(51) International Patent Classification:
G06F 21/62 (2013.01) H04L 29/06 (2006.01)
(21) International Application Number:
PCT/EP2015/065 112
(22) International Filing Date:
2 July 2015 (02.07.2015)
(25) Filing Language:
English
(26) Publication Language:
English
(30) Priority Data:
14306219.8 31 July 2014 (31.07.2014) EP
(71) Applicant: GEMALTO SA [FR/FR]; 6, Rue de La Verrière, 92190 Meudon (FR).
(72) Inventors: GAUTIER, Steven; c/o GEMALTO SA, Intellectual Property Department, 525, Avenue du Pic de Bertagne, CS12023, 13881 Gemenos Cedex (FR).
LAMBERT, Patrick; c/o GEMALTO SA, Intellectual Property Department, 525, Avenue du Pic de Bertagne, CS12023, 13881 Gemenos Cedex (FR).
CHRETIEN, Stephane; c/o GEMALTO SA, Intellectual Property Department, 525, Avenue du Pic de Bertagne, CS12023, 13881 Gemenos Cedex (FR).
PAILLART, Frederic; c/o GEMALTO SA, Intellectual Property Department, 525, Avenue du Pic de Bertagne, CS12023, 13881 Gemenos Cedex (FR).
DELHESTE, Fabrice; c/o GEMALTO SA, Intellectual Property Department, 525, Avenue du Pic de Bertagne, CS12023, 13881 Gemenos Cedex (FR).
(74) Corresponding Calendar Year:
2015
(81) Designated States (unless otherwise indicated, for every kind of national protection available):
(84) Designated States (unless otherwise indicated, for every kind of regional protection available):
(54) Title: METHOD TO HANDLE SENSITIVE RESOURCES
(57) Abstract: The present invention relates to a method and a secure device having limited resources to handle sensitive resources inside the secure device (HSM) and of loading a realm configuration (RC), said realm configuration (RC) being intended to be used by said generic functions (GenF), said realm configuration (RC) describing: - subjects (<who>, M, US), - sensitive resources (<what>, CC_nb, PIN) associated to said subjects (<who>), - actions (<action>), intended to be applied by subjects (<who>, M) on sensitive resources (<what>, CC_nb) and defined from said generic functions (GenF), - authentication conditions (<how>) associated to said actions (<action>) and to be validated using a secure device's algorithm (algorithm) dealing with at least one sensitive resource (<what>, PIN).
Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(H))

Published:
— with international search report (Art. 21(3))
METHOD TO HANDLE SENSITIVE RESOURCES

FIELD OF THE INVENTION
The present invention relates to a method to handle sensitive resources using a secure device having limited resources. The aim of the invention is to secure business data interaction through a secure device. The invention particularly applies to real time payment solution, and especially to smartphone payment avoiding card provider fees.

The invention also pertains to a secure device using said method.

BACKGROUND OF THE INVENTION
Each business potentially concerned by real time payment solution can have its own subjects which are defined by one or several sets of resources.

Currently, applications supported by secure device of the Hardware Security Module (HSM) kind are developed as soon as there is no existing function within an existing library of functions. This implies a great amount of specific applications to be developed to implement specific functions. This is time consuming in terms of development and it can lead to an overload of the HSM in term of memory. Highly secure modules are thus excluded from the possibility to handle a great amount of data in complex and multiple environments.

Further alternative and advantageous solutions would, accordingly, be desirable in the art.

SUMMARY OF THE INVENTION
The present invention aims at proposing a solution allowing access to sensitive resources while being flexible to define access rules and remaining secure.

The present invention is defined, in its broadest sense, as a method to handle sensitive resources inside a secure device having limited resources, said method comprising the preliminary steps of implementing a predetermined number of generic functions in the secure device and of
loading a realm configuration, said realm configuration being intended to be used by said generic functions, said realm configuration describing:

- subjects,
- sensitive resources associated to said subjects,
- actions intended to be applied by subjects on sensitive resources and defined from said generic functions,
- authentication conditions associated to said actions and to be validated using a secure device's algorithm dealing with at least one sensitive resource,
- said actions enforcing sensitive resources to be handled on behalf of subjects only in case said authentication conditions are fulfilled,

sensitive resources being further handled outside the secure device in secure blocks protected by a secret key of the secure device, said secure blocks being created, updated and accessed through the secure device on behalf of subjects only using generic functions according to the realm configuration under authentication conditions.

The invention enables that all the data can be securely stored outside the secure device through the use of secure blocks constructed according to the realm configuration. Integrity is ensured through the use of signatures inside the secure blocks.

With the invention, a subject is representing an individual or a device associated to this individual and is defined by a set of resources. These resources can have different uses:

- Resources that are involved in rules definitions,
- Resources that are protected by rules.

Resources can be data, including credentials (subject name, login, phone number, PIN code, password etc), and can represent devices to be accessed or used, software etc. The invention enables to apply rules, stored in the realm configuration inside a secure device (HSM), to resources depending on the business needs.

Subjects can be categorized in terms of hierarchy (ownership, group, family, etc.). Rules can apply to this hierarchy by using resources.
According to an advantageous feature, said secret key is diversified by subject.

This feature enables to have totally independent subject blocks, the access of which being strongly protected.

According to a particular implementation, said realm configuration further defines a subject hierarchy, validation of said authentication conditions further depending on the subject hierarchy.

This implementation enables to make the access to resources dependent from such a hierarchy. Resources are managed by subject defined in subject profiles and access conditions to those resources are depending from subject authentication and authentication method.

In a preferred embodiment, said generic functions are the following: get resource, create subject block, update resource.

Those generic functions are the simplest ones enabling to process all the necessary operations enabling the functioning of the access management according to the invention.

Advantageously, said secure device is an HSM. The invention indeed totally fits to this context where a hardware security is provided but at the expense of resources inside the secure device. The invention enables to develop solutions for large scale access management while relying on the security provided by the HSM.

In another implementation, said secure device is a TEE. The invention enables in this context to lower the size of the TEE while relying on its security properties in comparison with a TEE where functions/operations would have been custom developed as it is today the case.

According to a particular feature, said sensitive resources are chosen among the group constituted by accesses to devices, data, code resources.

According to a realization of the invention, the realm configuration is stored in a realm block protected by the secure device.

This realization consists in gathering the realm rules inside a dedicated realm block protected by the secure device. The realm block is advantageously secured and stored inside the secure device for optimization
purpose. It is thus pushed inside the secure device, typically during a key
ceremony. However the realm block can also be stored outside the secure
device.

According to a specific embodiment, said secure blocks are protected by
at least two symmetrical keys, an encryption key and an integrity key.

This embodiment enables the integrity of each secure block to be
checked while relying on the security provided by the use of secret keys of
the secure device. Advantageously those keys are both diversified on a
subject basis.

Thus advantageously, said secure blocks are protected by at least two
symmetrical keys, an encryption key and an integrity keys, said keys being
diversified for each subjects as defined in the realm configuration.

According to a particular feature of the invention, said secure blocks are
transient, generated on the fly according to the realm configuration and then
deleted after use.

An on-the-fly generation enables to avoid the secure block to be forged.
A secure block can only be created by the secure device that holds the realm
configuration. The creation of a transient secure block from the realm
configuration will be triggered only after a beforehand authentication of the
entity asking for this creation according to the requirements in the realm
configuration.

The realm configuration does not contain data but a logical
representation of subjects, ressources, groupe access control, etc... The
transient secure blocks are useful for intermediate state, as temporary
autorisation to modify a resource, for example in the case of an OTP.

According to a particular feature, said secure device's algorithm deals
with several sensitive resources of different kinds.

This feature allows to gather resources into application usage, for
example, data, credential, personal data (private etc.).

The present invention also relates to a secure device adapted to handle
sensitive resources and having a predetermined number of generic functions
and a realm configuration, said realm configuration being intended to be used by said generic functions, said realm configuration describing:

- subjects,
- sensitive resources associated to said subjects,
- actions intended to be applied by subjects on sensitive resources and defined from said generic functions,
- authentication conditions associated to said actions and to be validated using a secure device's algorithm dealing with at least one sensitive resource,

said actions enforcing sensitive resources to be handled on behalf of subjects only in case said authentication conditions are fulfilled,
	said secure device handling sensitive resources stored outside the secure device in secure blocks created, updated and accessed by the secure device and protected by a secret key of the secure device, said handling of sensitive resources being processed by the secure device on behalf of subjects only using generic functions according to the realm configuration under authentication conditions.

To the accomplishment of the foregoing and related ends, one or more embodiments comprise the features hereinafter fully described and particularly pointed out in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description and the annexed drawings set forth in detail certain illustrative aspects and are indicative of but a few of the various ways in which the principles of the embodiments may be employed.

- Figure 1 shows an environment in which the invention is intended to be implemented;
- Figure 2 schematically shows the functioning of the invention in an exemplary application;
- Figure 3 schematically shows a realm block as generated according to a realm configuration of the invention;
- Figure 4 schematically shows a subject secure block of the invention;
• Figure 5 schematically represents the subjects as defined in a realm
configuration of the invention;
• Figure 6 schematically shows an example of application of the
invention.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
The same elements have been designated with the same reference
numerals in the different drawings. For clarity, only those elements and steps
which are useful to the understanding of the present invention have been
shown in the drawings and will be described.

FIG. 1 schematically shows an exemplary environment in which the
invention is intended to be implemented. This environment comprises a
payment platform PP exchanging with several peripheral entities. In the
presented example, these peripheral entities comprises a user equipment UE
manipulated by a user US, a point of sale POS, a financial service server
FSS, a data mass storage DMS, a key management service KMS, linked to a
secure device, here a hardware security module HSM.

The invention proposes to secure the exchanges between the different
tentities using the HSM and the data mass storage DB.

Figure 2 shows schematically the functioning of the invention around a
hardware security module HSM of the invention. Such HSM typically
comprises a memory MEM and local processor MP. The invention relies on
generic functions GenF available in the HSM and on a realm configuration
RC describing a realm for which further data are advantageously stored in
the data mass storage DMS, schematically represented by dotted line on
figure 2. It is noted that a single mass storage is here represented. However
several mass storage units will in practice more likely be used without
departing from the invention. For example, typically, diverse and several web
mass storages can be used.

Classically HSM are intended to perform cryptographic functions. Their
functions are limited to this. Some HSM have however a limited amount of
free resources susceptible to be programmed or to store data, typically a custom firmware.

The invention targets this last kind of HSM where a minimal personalization can be implemented. The invention proposes to personalize the HSM by implementing a limited number of basic functions working in combination with a loaded realm configuration in order to drastically enhance the processing and application capacity of the existing HSM. As the use of a limited number of basic functions and of a loaded realm configuration does not require great amount of resources, the HSM has enlarged functions well above what could be expected from its own resources.

The HSM of the invention is such that it exports data created from the realm configuration in data mass storage DMS. It creates for this purpose secure blocks comprising such data. This capacity drastically enhances the processing ability of the HSM and the quantity of data it can process.

Secure blocks are created according to rules defined in the realm configuration. In an advantageous embodiment, the realm configuration is stored in the HSM, secure device, as a realm block. This realm block can be stored in an external storage after protection by the HSM that will verify its integrity as often as necessary but will be preferably be loaded and stored inside the HSM for optimal performance.

Figure 3 shows schematically such an exemplary realm block RB. It is here noted that other realization can implement other forms for storing the realm configuration in the HSM.

The exemplary block RB includes a version of the block V, a realm configuration version RCV and some space reserved for further use RFU.

More specifically, it comprises a set of encrypted data D_EK, a signature SiK, encrypted realm configuration data $RCDEK$ and a realm configuration data length $RCDL$.

As shown on figure 3, clear data CD as encrypted in D_EK are typically constituted with a random RND and a realm identifier Rid and a hash of these two last data. In the realm block RB, those clear data CD are encrypted using an encryption key EK which is a secret key of the secure device.
Signature S_{IK} is obtained from the entire realm block and using a dedicated integrity key IK of the secure device (typically a realm MAC key). The signature enables to check the integrity of the realm configuration data RCD.

The realm configuration data RCDEK stored in the realm block RB are typically rules RU associated to a given action that can be required by a subject of the realm or a type of subjects of the realm, in the case such types are defined in the realm configuration. The realm block is advantageously shared by several secure devices in order to make the solution scalable by storing the encryption key in the key management system and therefore by transmitting it to each secure device. It is typically pushed inside secure device during a key ceremony. Keys derived from the encryption keys can also be used.

It is here noted that new rules or new subjects to be inserted in the environment managed by the HSM only needs some inputs in the realm configuration block. In practice, a short number of lines will have to be added in the realm block in order to modify a rule or to add a subject. This is a very important advantage of the invention.

Figure 4 shows a subject secure block SSB of the invention. A subject can be a user, a user browser, an administrator, a device, for example a payment terminal. Such subject secure blocks are intended to be exported to a mass storage, typically in the cloud. Subject blocks are created using generic functions of the secure device. The possibility to create such subject blocks enables to enlarge the processing capacity of the secure device as much as desired without requiring huge amount of resources inside the secure device itself.

According to the invention, the creation and the update of such subject secure blocks and the access to such subject secure blocks are performed by the secure device on behalf of subjects.

Subject secure blocks comprise resources to be accessed, and thus protected by rules defined in the realm configuration, and resources used in the definition of rules inside the realm configuration.
In the proposed illustrative example, the subject secure block SSB comprises a version of the secure block \(V \), a signature \(S_{\text{IK}} \) to enable to check the integrity of the data, an information on the length of the encrypted data \(\text{EL} \) and some space reserved for further use \(\text{RFU1} \) and \(\text{RFU2} \).

It further comprises encrypted secure block data SBDEK. The encryption is done using an encryption key \(EK \) of the secure device. Advantageously the used encryption keys are diversified for each of the subjects.

More generally, it is here noted that encryption keys \(EK \) are advantageously diversified depending on the encrypted data. This feature is not disclosed here in details. Any kind of diversification method known by the man skilled in the art could be used to implement a diversification of the integrity key. Thus, even if a single reference \(EK \) is used to represent the encryption of data on the figures, it is here noted that encryption keys \(EK \) are all keys belonging to the secure device but can be different. As encryption keys, integrity keys can also be diversified.

In the illustrative example, clear data CSBD comprises a random \(\text{RND} \), an ownership identifier \(\text{Oid} \), the realm configuration identifier \(\text{Rid} \), a family identifier \(\text{Fid} \) and a type identifier \(\text{Pid} \). The role of the random \(\text{RND} \) is typically to avoid attacker to have an idea of the \(\text{Oid} \) value or \(\text{Rid} \) value. If a \(\text{RND} \) of 16 bytes was not added then all the subject secure blocks will have 32 bytes and all those block will be identical. That can give information to an attacker to break the security. The type identifier indicates the subject type which is represented by this secure block. For example, if, in the realm configuration, a customer was define with the \(\text{PID} = 1 \). Then if \(\text{PID}=1 \) then it will represent a customer.

At last, a group \(\text{GR} \) is also comprised in the clear data CSBD and a number of resources \(\text{nbRE} \). The number of resources \(\text{nbRE} \) gives the number of resource block \(\text{REBL} \) in the remaining part of the clear data CSBD. Then a list of resource block \(\text{REBL} \) is thus inserted in the clear data CSBD.

Each resource block \(\text{REB} \) in the list \(\text{REBL} \) comprises a reference identifier \(\text{REFid} \), a length of the value \(\text{VL} \) and at last a value for the resource...
VR. For example, the reference identifier REFid is "password" and the value of the resource is "xxx" as input by the user.

Generic functions are advantageously the followings: create subject secure block, update resource, get resource. For all these functions, the realm configuration lists rules to be applied.

Figure 5 is a representation of a realm configuration of the invention. This realm configuration is advantageously based on a hierarchy and on constitution of groups, families and ownerships. It has here to be noted that this figure is only illustrative. The possibilities for a realm configuration are unlimited and subject blocks can be regrouped to as many groups as needed. A king K corresponds to the realm configuration as identified by the identifier Rid, this identifier Rid being shared by all the subjects as represented on figure 5. The king K is the first subject block that will create the subsequent secure block. The subject block king K is generated when the Realm Block is created during an initiation phase.

Then there are several administrators A1, A2 and A3 belonging to a first group of subjects of a same type and at a first level. This group is represented inside a dotted line circle. Group is a static notion that can gather subjects of different types. Here for example a web application dedicated to the platform management and called Administration Care AC owned by administrator A2 is belonging to the group of the administrators. Only administrators are authorized to connect to this application.

Another group is formed by subjects of the "customers" type: C1, C2 and C3 with what is own by these subjects. A customer is here typically a user.

Ownership are defined in solid line circles. Here a customer subject C1 created by the administrator subject A1 owns an application wallet subject AW and a SelfCare subject SC also belonging to the group. The SelfCare subject correspond to an end user application necessitating the authentication of the customer before connection. Customer C1, application wallet AW and selfcare SC are forming an ownership represented inside a solid line circle. A subject owned by a subject belonging to a group will inherit
of this group. The role of the ownership depends on the realm configuration which defines which subjects are to be owned or those which will be owned.

Administrator A1 also created a Merchant Manager subject MM which owns a point of sale subject POS1 and a Merchant application subject MA.

The subject type, here administrator, refers to specific rules inside the realm configuration which are useful for the creation of the subject. A subject is created under a type format, for example customer type, administrator type, device type, application type. The corresponding secure block contains a profile identifier enabling to link the secure block and its definition/description in the realm block defining the realm configuration. The secure block type information and thus the subject type information is thus kept by this profile identifier.

The "subject type" notion does not remain in the subject secure block as it is not useful anymore. It enables to apply a certain format to the listed resources. For example a customer subject will have a user name and a password as resources. Other resources can also be implicated as PIN, MSISDN, secret answer ...

Under the merchant manager MM are a point of sale POS1 and an application merchant AM. These three entities are also forming an ownership.

In order to proceed to modification on a given subject, rules will be defined in the realm configuration inside the realm block stored in the secure device.

Administrator A1 and all entities below it are forming a family represented inside a dashed line on figure 4. The family notion is an additional notion to avoid interaction between the administrator A2 and any one of the subjects under administrator A1.

Rules are defined depending on the family identifiers Fid, on the ownership identifiers Oid, on the groups GR of the requestor subject and of the requested subject.

In the following is given an illustrative example of use of the invention also illustrated on figure 2. A given subject, for example a merchant M,
require to get <action=get> a given resource, for example a credit card number <what=CC_nb>, from a given requested subject, for example an application having a subject secure block SSB<who=A>. In this case, corresponding rule RU is consulted in the realm configuration RC (advantageously stored in a realm configuration block as disclosed on figure 3) in order to know the requirement for merchant M to get resource in subject US <how(M-US)>.

In rule RU, it is required that the subject user US gives its personal identification number PIN <how=PIN;algorithm>. The subject secure block of the user US SSB<who=US> is thus consulted to retrieve the value of the PIN from the resources and to enable the secure device HSM to check it. Once the PIN is entered by the user US, it is checked by the secure device HSM. This checked is represented by a dashed line. Once the check is OK, the merchant M get the resource from the subject secure block SSB<who=A>.

The role of the secure device HSM is to apply the rules as listed in the realm configuration for such an access. Here the HSM uses an interface with the user US to check the PIN. The interface could be for example a point of sale POS1 managed by a given administrator or a mobile device of the user US. Said point of sale and mobile device are also defined as subject in the realm configuration. Their POS resources are token and token secret.

It is here underlined that the invention is such that the secure device only has central functional tasks GenF and calls external secure block's contents depending on the rules defined in the realm configuration RC.

Other action "update resource" is typically used when the user US wants to change its PIN for example. In this case only one subject block is concerned.

Other action "create subject blocks" enables to enlarge the processing capacity of the secure device. Any subject can be authorized to create subject block. For example a customer/user want to create a subject block for a mobile device of his/her own. The corresponding subject secure block will belong to the same ownership as this customer. Such a creation can require,
according to rules in the realm configuration, a preliminary action implicating an administrator secure block.

Creation of subject secure block can also be done while creating a new ownership. It would for example be the case when an administrator creates a subject secure blocks for a customer/user.

Today, data storages are subject to security threats such as SQL injection to try to corrupt or steal data, data export and backup, data hosted at an external site, database or file-system weaknesses. There are plenty of ways to protect data storage by full database or file-system encryption.

However, full encryption poorly tackles this topic. It does not offer good level of data separation to avoid leaks. On the other hand, access controls are often implemented in software and generally do not involve encryption.

The invention enables to provide custom data encryption through HSM. The invention also enables access controls to data separated from each other to make data private to an entity (a user, an application ...). It provides a way of protecting user or application's data in a flexible access controlled environment while preserving data security through efficient encryption.

In the example given below in reference to figure 6, every data have its own security: every kind of data can be encrypted under their own secret associated to a specific authentication (of a user, an application...).

For the given example, banking account data BD are encrypted under key K1 and require PIN authentication by the user to be decrypted whereas personal data PD such as address of a customer can be encrypted under key K2 and require login/password U/P authentication.

Advantageously, with the invention, such rules are defined as a policy in the realm configuration. On figure 6, only one rule RU is shown. It consists in the access "get" to the banking data BD by a point-of-sale POS. The requirement to access it is to make the user US of the corresponding banking account enter his/her PIN code.

It is here thus defined a method to protect data using a central secure device, each data being encrypted using its own secret and stored outside the central secure device in a cloud mass storage server, this own secret
being also stored outside the central secure device in a cloud mass storage
server encrypted using a secret encryption key of the central secure device,
the access to this secret being conditioned by a specific authentication of an
owner of the data with the central secure device.

It is here accessorily noted that such a method of partitioning storage
with different keys could be implemented independently from the use of a realm configuration.

The policy is enforced and protected through the use of a secure environment of the HSM kind. Keys K_1 and K_2 are software keys but they can only be extracted through HSM by proving first the authentication as advantageously disclosed in a corresponding rule RU. Advantageously, keys K_1 and K_2 are encrypted through an encryption chain leading to a safe HSM LMK (local master key) which is used. If the PIN is correctly entered in a step Get(PIN), and only depending on that condition, K_1 is extracted Get(K_1) in clear using cryptographic means E/D and then used to encrypt/decrypt the data BD. Once done, key K_1 is erased from application memory, leaving minimum surface to an attacker. The same is performed to access the data PD but with the acquisition of user/password U/P resource.

Therefore, it allows encrypting differently and efficiently every piece of data to be hosted into a database or file-system while authorizing access to this data depending on how the accessor or the owner is authenticated.

The authentication part is made onto the HSM or secure device. Data encryption/decryption advantageously still occurs in software for performance reasons on high volume of data.

Thus, for instance, when a customer didn't use his/her banking account for 6 months, it would be impossible to get the clear data out of the database for example by SQL injection because the keys protecting this data are encrypted through HSM and stored externally in mass storage from which they could only be extracted by first proving the PIN to the HSM.

In the above detailed description, reference is made to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient
detail to enable those skilled in the art to practice the invention. The above
detailed description is, therefore, not to be taken in a limiting sense, and the
scope of the present invention is defined only by the appended claims,
appropriately interpreted, along with the full range of equivalents to which the
claims are entitled.
CLAIMS

1. Method to handle sensitive resources inside a secure device (HSM) having limited resources, said method comprising the preliminary steps of implementing a predetermined number of generic functions (GenF) in the secure device (HSM) and of loading a realm configuration (RC), said realm configuration (RC) being intended to be used by said generic functions (GenF), said realm configuration (RC) describing:
 - subjects (<who>, M, US),
 - sensitive resources (<what>, CC_nb, PIN) associated to said subjects (<who>),
 - actions (<action>) intended to be applied by subjects (<who>, M) on sensitive resources (<what>, CC_nb) and defined from said generic functions (GenF),
 - authentication conditions (<how>) associated to said actions (<action>) and to be validated using a secure device's algorithm (algorithm) dealing with at least one sensitive resource (<what>, PIN),
 - said actions (<action>) enforcing sensitive resources (<what>, CC_nb) to be handled on behalf of subjects (<who>, M) only in case said authentication conditions (<how>) are fulfilled,
 - said sensitive resources (<what>) being further handled outside the secure device (HSM) in secure blocks (SSB) protected by a secret key of the secure device (HSM), said secure blocks (SSB) being created, updated and accessed through the secure device (HSM) on behalf of subjects (M, US) only using generic functions (GenF) according to the realm configuration (RC) under authentication conditions (<how>).

2. Method according to claim 1, wherein said secret key is diversified by subject.
3. Method according to claim 1, wherein said realm configuration (RC) further defines a subject hierarchy, validation of said authentication conditions (how) further depending on the subject hierarchy.

4. Method according to claim 1, wherein said generic functions (GenF) are at least the following: get resource, create subject block, update resource.

5. Method according to claim 1, wherein said secure device is an HSM.

6. Method according to claim 1, wherein said secure device is a TEE.

7. Method according to claim 1, wherein said sensitive resources are chosen among the group constituted by accesses to devices, data, code resources.

8. Method according to claim 1, wherein the realm configuration (RC) is stored in a realm block (RB) protected by the secure device (HSM).

9. Method according to claim 8, wherein the realm block (RB) is stored inside the secure device (HSM).

10. Method according to claim 1, where said secure blocks (SSB) are protected by at least two symmetrical keys, an encryption key and an integrity key.

11. Method according to claim 10, wherein said encryption and integrity keys are diversified for each subjects as defined in the realm configuration (RC).
12. Method according to claim 1, wherein said secure blocks (SSB) are transient, generated on the fly according to the realm configuration (RC) and then deleted after use.

13. Method according to claim 1, wherein said secure device's algorithm (algorithm) deals with several sensitive resources of different kinds.

14. Secure device (HSM) adapted to handle sensitive resources and having a predetermined number of generic functions (GenF) and a realm configuration (RC), said realm configuration (RC) being intended to be used by said generic functions (GenF), said realm configuration (RC) describing:
 - subjects (<who>, M, US),
 - sensitive resources (<what>, CC_nb, PIN) associated to said subjects (<who>),
 - actions (<action>) intended to be applied by subjects (<who>, M) on sensitive resources (<what>, CC_nb) and defined from said generic functions (GenF),
 - authentication conditions (<how>) associated to said actions (<action>) and to be validated using a secure device's algorithm (algorithm) dealing with at least one sensitive resource(<what>, PIN),
 said actions (<action>) enforcing sensitive resources (<what>, CC_nb) to be handled on behalf of subjects (<who>, M) only in case said authentication conditions (<how>) are fulfilled,
 said secure device (HSM) handling sensitive resources (<what>) stored outside the secure device (HSM) in secure blocks (SSB) created, updated and accessed by the secure device (HSM) and protected by a secret key of the secure device (HSM), said handling of sensitive resources (<what>) being processed by the secure device (HSM) on behalf of subjects (<who>) only using generic functions (GenF) according to the realm configuration (RC) under authentication conditions (<how>).
15. Method to handle sensitive resources inside a Hardware Security Module (HSM) having limited resources, said method comprising the preliminary steps of implementing a predetermined number of generic functions (GenF) in the Hardware Security Module (HSM) and of loading a realm configuration (RC), said realm configuration (RC) being intended to be used by said generic functions (GenF), said realm configuration (RC) describing:
- subjects (<who>, M, US),
- sensitive resources (<what>, CC_nb, PIN) associated to said subjects (<who>),
- actions (<action>) intended to be applied by subjects (<who>, M) on sensitive resources (<what>, CC_nb) and defined from said generic functions (GenF),
- authentication conditions (<how>) associated to said actions (<action>) and to be validated using a Hardware Security Module’s algorithm (algorithm) dealing with at least one sensitive resource (<what>, PIN),
said actions (<action>) enforcing sensitive resources (<what>, CC_nb) to be handled on behalf of subjects (<who>, M) only in case said authentication conditions (<how>) are fulfilled,
said sensitive resources (<what>) being further handled outside the Hardware Security Module (HSM) in secure blocks (SSB) protected by a secret key of the Hardware Security Module (HSM), said secure blocks (SSB) being created, updated and accessed through the Hardware Security Module (HSM) on behalf of subjects (M, US) only using generic functions (GenF) according to the realm configuration (RC) under authentication conditions (<how>).

16. Method to handle sensitive resources inside a Trusted Execution Environment having limited resources, said method comprising the preliminary steps of implementing a predetermined number of generic functions (GenF) in the Trusted Execution Environment and of loading a realm configuration (RC), said realm configuration (RC) being intended to be
used by said generic functions (GenF), said realm configuration (RC) describing:
- subjects (<who>, M, US),
- sensitive resources (<what>, CC_nb, PIN) associated to said subjects
- actions (<action>) intended to be applied by subjects (<who>, M) on sensitive resources (<what>, CC_nb) and defined from said generic functions (GenF),
- authentication conditions (<how>) associated to said actions
- said actions (<action>) enforcing sensitive resources (<what>, CC_nb) to be handled on behalf of subjects (<who>, M) only in case said authentication conditions (<how>) are fulfilled,
- said sensitive resources (<what>) being further handled outside the Trusted Execution Environment in secure blocks (SSB) protected by a secret key of the Trusted Execution Environment, said secure blocks (SSB) being created, updated and accessed through the Trusted Execution Environment on behalf of subjects (M, US) only using generic functions (GenF) according to the realm configuration (RC) under authentication conditions (<how>).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INVI. G06F21/62 H04L29/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06F H04L

Further particulars of classification:
- Classification symbols G06F21/62 and H04L29/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 8 312 064 BIT (GAUVIN WILLLIAM J [US]) 13 November 2012 (2012-11-13) abstract</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>col. umn 5, line 36 - line 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col. umn 6, line 52 - line 55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col. umn 8, line 19 - line 21; figure 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col. umn 8, line 23 - line 39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col. umn 7, line 7 - line 9; figure 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col. umn 7, line 26 - line 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col. umn 14, line 3 - line 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col. umn 8, line 12 - line 14; figure 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col. umn 12, line 6 - line 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col. umn 6, line 3 - line 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>col. umn 6, line 47 - line 57</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "Z" document member of the same patent family

Date of the actual completion of the international search: 10 September 2015

Date of mailing of the international search report: 17/09/2015

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3018

Authorized officer: Dobre, Dan