design of gaming machines and gaming machine software. Critical game information
may include credits deposited into the gaming machine, credits dispensed from the
gaming machine, records of games played on the gaming machine and records of
access to the gaming machine (e.g., records of doors opened and gaming devices
accessed on the gaming machine). For instance, it is not acceptable to lose
information regarding money deposited into the gaming machine by a game player or
an award presented to a player as a result of a power failure.

Gaming software executed on gaming machines is designed such that critical
game information is not lost or corrupted. Therefore, gaming software is designed to
prevent critical data loss in the event of software bugs, hardware failures, power
failures, electrostatic discharges or tampering with the gaming machine. The
implementation of the software design in the gaming software to meet critical data
storage requirements may be quite complex and may require extensive of use the non-

volatile memory storage hardware.

Traditionally, in the gaming industry, game design and the game platform
design have been performed by single entities. Given the complex and unique
requirements in the gaming industry, such as the regulatory environment and the
security requirements, a vertically integrated design approach has been employed.
Thus, a single gaming machine manufacturer will usually design a plurality of games
for a game platform, design and manufacture a gaming machine allowing play of the
games and submit the gaming software and gaming hardware for regulatory approval
in various gaming jurisdictions.



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

The approach of the gaming industry may be contrasted with the video game
industry. In the video game industry, games for a particular video game platform are
typically developed by many companies different from the company that
manufactures the video game platform. One trend in the gaming industry is a desire to
create a game development environment similar to the video gaming industry where
outside vendors may provide games to a gaming machine. It is believed that allowing
outside vendors to develop games of chance for gaming machines will increase the
games available for gaming machines and lower the costs and risks associated with
game development. However, many outside software vendors are reluctant to enter
the gaming software market because of the unique requirements of the gaming
industry, such as the regulatory which typically increase gaming software
development costs.

In view of the above, gaming software developments methods and gaming
software architectures are needed that simplify the game development process.

SUMMARY OF THE INVENTION

This invention addresses the needs indicated above by providing a gaming
machine that allows a game presentation to be customized using presentation
modules. The presentation modules, which may be executed on the gaming machine,
include logic for generating presentation components that may stimulate a game
player’s senses while playing a game of chance on the gaming machine. The
presentation modules in conjunction with game flow logic and presentation state logic
may be used to generate a game of chance on a gaming machine. The presentation
modules may be decoupled from game flow logic and presentation state logic on the
gaming machine using one or more APIs. Thus, using the same game flow logic and
presentation state logic with different presentation modules, many different games of
chance may be provided for game play on the gaming machine. The present invention
provides a presentation design system with various templates, libraries and simulators

that may be used by a presentation designer to generate a presentation module.

One aspect of the present invention provides a gaming machine. The gaming
machine may be generally characterized as comprising: 1) a master gaming controller
designed to generate a game of chance played on the gaming machine by executing a ﬁ
plurality of gaming software modules; 2) a memory device storing the plurality of
gaming software modules; 3) a gaming operating system comprising logic to load and
unload gaming software modules into a RAM from the memory device and control

\

( 4



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

the play of the game of chance; 4) a presentation logic module comprising logic to
generate a presentation for the game of chance on the gaming machine; and 5) one or
more presentation modules comprising logic to generate a presentation component
used as part of the presentation for the game of chance.

In particular embodiments, the one or more presentation modules may
communicate with the one or more gaming software modules via an application
program interface. The application program interface may be used to communicate
sequence events used to control the play of the game of chance. The gaming software
module may be a game flow logic software module that generates a sequence of game
states used to play the game of chance. The game of chance may be selected from
group consisting of slot games, poker games, pachinko games, multiple hand poker
games, pai-gow poker games, black jack games, keno games, bingo games, roulette
games, craps games, checkers, board games and card games.

In particular embodiments, the presentation of the game of chance may
comprise a plurality of presentation states where the presentation logic module further
comprises logic that is used to determine one or more presentation components that
are used in each presentation state. In general, the presentation component may be
designed to stimulate a game player’s sight, hearing, touch, smell, taste and
combinations thereof. In particular, the presentation component may be at least one of
a graphical component, an audio component, a gaming device component and
combinations thereof. The presentation component may be presented on a gaming
device where the gaming device is at least one of a display screen, an audio output
device, a lighting device, a bonus wheel, a mechanical reel, a tactile feedback device
and a scent generation device.

In other embodiments, the presentation module may further comprise logic for
at least one method sequence that generates a presentation component. The method
sequence may comprise one or more input parameters that are used to modify the
presentation component generated by the method sequence. Therefore, the method
sequence may be used with a first set of input parameters to generate a first
presentation component and the method sequence may be used with a second set of
input parameters to generate a second presentation component where the first
presentation sequence and the second presentation sequence are generated using the

same method sequence logic.

The method sequence may operate on a model file to generate the presentation
component where the model file comprises a graphical component, an audio
component, a gaming device component and combinations thereof. Therefore, the

5



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

method sequence may operate on a first model file to generate a first presentation
component and the method sequence may operate on a second model file to generate
a second presentation component where the first presentation component and second
presentation component are generated using the same method sequence logic. The
method sequence may be used to change a property of a graphical object displayed on
a display screen of the gaming machine where the property is a color, a size, a
position, a shading and a texture. The method sequence may also be used to generate
an animation sequence. For example, the method sequence may be used to generate a
sequence of video frames that provide an animated transition between a first video
frame and a second video frame.

Another aspect of the present invention provides a method of generating a
presentation component used in a play of a game of chance on a gaming machine. The
method may be generally characterized as comprising: 1) receiving a request to
generate a presentation component for a presentation state in the game of chance.
played on the gaming machine; 2) executing one or more method sequences to
generate the presentation component; 3) displaying the presentation component on a
gaming device; and 4) communicating with gaming software modules via one or
more application program interfaces. The gaming software module may be one or
more of 1) a gaming operating system software module that loads and unloads
gaming software modules into the RAM from a memory device and controls the play
of the game of chance, 2) a game flow software module that generates the game flow
for the game of chance and 3 presentation state logic module that determines the
presentation components that are used in the presentation state where the presentation
state may comprise a plurality of presentation substates.

In general, the presentation component may be designed to stimulate a game
player’s sight, hearing, touch, smell, taste and combinations thereof. In particular, the
presentation component may be at least one of a graphical component, a audio
component, a gaming device component and combinations thereof. The graphical
component may be an animation sequence and the gaming device may be a display

screen, an audio output device, a lighting device, a bonus wheel, a mechanical reel, a

tactile feedback device and a scent generation device. The game of chance is selected
from group consisting of slot games, poker games, pachinko games, multiple hand
poker games, pai-gow poker games, black jack games, keno games, bingo games,
roulette games, craps games, checkers, board games and card games.

The method may include one or more of the following: 1) sending a message
acknowledging the completion of a presentation of the presentation component, 2)
executing one or more method sequences to generate a presentation component for at

6



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

least one of the presentation substates where the method sequence comprises one or
more input parameters that are used to modify the presentation component generated
by the method sequence, 3) specifying a first set of input parameters for the method
sequence, executing the method sequence using the first set of input parameters to
generate a first presentation component, specifying a second set of input parameters
for the method sequence and executing the method sequence using the second set of
input parameters to generate a second presentation component, 4) operating on a
model file using a method sequence to generate the presentation component where the
model file comprises graphical components, audio components, gaming device
components and combinations thereof, and 5) selecting a first model file, operating on
the first model file using a method sequence to generate a first presentation
component; selecting a second model file, and operating on the second model file

using the method sequence to generate a second presentation component.

In other embodiments, the method sequence may be used to change a property
of a graphical object displayed on a display screen of the gaming machine. For
instance, the property may be a color, a size, a position, a shading and a texture of the
graphical object. The method sequence may be used to generate an animation
sequence. For example, the method sequence may be used to generate a sequence of
video frames that provide an animated transition between a first video frame and a
second video frame.

Another aspect of the present invention is a method of providing a
presentation component used in a play of a game of chance on a gaming machine. The
method may be generally characterized as comprising: 1) providing a method
sequence template comprising one or more method sequences; 2) selecting a model
file to be operated on by the method sequences; and 3) executing the method
sequences to generate a presentation component used in a presentation of the game of
chance on the gaming machine.

The method may also comprise one or more of the following: a) storing the
method sequences generated from the method sequence template and the model file to
a presentation module, b) simulating the presentation module on a presentation
interface, c) selecting a model file from a model file library where the model file
library comprises graphical models, sound models, gaming device models, scent
models and tactile feedback models, d) selecting a method sequence template from a
method sequence template library, ) selecting a method used in a method sequence
from a method library, f) generating a model file to be operated on by the method
sequences, g) converting the model file to a model file format used by the method
sequences, h) displaying the presentation component on a present interface, i)

7



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

specifying one or more input parameters in at least one of the method sequences, i)
specifying first set of input parameters in a first method sequence, generating a first
presentation component using the first set of input parameters; specifying second set
of input parameters in the first method sequence; and generating a second
presentation component using the second set of input parameters, and k) selecting a
first model file to be operated on by the method sequences; generating a first
presentation component using the first model file; selecting a second model file to be
operated on by the method sequences; and generating a second presentation

component using the second model file.

Another aspect of the present invention provides a presentation design system
for designing presentation components for a game of chance on a gaming machine.
The presentation design system may comprise: 1) a presentation module design
interface for generating a presentation module for a game of chance; a gaming
simulator that generates: i) game states and presentation states for the game of chance
and ii) presentation components for each presentation state wherein at least one
presentation component is generated using the presentation module; and 3) a

presentation interface for outputting the presentation components.

In particular embodiments, the presentation module design interface may
comprises input mechanisms and output mechanisms for a) completing method
sequence templates used to generate a method sequence, b) selecting methods used to
generate the method sequence from a method library, c) selecting graphical models
from a graphical model library, d) selecting sounds from a sound library, e) selecting
gaming devices from a gaming device model library, f) selecting scents from a scent
library, g) selecting tastes from a taste library, h) selecting tactile feedback from a
tactile feedback library, i) selecting an animation sequence from an animation
sequence library and j) converting model formats using a model format converters.
The presentation interface may comprise one or more of display devices, audio output
devices, light panels, bonus wheels, kinetic feedback devices, scent generation
devices and combinations thereof. The gaming simulator may comprise: i) a gaming
operating system comprising logic to load and unload gaming software modules into
a RAM from a memory device and control the play of the game of chance; ii) a
presentation logic module comprising logic to generate the presentation for the game
of chance; and iii) game flow logic software module comprising logic to generates a
sequence of game states used to play the game of chance.

In particular embodiments, the presentation design system may also include
graphical design software for generating a graphical model used in the presentation
module. The presentation module may comprise one or more model files and script

8



10

15

20

25

30

WO 03/028827 PCT/US02/30610

files with one or more method sequences that operate the one or more model files.
The presentation module generates the presentation component for the game of
chance on the gaming machine. The presentation component may be designed to
stimulate a game player’s sight, hearing, touch, smell, taste and combinations thereof

while the game player is playing the game of chance on the gaming machine.

Another aspect of the invention pertains to computer program products
including a machine-readable medium on which is stored program instructions for
implementing any of the methods described above. Any of the methods of this
invention may be represented as program’ instructions and/or data structures,
databases, etc. that can be provided on such computer readable media. Yet another
embodiment of the present invention is a system for delivering computer readable
instructions, such as transmission, over a signal transmission medium, of signals
representative of instructions for remotely administering any of the methods as

described above.

These and other features of the present invention will be presented in more
detail in the following detailed description of the invention and the associated figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGs. 1A and 1B are block diagrams of a gaming machine software
architecture providing gaming software for generating a game of chance on a gaming
machine.

FIG. 2A-2F are examples of selected video frames from two examples of
presentation components generated from a presentation module of the present
invention.

FIG. 3 is a block diagram of a presentation component in a presentation
module which is used to manipulate a 3-D object in a model file for one embodiment
of the present invention.

FIG. 4 is a perspective drawing of a 3-D virtual gaming environment
implemented on a gaming machine for one embodiment of this invention. -

FIG. 5 is a block diagram of a presentation module design utility for one
embodiment of the present invention.



10

15

20

25

30

WO 03/028827 PCT/US02/30610

FIG. 6 is a block diagram of a presentation component design interface
display for one embodiment of the present invention.

FIG. 7 is a perspective drawing of a gaming machine having a top box and
other devices.

FIG. 8 is a block diagram of a gaming machine of the present invention.

FIG. 9 is a flow chart of a method for presenting a presentation component on

a gaming machine.

FIG. 10 is a flow chart of a method for generating a presentation component
on a gaming machine.

FIG. 11 is a block diagram of gaming machines that utilize distributed gaming
software and distributed processors to generate a game of chance for one embodiment

of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIGs. 1A and 1B are block diagrams of a gaming machine software
architecture providing gaming software 100 for generating a game of chance 125 on a
gaming machine for one embodiment of the present invention. The presentation logic
106 may be used to generate graphical output, audio output and gaming device output
for presenting the game of chance 125 on the gaming machine. The presentation logic
106 (see FIG. lB) may be decoupled into two parts: presentation state logic 130 and
presentation module logic 132. The presentation state logic 130 is used to determine
what graphical components, sound patterns and gaming devices are used to present a
game play on the gaming machine as a function of time. The presentation modules
132 may be used to describe, in a modular manner, particular implementations of
graphical components, sound patterns and gaming devices that are used to present the
game play to a game player playing the gaming machine. The presentation state logic
130 and the presentation modules 132 are generally decoupled from one another and
may communicate via one or more APIs 138.

The present invention provides: 1) an input and format structure for
presentation modules that allow animation sequences and other components of the
game outcome presentation to be easily modified and 2) a modular software
architecture that allows one presentation module to be exchanged with another
presentation module. As an example, in response to a touch screen input button being

10



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

depressed on the display screen of a gaming machine, the presentation state logic 130
may determine that an animation of the input button is required. The presentation
state logic 130 may communicate, via APIs, 138 with one of the presentation modules
132 and request the presentation module to generate an animation of the input button.
Many different animation sequences may be used to animate the button. Thus, in one
example, the presentation state logic 130 may command a first presentation module to
generate a first animation sequence, which shows an input button being depressed. In
another case, the presentation state logic 130 may instead command a second
presentation module to generate an animation sequence, which shows an input button
being depressed differently than the input button animated in the first presentation
module. Details of the presentation modules and their interactions with the other
gaming software components are described in the following paragraphs.

The gaming machine software architecture provides gaming software 100 that
is divided into a plurality of gaming software modules. The gaming software modules
may communicate with one another via application program interfaces. The logical
functions performed in each gaming software module and the application program
interfaces used to communicate with each gaming software module may be defined in
many different ways. Thus, the examples of gaming software modules and the
examples of application program interfaces in the present invention are presented for
illustrative purposes only and the present invention is not limited to the gaming
software modules and application program interfaces described herein.

In general, APIs let application programmers use functions of a software
module without having to directly keep track of all the logic details within the
software module used to perform the functions. Thus, the inner working of a software
module with a well-defined API may be opaque or a “black box” to the application
programmer. However, with knowledge of the AP, the application programmer
knows that a particular output or set of outputs of the software module, which are
defined by the AP, may be obtained by specifying an input or set of inputs specified
by the API.

Typically, APIs describe all of key transactions and associated processing
necessary to perform a particular function. For example, functions of a particular
presentation module, such as animating a button being depressed, may be described as
part of an API for the presentation module. The APIs 138 for the presentation
modules 132 may be defined in definition files installed with the game 125. An API
may be considered analogous to a device driver in that it provides a way for an
application to use a hardware subsystem without having to know every detail of the

11



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

hardware’s operation. Using a well-defined APIs, the logic functions of various
gaming software modules may be decoupled.

InFigs. 1A and 1B, three gaming software modules, a gaming Operating
System (OS) 102, a presentation logic module 106 and a game flow logic module 106
used to present a game of chance 125 on a gaming machine are shown. The gaming

“operating system 102, the presentation logic module 106 and the game flow logic

module 104 may be decoupled from one another and may communicate with one
another via a number of application program interfaces 108. The gaming OS 102 may
load different combination of game flow logic modules 104 and presentation logic
modules 106 to play different games of chance. For instance, to play two different
games of chance, the game OS 102 may load a first game flow logic module and a
first presentation logic module to enable play of a first game and then may load a
second presentation logic module and use it with the first game flow logic module to
enable play of a second game. As another example, to play two different games of
chance, the game OS 102 may load a first game flow logic module and a first
presentation logic module to enable play of a first game and then may load a second
game flow logic module and a second presentation logic module to enable play of a
second game. Details of the APIs 108 and the gaming software 100 including the
Game OS 102, the game flow logic 104 and the presentation logic 106, are described
in Co-pending U.S. Application no. 10/040,239, (IGT P078/P-671), filed on January
3, 2002, by LeMay et al, titled, “Game Development Architecture that Decouples the
Game Logic from the Graphics Logic,” which is incorporated herein in its entirety
and for all purposes.

The Gaming OS 102 comprises logic for core machine-wide functionality. It
may control the mainline flow as well as critical information such as meters, money,
device status, tilts and configuration used to play a game of chance on a gaming
machine. Further, it may be used to load and unload gaming software modules, such
as the game flow logic 104 and the presentation logic 106, from a mass storage device
on the gaming machine into RAM for execution as processes on the gaming machine.
The gaming OS 102 may also maintain a directory structure, monitor the status of
processes and schedule the processes for execution.

The game flow logic module 104 comprises the logic and the state machine to
drive the game 125. The game flow logic may include: 1) logic for generating a game
flow comprising a sequence of game states, 2) logic for setting configuration
parameters on the gaming machine, 3) logic for storing critical information to a non-
volatile memory device on the gaming machine and 4) logic for communicating with
other gaming software modules via one or more APISs. In particular, after game play

12



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

has been initiated on the gaming machine, the game flow logic may determine a game
outcome and may generate a number of game states used in presenting the game
outcome to a player on the gaming machine.

In general, gaming machines include hardware and methods for recovering
from operational abnormalities such as power failures, device failures and tilts. Thus,
the gaming machine software logic and the game flow logic 104 may be designed to
generate a series of game states where critical game data generated during each game
state is stored in a non-volatile memory device. The gaming machine does not
advance to the next game state in the sequence of game states used to present a game
125 until it is confirmed that the critical game data for the current game state has been
stored in the non-volatile memory device. The game OS 102 may verify that the
critical game data generated during each game state has been stored to non-volatile
memory. As an example, when the game flow logic module 104 generates an
outcome of a game of chance in a game state, such as 110, the gaming flow logic
module 104 does not advance to the next logical game state in the game flow, such as
114, until game information regarding the game outcome has been stored to the non-
volatile memory device. Since a sequence of game states are generated in the gaming
software modules as part of a game flow, the gaming machine is often referred to as a

state machine.

In FIG. 1A, a game timeline 120 for a game of chance 125 is shown. A
gaming event, such as a player inputting credits into the gaming machine, may start
game play 125 on the gaming machine. Another gaming event, such as a conclusion
to an award presentation may end the game 122. Between the game start 121 and
game end 122, as described above, the game flow logic may generate a sequence of
game states, such as 110, 114 and 114, that are used to play the game of chance 125.
A few examples of game states may include but are not limited to: 1) determining a
game outcome, 2) directing the presentation logic 106 to present the game outcome to
player, 3) determining a bonus game outcome, 4) directing the presentation logic 106
to present the bonus game to the player and 5) directing the presentation logic to
present an award to the game to the player.

The presentation logic module 106 may produce all of the player display and
feedback for a given game of chance 125. Thus, for each game state, the presentation
logic 106 may generate a corresponding presentation state (e.g., presentation states
111, 115 and 119 which correspond to game states 110, 114 and 118, respectively)
that provides output to the player and allows for certain inputs by the player. In each
presentation state, a combination of gaming devices on the gaming machine may be

operated in a particular manner as described in the presentation state logic 106. For

13



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

instance, when game state 110 is an award outcome state, the presentation state 111
may include but are not limited to: 1) animations on one or more display screens on
the gaming machine, 2) patterns of lights on various lighting units located on the
gaming machine and 3) audio outputs from audio devices located on the gaming
machine. Other gaming devices on the gaming machine such as, bonus wheels and
mechanical reels, may also be operated during a presentation state.

In general, game presentation may include the operation of one or more
gaming devices that are designed to stimulate one or more of player’s senses i.e.
vision, hearing, touch, smell and even taste. For instance, tactile feed back devices
may be used on a gaming machine that provide tactile sensations such as vibrations,
warmth and cold. As another example, scent generation devices may be provided that

generate certain aromas during a game outcome presentation.

The presentation logic 106 may generate a plurality of presentation substates
as part of each presentation state. For instance, the presentation state determined by
the presentation state logic in a first game of chance may include a presentation
substate for a first animation, a presentation substate for a second animation and a
third presentation substate for output on a gaming device that generates tactile
sensations. In a second game of chance, the presentation state generated by the
presentation state logic may be the same as the first game of chance. However, the
presentation substates for the second game of chance may be different. For instance,
the presentation substates for the second game of chance may include a presentation
substate for an animation and a second presentation substate for output on a gaming
device that provides scents.

The number of presentation substates used in a particular presentation may be
varied. Thus, a game presentation may be customized by changing the presentation
substates used in each presentation state where the presentation substates may
generate various presentation components. The presentation substates may be
described in the presentation modules 132. Thus, presentation modules describing
different presentation substates may be incorporated into a game of chance to change
the game outcome presentation while allowing the same presentation substate logic
130 to be re-used.

In addition, the presentation state generated by the presentation logic 106 may
allow gaming information for a particular game state to be displayed. For instance,
the presentation logic module 106 may receive from the gaming OS 102 gaming
information indicating a credit has been deposited in the gaming machine and a
command to update the displays. After receiving the information indicating the credit

14



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

has been deposited, the presentation logic 106 may update a credit meter display on
the display screen to reflect the additional credit added to the gaming machine.

The gaming devices operated in each presentation state and presentation
substate comprise a machine interface that allows the player to receive gaming
information from the gaming machine and to input information into the gaming
machine. As the presentation states change, the machine interface, such as 112, 116
and 120, may change and different I/O events, such as 113, 117, 121, may be
possible. For instance, when a player deposits credits into the gaming machine, a
number touch screen buttons may be activated for the machine interface 112 allowing
a player to make a wager and start a game. Thus, I/O 113 may include but is not
limited to 1) the player touching a touch screen button to make a wager for the game
125, 2) the player touching a touch screen button to make a wager and start the game
at the same time and 3) the player viewing the credits available for a wager. After
making a wager and starting the game using machine interface 112, in game state 114,
the player may be presented with a game outcome presentation using machine
interface 116. The I/O 117 on the machine interface 116 may include output of
various animations, sounds and light patterns. However, for machine interface 116,
player input devices, such as touch screen buttons, may not be enabled.

The presentation components of a given presentation state may include but are
not limited to graphical components, sound components, scent components, tactile
feedback components and gaming device components to be activated on the machine
interface 112. For example, presentation state 111 may include the following
presentation components: 1) animate input button, 2) animate reels, 3) play sound A
for 2 seconds and then play sound B for 1 second, 4) flash light pattern A for two
seconds on lighting device A and 5) spin bonus wheel. The presentation modules 132
may be used to specify an implementation of one or more presentation components
used on the machine interface for a given presentation state such as the presentation
state 111 described above. Further, the presentation modules may be parameterized to
allow some output of the presentation module to be easily changed.

Some examples of presentation modules that implement presentation
components are described as follows. A presentation module may be designed to
generate an animation sequence of a spinning reel, which is displayed on a display
screen on the machine interface 112. The presentation module may include a 3-D
model of a reel (see FIG. 4, for details of 3-D modeling) stored as a mode] file 134. A
series of methods stored in one of the script files 136 may be used to generate and
control the animation of the reel. For instance, the methods may direct the reel to
rotate, change size and translate around the screen. The methods may be

15



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

parameterized (see FIG. 3) to enable a game developer to easily change aspects of the
animation. For example, numerical inputs to the methods in the script file that operate
on the reel may be used to change a rate of rotation of the reel, the size of the reel and
its position on the screen. An API which allows the presentation logic 130 to activate
the animation sequence in the presentation module may be stored in a definition file
(not shown).

As another example of a presentation module, a presentation module may be
designed to generate an audio sequence for a game outcome presentation on the
machine interface 112. The audio sequence may be output on one or more audio
devices on the gaming machine. The presentation module may include one or more
mode] files comprising one or more sound files and a script file with a series of
methods that control output of the sounds in the sound files. The methods may be
parameterized to allow a game developer to easily change aspects of the audio
sequence. For instance, the methods may include inputs enabling a game developer to
change a length of a time a sound in a sound file is played, a volume of the sound and
an output device for the sound. An API which allows the presentation logic 130 to
activate the audio sequence in the presentation module may be stored in a definition
file (not shown).

In yet another example of a presentation module, a presentation module may
be designed to generate an activation sequence for a gaming device, such as a
mechanical bonus wheel or a light panel, used in a game outcome presentation or a
bonus game outcome presentation on the machine interface 112. The presentation
module may include a model file with one or more device drivers for the gaming
device and a script file with a series of methods that control the activation of the
gaming device via the device drivers. The device drivers model the behavior of the
gaming device. Again, the methods may be parameterized to allow a game developer
to easily change aspects of the activation sequence for the gaming device. For
instance, for a bonus wheel, the methods may include inputs enabling a game
developer to change a rate at which the bonus wheel spins, a length of time the wheel
spins and a final position of the wheel. As another example, for a light panel, the
methods may include inputs enabling a game developer to change a length of times
the panel is activated and a light pattern for the light panel. An API which allows the
presentation logic 130 to activate the activation sequence in the presentation module
may be stored in a definition file (not shown).

When decoupled from the game flow logic 104, the presentation logic 106
makes no assumptions about game flow which means it does not assume the order of
states or the logic that will be needed to determine the next state. The presentation

16



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

logic 106 may, however, control flow by making the game flow logic 104 wait for the
current presentation state (e.g., animation, audio output, etc.) to complete. Thus, for
some game states, the game flow logic 104 may not advance to the next game state in
the game flow until, it receives an acknowledgement from the presentation logic 106
that a current presentation sequence has been completed. Since the presentation
modules 132 may be used to generate presentation sequences, logic for notifying the
presentation state logic 130 that a presentation sequence generated by a presentation
module is complete may be included in one of the script files of the presentation
module.

When the gaming software architecture provides a plurality of gaming
software modules that communicate via well-defined application program interfaces,
gaming software developers may independently develop gaming software modules
that are compatible with the defined application program interface without a direct
knowledge of the logic used in related gaming software modules. For instance, a
single game flow logic module 104 may be used with many different types of
presentation logic'modules 106 to generate different game themes and styles. Thus,
with knowledge of the game flow logic APIs and gaming OS logic APIs, the
developer may develop a game presentation without direct knowledge of the logic
within the game flow logic module 104 and the gaming OS 102. The presentation
modules 132 further decouple the game development process. With knowledge of the
presentation logic APIs 138, a game developer may develop a presentation
component, such as an animation sequence, using a presentation module without the
direct knowledge of the presentation state logic 130 that is used to generate a
presentation state requiring the animation sequence. Details of developing
presentation components that may be applied with the present invention are described
in co-pending U.S. application no. 09/910,507, filed July 19, 2001, by Beaulieu et al.,
and titled “Gaming Method and Gaming Apparatus with In-Game Player
Stimulation,” which is incorporated herein in its entirety and for all purposes.

An advantage of decoupling the gaming software modules using APIs may be
a faster software development and approval process. For instance, when a developer
can develop a new game by generating only a new presentation logic module 106, the
game development process is faster because much less code has to be written. Also,
with presentation state logic 130 decoupled from implementation of the presentation
state, the development of the presentation logic module 106 may be even faster
because the presentation states for a game may be changed by altering the
presentation modules 132 without changing the presentation state logic 130. In
addition, if the APIs can be shown to be very fault tolerant (e.g., a particular software

17



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

module will not produce undetectable erroneous results when given incorrect data via
an API), then only new or modified gaming software modules installed on a gaming
machine, such as a presentation logic module 106 for a new game, may have to be
submitted for approval to a gaming jurisdiction prior to installation on the gaming
machine. Previously approved gaming software that may be used in conjunction with
new or modified gaming software module to present a game of chance, such as a
previously approved game flow logic module 106 or a previously approved gaming
OS 102, may not have to be resubmitted for approval. Since the amount of code
submitted for approval may be less, the approval process may be streamlined.
Currently, since most games installed on gaming machines are monolithic in nature
with a single executable, any changes to a game for any reason requires all of the
gaming software to be submitted for approval which is usually very time consuming.

FIG. 2A-2F are examples of selected video frames from two examples of
graphical presentation components generated from a presentation module of the
present invention. In FIGs. 2A, 2B and 2C, three video frames, 206, 210 and 214,
from a game presentation with an animation of an input button 204 being depressed
are shown. The video frames may be displayed on a display screen 200 of a gaming
machine. The animation of the input button 204 may be controlled by a presentation
module as described with respect to FIGs. 1A and 1B. The presentation logic may
activate the animation sequence for the input button in response to receiving a touch
screen input at the location of the button during game play on the gaming machine.

As described above, the presentation module for the input button animation
sequence may include a model file. The model may comprise a geometric description
of the input button described in a 3-D coordinate system 201 and other graphical
properties used to animate the input button 204 such as a color and surface texture. To
display the input button on a display screen on a gaming machine, the 3-D description
of the input button is rendered to a 2-D coordinate system, such as coordinates 202.

Details of the graphical rendering and animation process are described with respect to
FIG. 4.

A script file with a series of parameterized methods may control the animation
of the input button being depressed by operating on the model file of the input button.
In frames 206, 210 and 214, the input button appears to moving into the screen. The
methods in the script file may describe many properties of the animation sequence
including but not limited to: 1) a movement pattern of the input button 204 (e.g., a
rate at which appears to sink into the screen), 2) a position of the input button 204 on
the display screen 200, 3) a size of the input button 204, 4) a color of the input button
204 and 5) a surface texture of the input button 204. The methods in the script file

18



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

may allow the properties of the animation sequence to change as a function of time.
For instance, the size of the input button may change as a function of time or the color
of the input button may change as a function of time.

In FIGs. 2D, 2E and 2F, three video frames, 216, 218 and 222, from a game
outcome presentation with an animation of a second input button 208 being depressed
are shown. In this animation sequence, the model file for the presentation module
includes a 3-D geometric description of a cylindrical input button 208 instead of the
rectangular input button 204. During the animation sequence, the input button 208
changes position and shrinks in size and changes position as it is being depressed. In
video frames 216, 218 and 222. The position of the input button 208 changes in each
frame and the size of the input button 208 decreases in each frame. As described
above with respect to FIGs. 2A-2C, the methods in the script file may describe many
properties of the animation sequence including but not limited to: 1) a movement
pattern of the input button 208 (e.g., a rate at which appears to sink into the screen),
2) a position of the input button 208 on the display screen 200, 3) a size of the input
button 208, 4) a color of the input button 208 and 5) a surface texture of the input
button 208. These animation properties may be parameterized and in some
embodiments may be varied as a function of time.

FIG. 3 is a block diagram of a presentation component in a presentation
module which is used to manipulate a 3-D object in a model file for one embodiment
of the present invention. In FIG. 3, an example of a portion of an animation sequence
is described for illustrative purposes only. Many different types of animation ‘
sequences are possible with the present invention and the present invention is not
limited to the example in FIG. 3.

The presentation state logic 130 (see FIGs. 1A and 1B) may send a request to
the presentation module 132, via API 138, to generate an animation sequence 316,
such as animate input button (see FIGs. 2A-2F). As part of the animation sequence,
the presentation module 132 may execute a script file 136 comprising two method’
sequences 310 and 312. In this example, method sequence 310 is used to move a
cylindrical 3-D object, described in a model file 134, in a 3-D gaming environment
350 with coordinates 201. Method sequence 312 is used to scale and move the
cylindrical 3-D object, described in the model file 134, in the 3-D gaming
environment 350.

A script file 136 may comprise a plurality of method sequences. The method
sequences may operate on one or more 3-D objects described in a model file. For

19



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

instance, a script file may comprise a first method sequence that operates on a first 3-
D object and a second method sequence that operates on a second 3-D object.

A method sequence may comprise one or more methods that operate on a 3-D
object as well as perform other functions related to the presentation. For method
sequence 310, three methods 300, 304 and 306 are listed. In the method sequence, the
methods are used to move the 3-D object described in the model file 134. Input data
may be required for each method. For instance, methods 300, 304 and 306 may
specify a position of the cylindrical input button in the 3-D gaming environment 350.
The input data 302, 306, 308, for each method, may include numerical inputs (e.g., X,
y and z coordinates) of the position of the 3-D object in the gaming environment. By
changing the numerical inputs, 302, 306 and 308 to the methods 300, 304 and 306,
the position of 3-D object may be changed in the animation sequence 316 while
allowing the methods 300, 304, 306 to be re-used.

For method sequence 312, three methods 301, 305 and 307 are also listed. In
the example, the methods are used to move and scale the 3-D object described in the
model file 134. Input data may be required for each method. For instance, methods
301, 305 and 307 may specify a position and a size of the cylindrical input button in
the 3-D gaming environment 350. The input data 303, 307, 309, for each method,
may include numerical inputs (e.g., X, y and z coordinates) of the position of the 3-D
object in the gaming environment and a scaling factor such as 100%, 5 0% or 200%.
By changing the numerical inputs, 303, 307 and 309 to the methods 301, 305 and
307, the position and the size of 3-D object may be changed in the animation
sequence 316 while allowing the methods 301, 305, 309 to be re-used. For instance,
by changing the input data, 303, 307 and 309, to methods 301, 305 and 307, the
cylindrical 3-D object may be made to grow in size rather than shrink in size.

The methods in the script file 136 may produce a series of objects that are
used as part of the animation sequence 316. For instance, methods 300, 304, 306, 301,
305 and 307 may be used to generate 3-D objects 320, 321, 322, 323, 324 and 325.
The position and size of the objects 320, 321, 322, 323, 324 and 325 in 3-D gaming
environment 350 are shown in the figure. Each object generated by the methods in the
script file 136 in the animation sequence 316 may be rendered 352 to a separate video
frame 355. The video frames may be displayed to a display screen on the gaming
machine. Details of the rendering process are described with respect to FIG. 4.

When played in sequence, the sequence of video frames may generate an
appearance of an animation to a player viewing the display screen of the gaming
machine. For instance, when objects, 320, 321, 322, 323, 324 and 325 are each

20



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

rendered 352 to a separate video frame and the sequence of video frames are
displayed on the display screen, the cylindrical function may appear to move and
shrink on the display screen as a function of time. Thus, the sequence of frames
generated by the presentation module using the method sequences 310 and 312 may
be used provide the animation sequence 316. The animation sequence 316 may be
used as a presentation component in a game outcome presentation on a gaming
machine. |

The methods and the input data in a script file 136 may be re-used with a
different model file 134. In general, the methods and input data are independent of the
3-D object described in the model file 134. Thus, by changing the 3-D object(s) in the
model file 134 a different animation sequence may be generated. For instance, instead
of the input button being cylindrical in the animation sequence 316, the input button
may be made rectangular (see FIGs. 2A-2F) by changing the model in the model file
134 while reusing the methods 300, 304, 306, 301, 305 and 307 with their respective
input data. The re-use of methods, input data and the exchangeability of model files
may simplify and speed-up the design process of game outcome presentation.

Details of the script file and examples of some of the methods that may be
incorporated in a script file are now described. A file identifier may be used to
identify the script file 134 as part of a presentation module 132. For instance, the
same keywords, such as “ //AVP_SCRIPT _FILE 1.0,” may be present as the first
line in the file 136 to properly identify it.

The base unit of the script file is may be called the method sequence. A string
may be provided for each method sequence to identify it among other method
sequences within the script file 132. Each named method sequence within a file will
typically have a unique name. For instance, method sequence 310 may be called,
“move button” and method sequence 312 may be called “scale/move button.” The
string may be placed before the list of methods defining the method sequence i.e.
“move button” may be placed before method 300 in the script file 136. The list
below describes some examples of the methods that may be used to configure a
method sequence. The methods and their respective inputs are described for
illustrative purposes only. The present invention is not limited to these methods and
their input formats.
loopSequence (integer loop_count)

The loopSequence method indicates the number of times the method sequence
may be looped. loop_count is an input value for the method. The integer value may be

21



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

used to indicate the number of times the method sequence may loop before it is
completed. When the value is set to ~1, the method sequence will loop infinitely.
setPlayBackwards (string backwards)

This method may be used to configure the direction that an animation may be
played back. The animation may be played forwards or backwards. backwards is an
input parameter that may be set to true if the animation is to be played backwards, or
false if the animation is to be played forwards.

postEvent (string sequence_event, integer start_time)

The postEvent method may be used to configure a sequence event that may be
posted at the specified time in the sequence. The sequence event may be sent to the
gaming operating system (see FIGs. 1A and 1B) via an API and may be used to
convey gaming information about the one or more method sequences being executed.
For instance, a sequence event may include gaming information indicating an
animation sequence has been completed. sequence_event may be string that describes
the sequence event that is posted. start_time may be used to set the elapsed time
within the method sequence when the event is to be posted. Details of sequence
events are described in co-pending U.S. Applicationno. _/ ,  (IGT P078/P-
671), filed on January 3, 2002, by LeMay et al, titled, “Game Development
Architecture that Decouples the Game Logic from the Graphics Logic,” incorporated
previously herein.

postEvent (string sequence_event_received, string sequence_event_to_post)

The postEvent method may be used to configure a sequence event that should
be posted in response to receiving another sequence event. A .
sequence_even_recieved string may describe the sequence event received that triggers
the sequence_event _to_post to be posted. A Sequence event to_post may be a string
that describes the sequence event to post in response to receiving the
sequence_event_received. A start_time may be used to set the elapsed time within
the sequence when the event may be posted.
stopEvent (string sequence_event)

The stopEvent method may be used to indicate a sequence event the method
sequence may stop on. If the method sequence can be stopped from multiple
sequence events then this method may be called multiple times with different events.
sequence_event may be a string that describes the sequence event that may be used to
stop the sequence. |
triggerEvent (string sequence_event)

The triggerEvent method may be used to indicate the sequence event the
method sequence may start on. If the method sequence may be started from multiple

22



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

sequence events then this method may be called multiple times with different events.
sequence_event may be a string that describes the sequence event that may be used to
start the method sequence. The event methods described above may be used as part of

an API used to control the activation and de-activation of method sequences.

As described above, the sequence operations may be used to generate
animations of objects with various properties. The properties may include but are not
limited to: 1) position, 2) rotation, 3) orientation, 4) scale, 5) brightness, 6) saturation
and 7) transparency. Some of these properties in the context of 3-D graphics are
described with respect to FIG. 4. Various methods may be defined that allow the user
to specify one or more of these properties to manipulate over a length of time.
Methods may also be defined where a user may specify a type of interpolation to use
between frames. The list below provides examples of methods that may be used in a
script file as part of method sequences that are used to generate a graphical
presentation component.
setDuration (integer animation_duration)

The setDuration method may be used to set a duration of an animation in
milliseconds. The duration of all frames with a specified of a specific type may be set
with this method. An animation_duration may represent the total duration that the
frames of the specific type will take.. Each frame’s duration may be calculated by
dividing the animation duration by the total number of frames of the specified type.
setFrame (string data, frame_duration)

The setFrame method may be used to configure the next frame of in the
method sequence. Successive calls to this method may add new a new frame after the
last one. data may be a string that contains the information required to modify a
specified 3-D object in a comma separated format. All data values may be assumed
to be floats. The data string may include but is not limited to: 1) Position which
requires three float values that represent x, y and z respectively, 2) Rotation which
requires three float values that represent x, y and z respectively, 3) Orientation which
requires four float values that represent theta, x, y and z respectively, 4) Scale which
requires three float values that represent x, y and z respectively and 5) Brightness
requires one float with a range of —-1.0f to 1.0f, 6) Saturation requires one float with a
range of 0.0f to 1.0f and 7) Transparency requires one float with a range of 0.0f to
1.0f. A frame duration may be used to specify the duration of the frame in
milliseconds
setInitialFrame (integer frame_offset)

This method may be used to set the initial frame of the specified method
sequence. A frame_offset parameter may be used to determine what frame of the

23



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

specified type is to be set as the initial frame. Valid values for this parameter may
range from 0 to (number of frames — 1). By default this value is the first frame.
setInterpolation (string interpolation_type)

This method may be used to set the type of interpolation that may be used
when then animation sequence advances frames to a next frame in the frame
sequence. An interpolation_type may be a value that is used to determine what type of
interpolation may be used as the animation progresses. A few example of values for
interpolation_type are listed below. A “LINEAR” value combines the current frame
with the next frame using the elapsed time of the current frame as a weighing factor to
determine the combined frame. A “STEP” value may change the values to the next
frame when the current frame has expired without interpolating between frames.
setLastFrame (integer frame_offset)

This method may be used to set the last frame of the specified method
sequence. A frame_offset parameter may be used to determines what frame of the
specified type is to be set as the last frame. Valid values for this parameter can range
from 0 to (number of frames — 1). By default this value is the last frame added.

Mesh animation methods may be used to determine how frames within a mesh
animation are combined and how multiple mesh animations may be combined to
create a final mesh used to draw an animation in various method sequences. Each
mesh may have multiple active mesh animations with each animation consisting of
several mesh frames. An active mesh animation may have only two active frames,
the current frame and the next frame. Based on the interpolation type chosen, the
current and next mesh frames may combined or the frames may step from the current
to next frame. The list below describes the methods that may be used to generate
method sequences involving mesh animations.
resizeAnimationWeights (string mesh_animation_name, integer size, string
duration)

The resize method may be used to indicate how many animation weight
frames to create and the duration of each frame. A mesh_animation_name nay be a
name of the corresponding mesh animation in the method sequence being configured.
Each mesh animation is created with a name. A size parameter may indicate a number
of frames that may be created. A duration parameter may be string that may be set to
INDIVIDUAL_FRAME_DURATION. INDIVIDUAL_FRAME_DURATION
allows the user to specify each frame’s duration when the frame is configured with
the setFrameAnimationWeight method, or an integer value may be specified that
represents the total duration that the frames of this type should take in milliseconds.

24



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

Each frame’s duration is calculated by dividing the duration by the total number of
frames.

resizeMeshFrameWeights (string mesh_animation_name, integer size, string
duration)

The resize method may be used to indicate how many meshframe weight
frames to create and the duration of each frame. A mesh_animation name parameter
may be a name of the corresponding mesh animation in the method sequence being
configured. Each mesh animation may have to be created with a name. A size
parameter may indicate a number of frames that may be created. A duration parameter
may be string that may be set to INDIVIDUAL_FRAME DURATION.
INDIVIDUAL_FRAME DURATION allows the user to specify each frame’s
duration when the frame is configured with the setFrameAnimationWeight method, or
an integer value may be specified that represents the total duration that the frames of
this type should take in milliseconds. Each frame’s duration is calculated by dividing
the duration by the total number of frames.
setInitialFrameAnimationWeight (string mesh_animation_name, integer
initial_frame) .

This method may be used to set the initial frame to use in the list of animation
weights for the specified mesh animation. A mesh_animation_name parameter may
be a name of the corresponding mesh animation in the method sequence being
configured. Each mesh animation may have to be created with a name. An
initial frame parameter may be used to determine what frame is to be set as the initial
frame. Valid values for this parameter may range from 0 to (size — 1). Where size is
the value passed into the resize AnimationWeights method and is a number of frames.
setInitialFrameMeshFrameWeight (string mesh_animation_name, integer
initial_frame)

This method may be used to set the initial frame to use in the list of mesh
frame weights for the specified mesh animation. A mesh_animation_name may be a
name of the corresponding mesh animation in the method sequence being configured.
Each mesh animation may have to be created with a name. An initial_frame may be a
parameter that determines what frame is to be set as the initial frame. Valid values
for this parameter may range from 0 to (size ~ 1). Where size is the value passed into
the resizeMeshFrameWeights method and may represent a number of frames.
setLastFrameAnimationWeight (string mesh_animation_name, integer
last_frame)

This method may be used to set the last frame to use in the list of animation
weights for the specified mesh animation. A mesh_animation_name may be a name
of the corresponding mesh animation in the method sequence being configured. Each
mesh animation may have to be created with a name. A last_frame parameter may

25



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

determine what frame is to be set as the last frame. Valid values for this parameter
may range from 0 to (size — 1) where size is the value passed into the
resizeAnimationWeights method and is a number of frames.
setLastFrameMeshFrameWeight (string mesh_animation_name, integer
last_frame)

This method may be used to set the last frame to use in the list of mesh frame
weights for the specified mesh animation. A mesh_animation_name may be a name
of the corresponding mesh animation in the method sequence being configured. Each
mesh animation may have to be created with a name. A last_frame parameter may
determines what frame is to be set as the last frame. Valid values for this parameter
may range from 0 to (size — 1) where size is the value passed into the
resizeMeshFrameWeights method and is a number of frames.
setFrameAnimationWeight (string mesh_animation_name, integer frame_index,
float weight, string duration)

The setFrame Animation Weight method may be used to configure a specific
frame. Once the number of frames has been set with the resizeAnimationWeight
method, each frame may be configured with a call to this method. A
mesh_animation_name is a name of the corresponding mesh animation in the
sequence operation being configured. Each mesh animation may have to be created
with a name. A frame_index parameter may be used to determine what frame is to be
configured. Valid values for this parameter may range from 0 to (size - 1) where size
is the value passed into the resizeAnimationWeights method and is a number of
frames. A weight parameter may be used to indicates the animation’s weight for the
specified frame. A duration parameter is used to determine the duration of the frame
which may be a length of time in milliseconds.
setFrameMeshFrameWeight (string mesh_animation_name, integer
frame_index, integer mesh_frame_offset, float weight, string duration)

The setFrameMeshFrameWeight method may be used to configure a weight of
a mesh frame within a mesh animation. Once the number of frames has been set with
the resizeMeshFrameWeight method, each frame may be configured with a call to
this method. mesh_animation name may b a name of the corresponding mesh
animation in the method sequence being configured. Each mesh animation may have
to be created with a name. A frame_index parameter may be used to determine what
frame is to be configured. Valid values for this parameter can range from 0 to (size -
1) where size is the value passed into the resizeAnimationWeights method and is a
number of frames. A mesh_frame_offset parameter may be used to determines on
what mesh frame within the mesh animation the weight parameter is applied. A
weight parameter may be used to indicate the mesh frame’s weight for the specified

26



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

frame. A duration parameter may be used to set the duration of the frame in
milliseconds.

setDurationAnimationWeight (string mesh_animation_name, integer duration)

The setDurationAnimationWeight method may be used to set the duration of
the animation in milliseconds. This means that the duration of all frames for the
specified mesh animation are set. A mesh_animation_name may be a name of the
corresponding mesh animation in the method sequence being configured. Each mesh
animation may have to be created with a name. A duration may be used to represent
the total duration that the frames of this type may take.

setDurationAnimationWeight (string mesh_animation_name, integer duration)

The setDurationAnimationWeight method may be used to set the duration of
the animation in milliseconds. This means that the duration of all frames for the
specified mesh animation are set. A mesh _animation_name is a name of the
corresponding mesh animation in the object being configured. Each mesh animation
may have to be created with a name. A duration represents the total duration that the
frames of this type may take.
setDurationMeshFrameWeight (string mesh_animation_name, integer duration)

The setDurationMeshFrame Weight method may be used to set the duration of
the mesh frame’s animation in milliseconds. This means that the duration of all
frames for the specified mesh frame animation are set. A mesh_animation_name is
a name of the corresponding mesh animation in the method sequence being
configured. Each mesh animation may have to be created with a name. A duration
parameter represents the total duration that the frames of this type may take
setInterpolationAnimationWeight (string mesh_animation_name, string
interpolation_type)

This method sets the interpolation type for the specified animation weight. A
mesh_animation_name is a name of the corresponding mesh animation in the method
sequence being configured. Each mesh animation may have to be created with a
name. An interpolation_type is a value that is used to determine what type of
interpolation may be used as the animation progresses. Some values for this
parameter are listed below with a'description. A “LINEAR” value may be used to
combines the current frame with the next frame using the elapsed time of the current
frame as a weighing factor to determine the combined frame. A “STEP” value may
be used to advance to the next frame when the current frame has expired without
interpolation.

setInterpolationMeshFrameWeight (string mesh_animation_name, string
interpolation_type)

27



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

This method may be used to set the interpolation type for the combination of
meshframes in the specified mesh animation. A mesh animation_name is a name of
the corresponding mesh animation in the method sequence being configured. Each
mesh animation may have to be created with a name. An interpolation_type is a value
that is used to determine what type of interpolation may be used as the animation
progresses. Some values for this parameter are listed below with a description. A
“LINEAR” value may be used to combines the current frame with the next frame
using the elapsed time of the current frame as a weighing factor to determine the
combined frame. A “STEP” value may be used to advance to the next frame when
the current frame has expired without interpolation.
setPlayBackwards (string backwards)

This method may be used to configure the direction that the animation may be
played back. The animation can be played forwards or backwards. A backwards
parameter may be set to true if the animation should be played backwards, or false if

it should play forwards.

Many possible methods may be used with the present invention that
may be used in various sequence operations. A few examples of methods may include
but are not limited to:1) texture animation methods that control the texture of an
object, 2) camera animation methods that control the view of a particular object (see
FIG. 4) to be rendered in a frame, 3) lighting methods that control the lighting
properties of rendered objects, 4) material animation methods that control the material
properties of objects such as there reflectivity and absorptivity.

The following example shows a method sequence that configures a property
animation to move a 3-D object along a path of three points over the duration of
300ms. The example also configures a start event and an event to post when the
method sequence is complete. The method sequence may be used in a script file 136
as part of a presentation module. A

File Identifier
triggerEvent (“StartExampleSequencel”);

postEvent (“PositionExampleSequencelCompleted”,

300) ;

Position

setInterpolation (LINEAR);
setDuration (300);

setFrame (“0.0f, 0.0£f, -3.0f");
setFrame (“0.2£, 0.0£, -3.0f");
setFrame (“0.5f, -0.3f, -3.0f");

28



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

The file starts with a file identifier which identifies it as a script file. The
triggerEvent method defines a sequence event that may be used to end the animation
sequence described in the file. The postEvent method defines a sequence event to post
when the animation sequence is completed. The sequence event is posted after 300
milliseconds. “Position” is a name of a method sequence defined in the file. The
method sequence may be used to manipulate a 3-D object’s position. The
setInterpolation method is used to set linear interpolation between frames. The
setDuration method is used to set the duration of all the position frames. This time is
divided by the total number of frames to determine each frame’s duration. The three
setFrame methods are used to set the position of the object in each frame. As
described above, the position sequence operation may be used to operate on many
different models that may be described in a model file used with the script file defined
above. Further, a user may easily change the position of the object in an animation
sequence by changing the parameters in the setFrame method which define the
position of the object.

The script file, described above, in the previous paragraph was shown in a text
format. The present invention is not limited to text files. The script files, model files
and any additional files used in the present invention can be prepared for use in pre-
tokenized and binary formats. A pre-tokenized file is a text file that may need to be
parsed in some manner prior to use. The text and binary files may also be compiled to
form binary files as well as parsed text files.

In previous paragraphs, methods have been described to manipulate graphical
objects described in model files. The present invention as previously described with
respect to FIGs. 1A and 1B may also be used to manipulate sounds and gaming
devices provided by the gaming machine interface. In these cases, method sequences
and methods may be defined that operate on sound files and abstractions of gaming
devices such as a device driver. These method sequences may use parameterized
methods for manipulating sounds and gaming devices.

FIG. 4 is a perspective drawing of a 3-D virtual gaming environment
implemented on a gaming machine for one embodiment of this invention. Various 3-
D graphics methods and properties are discussed that may be manipulated using
method sequences as described with respect to FIG. 3. The 3-D virtual gaming
environment may be used by the master gaming controller on the gaming machine to
present a game of chance. The game of chance played on the gaming machine may
include: 1) a wager selected by a player playing a game on the gaming machine, 2) an
initiation of the game of chance on the gaming machine by the player, 3) a

29



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

determination of an outcome for the game of chance by the gaming machine and 4) a
presentation on the gaming machine of the game outcome to the player.

To utilize a virtual 3-D gaming environment for a game presentation or other
gaming activities on a gaming machine, a 2-D view of the virtual 3-D gaming
environment is rendered. The 2-D view captures some portion of the surfaces
modeled in the virtual 3-D gaming environment. The captured surfaces define a 3-D
object in the 3-D gaming environment. The captured surfaces in 2-D view are defined
in the 3-dimensional coordinates of the virtual 3-D gaming environment and
converted to a 2-dimensional coordinate system during the capturing process. As part
of a game presentation, the 2-D view may be presented as a video frame on a display
screen on the gaming machine. In some ways, the two-dimensional view is analogous
to a photograph of a physical 3-D environment taken by a camera where the
photograph captures a portion of the physical 3-D surfaces existing in the physical 3-
D environment. However, the photograph from a camera is not strictly analogous to a
2-D view rendered from a virtual 3-D gaming environment because many graphical
manipulation techniques may be applied in a virtual 3-D gaming environment that are
not available with an actual camera.

In the present invention, the 2-D view is generated from a viewpoint within
the virtual 3-D gaming environment. The viewpoint is a main factor in determining
what surfaces of the 3-D gaming environment defining a 3-D object are captured in
the 2-D view. Since information about the 3-D gaming environment is stored on the
gaming machine, the viewpoint may be altered to generate new 2-D views of objects
within the 3-D gaming environment. For instance, in one frame, a 2-D view of an
object modeled in the 3-D gaming environment, such as a front side of a building
(e.g. the viewpoint captures the front side of a building), may be generated using a
first viewpoint. In another frame, a 2-D view of the same object may be generated
from another viewpoint (e.g. the backside of the building).

Returning to Fig. 4, the 3-D gaming environment 400 includes three objects:
1) a rectangular box 401 on top of, 2) a plane 414 and 3) a second box 426. The box
401, box 427 and plane 414 are defined in a 3-dimensional rectangular coordinate
space 404. Typically, surfaces of the objects in the gaming environment are defined
using a plurality of surface elements. The surface elements may comprise different
shapes, such as different types of polygons that are well known in the 3-D graphical
arts. For example, the objects in the present information may be defined in a manner
to be compatible with one or more graphics standards such as Open Graphics Library
(OpenGL). Information on OpenGL may be found at www.opengl.org.

30



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

In one embodiment, the objects in the gaming environment 400 may be
defined by a plurality of triangular elements. As an example, a plurality of triangular
surface elements 425 are used to define a portion of the surface 408 and the surface
face 412. In another embodiment, the objects in the gaming environment 400, such as
box 401 and box 426, may be defined by a plurality of rectangular elements. In yet
another embodiment, a combination of different types of polygons, such as triangles
and rectangles may be used to describe the different objects in the gaming
environment 400. By using an appropriate number of surface elements, such as
triangular elements, objects may be made to look round, spherical, tubular or embody
any number of combinations of curved surfaces.

Triangles are by the most popular polygon used to define 3-D objects because
they are the easiest to deal with. In order to represent a solid object, a polygon of at
least three sides is required (e.g. triangle). However, OpenGL supports Quads, points,
lines, triangle strips and quad strips and polygons with any number of points. In
addition, 3-D models can be represented by a variety of 3-D curves such as NURBs
and Bezier Patches.

Each of the surface elements comprising the 3-D virtual gaming environment
may be described in a rectangular coordinate system or another appropriate coordinate
system, such as spherical coordinates or polar coordinates, as dictated by the
application. The 3-D virtual gaming environments of the present invention are not
limited to the shapes and elements shown in FIG.4 or the coordinate system used in
FIG. 4 which are shown for illustrative purposes only. Details of 3-D graphical
rendering methods that may be used with the present invention are described in
“OpenGL Reference Manual: The Official Reference Document to Open GL, Version
1.2,” 3rd edition, by Dave Shreiner (editor), OpenGL Architecture Review Board,
Addison-Wesley Publishing, Co., 1999, ISBN: 0201657651 and “OpenGL Program
Guide: The Official Guide to Learning OpenGL, Version 1.2,” 3rd edition, by Mason
Woo, Jackie Neider, Tom Davis, Dave Shreiner, OpenGL Architecture Review
Board, Addison-Wesley Publishing, Co., 1999, ISBN: 0201604582, which are
incorporated herein in their entirety and for all purposes.

Surface textures may be applied to each of the surface elements, such as
elements 425, defining the surfaces in the virtual gaming environment 400. The
surface textures may allow the 3-D gaming environment to appear more “real” when
it is viewed on a display screen on the gaming machine. As an example, colors,
textures and reflectance’s may be applied to each of the surface elements defining the
various objects in the 3-D gaming environment. Millions of different colors may be
used to add a realistic “feel” to a given gaming environment. Textures that may be

31



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

applied include smoothness or surface irregularities such as bumps, craters, lines,
bump maps, light maps, reflectance maps and refractance maps or other patterns that
may be rendered on each element. The textures may be applied as mathematical

models stored as “texture maps” on the gaming machine.

In one embodiment, the “texture map” may be an animated texture. For
instance, frames of a movie or another animation may be projected onto a 3-D object
in the 3-D gaming environment. These animated textures may be captured in 2-D
views presented in video frames on the gaming machine. Multiple animated textures
may be used at the same time. Thus, for example, a first movie may be projected onto
a first surface in the 3-D gaming environment and a second movie may be projected
onto a second surface in the 3-D gaming environment where both movies may be

viewed simultaneously.

Material properties of a 3-D surface may describe how the surface reacts to
light. These surface properties may include such things as a) a material’s ability to
absorb different wave-lengths of light, b) a material’s ability to reflect different
wavelengths of light (reflectance), ¢) a material’s ability to emit certain wavelengths
of light such as the tail lights on a car and d) a material’s ability to transmit certain
wavelengths' of light. As an example, reflectance refers to how much light each
element reflects. Depending on the reflectance of a surface element other items in the
gaming environment may be reflected fuzzily, sharply or not at all. Combinations of
color, texture and reflectance may be used to impart an illusion of a particular quality
to an object, such as hard, soft, warm or cold. In present invention, methods may be
defined that operate on an object’s surface properties. These methods may be used in
method sequences in script files as described with respect to FIG. 3.

Some shading methods that are commonly used with 3-D graphics to add
texture that may be applied to the present invention include gourand shading and
phong shading. Gourand and Phong shading are methods used to hide an object’s
limited geometry by interpolating between two surfaces with different normals.
Further, using Alpha Blending, pixels may be blended together to make an object
appear transparent i.e. the object transmits light.

Virtual light sources, such as 402, may be used in the gaming environment to
add the appearance of shading and shadows. Shading and shadows are used to add
weight and solidity to the rendering of a virtual object. For example, to add solidity to
the rectangular box 401, light rays emitted from light source 402 are used to generate
a shadow 403 around the rectangular box 401. In one method, ray tracing is used to
plot paths of imaginary light rays emitted from an imaginary light source such as 402.

32



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

These light rays may impact and may reflect off various surfaces affecting the colors
assigned to each surface element. In some gaming environments, multiple light
sources may be used where the number of lights and the intensity of each light source
change with time. Typically, in real time 3D, the light sources do not generate
shadows and it is up to the programmer to add shadows manually. As stated earlier,
however, the light sources produce shading on objects.

Perspective, which is used to convey the illusion of distance, may be applied
to the gaming environment 400 by defining a vanishing point, such as 426. Typically,
a single point perspective is used where all of the objects in the scene are rendered to
appear as though they will eventually converge at a single point in the distance, e.g.
the vanishing point. However, multiple point perspectives may also be employed in 3-
D gaming environments of the present invention. Perspective allows objects in the
gaming environment appear behind one another. For instance, box 401 and box 427
may be the same size. However, box 427 is made to appear smaller, and hence farther
away, to a viewer because it is closer to the vanishing point 426. A 3-D gaming
environment may or may not provide perspective correction. Perspective correction is
accomplished by transforming points towards the center of the 2-D view screen. The
farther away an object is from the viewpoint in 3-D gaming environment, the more it
will be transformed into the center of screen.

The present invention is not limited to perspective views or multiple
perspective views of the 3-D gaming environment. An orthographic view may be
used where 3-D objects rendered in a 2-D view always appear the same size no matter
how far away they are in the 3-D gaming environment. The orthographic view is what
you would see as a shadow cast from a light source that is infinitely far away (so that
the light rays are parallel), while the perspective view comes from a light source that
are finitely far away, so that the light rays are diverging. In the present invention,
combinations of both perspective and orthographic views may be used. For instance,
an orthographic view of a text message may be layered on top of a perspective view
of the 3-D gaming environment.

Related to perspective is “depth of field”. The depth of field describes an
effect where objects that appear closer to a viewer are more in focus and objects that
are farther away appear out of focus. Depth of field may be applied renderings of the
various objects in the gaming environment 400. Another effect that may be applied to
renderings of objects in the gaming environment is “anti-aliasing” . Anti-aliasing is
used to make lines which are digitally generated as a number of straight segments
appear more smooth when rendered on a display screen on the gaming machine,
Because the 2D display only takes finite pixel positions, stair stepping occurs on any

33



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

limes that are not straight up and down, straight across (left and right) or at 45 degrees
on the display screen. Stair stepping produces a visually unappealing effect, thus,
pixels are added to stair-stepped lines to make this effect less dramatic.

Objects in the gaming environment 401 may appear to be static or dynamic.
For instance, the coordinates of box 427 may change with time while the coordinates
of box 401 and plane 414 remain fixed. Thus, when rendered on a display screen on a
gaming machine, the box 427 may appear to move in the gaming environment 401
relative to the box 401. Many dynamic effects are possible. For instance, box 427
may appear to rotate while remaining in a fixed position or may rotate while also
translating to generate an effect of bouncing or tumbling. Further, in the gaming
environment, objects may appear to collide with one another. For instance, box 427
may appear to collide with box 401 altering the trajectory of box 427 in the gaming
environment. Many digital rendering effects may be applied to the gaming
environment of the present invention. The effects described above have been provided

for illustrative purposes only.

Standard alpha-numeric text and symbols may be applied to one or more
surface elements in the gaming environment 401 to display gaming information to a
game player. The alpha-numeric text and symbols may be applied to various surfaces
in the gaming environment to generate a plurality of game displays that may be used
as part of game outcome presentations viewed on the gaming machine. For instance,
game displays may be rendered on each of the 6 six surface faces of box 401 or box
427 and a plurality of game displays may also be rendered on planar surface 414. In
the present invention, game displays may be rendered across one or more surfaces of
any polyhedron or other object defined in the gaming environment.

The rendered text and symbols allow game outcome presentations to be
generated for different games of chance. For instance, a card hand for a poker game or
black jack game may be rendered on each of the faces of box 401 such as surfaces
408, 410 and 412. As another example, keno numbers or bingo numbers may be
rendered on different faces of boxes 401 and 427. Further, slot displays and pachinko
displays for slot and pachinko game outcome presentations may be rendered on
different faces of boxes 401 and 427.

Many different combinations of games of chance may be rendered in the
gaming environment 400. For instance, a slot display may be rendered on face 408 of
box 401, a black jack game display may be rendered on face 410, poker game display
may be rendered on face 412, a keno game display may be rendered on a face on the
box 401 opposite face 408, a pachinko game display may be rendered on a face on the

34



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

box 401 opposite 410 and a bingo game display may be rendered on a face on the box
401 opposite face 412. A different combination of game displays may be rendered on
the surfaces of box 427. Other games of chance that may be used in the present
invention include but are not limited to dice games (e.g. craps), baccarat and roulette.

In the present invention, games of chance are used to denote gaming activities
where a game player has made a wager on the outcome of the game of chance.
Depending on the game outcome for the game of chance initiated by the player, the
wager may be multiplied. The game outcome may proceed solely according to
chance, i.e. without any input by the game player or the game player may affect the
game outcome according to one or more decisions. For instance, in a video poker
game, the game outcome may be determined according to cards held or discarded by
the game player. While in a slot game, the game outcome, i.e. the final position of the
slot reels, is randomly determined by the gaming machine.

The combinations of games described above may be rendered at the same time
in the 3-D gaming environment. A player may play one or more games in a sequential
manner. For instance, a player may select one or more games, make a wager for the
one or more games and then initiate the one or more games and view game outcome
presentations for the one or more games. A player may also play one or more games
in a parallel manner. For instance, a player may select one or more games, make a
wager for the one or more games, initiate the one or more games. Before the game
outcome presentations have been completed for the one or more selected games, the
player may select one or more new games, make a wager for the one or more new
games and initiate the one or more new games. Details of a parallel game
methodology are described in co-pending U.S. application no. 09/553,437, filed on
April 19, 2000, by Brosnan et al. and entitled “Paralle] Games on a Gaming Device,”
which is incorporated in its entirety and for all purposes.

The rendered text and symbols in a game display are not necessarily planar
may be rendered in multiple in dimensions in the gaming environment 400. For
example, rendered cards may have a finite thickness or raised symbols. The cards may
be dealt by hands that are defined as 3 dimensional object models in the 3-D gaming
environment 400 and move as the cards are dealt. As another example, a slot display
may be rendered as multidimensional reels with symbols that may rotate in the
gaming environment 400. As described above, presentation modules of the present
invention may be generated to perform some of these graphical object manipulations
such rotating slot reel.

35



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

A game display for a game outcome presentation may be rendered on a
particular surface and may change with time in response to various player inputs. For
example, in a poker game, a player may discard and hold various cards while they are
playing the game. Thus, the cards in the hand change as the game outcome is
rendered in the 3-D gaming environment and some cards (e.g. discarded cards) may
appear to leave the gaming environment. As another example, reels on a slot display
rendered in the gaming environment may begin to spin in the gaming environment in
response to a player pulling a lever or depressing an input button on the physical
gaming machine. ‘

Other game features and gaming information may also be rendered in the
gaming environment 400. For example, bonus games, promotions, advertising and
attraction graphics may also be rendered in the gaming environment. For instance, a
casino’s logo or a player’s face may be rendered in the gaming environment. These
additional game features may be integrated into a game outcome presentation on the
gaming machine or other operational modes of the gaming machine such as an attract

mode.

In another embodiment of the present invention, a virtual person, e.g. a 3-D
dimensional model of a portion (e.g., face, hands, face, head and torso, etc.) or all of a
human being may be rendered in the 3-D gaming environment. The virtual person
may be animated. For the instance, by adjusting parameters of the 3-D dimensional
model of the virtual person in a sequence, the virtual person may appear to speak or
gesture. The virtual person may be used to explain gaming instructions to a game
player or may be used as a component in a game presentation. The virtual person may
appear to respond or interact with a user according to inputs into the gaming machine
made by the user. For instance, a player may ask the virtual person a particular
question via an input mechanism on the gaming machine such as microphone on a
gaming machine equipped with voice recognition software. Next, the virtual person
may appear to speak a response to the question input by the user. Animated 3-D
models for other objects, such as animals or fictional characters, may also be used in
the 3-D gaming environment.

After the gaming environment is defined in 3-dimensions, to display a portion
of the 3-D gaming environment on a display screen on the gaming machine, a
“photograph” of a portion of the gaming environment is generated. The photograph
is a 2-dimensional rendering of a portion of the 3-dimensional gaming environment.
Transformations between 3-D coordinate systems and 2-D coordinate systems are
well known in the graphical arts. The photograph may be taken from a virtual
“camera” positioned at a location inside the gaming environment 400. A sequence of

36



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

photographs taken by the virtual camera in the gaming environment may be
considered analogous to filming a movie.

A “photograph” displayed on the display screen of a gaming machine may
also a composite of many different photographs. For instance, a composite
photograph may be generated from portions of a first photograph generated using an
orthographic view and portions of a second photograph generated using a perspective
view. The portions of the photographs comprising the composite photograph may be
placed on top of one another to provide “layered” effects, may be displayed in a side
by side manner to produce a “collage” or combinations thereof.

In another embodiment of the present invention, a photograph may be a
blended combination of two different photographs. Using an interpolation scheme of
some type, two photographs may be blended in a sequence of photographs to provide
a morphing effect where the first photograph appears to morph into a second
photograph. For instance, a slot game may appear to morph into a poker game. Other
examples of interpolation schemes in the context of defining method sequences are
described with respect to FIG. 3.

Operating parameters of the virtual camera, such as its position at a particular
time, are used to define a 3-D surface in the gaming environment, which is projected
on to a 2-D surface to produce the photograph. The 3-D surface may comprise
portions a number of 3-D objects in the 3-D gaming environment. The 3-D surface
may also be considered a 3-D object. Thus, a photograph is a 2-D image derived from
3-D coordinates of objects in the 3-D gaming environment. The virtual camera may
represent gaming logic stored on the gaming machine necessary to render a portion of
the 3-D gaming environment 400 to a 2-D image displayed on the gaming machine.
The photograph is converted into a video frame, comprising a number of pixels,
which may be viewed on a display screen on the gaming machine.

The transformation performed by the virtual camera allowing a portion of the
virtual gaming environment to be viewed one or more display screens on the gaming
machine may be a function of a number of variables. The size of lens in the virtual
gaming environment, the position of the lens, a virtual distance between the lens and
the photograph, the size of the photograph, the perspective and a depth variable
assigned to each object are some of the variables that may be incorporated into a
transformation by the virtual camera that renders a photograph of the virtual gaming
environment. The resolution of the display screen on the gaming machine may govern
the size of a photograph in the virtual camera. A typical display screen may allow a
resolution of 800 by 600 color pixels although higher or lower resolution screens may

37



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

be used. A “lens size™ on the virtual camera defines a window into the virtual gaming
environment. The window is sometimes referred to as a viewport. The size and
position of the lens determines what portion of the virtual gaming environment 400
the virtual camera views. In present invention, methods may be defined that perform
virtual camera manipulations. These methods may be used in method sequences
defined in script files as described with respect to FIG. 3.

After the photograph of the virtual gaming environment has been generated,
other effects, such as static and dynamic anti-aliasing, may be applied to the
photograph to generate a frame displayed on one or more displays located on the
gaming machine. Typically, the mathematical and logical operations, which are
encoded in gaming software logic, necessary to perform a particular transformation
and generate a video frame may be executed by video cards and graphics cards
located on the gaming machine and specifically designed to perform these operations.
The graphics cards usually include graphical processing units (GPUs). However, the
transformation operations may also be performed by one or more general purpose
CPUs located on the gaming machine or combinations of GPUs and CPUs.

In general, the 2D/3D video graphics accelerators or coprocessors, often
referred to as graphics processing units (GPUs), are located on or connected to the
master gaming controller and are used to perform graphical operations. The solutions
described are most commonly found as video cards. The graphical electronics may be
incorporated directly onto the processor board (e.g. the master gaming controller) of
the gaming machine, and even tightly integrated within other very large scale
integrated chip solutions. The integration methods are often cost saving measures
commonly used to reduce the costs associated with mass production. For instance,
video cards, such as the Vivid!XS from VideoLogic Systems (VideoLogic Systems is
a division of Imagination Technologies Group plc, England) may used to perform the
graphical operations described in the present invention. As another example, video
cards from Nvidia Corporation (Santa Clara, California) may be employed. In one
embodiment, the video card may be a multi-headed 3-D video card, such as a Matrox
G450 (Matrox Graphics Inc., Dorval, Quebec, Canada). Multi-headed video cards let
a single graphics card power two displays simultaneously or render two images
simultaneously on the same display.

When displaying photographs from a virtual camera in a 3-D gaming
environment, a single image from the camera may be divided among a plurality of
display devices. For instance, four display screens may be used to display one quarter
of a single image. The video feeds for each of the plurality of display devices may be
provided from a single video card. Multi-headed video cards let a single graphics card

38



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

(or graphics subsystem) display output on two or more displays simultaneously. This
may be multiple output rendering for each display or one rendering over multiple
displays, or variation of both. For example, when a multi-headed video card is used, a
first head on the multi-headed video card may be used to render an image from a first
virtual camera in a 3-D gaming environment and a second head on the multi-head
video card may be used to render a second image from a second virtual camera in a 3-
D gaming environment. The rendered first and second images from the first head and
the second head may be displayed simultaneously on the same display or the first
image may be displayed on a first display and the second image may be displayed on
a second display.

Returning to FIG. 4, three lenses, 405, 406 and 407 used in a virtual camera
are shown positioned at three locations in the virtual gaming environment. Each lens
views a different portion of the gaming environment. The size and shape of the lens
may vary which changes a portion of the virtual gaming environment captured by the
lens. For instance, lenses 405 and 406 are rectangular shaped while lens 407 is ovular
shaped.

Lens 406 is positioned to view the “game display” for a game outcome
presentation rendered on surface 408. The portion of the gaming environment
captured by lens 406 is a six-sided shape 420. As described above, the game display
may contain the presentation of a particular game played on the gaming machine,
such as a hand of cards for a poker game. After applying an appropriate
transformation, a photograph 424 of the portion of the virtual gaming environment
400 in volume 420 is generated by the virtual camera with lens 406.

Using differing terminology common within the 3D graphics community, the
lenses 405, 406 and 407 may be described as a camera. Each camera has the ability to
have different settings. A scene in the 3-D gaming environment is shot from the
camera’s viewpoint. A different scene is captured from each camera. Thus, the scene
is rendered from the camera to produce and image.

The photograph 424 generated from the virtual camera with lens 406 may be
viewed on one or more display screens on the gaming machine. For instance,
photograph 424 may be viewed on a main display on the gaming machine and a
secondary display on the gaming machine. In another embodiment, a portion of
photograph 424 may be displayed on the main display and a portion of the
photograph may be displayed simultaneously on a secondary display. In yet another
embodiment, a portion of photograph 424 may be displayed on a first gaming

39



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

machine while a portion of photograph 424 may be displayed simultaneously on a
second gaming machine.

Lens 405 of a virtual camera is positioned to view volume 421 in the virtual
gaming environment 400. The volume 421 intersects three faces, 408, 410 and 412, of
box 401. After applying an appropriate transformation, a photograph 425 of the
portion of the virtual gaming environment 401 in volume 421 is rendered by the
virtual camera with lens 405 which may be displayed on one of the display screens on
a gaming machine.

Lens 407 of a virtual camera is positioned to view volume 422 in the virtual
gaming environment 400. The ovular shape of the lens produces a rounded volume
422 similar to a light from a flashlight. The volume 422 intersects a portion of face
410 and a portion of plane 414 including a portion of the shadow 403. After applying
an appropriate transformation, a photograph 426 of the portion of the virtual gaming
environment 401 in volume 422 is rendered by the virtual camera with lens 407
which may be displayed on one or more of the display screens on a gaming machine.
For instance, a gaming machine may include a main display, a secondary display, a
display for a player tracking unit and a remote display screen in communication with
the gaming machine via a network of some type. Any of these display screens may
display photographs rendered from the 3-D gaming environment.

A sequence of photographs generated from one or more virtual cameras in the
gaming environment 401 may be used to present a game outcome presentation on the
gaming machine or present other gaming machine features. The sequence of
photographs may appear akin to movie or film when viewed by the player. For
instance, a 3-D model of a virtual person may appear to speak. Typically, a refresh
rate for a display screen on a gaming machine is on the order of 60 HZ or higher and
new photographs from virtual cameras in the gaming environment may be generated
as the game is played to match the refresh rate.

‘The sequence of photographs from the one or more virtual cameras in the
gaming environment may be generated from at least one virtual camera with a
position and lens angle that varies with time. For instance, lens 406 may represent the
position of a virtual camera at time, t1, lens 405 may represent the position of the
virtual camera at time, t2, and lens 407 may represent the position of the virtual
camera at time t3. Photographs generated at these three positions by the virtual
camera may be incorporated into a sequence of photographs displayed on a display
screen. ‘

40



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

The position of the virtual camera may change continuously between the
positions at times t1, t2, t3 generating a sequence of photographs that appears to pan
through the virtual gaming environment. Between the positions at times t1, t2, t3, the
rate the virtual camera is moved may be increased or decreased. Further, the virtual
camera may move non-continuously. For instance, a first photograph in a sequence of
photographs displayed on a display screen may be generated from the virtual camera
using the position of lens 406. The next photograph in the sequence of photographs
may be generated from the virtual camera using the position of lens 405. A third
photograph in the sequence of photographs may be generated from the virtual camera
using the position of lens 407. In general, the virtual camera in the gaming
environment 401 may move continuously, non-continuously and combinations
thereof.

In a 3D system getting the 3D object data from the artist’s tools to the real-
time environment may be a challenging problem. In a third party development
environment, a game presentation designer may use many different graphics tools to
generated graphics for a game presentation. One example of a 3-D graphics design
tool that may used with the present invention is LightWave by NewTek (San Antonio,
Texas). A graphics design tool such as LightWave may be used in a presentation
design system that allows a designer to generate a presentation for a game of chance
(see Figs. 5 and 6).

As described above, a method sequence may be used to operate on a model
file. In the present invention, model file formats may be specified. As an example, the
graphic model file formats may comprise 3D model information, flags supported by
the gaming system and other special features that are supported by the 3D graphics
engine used on a gaming machine. The model file formats may provide an API that
allows the method sequence to be decoupled from the model file. Thus, a method
sequence may operate on any model file in the specified model file format. For
instance, a method sequence may be used to operate on a first model file to generate a
first presentation component and then the method sequence may be used to operate on
a second model file to generate a second presentation éomponent.

Since different graphics tools as well as other design tools may output
different information in different formats, The present invention may include model
file conversion tools used to convert model files from one format to another format.
For instance, a 3-D graphics file from a LightWave graphics tool may be converted
into a model format that may be used with a method sequence. The model file

converters may be used with the presentation design system as described with respect
to FIGs. 5 and 6.

41



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

FIG. 5 is a block diagram of a presentation design system 500 for one
embodiment of the present invention. The presentation design system 500 may be
used to generate a presentation module 132. The presentation module design utility
520 may include tools, libraries, templates and databases that may be used to help the
presentation designer define the components of a presentation module 132.

In one embodiment of the present invention, the presentation module design
utility may include but is not limited to: 1) presentation module design interface 520
that may be used to generate one or more presentation modules 132 and 2) a gaming
simulator 515 that may be used to simulate the output of the one or more presentation
modules 132 on a virtual gaming machine 510. The gaming simulator may utilize the
gaming software 100 used on a gaming machine as was described with respect to
FIGs. 1A and 1B. Thus, the gaming simulator 515 may provide game flow logic and
presentation state logic for many different types of games. The presentation designer
may use the gaming simulator 515 to specify implementations of graphics, sounds
and gaming devices that may be required for the game states and presentation states
generated by the game flow logic and presentation state logic loaded into the gaming
simulator. The specific implementations generated by the designer may be

incorporated into presentation modules.

A presentation module 132 may be processed by the gaming simulator 515.
The output from the gaming simulator 515 may be displayed to a designer on a virtual
gaming machine 510. The virtual gaming machine 510 may simulate portions of the
machine interface that a game player may see when playing the gaming machine.
Thus, the presentation designer may be able to input information 512 into to the
gaming simulator 515 via the virtual machine 510 and may be able to see output 520
from the gaming simulator 515 on the virtual machine 510. As an example, the
presentation designer may activate an input button on the virtual machine 510 and
then view an animation of the input button on the virtual machine that was defined in
a presentation module 132 generated using the presentation design system 500. As
another example, the presentation designer may be able to initiate a game outcome
presentation on the virtual machine and then listen to an audio presentation for the
game outcome in a presentation module 132 generated using the presentation design
system 500. While listening to the audio presentation, the designer may be able to
view a light pattern sequence on the virtual machine 510 generated from a
presentation module 132 generated using the presentation design system 500.

In general, the virtual machine 510 may be a presentation interface used by the
designer to design a game outcome presentation. The virtual machine 510 may
include but is not to limited to simulations of 1) graphical output 512, 2) sound output

42



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

514, 3) gaming device output 516 (e.g., light panels, mechanical reels, tactile
feedback device, scent generation devices, etc.) and 4) input switches and meters 518.
Using the virtual machine, a presentation designer may simulate many aspects of a
game outcome presentation on a gaming machine without the use of an actual gaming
machine. For instance, presentation design system 500 and its various components
including the virtual machine 515 may be implemented on a personal computer or
work station adapted for gaming simulation. Thus, one advantage of the presentation
design system 500 is that a third party developer may be able to develop a game
presentation for a gaming machine without the use of an actual gaming machine.

In some embodiments, the gaming simulator 515 may be essentially a “black
box” to the presentation designer. Thus, the presentation designer may simply specify
inputs for the gaming simulator 515. The gaming simulator 515 receives the specified
inputs and then may output an appropriate output to the virtual machine 510 or some
other output in the design interface. However, since the gaming simulator 515 is a
“black box” to the presentation designer, the presentation designer may not be
required to have any knowledge of the logical operations within the gaming simulator
515. Thus, the presentation designer may focus solely on the presentation design. This
capability may speed up the game design process and allow more people/groups to
design games of chance for a gaming machine in a third-party development
environment.

In one embodiment of the present invention, a presentation module design
interface 520 may include but is not limited to: 1) template library 502, 2) design
utilities 504, 3) a 3-D model library 506, 4) a sound library 507, 5) a device library, 6)
a method library, 7) a virtual machine 510, 8) a tactile feed back library (not shown),
9) a scent library (not shown) and 10) an animation sequence library (not shown). The
template library 502 may include but is not limited to templates of previously
designed method sequences and templates for blank formatted script files that may be
used to build one or more method sequences. The templates may specify the methods
that are used for one or more method sequences. The designer may customize the
method sequences in the templates by modifying or specifying one or more of input
parameters used in the method sequences. Thus, the templates allow frequently used
method sequences to be easily re-used and modified. The template library 502 may
include templates with method sequences that generate graphical output and generate
audio output. In addition, the template library may include templates with method
sequences that control a gaming device.

The method sequences may be specified, modified, completed and stored

using a presentation module design interface provided with presentation design

43



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

system. The presentation module design interface may include input mechanisms and
output mechanisms such as a keyboard, mouse and display that allow a designer to
select and modify various method sequences, select and view various module files an
generate presentation modules 132. An example of a GUI for a presentation module
design interface is described with respect to FIG. 6.

The 3-D model library 506, sound library 507 and device library 509 may
include but are not limited to a) 3-D models and graphical components that may be
used in a presentation module, b) audio components that may be used in a
presentation module and c) abstractions of gaming devices, such as device drivers,
that may be used in a presentation module. The method library 507 may include a list
of methods, a description of the function of the method and a description of the
required input parameters for each method. The utilities 504 may include any tools
that a designer may use to aid with the design of a presentation module. For instance,
one tool may allow the designer to determine the presentation state requirements for
each game state generated by the gaming simulator. Another tool may allow the
designer to simulate and manipulate animation sequences on the display screen.

FIG. 6 is a block diagram of a presentation module design interface display
600 for one embodiment of the present invention. The display 600 includes a
move/object method sequence template 616, a method sequence animation window
626, a state information utility 609, a 3-D model library 506, a sound library 507, a
device library 508, a template library 502, a method library 509 and a virtual machine
510. A designer may use the move/scale object method sequence template 616 to
generate a method sequence that moves and scales and object. The template 616 may
comprise a series of methods including 610, 612 and 614 with corresponding input
data 611, 613 and 615. A designer may customize the template 616 by specifying the
input data 611, 613 and 615. The designer may view a method sequence in the
template 616 by selecting a model from the 3-D model library and applying the
method sequence in the template 616.

In one embodiment, the method sequence animation may be viewed in the
method sequence animation window 626. In the window 626, the method sequences
in the template 616 have been applied to a cylindrical object selected from the 3-D
model library 506. The method sequence in the template 616 generates an animation
where the object moves and decreases in size as a function of time as indicated by the
arrows in window 626. In another embodiment, the template 616 may be used to
create a presentation module which may be viewed by the designer on the virtual
machine 510.

44



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

The state information utility 609 may allow a designer to step through the
logical game states on a gaming machine and determine the presentation requirements
for each state. For instance, state 607 may require an animate button sequence and -
may allow for an audio output on the gaming machine. The game states may be
generated by the gaming simulator 515 described with reference to FIG. 5. The
designer may use the virtual machine interface 510 to step through the game. For
instance, the designer may select input buttons on the virtual machine 510 and begin a
game and then see simultaneously which game states are generated in the state
information window 609 as the game progresses on the virtual machine 510.

In FIG. 7, a perspective drawing of video gaming machine 2 of the present
invention is shown. Machine 2 includes a main cabinet 4, which generally surrounds
the machine interior (not shown) and is viewable by users. The main cabinet includes
a main door 8 on the front of the machine, which opens to provide access to the
interior of the machine. Attached to the main door are player-input switches or
buttons 32, a coin acceptor 28, and a bill validator 30, a coin tray 38, and a belly glass
40. Viewable through the main door is a video display monitor 34 and an information
panel 36. The display monitor 34 will typically be a cathode ray tube, high resolution
flat-panel LCD, or other conventional electronically controlled video monitor. The
information panel 36 may be a back-lit, silk screened glass panel with lettering to
indicate general game information including, for example, the number of coins
played. Many possible games, including traditional slot games, video slot games,
poker games, pachinko games, multiple hand poker games, pai-gow poker games,
black jack games, keno games, bingo games, roulette games, craps games, checkers,
board games and card games may be provided with gaming machines of this
invention.

The bill validator 30, coin acceptor 28, player-input switches 32, video display
monitor 34, and information panel are devices used to play a game on the game
machine 2. The devices are controlled by circuitry (See FIG. 8) housed inside the
main cabinet 4 of the machine 2. In the operation of these devices, critical information
may be generated that is stored within a non-volatile memory storage device 234 (See
FIG. 8) located within the gaming machine 2. For instance, when cash or credit of
indicia is deposited into the gaming machine using the bill validator 30 or the coin
acceptor 28, an amount of cash or credit deposited into the gaming machine 2 may be
stored within the non-volatile memory storage device 234. As another example, when
important game information, such as the final position of the slot reels in a video slot
game, is displayed on the video display monitor 34, game history information needed
to recreate the visual display of the slot reels may be stored in the non-volatile

45



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

memory storage device. The type of information stored in the non-volatile memory
may be dictated by the requirements of operators of the gaming machine and
regulations dictating operational requirements for gaming machines in different
gaming jurisdictions. In the description that follows, hardware and methods for
storing critical game information in a non-volatile storage device are described within
the context of the operational requirements of a gaming machine 2.

The gaming machine 2 includes a top box 6, which sits on top of the main
cabinet 4. The top box 6 houses a number of devices, which may be used to add
features to a game being played on the gaming machine 2, including speakers 10, 12,
14, a ticket printer 18 which prints bar-coded tickets 20, a key pad 22 for entering
player tracking information, a florescent display 16 for displaying player tracking
information and a card reader 24 for entering a magnetic striped card containing
player tracking information. Further, the top box 6 may house different or additional
devices than shown in the FIG. 7. For example, the top box may contain a bonus
wheel or a back-lit silk screened panel which may be used to add bonus features to the
game being played on the gaming machine. During a game, these devices are
controlled and powered, in part, by the master gaming controller 224 (see FIG.8)
housed within the main cabinet 4 of the machine 2.

Understand that gaming machine 2 is but one example from a wide range of
gaming machine designs on which the present invention may be implemented. For
example, not all suitable gaming machines have top boxes or player tracking features.
Further, some gaming machines have only a single game display — mechanical or
video, while others are designed for bar tables and have displays that face upwards.
As another example, a game may be generated in on a host computer and may be
displayed on a remote terminal or a remote gaming device. The remote gaming device
may be connected to the host computer via a network of some type such as a local
area network, a wide area network, an intranet or the Internet. The remote gaming
device may be a portable gaming device such as but not limited to a cell phone, a
personal digital assistant, and a wireless game player. Images rendered from 3-D
gaming environments may be displayed on portable gaming devices that are used to
play a game of chance. Further a gaming machine or server may include gaming logic
for commanding a remote gaming device to render an image from a virtual camera in
a 3-D gaming environments stored on the remote gaming device and to display the
rendered image on a display located on the remote gaming device. Thus, those of skill
in the art will understand that the present invention, as described below, can be
deployed on most any gaming machine now available or hereafter developed.

46



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

Returning to the example of Figure 8, when a user wishes to play the gaming
machine 2, he or she inserts cash through the coin acceptor 28 or bill validator 30.
Additionally, the bill validator may accept a printed ticket voucher which may be
accepted by the bill validator 30 as an indicia of credit. During the game, the player
typically views game information and game play using the video display 34.

During the course of a game, a player may be required to make a number of
decisions, which affect the outcome of the game. For example, a player may vary his
or her wager on a particular game, select a prize for a particular game, or make game
decisions which affect the outcome of a particular game. The player may make these
choices using the player-input switches 32, the video display screen 34 or using some
other device which enables a player to input information into the gaming machine.
The presentation components of the present invention may be used to determine a
display format of an input button. For instance, as described, above, when a touch
screen button is activated on display screen 34, a presentation component may be
used to generate an animation on the display screen 34 of the button being depressed
(e.g., the button may appear to sink into the screen).

Certain player choices may be captured by player tracking software loaded in
a memory inside of the gaming machine. For example, the rate at which a player
plays a game or the amount a player bets on each game may be captured by the player
tracking software. The player tracking software may utilize the non-volatile memory
storage device to store this information.

During certain game events, the gaming machine 2 may display visual and
auditory effects that can be perceived by the player. These effects add to the
excitement of a game, which makes a player more likely to continue playing. The
presentation components of the present invention may be used to specify light
patterns, audio components or activate other gaming devices in a specified manner,
such as a bonus wheel or mechanical reels, as part of game outcome presentation.
Auditory effects include various sounds that are projected by the speakers 10, 12, 14.
Visual effects include ﬂéshing lights, strobing lights or other patterns displayed from
lights on the gaming machine 2 or from lights behind the belly glass 40. After the
player has completed a game, the player may receive coins or game tokens from the
coin tray 38 or the ticket 20 from the printer 18, which may be used for further games
or to redeem a prize. Further, the player may receive a ticket 20 for food,
merchandise, or games from the printer 18.

FIG. 8 is a block diagram of a gaming machine 2 of the present invention.
Components that appear in FIG. 7 are identified by common reference numerals. A

47



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

master gaming controller 224 controls the operation of the various gaming devices
and the game presentation on the gaming machine 2. The master gaming controller
224 may communicate with other remote gaming devices such as remote servers via a
main communication board 215 and network connection 214. The master gaming
controller 224 may also communicate other gaming devices via a wireless
communication link (not shown). The wireless communication link may use a
wireless communication standard such as but not limited to IEEE 802.11a, IEEE
802.11b, IEEE 802.11x (e.g. another IEEE 802.11 standard such as 802.11c or
802.11e), hyperlan/2, Bluetooth, and HomeRF.

Using a game code and graphic libraries stored on the gaming machine 2, the
master gaming controller 224 generates a game presentation which is presented on the
displays 34 and 42. The game presentation is typically a sequence of frames updated
at a rate of 75 Hz (75 frames/sec). For instance, for a video slot game, the game
presentation may include a sequence of frames of slot reels with a number of symbols
in different positions. When the sequence of frames is presented, the slot reels appear
to be spinning to a player playing a game on the gaming machine. The final game
presentation frames in the sequence of the game presentation frames are the final
position of the reels. Based upon the final position of the reels on the video display
34, a player is able to visually determine the outcome of the game.

Each frame in sequence of frames in a game presentation is temporarily stored
in a video memory 236 located on the master gaming controller 224 or alternatively
on the video controller 237. The gaming machine 2 may also include a video card
(not shown) with a separate memory and processor for performing graphic functions
on the gaming machine. Typically, the video memory 236 includes 1 or more frame
buffers that store frame data that is sent by the video controller 237 to the display 34
or the display 42. The frame buffer is in video memory directly addressable by the
video controller, The video memory and video controller may be incorporated into a
video card which is connected to the processor board containing the master gaming
controller 224, The frame buffer may consist of RAM, VRAM, SRAM, SDRAM, etc.

The frame data stored in the frame buffer provides pixel data (image data)
specifying the i)ixels displayed on the display screen. In one embodiment, the video
memory includes 3 frame buffers. The master gaming controller 224, according to the
game code, may generate each frame in one of the frame buffers by updating the
graphical components of the previous frame stored in the buffer. Thus, when only a
minor change is made to the frame compared to a previous frame, only the portion of
the frame that has changed from the previous frame stored in the frame buffer is
updated. For example, in one position of the screen, a 2 of hearts may be substituted

48



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

for a king of spades. This minimizes the amount of data that must be transferred for
any given frame. The graphical component updates to one frame in the sequence of
frames (e.g. a fresh card drawn in a video poker game) in the game presentation may
be performed using various graphic libraries stored on the gaming machine. This
approach is typically employed for the rendering of 2-D graphics. For 3-D graphics,
the entire screen is typically regenerated for each frame.

Pre-recorded frames stored on the gaming machine may be displayed using
video “streaming”. In video streaming, a sequence of pre-recorded frames stored on
the gaming machine is streamed through frame buffer on the video controller 237 to
one or more of the displays. For instance, a frame corresponding to a movie stored on
the game partition 223 of the hard drive 226, on a CD-ROM or some other storage
device may streamed to the displays 34 and 42 as part of game presentation. Thus, the
game presentation may include frames graphically rendered in real-time using the
graphics libraries stored on the gaming machine as well as pre-rendered frames stored
on the gaming machine 2.

For gaming machines, an important function is the ability to store and re-
display historical game play information. The game history provided by the game
history information assists in settling disputes concerning the results of game play. A
dispute may occur, for instance, when a player believes an award for a game outcome
has not properly credited to him by the gaming machine. The dispute may arise for a
number of reasons including a malfunction of the gaming machine, a power outage
causing the gaming machine to reinitialize itself and a misinterpretation of the game
outcome by the player. In the case of a dispute, an attendant typically arrives at the
gaming machine and places the gaming machine in a game history mode. In the game
history mode, important game history information about the game in dispute can be
retrieved from a non-volatile storage device 234 on the gaming machine and
displayed in some manner to a display on the gaming machine. Details of a non-
volatile storage device that may be used with the present invention are described in
co-pending U.S. application no. 09/690,931, filed on 10/17/00 by LeMay, et al.,
entitled “High Performance Battery Backed Ram Interface,” which is incorporated
herein in its entirety and for all purposes.

In some embodiments, game history information may also be stored to a
history database partition 221 on the hard drive 226. The hard drive 226 is only one
example of a mass storage device that may used with the present invention. The game
history information is used to reconcile the dispute.

49



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

During the game presentation, the master gaming controller 224 may select
and capture certain frames to provide a game history. These decisions are made in
accordance with particular game code executed by controller 224. The captured
frames may be incorporated into game history frames. Typically, one or more frames
critical to the game presentation are captured. For instance, in a video slot game
presentation, a game presentation frame displaying the final position of the reels is
captured. In a video blackjack game, a frame corresponding to the initial cards of the
player and dealer, frames corresponding to intermediate hands of the player and
dealer and a frame corresponding to the final hands of the player and the dealer may
be selected and captured as specified by the master gaming controller 224.

Various gaming software modules used to play different types of games of
chance may be stored on the hard drive 226. Each game may be stored in its own
directory to facilitate installing new games (and removing older ones) in the field. To
install a new game, a utility may be used to create the directory and copy the
necessary files to the hard drive 226. To remove a game, a utility may be used
remove the directory that contains the game and its files. In each game directory
there may be many subdirectories to organize the information. Some of the gaming
information in the game directories are: 1) a game process and its associated gaming
software modules, 2) graphics/Sound files/Phrase and presentation components
described above (s), 3) a paytable file and 4) a configuration file. A similar directory
structure may also be created in the NV-memory 234. Further, each game may have
its own directory in the non-volatile memory file structure to allow the non-volatile
memory 234 for each game to be installed and removed as needed.

On boot up, the game OS can iterate through the game directories on the hard
drive 226 and detect the games present. The game OS may obtain all of its necessary
information to decide on which games can be played and how to allow the user to
select one (multi-game). The game manager may verify that there is a one to one
relationship between the directories on the NV-memory 234 and the directories on the
hard drive 226. Details of the directory structures on the NV-memory and the hard
drive 226 and the verification process are described in co-pending U.S. application
no. 09/925,098, filed on August 8, 2001, by Cockerille, et al., titled “Process
Verification,” which is incorporated herein in its entirety and for all purposes.

FIG. 9 is a flow chart of a method for presenting a presentation component on
a gaming machine. In 905, a presentation module receives a request to generate a
presentation component for a presentation state in a game of chance played on a
gaming machine. The presentation component may be a graphical component such as
an animation displayed on a display screen on the gaming machine, an audio

50



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

component such as music output on an audio device on the gamin machine or a
gaming device component, such as light pattern displayed on a light panel located on
the gaming machine. In 910, the presentation module executes on or more method
sequences to generate the presentation component. The method sequences may be
stored in a script file on the gaming machine. In 915, the presentation component is
presented on a gaming device such as a display screen, audio device, light panel,
bonus wheel or a mechanical reel. In 920, the presentation module may communicate
gaming information to one or more gaming software modules via an API. For
instance, the presentation module may notify the gaming operating system that the
presentation component, such as an animation, is completed.

FIG. 10 is a flow chart of a method for generating a presentation component
on a gaming machine. In 1005, a method sequence template comprising one or more
method sequences is generated. The method sequence template may be provided on a
presentation module design interface (see Figs. 5 and 6). The method sequence
template may describe one or more method sequences that may be used to generate a
presentation component on a gaming machine. The presentation component may be a
graphical component such as an animation displayed on a display screen on the
gaming machine, an audio component such as music output on an audio device on the
gaming machine or a gaming device component, such as light pattern displayed on a
light panel located on the gaming machine.

In 1010, one or more parameters in the one or more method sequences may be
modified or specified. In general, as described with respect to FIG. 3, a method
sequence may comprise one or more methods. Each method may include input
parameters that may be used to modify the operation of the method. For instance, a
method may be used to generate the color or texture of an object used in an animation
sequence. The method may include parameters that may specify the color or texture
of the object to be generated. As another example, a method sequence may be used to
move an object in an animation sequence. The method sequence may include
parameters that may be used to specify the initial and final position of the object and
the rate of movement.

In 1015, a model file to be operated on by the method sequences is selected.
The method sequences may operate on an object. The object may be a graphical
component, an audio component or a hardware component. The hardware component
may be an abstraction of a gaming device such as a device driver stored in a file. The
model file specifies the object to be operated on by the method sequence. In general,
the method sequences are independent of the objects in the model files. Thus, the
method sequences may be re-used with different objects. For instance, a method

51



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

sequence that generates an animation of an object moving may be applied to different
3-D objects that are stored in different model files.

In 1020, the method sequences generate from the method sequence template
and the selected model file may be stored to a presentation module. The presentation
module, as described with respect to FIGs. 1A and 1B may be used to generate a
presentation component during game play on a gaming machine. In 1025, the
presentation module is executed to generate the presentation component specified by
the presentation module on the gaming machine.

FIG. 11 is a block diagrams of gaming machines that utilize distributed
gaming software and distributed processors to generate a game of chance for one
embodiment of the present invention. A master gaming controller 224 is used to
present one or more games on the gaming machines 61, 62 and 63. The master
gaming controller 224 executes a number of gaming software modules to operate
gaming devices 70, such as coin hoppers, bill validators, coin acceptors, speakers,
printers, lights, displays (e.g. 34) and other input/output mechanisms (see FIGs. 13
and 14). The master gaming controller 224 may also execute gaming software
enabling communications with gaming devices located outside of the gaming
machines 61, 62 and 63, such as player tracking servers, bonus game servers, game
servers and progressive game servers. In some embodiments, communications with
devices located outside of the gaming machines may be performed using the main
communication board 215 and network connections 71. The network connections 71
may allow communications with remote gaming devices via a local area network, an
intranet, the Internet or combinations thereof.

The gaming machines 61, 62 and 63 may use gaming software modules to
generate a game of chance that may be distributed between local file storage devices
and remote file storage devices. For example, to play a game of chance on gaming
machine 61, the master gaming controller may load gaming software modules into
RAM 56 that may be may be located in 1) a file storage device 226 on gaming
machine 61, 2) a remote file storage device 81, 2) a remote file storage device 82, 3) a
game server 90, 4) a file storage device 226 on gaming machine 62, 5) a file storage
device 226 on gaming machine 63, or 6) combinations thereof. In one embodiment of
the present invention, the gaming operating system may allow files stored on the local
file storage devices and remote file storage devices to be used as part of a shared file
system where the files on the remote file storage devices are remotely mounted to the
local file system. The file storage devices may be a hard-drive, CD-ROM, CD-DVD,
static RAM, flash memory, EPROM’s, compact flash, smart media, disk-on-chip,
removable media (e.g. ZIP drives with ZIP disks, floppies or combinations thereof.

52



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

For both security and regulatory purposes, gaming software executed on the gaming
machines 61, 62 and 63 by the master gaming controllers 224 may be regularly
verified by comparing software stored in RAM 56 for execution on the gaming
machines with certified copies of the software stored on the gaming machine (e.g.
files may be stored on file storage device 226), accessible to the gaming machine via
aremote communication connection (e.g., 81, 82 and 90) or combinations thereof.

The game server 90 may be a repository for game software modules and
software for other game services provided on the gaming machines 61, 62 and 63. In
one embodiment of the present invention, the gaming machines 61, 62 and 63 may
download game software modules from the game server 90 to a local file storage
device to play a game of chance or the download may be initiated by the game server.
One example of a game server that may be used with the present invention is
described in co-pending U.S. patent application 09/042,192, filed on 6/16/00, entitled
“Using a Gaming Machine as a Server” which is incorporated herein in its entirety
and for all purposes. In another example, the game server might also be a dedicated
computer or a service running on a server with other application programs.

In one embodiment of the present invention, the processors used to generate a
game of chance may be distributed among different machines. For instance, the game
flow logic to play a game of chance may be executed on game server 92 by processor
90 while the game presentation logic may be executed on gaming machines 61, 62
and 63 by the master gaming controller 224. The gaming operating systems on
gaming machines 61, 62 and 63 and the game server 90 may allow gaming events to,
be communicated between different gaming software modules executing on different
gaming machines via defined APIs. Thus, a game flow software module executed on
game server 92 may send gaming events to a game presentation software module
executed on gaming machine 61, 62 or 63 to control the play of a game of chance or
to control the play of a bonus game of chance presented on gaming machines 61, 62
and 63. As another example, the gaming machines 61, 62 and 63 may send gaming
events to one another via network connection 71 to control the play of a shared bonus
game played simultaneously on the different gaming machines or in general to affect
the game play on another machine.

Although the foregoing invention has been described in some detail for
purposes of clarity of understanding, it will be apparent that certain changes and
modifications may be practiced within the scope of the appended claims. For instance,
while the gaming machines of this invention have been depicted as having top box
mounted on top of the main gaming machine cabinet, the use of gaming devices in

33



WO 03/028827 PCT/US02/30610

accordance with this invention is not so limited. For example, gaming machine may

be provided without a top box.

What is claimed is:

54



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

CLAIMS

1. A gaming machine comprising:

a master gaming controller designed to generate a game of chance
played on the gaming machine by executing a plurality of gaming software
modules;

amemory device storing the plurality of gaming software modules;

a gaming operating system comprising logic to load and unload
gaming software modules into a RAM from the memory device and control
the play of the game of chance;

a presentation logic module comprising logic to generate a
presentation for the game of chance on the gaming machine; and

one or more presentation modules comprising logic to generate a
presentation component used as part of the presentation for the game of

chance.

2. The gaming machine of claim 1, wherein the one or more presentation
modules communicates with the one or more gaming software modules via an

application program interface.

3. The gaming machine of claim 2, wherein the application program interface is
used to communicate sequence events used to control the play of the game of chance.

4. The gaming machine of claim 1, wherein the game of chance is selected from
group consisting of slot games, poker games, pachinko games, multiple hand poker
games, pai-gow poker games, black jack games, keno games, bingo games, roulette
games, craps games, checkers, board games and card games.

5. The gaming machine of claim 1, wherein the gaming software module is a

game flow logic software module that generates a sequence of game states used to
play the game of chance.

6. The gaming machine of claim 1, wherein the presentation of the game of

chance comprises a plurality of presentation states.

55



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

7. The gaming machine of claim 6, wherein the presentation logic module further
comprises logic that is used to determine one or more presentation components that

are used in each presentation state.

8. The gaming machine of claim 1, wherein the presentation component is at
least one of a graphical component, an audio component, a gaming device component
and combinations thereof.

0. The gaming machine of claim 1, wherein the presentation component is

presented on a gaming device.

10.  The gaming machine of claim 1, wherein the gaming device is at least one of
a display screen, an audio output device, a lighting device, a bonus wheel, a

mechanical reel, a tactile feedback device and a scent generation device.

11.  The gaming machine of claim 1, wherein the presentation component is

designed to stimulate a game player’s sight, hearing, touch, smell, taste and
combinations thereof.

12.  The gaming machine of claim 1, wherein the presentation module further
comprises logic for at least one method sequence that generates a presentation

component.

13.  The gaming machine of claim 12, wherein the method sequence comprises
one or more input parameters that are used to modify the presentation component

generated by the method sequence.

14.  The gaming machine of claim 13, wherein the method sequence is used with a
first set of input parameters to generate a first presentation component and wherein
the method sequence is used with a second set of input parameters to generate a
second presentation component.

15.  The gaming machine of claim 14, wherein the first presentation sequence and
the second presentation sequence are generated using the same method sequence
logic.

16.  The gaming machine of claim 12, wherein the method sequence operates on a

model file to generate the presentation component.

56



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

17.  The gaming machine of claim 16, wherein the model file comprises a
graphical component, an audio component, a gaming device component and
combinations thereof.

18.  The gaming machine of claim 16, wherein the method sequence operates on a
first model file to generate a first presentation component and wherein the method
sequence operates on a second model file to generate a second presentation

component.

19.  The gaming machine of claim 18, wherein the first presentation component
and second presentation component are generated using the same method sequence

logic.

20.  The gaming machine of claim 12, wherein the method sequence is used to
change a property of a graphical object displayed on a display screen of the gaming

machine.

21.  The gaming machine of claim 20, wherein the property is a color, a size, a

position, a shading and a texture.

22.  The gaming machine of claim 12, wherein the method sequence is used to

generate an animation sequence.

23.  The gaming machine of claim 22, wherein the method sequence is used to
generate a sequence of video frames that provide an animated transition between a
first video frame and a second video frame.

24. A method of generating a presentation component used in a play of a game of
chance on a gaming machine, the method comprising:

receiving a request to generate a presentation component for a presentation
state in the game of chance played on the gaming machine;

executing one or more method sequences to generate the presentation
component;

displaying the presentation component on a gaming device; and

communicating with gaming software modules via one or more application
program interfaces.

57



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

25.  The method of claim 24, wherein the presentation component is at least one of
a graphical component, a audio component, a gaming device component and
combinations thereof.

26.  The method of claim 25, wherein the graphical component is an animation
sequence.

27.  The method of claim 24, wherein the gaming device is a display screen, an
audio output device, a lighting device, a bonus wheel, a mechanical reel, a tactile
feedback device and a scent generation device.

28.  The method of claim 24, further comprising:
sending a message acknowledging the completion of a presentation of the
presentation component.

29.  The method of claim 24, wherein the gaming software module is a gaming
operating system software module that loads and unloads gaming software modules
into the RAM from a memory device and controls the play of the game of chance.

30.  The method of claim 24, wherein the gaming software module is a game flow
software module that generates the game flow for the game of chance.

31.  The method of claim 24, wherein the gaming software module is a
presentation state logic module that determines the presentation components that are
used in the presentation state.

32.  The method of claim 24, wherein the presentation state comprises a plurality
of presentation substates.

33.  The method of claim 32, further comprising:
executing one or more method sequences to generate a presentation

component for at least one of the presentation substates.

34.  The method of claim 24, wherein the presentation component is designed to

stimulate a game player’s sight, hearing, touch, smell, taste and combinations thereof.

35.  The method of claim 24, wherein a method sequence comprises one or more
input parameters that are used to modify the presentation component generated by the

method sequence.

58



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

36.  The method of claim 35, further comprising:
specifying a first set of input parameters for the method sequence;
executing the method sequence using the first set of input parameters to
generate a first presentation component;
specifying a second set of input parameters for the method sequence; and
executing the method sequence using the second set of input parameters to

generate a second presentation component.

37.  The method of claim 24, further comprising:
operating on a model file using a method sequence to generate the

presentation component.

38.  The method of claim 37, wherein the model file comprises graphical
components, audio components, gaming device components and combinations
thereof.

39.  The method of claim 24, further comprising:

selecting a first model file;

operating on the first model file using a method sequence to generate a first
presentation component; ‘

selecting a second model file; and

operating on the second model file using the method sequence to generate a

second presentation component.

40.  The method of claim 24, wherein the method sequence is used to change a
property of a graphical object displayed on a display screen of the gaming machine.

41.  The method of claim 40, wherein the property is a color, a size, a position, a
shading and a texture.

42.  The method of claim 24, wherein the method sequence is used to generate an
animation sequence.

43.  The method of claim 42, wherein the method sequence is used to generate a

sequence of video frames that provide an animated transition between a first video

frame and a second video frame.

59



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

44.  The method of claim 24, wherein the game of chance is selected from group
consisting of slot games, poker games, pachinko games, multiple hand poker games,
pai-gow poker games, black jack games, keno games, bingo games, roulette games,
craps games, checkers, board games and card games.

45. A method of providing a presentation component used in a play of a game of
chance on a gaming machine, the method comprising:

providing a method sequence template comprising one or more method
sequences;

selecting a model file to be operated on by the method sequences;

executing the method sequences to generate a presentation component used in
a presentation of the game of chance on the gaming machine; |

46.  The method of claim 45, further comprising:
storing the method sequences generated from the method sequence template

and the model file to a presentation module.

47.  The method of claim 46, further comprising:
simulating the presentation module on a presentation interface.

48.  The method of claim 45, further comprising:
selecting a model file from a model file library.

49.  The method of claim 48, wherein the model file library comprises graphical
models, sound models, gaming device models, scent models and tactile feedback
models.

50.  The method of claim 45, further comprising:
selecting a method sequence template from a method sequence template

library.

51.  The method of claim 45, further comprising: ‘
selecting a method used in a method sequence from a method library.

52.  The method of claim 45, further comprising:
generating a model file to be operated on by the method sequences.

53.  The method of claim 45, further comprising:

60



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

converting the model file to a model file format used by the method
sequences.

54.  The method of claim 45, further comprising:

displaying the presentation component on a present interface.

55.  The method of claim 45, further comprising:
specifying one or more input parameters in at least one of the method

sequences.

56.  The method of claim 45, further comprising:
specifying first set of input parameters in a first method sequence;
generating a first presentation component using the first set of input
parameters;
specifying second set of input parameters in the first method sequence; and
generating a second presentation component using the second set of input

parameters.

57.  The method of claim 45, further comprising:
selecting a first model file to be operated on by the method sequences;
generating a first presentation component using the first model file;
selecting a second model file to be operated on by the method sequences; and

generating a second presentation component using the second model file.

58. A presentation design system for designing presentation components for a
game of chance on a gaming machine, said presentation design system comprising:

a presentation module design interface for generating a presentation module
for a game of chance;

a gaming simulator that generates: 1) game states and presentation states for
the game of chance and 2) presentation components for each presentation state
wherein at least one presentation component is generated using the presentation
module; and

a presentation interface for outputting the presentation components.

59.  The presentation design system of claim 58, wherein the presentation module
design interface comprises input mechanisms and output mechanisms for 1)
completing method sequence templates used to generate a method sequence, 2)
selecting methods used to generate the method sequence from a method library, 3)

61



10

15

20

25

30

35

WO 03/028827 PCT/US02/30610

selecting graphical models from a graphical model library, 4) selecting sounds from a
sound library, 5) selecting gaming devices from a gaming device model library, 6)
selecting scents from a scent library, 7) selecting tastes from a taste library, 8)
selecting tactile feedback from a tactile feedback library, 9) selecting an animation
sequence from an animation sequence library and 10) converting model formats using

a model format converters.

60.  The presentation design system of claim 58, wherein the presentation interface
comprises one or more of display devices, audio output devices, light panels, bonus

wheels, kinetic feedback devices, scent generation devices and combinations thereof.

61. The presentation design system of claim 58, wherein the gaming simulator
comprises: 1) a gaming operating system comprising logic to load and unload gaming
software modules into a RAM from a memory device and contro] the play of the
game of chance; 2) a presentation logic module comprising logic to generate the
presentation for the game of chance; and 3) game flow logic software module
comprising logic to generates a sequence of game states used to play the game of
chance.

62.  The presentation design system of claim 58, wherein the game of chance is
selected from group consisting of slot games, poker games, pachinko games, multiple
hand poker games, pai-gow poker games, black jack games, keno games, bingo
games, roulette games, craps games, checkers, board games and card games.

63.  The presentation design system of claim 58, further comprising:
graphical design software for generating a graphical model used in the
presentation module.

64.  The presentation design system of claim 58, wherein the presentation module
comprises one or more model files and one or more script files with method
sequences that operate on the one or more model files.

65. The presentation design system of claim 58, wherein the presentation module

generates the presentation component for the game of chance on the gaming machine.

66.  The presentation design system of claim 58, wherein the presentation
component is designed to stimulate a game player’s sight, hearing, touch, smell, taste
and combinations thereof while the game player is playing the game of chance on the
gaming machine.

62



PCT/US02/30610

WO 03/028827

112

@\\

ol

1zh @I\\I\

Ll

el
Ol

VI 38N9ld

0k 4907

NOILVINISIN

L

0}
WILSAS

80T sidy @ ONILYHAO
ONINYD

_ U

¥0lL 21901
MOTH
FNVO

001 JHVMLH0S
ONIANVD

027 SOVAUIINI CPERLANEITY ZLT 3OVAUILNI
ANIHOVIY ANIHOVI ANIHOVI
S30IA3Q | s301A3q | S30IAIA
SONNOS SAONNOS SANNOS
SOIHAVHD SOIHAVYD SOIHAVYD
31VIS ETNAE 3LVLS
NOILLVINISIHd NOILY LNSS3td NOILVINISTHd
1NdLNo
8it viL 011
3IVIS | e ee| ILVIS | o e | ILVIS |
3INVYD 3INVO ‘ YD
-
e gzt >/
zz1/ ans INVD LYVLS il
ANVO TNV

/\oﬁ ANIT INILL

BN




PCT/US02/30610

WO 03/028827

gl 3-dNold

212

AR
on——

Ll JOV4HILNI
INIHOVYW

S30IN3a

SANNOS “M

SOHAVYO [\

T
J1V1S
NOILYINIS3Hd

(113
ERARS
INVD

1ndin

o)

// //

S€L s34 | | ¥EF SATM4
Ldid0s 13A0N

Zel S3TNACK
NOILLVIN3S3IMd

8¢l Idv

021 21901
3.1V1S NOILVINIS3Hd

90} 01907 NOILY.LNISTNd

80% sidv AMMV ONILVHIO

—

0L 21907
MOT4
FNYD

¢ol
NALSAS

00} FHVYM140S
ONINVO




PCT/US02/30610

WO 03/028827

3/12

80C

d¢ 3dNOId

AVIdSIA
HINVD

7

00c

17174

J¢ dNOId

AV IdSIA
HAVD

00T

(4114

— = ——

807z I IHNOId

°0¢

e
.
v

AV1dSId
HAIVD

...

ad

e

00C

b0z €< 3HNOId

(4174

AVIdSId
HINVD

—

—— =

00¢c

802  dz3”NOI e
ll I ———»
|
91T
r
, AVIdSIA
,,,,,,,, HNVD
0z ——
0z vZ 34No1d wre
[« // I >
AN
AP H
Y X 0T
L
r
AVIdSIA
HANVI %

00¢



PCT/US02/30610

4/12

WO 03/028827

0SE LNINNOHIANT DNINYD 9le 2€l IINAOW NOILYINISIHJ
30ONIND3IAS —
NOILYWINY 91 3114 LdI4DS
see——C) G2 103ardo ¢4 [ [60€ vival ZoS aOH.LIN
e
®
_&m\\ﬁ ° L zig
— | PR ERN — 3ONINOIS
vee 103rgo 3 [Z0€ v1val S0€ AOH.LIAN
. o i AoH.13an
S— I —
mmmlﬁ £2¢ Bm»_,mo < 4 (% [€0€ vivadl 10€ QOHLANW
— | PR
oz 22€103rd0 [ 5 (4]  [80€ v1val 90 QOHLIW
12e m ®
0ze A v ®
® I, ¥
1eel1oarao [ ™ [90¢ v.Lval v0€ QOHLIN mmwmmm_\m,__m
r A
02 103rao |« |« [zog v.Lval 00€ QOHLIN
|
1
_ i _
GGe ocl
NV , 21901 3LVYLS
03I . 7 NOILY.LNISIHd
JNVHL HIANTY 8€l

€ 3dNYid Idv



PCT/US02/30610

WO 03/028827

P HANOIA

9Ty

sty

vy

AVIdSIA
HAVD

LTy

SOy

ooy

7 907
~T0y
X

%N/%




PCT/US02/30610

WO 03/028827

S HANDOIA

028 IOVL4YILINI NDISAQ

TS INIHOVIN TYALYIA
sis 025 __ 515
/ 84 el
HOLYINWIS , ST0HLINOD ONINYD
ONINYD |
i Vi Z1S
‘ 1NdL1no 1NdLNO
| aNNOS TWOIHdYYD
6LS
605 806
Advagn AUVl
~ — dOHLIN 30IA3A
= T
N 2
3JINAON /_IL L0S 908
NOILVINISINd AdvYHdlT AdYdain
aNNos 300N a-€
705 208
Ay
SIILMILN S IVaNAL

00S !\«

3OV4H3LINI NDIS3a
3TNJOW NOILVLINISIYd




PCT/US02/30610

WO 03/028827

9 HANIIA

7/12

009 AV1dSIA IDV4HILNI NDIS3A
60S AHVHdI1 AOHLIN

20S Advdgl1 3LVIdNEL

805 AHVHLIT IDINIA

106 A”HvYHdIT ANNOS

1S INIHOVIN TVNLHIA

906 A”HVH4AIT 1H4dON a-€

929
NOILVWINY FONINO3S AOHLIW

\

609 NOILYIWHOANI 31V1S

919 ILVIdWNAL 103rd0 ITvOS/AN0ON

[G19 1ndNI Vival v19 AOHLaW

[€19 LNdNI v.Lvadl 219 dOHLIIN

[119 LNdNI Y.Lval 019 AOHL3IN




WO 03/028827 PCT/US02/30610

8/12

16

10

~—12

~—— 24

— 36

~— 4

28

Figure 7



PCT/US02/30610

WO 03/028827
9/12
Top Box Gaming
6 Machine
2
Camera
44 Card
Reader
. 24
Display
Main Cabinet 42
4
\ Ticket
Acceptor
NV-Memory N Display 242
234 34 |
Video o
Controller l - ‘
237 Main o
| Communication
Frame — | [ Board
Buffer Master Gaming 215
236 g Controller
IE ! 224 |
History l—— —
Database
Partition | | Hard Drive — /14
™\ 226  —
221 N 226
L/
| | Printer
4 —! 18
\ \
Game \ —
Pamggg Bill Coin
Validator AA¢ceptor
30 28

Figure 8



WO 03/028827 PCT/US02/30610

10/12

START

RECEIVE REQUEST TO GENERATE A
PRESENTATION COMPONENT
FOR PRESENTATION STATE IN A GAME OF
CHANCE PLAYED ON A GAMING MACHINE 905

y

EXECUTE ONE OR MORE METHOD SEQUENCES TO

GENERATE PRESENTATION COMPONENT 910

A

PRESENT PRESENTATION COMPONENT ON
GAMING DEVICE 915

/

COMMUNICATE GAMING INFORMATION TO
GAMING SOFTWARE MODULES VIAAPL ¢,

A
END

FIGURE 9



WO 03/028827 PCT/US02/30610

11/12

START

PROVIDING AN METHOD SEQUENCE TEMPLATE
COMPRISING ONE OR MORE
METHOD SEQUENCES 1005

Y

MODIFYING ONE OR MORE PARAMETERS IN THE
ONE OR MORE METHOD SEQUENCES 010

Y

SELECTING A MODEL FILE TO BE OPERATED ON
BY THE METHOD SEQUENCES  4q15

Y

STORING THE METHOD SEQUENCES GENERATED
FROM THE METHOD SEQUENCE TEMPLATE AND
THE MODEL FILE

TO A PRESENTATION MODULE 1020

'

EXECUTING THE PRESENTATION MODULE TO
GENERATE A PRESENTATION COMPONENT IN A

GAME OF CHANCE ON A GAMING MACHINI?I025

END

FIGURE 10



PCT/US02/30610

WO 03/028827

12/12

T8
HOIAAd
HOVIOLS
T4
HLOWHY

1T TINDIA s GEvod (£
WINOD NIVIA 977
HOIATA
0L AOVIOILS
SHDIAZA 2T
__ ONIAVD |
06 VTZ [ og (43
7§ SY0SSEO0Ud L VA ADIAIA
4> FOVIOLS
YHAIES AVIdsia AT TIOLINOD g
HNVO DNINVD JALSVIN TLONTY
IL
€9 19
Sz @vod STz aivod
NINOD NIVIN 977 ININOD NTVIA 977
HOIAEA HOIAHA
0z AOVIOLS (iYA FOVIOLS
SADIATA GYIE] SHOIARA HTIA
ONINVD ! DNINVD _
(244 95 [ a44 95
- VY L WVd
23 Ve
AV1dSia AATIOYINOD AVIdSIa YA TIOLLNOD
DNINVD YILSVIN DNINVD YTLSVIA




	Abstract
	Bibliographic
	Description
	Claims
	Drawings

