wo 2015/012645 A1 |1 IO OO0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

(43) International Publication Date WO 2015/012645 A1
29 January 2015 (29.01.2015) WIPO I PCT
(51) International Patent Classification: (74) Agents: LEE, Keon-Joo et al,; Mihwa Bldg., 16 Dae-

eay)

(22)

(25)
(26)
(30)

1

(72

HO04L 12/951 (2013.01)

International Application Number:
PCT/KR2014/006829

International Filing Date:
25 July 2014 (25.07.2014)

(8D

hak-ro 9-gil, Chongro-gu, Seoul 110-524 (KR).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

Filing Language: English
Publication Language: English

Priority Data:

61/859,015 26 July 2013 (26.07.2013) US

61/896,570 28 October 2013 (28.10.2013) US

14/178,212 11 February 2014 (11.02.2014) Us ZW.
Applicant: SAMSUNG ELECTRONICS CO. LTD. (84

[KR/KR]; 129, Samsung-ro, Yeongtong-gu, Suwon-si,
Gyeonggi-do 443-742 (KR).

Inventors: LIM, Young-Kwon; 1542 Hennessey Drive,
Allen, Texas 75013 (US). BOUAZIZI, Imed; 8109 Han-
ing Drive, Plano, Texas 75025 (US).

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR PACKET TRANSMISSION SUPPORTING DOWNLOADING AND STREAM-

ING
(57) Abstract: A method and apparatus
generate and process transport packets. A
method of generating a transport packet by
a sending entity includes generating a
transport packet to include a packet head-
RECEIVE A TRANSPORT PACKET —1305 er, a payload header and a payload, the
packet header comprising an identifier of a
¢ payload type in a field indicating one of a
GENERIC MODE IDENTIFY A PAYLOAD TYPE FROM plurality of payload types, the plurality of
AN OBJECT TYPE FIELD IN 1310 payload types comprising a first payload
THE PACKET HEADER type of a download mode and a second
1315 STREAMING MODE payload type of a streaming mode, and
PROCESS THE GENERIC MODE sending the transport packet.
PAYLOAD DATA IDENTIFY A DELIVERY DATAUNIT TYPE
FROM A DU TYPE FIELD IN 1320
A STREAMING MODE PAYLOAD HEADER
v
IDENTIFY INFORMATION ABOUT WHETHER
MFU(S) ARE PRESENT IN THE MMTP PACKET
FROM A FRAGMENTATION INDICATOR FIELD [—1329
IN THE MPU MODE PAYLOAD
v
PROCESS THE DU DATA —1330

END

WO 2015/012645 A1 |IIWAT 00T 00 OO

TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW, Published:

KM, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

WO 2015/012645 PCT/KR2014/006829

Description

Title of Invention: METHOD AND APPARATUS FOR PACKET

[1]

[2]

[3]

[4]

[5]

[6]

[7]

TRANSMISSION SUPPORTING DOWNLOADING AND

STREAMING
Technical Field

The present application relates generally to media data transmission and, more
specifically, to a packet transmission protocol that supports both downloading and

streaming.

Background Art

Moving Picture Experts Group (MPEG) media transport (MMT) is a digital container
standard or format that specifies technologies for the delivery of coded media data for
multimedia service over heterogeneous IP (Internet Protocol) network environments.
The delivered coded media data includes both audiovisual media data requiring syn-
chronized decoding and presentation of a specific unit of data in a designated time,
namely timed data, and other types of data that are decoded and presented in an
arbitrary time based on the context of service or interaction by the user, namely non-
timed data.

A new packetization mode, a Generic File Delivery (GFD) mode, has been in-
troduced to the MMT delivery function. However, the integration of that mode into
MMTP and with the existing payload modes has not been optimized.

Accordingly, there is a need for improved apparatuses and methods for media data

transmission.
Disclosure of Invention
Technical Problem

Embodiments of the present disclosure provide a method and apparatus generate and
process transport packets using a packet transmission protocol capable of supporting

downloading and streaming.

Solution to Problem

In one exemplary embodiment, a method of generating a transport packet by a
sending entity is provided. The method includes generating a transport packet to
include a packet header, a payload header and a payload, the packet header comprising
an identifier of a payload type in a field indicating one of a plurality of payload types,
the plurality of payload types comprising a first payload type of a download mode and
a second payload type of a streaming mode; and sending the transport packet.

In another exemplary embodiment, an apparatus in a sending entity capable of

WO 2015/012645 PCT/KR2014/006829

[8]

[9]

[10]

2

generating a transport packet is provided. The apparatus includes processing circuitry
configured to generate a transport packet to include a packet header, a payload header
and a payload, the packet header comprising an identifier of a payload type in a field
indicating one of a plurality of payload types, and the plurality of payload types
comprising a first payload type of a download mode and a second payload type of a
streaming mode; and a transmitter configured to send the transport packet.

In yet another exemplary embodiment, a method of processing a transport packet by
a receiving entity is provided. The method comprises receiving a transport packet to
include a packet header, a payload header and a payload, the packet header comprising
an identifier of a payload type in a field indicating one of a plurality of payload types,
and the plurality of payload types comprising a first payload type of a download mode
and a second payload type of a streaming mode; and processing the payload according
to the packet header and the payload header.

In yet another exemplary embodiment, an apparatus in a receiving entity capable of
processing a transport packet is provided. The apparatus comprises a receiver
configured to receive the transport packet to include a packet header, a payload header
and a payload, the packet header comprising an identifier of a payload type in a field
indicating one of a plurality of payload types, and the plurality of payload types
comprising a first payload type of a download mode and a second payload type of a
streaming mode, and processing circuitry configured to process the payload according
to the packet header and the payload header.

Before undertaking the DETAILED DESCRIPTION below, it may be advantageous
to set forth definitions of certain words and phrases used throughout this patent
document: the terms “include” and “comprise,” as well as derivatives thereof, mean
inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases
“associated with” and “associated therewith,” as well as derivatives thereof, may mean
to include, be included within, interconnect with, contain, be contained within, connect
to or with, couple to or with, be communicable with, cooperate with, interleave,
juxtapose, be proximate to, be bound to or with, have, have a property of, or the like;
and the term “controller” means any device, system or part thereof that controls at least
one operation, such a device may be implemented in hardware, firmware or software,
or some combination of at least two of the same. It should be noted that the func-
tionality associated with any particular controller may be centralized or distributed,
whether locally or remotely. Definitions for certain words and phrases are provided
throughout this patent document, those of ordinary skill in the art should understand
that in many, if not most instances, such definitions apply to prior, as well as future

uses of such defined words and phrases.

WO 2015/012645 PCT/KR2014/006829

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Brief Description of Drawings

For a more complete understanding of the present disclosure and its advantages,
reference is now made to the following description taken in conjunction with the ac-
companying drawings, in which like reference numerals represent like parts:

FIGURE 1 illustrates an example of a transmission system in which various em-
bodiments of the present disclosure may be implemented;

FIGURE 2 illustrates an MMT Package and the logical structure of the MMT
Package in accordance with various embodiments of the present disclosure;

FIGURE 3 illustrates an example of timing provided by a presentation information
document for presentation of MPUs from different assets in accordance with an il-
lustrative embodiment of the present disclosure;

FIGURE 4 illustrates an exemplary structure for a streaming mode payload header in
accordance with various embodiments of the present disclosure;

FIGURE 5 illustrates an exemplary structure for a timed media fragment unit (MFU)
header in accordance with various embodiments of the present disclosure;

FIGURE 6 illustrates an exemplary structure for a non-timed MFU header in ac-
cordance with various embodiments of the present disclosure;

FIGURE 7 illustrates an exemplary structure for a signaling message header in ac-
cordance with various embodiments of the present disclosure;

FIGURE 8 illustrates an exemplary structure for a GFD mode packet structure in ac-
cordance with various embodiments of the present disclosure;

FIGURE 9 illustrates an exemplary structure for an MMTP packet in accordance
with various embodiments of the present disclosure;

FIGURE 10 illustrates an exemplary structure for header extension in accordance
with various embodiments of the present disclosure;

FIGURE 11 illustrates an exemplary diagram of packetization of timed media data in
accordance with various embodiments of the present disclosure;

FIGURE 12 illustrates an exemplary diagram of packetization of non-timed media
data in accordance with various embodiments of the present disclosure;

FIGURE 13 illustrates a process for processing a transport packet at a receiving
entity in accordance with an illustrative embodiment of the present disclosure;

FIGURE 14 illustrates a process for generating a transport packet at a sending entity
in accordance with an illustrative embodiment of the present disclosure; and

FIGURE 15 illustrates an example electronic device in which various embodiments

of the present disclosure may be implemented.
Mode for the Invention
FIGURES 1 through 15, discussed below, and the various embodiments used to

WO 2015/012645 PCT/KR2014/006829

[28]

[29]

[30]

4

describe the principles of the present disclosure in this patent document are by way of
illustration only and should not be construed in any way to limit the scope of the
disclosure. Those skilled in the art will understand that the principles of the present
disclosure may be implemented in any suitably arranged system or device.

MMT coding and media delivery is discussed in the following document and
standards description: MPEG-H Systems, Text of ISO/IEC 2nd CD 23008-1 MPEG
Media Transport, which is hereby incorporated into the present disclosure as if fully set
forth herein. MMT defines three functional areas including encapsulation, delivery,
and signaling. The encapsulation functional area defines the logical structure of media
content, the MMT package, and the format data units to be processed by an MMT
compliant entity. MMT package specifies components including media content and the
relationship among the media content to provide information needed for adaptive
delivery. The format of the data units is defined to encapsulate the coded media to
either be stored or carried as a payload of a delivery protocol, and to be easily
converted between storage and carrying. The delivery functional area defines the ap-
plication layer protocol and format of the payload. The application layer protocol
provides enhanced features, including multiplexing, for delivery of the MMT package
compared to conventional application layer protocols for the delivery of multimedia.
The payload format is defined to carry coded media data that is agnostic to the specific
media type or encoding method. The signaling functional area defines the format of
messages to manage delivery and consumption of MMT packages. Messages for con-
sumption management are used to signal the structure of the MMT package and
messages for delivery management are used signal the structure of payload format and
configuration of the protocol.

MMT defines a new framework for delivery of time continuous multimedia such as
audio, video and other static content such as widgets, files etc. MMT specifies a
protocol (i.e., MMTP) for the delivery of an MMT package to a receiving entity. The
MMTP signals transmission time of the MMTP package as part of the protocol header.
This time enables the receiving entity to perform de-jittering by examining the
transmission time and reception time of each incoming MMT packet.

Embodiments of the present disclosure recognize that a new packetization mode, the
GFD mode, has been introduced to the MMT delivery function. GFD enables the
transmission of any generic file. Embodiments of the present disclosure recognize that
presently MMT defines 4 other packetization modes: the media processing unit (MPU)
mode, the MPU Fragment mode, Signaling Message mode, and forward error
correction (FEC) mode. The MPU mode delivers a complete MPU and leaves frag-
mentation to the transport layer. The MPU Fragment mode is optimized for MPU

delivery and packetization is performed in a media-aware manner, informing the

WO 2015/012645 PCT/KR2014/006829

[31]

[32]

[33]

[34]

5

receiving client about the MPU fragment type and characteristics. The FEC and
signaling modes are for delivering FEC repair packets and signaling messages, re-
spectively. The FEC repair packet carries segmented set of FEC repair flow which can
be used to recover one or more lost source packets.

Embodiments of the present disclosure recognize that the MPU mode may be seen as
a sub-case of the GFD mode, since the whole MPU is delivered as an object and
without any media-aware packetization. The information about the MPU can be fully
delivered as part of the metadata of the object in the GFD mode. Consequently, em-
bodiments of the present disclosure provide to remove the MPU mode and rename the
MPU Fragment mode into the MPU mode for disambiguation. As a result, an MPU
may be delivered either as a generic object using the GFD mode or as a set of in-
dependent fragments using this MPU mode.

Embodiments of the present disclosure recognize that presently the payload format of
a packet is split over multiple layers. A main payload header is needed for each
payload format and has a one-to-one mapping to the MMTP protocol header. Em-
bodiments of the present disclosure recognize to merge this generic payload header
with the MMTP protocol header and make the remaining payload headers dependent
on the payload type. For example, fragmentation and aggregation are also dependent
on the payload type, as some payload types, e.g. FEC and GFD, do not require ag-
gregation and fragmentation. Embodiments of the present disclosure further provide a
payload type for signaling messages enable easy identification of signaling messages
and updates. The payload format will also enable aggregation and fragmentation of
signaling messages.

FIGURE 1 illustrates an example of a transmission system 100 in which various em-
bodiments of the present disclosure may be implemented. In the illustrated em-
bodiment, wireless system 100 includes a sending entity 101, a network 105, receiving
entities, 110-116, wireless transmission points (e.g., an Evolved Node B (eNB), Node
B), such as base station (BS) 102, base station (BS) 103, and other similar base stations
or relay stations (not shown). Sending entity 101 is in communication with base station
102 and base station 103 via network 105 which may be, for example, the Internet, a
media broadcast network, or IP-based communication system. Receiving entities
110-116 are in communication with sending entity 101 via network 105 and/or base
stations 102 and 103. For example, receiving entities 110-116 may receive media data
for downloading and streaming from sending entity 101. In various embodiments, the
sending entity 101 may generate and send MMTP packets and one or more of the
receiving entities 110-116 may receive and process the MMTP packets in accordance
with the teachings of present disclosure.

Base station 102 provides wireless access (via base station 101) to network 105 to a

WO 2015/012645 PCT/KR2014/006829

[35]

[36]

[37]

[38]

[39]

6

first plurality of receiving entities (e.g., user equipment, mobile phone, mobile station,
subscriber station) within coverage area 120 of base station 102. The first plurality of
receiving entities includes user equipment 111, which may be located in a small
business (SB); user equipment 112, which may be located in an enterprise (E); user
equipment 113, which may be located in a WiFi hotspot (HS); user equipment 114,
which may be located in a first residence (R); user equipment 115, which may be
located in a second residence (R); and user equipment 116, which may be a mobile
device (M), such as a cell phone, a wireless communication enabled laptop, a wireless
communication enabled PDA, a tablet computer, or the like.

Base station 103 provides wireless access to network 105 to a second plurality of
user equipment within coverage area 125 of base station 103. The second plurality of
user equipment includes user equipment 115 and user equipment 116. In an exemplary
embodiment, base stations 101-103 may communicate with each other and with user
equipment 111-116 using OFDM or OFDMA techniques.

While only six user equipment are depicted in FIGURE 1, it is understood that
system 100 may provide wireless broadband and network access to additional user
equipment. It is noted that user equipment 115 and user equipment 116 are located on
the edges of both coverage area 120 and coverage area 125. User equipment 115 and
user equipment 116 each communicate with both base station 102 and base station 103
and may be said to be operating in handoff mode, as known to those of skill in the art.

User equipment 111-116 may access media data voice, data, video, video con-
ferencing, and/or other services via network 105. In an exemplary embodiment, one or
more of user equipment 111-116 may be associated with an access point (AP) of a
WiFi WLAN. User equipment 116 may be any of a number of mobile devices,
including a wireless-enabled laptop computer, personal data assistant, notebook,
handheld device, or other wireless-enabled device. User equipment 114 and 115 may
be, for example, a wireless-enabled personal computer (PC), a laptop computer, a
gateway, or another device.

FIGURE 2 illustrates an MMT Package 200 and the logical structure of the MMT
package 200 in accordance with various embodiments of the present disclosure. As il-
lustrated, the MMT package 200 includes presentation one or more information
documents 205 and one or more assets 210 that may have associated transport charac-
teristics 215. An asset 210 is a collection of one or more media processing units
(MPUs) 220 that share a same asset identification (ID). An asset 210 includes encoded
media data such as audio or video, or a web page. The media data can be either timed
or non-timed.

Presentation information (PI) documents 205 include information specifying the

spatial and temporal relationship among the assets 210 for consumption. The com-

WO 2015/012645 PCT/KR2014/006829

[40]

[41]

[42]

[43]

7

bination of hypertext markup language (HTML) and composition information (CI)
documents are examples of PI documents 205. A PI document 205 may also be used to
determine a delivery order of assets 210 in a package 200. A PI document 205 is
delivered either as one or more messages or as a complete document. In the case of
broadcast delivery, service providers may circulate presentation information
documents 205 sequentially and determine a frequency at which circulation is to be
performed.

An asset 210 is any multimedia data to be used for building a multimedia pre-
sentation. As discussed above, an asset 210 is a logical grouping of MPUs that share a
same asset ID for carrying encoded media data. Encoded media data of an asset 210
can be either timed data or non-timed data. Timed data are encoded media data that
have an inherent timeline and may require synchronized decoding and presentation of
the data units at a designated time. Non-timed data are other types of data that can be
decoded at an arbitrary time based on the context of a service or indications from the
user.

MPUs 220 of a single asset 210 have either timed or non-timed media. Two MPUs
220 of the same asset 210 carrying timed media data may have no overlap in their pre-
sentation time. In the absence of a presentation indication, MPUs 220 of the same asset
210 may be played back sequentially according to their sequence numbers. Any type of
media data which can be individually consumed by the presentation engine of an MMT
receiving entity may be considered as an individual asset 210. Examples of media data
types which can be considered as an individual asset 210 are audio, video, or a web
page media data types.

An MPU 220 is a media data item that may be processed by an MMT entity and
consumed by a presentation engine independently from other MPUs 220. Processing of
an MPU 220 by an MMT entity includes encapsulation/decapsulation and packe-
tization/depacketization. Consumption of an MPU 220 includes media processing (e.g.
encoding/decoding) and presentation. For packetization purposes, an MPU 220 may be
fragmented into data units that may be smaller than an access unit (AU). The syntax
and semantics of MPU are not dependent on the type of media data carried in the
MPU.

An MPU 220 may include a portion of data formatted according to other standards,
e.g. MPEG-4 advanced video coding (AVC) or MPEG-2 transport stream (TS). For
any asset with asset identification (asset_id) 'X' that depends on an asset with asset_id
"Y', the m-th MPU of the asset with asset_id 'X' and the n-th MPU of the asset with
asset_id "Y' are non-overlapping whenever 'm' is not equal to 'n', (i.e. no sample in the
m-th MPU of Asset with asset_id X' is inside the time interval defined by the sample
boundaries of the nth MPU of Asset with asset_id "Y'. Additionally, if the segment

WO 2015/012645 PCT/KR2014/006829

[44]

[45]

[46]

8

index ('sidx’) box is present, the media intervals defined by the 'sidx' box is non-
overlapping, (i.e. no media sample in the k-th media interval (defined by the 'sidx' box)
in an MPU is inside the time interval defined by the sample boundaries of the j-th
media time interval (defined by the 'sidx’ box) for 'j' different from 'k". In the absence
of an 'sidx' box, the concatenation of the j-th MPU of the MPU of Asset with asset_id
"Y' with the j-th MPU of the asset with asset_id 'X' without MPU metadata, results in a
valid MPU. When an 'sidx’ box is present the concatenation of the k-th media interval
(defined by the 'sidx' box) of the j-th MPU of asset with asset_id "Y' with the k-th
media interval (defined by the 'sidx' box) of the j-th MPU of the asset with asset_id X'
following the metadata of the MPU with asset_id "Y' results in a valid MPU.

A single MPU includes an integral number of AUs or non-timed data. In other words,
for timed data, a single AU is not fragmented into multiple MPUs. For non-timed data,
a single MPU includes one or more non-timed data items to be consumed by pre-
sentation engine. An MPU is identified by an associated asset_id and a sequence
number.

An MPU that includes timed media includes at least one stream access point (SAP)
as defined in Annex I of ISO/IEC 14496-12, which is incorporated by reference herein.
The first access unit of an MPU is a SAP for processing by an MMT entity. For timed
media, this implies that the decoding order of the first AU in the MPU payload is '0'.
For the MPU including data formatted according to other standards, the MPU payload
starts with the information necessary for the processing of such a format. For example,
if an MPU includes video data, the MPU payload includes one or more groups of
pictures and the decoder configuration information required to process them. In
another example, if an MPU includes MPEG-2 TS packets, the MPU payload may start
with TS packets including program association table (PAT) program map table (PMT)
for the remaining or subsequent TS packets. For timed media data, the presentation
duration, the decoding order, and the presentation order of each AU are signaled as
part of the MPU metadata. The MPU does not have an initial presentation time. The
presentation time of the first AU in an MPU is described by the PI document. The PI
document includes information specifying the initial presentation time of each MPU.

FIGURE 3 illustrates an example of timing provided by a PI document for pre-
sentation of MPUs from different assets in accordance with an illustrative embodiment
of the present disclosure. In this illustrative example, the PI document specifies that the
MMT receiving entity shall present MPU #1 of Asset #1 and of Asset #2 simul-
taneously. At a later point, MPU #1 from Asset #3 is scheduled to be presented.
Finally, MPU #2 of Asset #1 and Asset #2 are to be presented in synchronization. The
specified presentation time for an MPU defines the presentation time of the first AU of

that MPU. An MPU that contains non-timed media data may designate one data item

WO 2015/012645 PCT/KR2014/006829

[47]

[48]

[49]

as the entry point.

MFUs enable media-aware fragmentation of an MPU for transportation purposes.
This allows an MMT sending entity to perform fragmentation of MPUs with con-
sideration for consumption at the receiving end. An MFU includes a media data unit,
that may be smaller than an AU for timed media data, and the included media data may
be processed by the media decoder. An MFU includes an MFU header that includes in-
formation on the boundaries of the carried media data. The syntax and semantics of
MFU are independent of the type of media data carried in the MFU. If the size of an
MFU is bigger than the size of a link layer frame, an MFU may be fragmented into
multiple link layer frames. An MFU includes an identifier to distinguish one MFU
from another in the same MPU as well as relationship information among MFUs
within a single AU in a manner that is agnostic to the encoded media format. The de-
pendency relationship among MFUSs in a single AU is described as are the relative
priorities of MFUs. The information can be used by underlying delivery layers for
enhanced delivery. For example, the delivery layer can skip delivery of discardable
MFUs to support QoS under certain circumstances, e.g. insufficient bandwidth on
certain links in the network.

In accordance with the various embodiments of the present disclosure, an MMT
payload is a generic payload used to packetize and carry assets, generic objects, and
other information for consumption of a MMT package using the MMT protocol
(MMTP). The MMT payload may be used to packetize MPUs, generic objects, and
signaling messages. The MMT payload may carry one or more fragments of MPUs,
one or more signaling messages, one or more generic objects (including complete
MPUs), one or more repair symbols, etc. The type of the payload is indicated by the
type (or object type) field in the MMTP packet header, as will be discussed in greater
detail with the discussion of FIGURE 9 below. For each payload type, a single data
unit for delivery, as well as a type specific payload header, are defined. For example, a
fragment of an MPU (e.g. an MFU) is considered as a single data unit when MMT
payload carries MPU fragments. The MMT protocol may aggregate multiple data units
with the same data type into a single payload. It can also fragment a single data unit
into multiple packets.

The MMT payload consists of a payload header and payload data. Some data types
may allow for fragmentation and aggregation, in which case, a single data unit is split
into multiple fragments or a set of data units are delivered in a single packet. Each data
unit may have its own payload header depending on the type of the payload. For types
that do not require a payload type-specific header no payload type header is present
and the payload data follows the MMTP header. Some fields of the MMTP packet are
interpreted differently based on the payload type. The semantics of these fields are

WO 2015/012645 PCT/KR2014/006829

[50]

[51]

[52]

[53]

[54]

10

defined by the payload type in use.

FIGURE 4 illustrates an exemplary structure for a streaming mode payload header
400 in accordance with various embodiments of the present disclosure.

The delivery of MPUs to MMT receivers using MMT protocol requires a packe-
tization and depacketization procedure to take place at the sender and receiver, re-
spectively, to enable the delivery of large MPUs. The MPU delivery mode considers a
complete MPU or specific subparts of a single MPU as independent delivery data units
for packetization or aggregation to facilitate large variances of size of MPUs. The
streaming mode of MMTP payload format (e.g., MPU mode) allows fragmentation of
single delivery data units into multiple MMTP payloads to support delivery of MPU
with a large size. The streaming mode also allows aggregation of multiple delivery
data units with same type into a single MMTP payload, to cater for smaller data units.
The packetization procedure may transform an MPU into a set of MMTP payloads that
are then carried in each MMTP packets when it is fragmented. At the receiving entity
depacketization is performed to recover the original MPU data.

In payload type 0x00, the MPU is fragmented in a media-aware manner allowing the
transport layer to identify the nature and priority of the fragment that is carried. A
fragment of an MPU may be, for example, MPU metadata, or a Movie Fragment
metadata, an MFU, or a non-timed data item. This streaming mode is also used for the
delivery of signaling messages or recovery symbols.

In this exemplary embodiment, streaming mode payload header 400 semantics and
length of each field of the streaming mode payload header 400 are provided as follows:
length field 402 has a length of 16 bits and this field indicates the size of entire payload
including this field; the delivery Data Unit Type (DU _type) field 404 may be 5 bits
long and may indicate the delivery data unit type of the payload, for example, as
provided by Table 1 below.

Table 1

WO 2015/012645 PCT/KR2014/006829
11
[Table 1]
value |Description Content
0 Complete a single complete MPU as a single delivery data unit
MPU
1 MPU metadata |the ftyp, mmpu, and moov boxes as well as any other boxes
that appear in between as a single delivery data unit - no
delivery data unit header is used
2 Movie the moof box and the mdat box, excluding all media data
fragment inside the mdat box as a single delivery data unit. No delivery
metadata data unit header is used
3 Timed MFU |a sample or sub-sample of timed media data as a single
delivery data unit - delivery data unit header discussed with
regard to FIG. 5 may be used
4 Non-timed MF |an item of non-timed media data as a single delivery data unit

[55]

[56]

U

- delivery data unit header discussed with regard to FIG. 6

may be used

5 Signaling a single complete signaling message as a delivery data unit.
message No delivery data unit header is used - delivery data unit
header discussed with regard to FIG. 7 may be used
6 Recovery a single complete recovery symbol as a delivery data unit - no
symbols delivery data unit header is used.
7~ |Reserved
11

Continuing with the fields of the streaming mode payload header 400, the ag-

gregation_flag (A) field 406 may be 1 bit long and when set to '1' indicates that more

than 1 delivery data unit is present in the payload that the f i field 408 is ignored; the

fragmentation indicator (f_1) field 408 may be 2 bits long and may indicate the frag-

mentation indicator contains information about fragmentation of data unit in the

payload, for example, as illustrated in Table 2 below.
Table 2

WO 2015/012645 PCT/KR2014/006829

[57]

[58]

[59]

[60]

12

[Table 2]

Value [Description

00 [Payload contains one or more delivery data unit headers and complete delivery

data units.

01 Payload contains the delivery data unit header and the first fragment of

delivery data unit

10 |Payload contains a fragment of delivery data unit that is neither the first nor the

last part.

11 Payload contains the last fragment of delivery data unit.

The value of this field 408 may be set to ‘00" when the value of the field 'A' is set to
T

Continuing with the fields of the streaming mode payload header 400, the counter
(counter) field 410 may be 16 bits, indicates a number of payload containing fragments
of same delivery data unit succeeding this MMT payload if the aggregation_flag is set
to '0', and indicates the number of delivery data units aggregated in this payload if ag-
gregation_flag is set to '1. The DU _length field 412 may be 16 bits long and field
indicates the length of the data following this field 412. When aggregation_flag is set
to '0', this field 412 may not be present. When aggregation_f{lag is set to '1', this field
412 may appear as many times as the value of the 'counter’ field 410 and preceding
each aggregated data unit. The DU_Header field 414 is the header of the data unit,
which depends on the type of delivery data unit, as will be discussed in greater detail
below. When aggregation_flag is set to '1', this field 414 may appear as many times as
the value of the 'counter’ field 410 and preceding each aggregated delivery data unit.
When aggregation_flag is set to '0’, this field 414 may appear when the value of the
'f 1" field 408 is '01".

FIGURE 5 illustrates an exemplary structure for a timed-media MFU header 500 in
accordance with various embodiments of the present disclosure. The timed-media
MFU header 500 is one example of delivery data unit header, such as included in the
DU_header 414 in FIGURE 4, for timed media data.

In this exemplary embodiment, the semantics and length of each field of the timed-
media MFU header 500 are provided as follows: the
movie_fragment_sequence_number field 502 may be 32 bits long and includes the
sequence number of the movie fragment to which the media data of this MFU belongs;
the sample_number field 504 may be 32 bits long and includes the sample number of
the sample to which the media data of the MFU; the offset field 506 may be 16 bits

WO 2015/012645 PCT/KR2014/006829

[61]

[62]

[63]

[64]

[65]

[66]

13

long and includes the offset of the media data of this MFU inside the referenced
sample; the subsample_priority field 508 may be 8 bits long and provides the priority
of the media data carried by this MFU compared to other media data of the same MPU.
For example, the value of subsample_priority may be between 0 and 455, with higher
values indicating higher priority. Additionally, the dependency_counter field 510 may
be 8 bits long and indicates the number of data units that depend on their media
processing upon the media data in this MFU.

FIGURE 6 illustrates an exemplary structure for a non-timed MFU header 600 in ac-
cordance with various embodiments of the present disclosure. The non-timed MFU
header 600 is one example of delivery data unit header, such as included in the
DU_header 414 in FIGURE 4, for non-timed media data.

In this exemplary embodiment, the semantics and length of each field of the non-
timed MFU header 600 are provided as follows: the Item_ID field 602 may be 32 bits
long and includes the identifier of the item that is carried as part of this MFU. For the
file types (FTs) 0 and 1, no additional DU header may be available. The object
identifier field of the MMTP header may be set to the MPU_sequence_number of the
MPU from which the data unit is extracted. The random access point (RAP) flag may
be set to mark data units of FT value O and 1 and for MFUs that contain a sync sample
or a fragment thereof, in the case of timed media, and for the primary item of non-
timed MPUs.

FIGURE 7 illustrates an exemplary structure for a signaling message header 700 in
accordance with various embodiments of the present disclosure. The signaling message
header 700 is one example of delivery data unit header, such as included in the
DU _header 414 in FIGURE 4, for a signaling message.

In this exemplary embodiment, the semantics and length of each field of the
signaling message header 700 are provided as follows: the message _id field 702 may
be 16 bits long and indicates the type of the signaling message; the version field may
be 8 bits long and indicates the version number of the signaling message; the reserved
(RES) field may be 8 bits long and is reserved for future use and may be set to O.

MMTP also supports the transport of generic files and assets and uses payload type
1. A generic asset consists of one or more files that are logically grouped and that share
some commonality for an application, e.g. Segments of a Dynamic Adaptive Streaming
over HTTP (DASH) Representation, a sequence of MPUs, etc.

In the GFD payload type mode, a generic asset is delivered through MMTP using the
GFD payload type. GFD requires a GFD session description discussed below to
describe the generic asset contents and delivery characteristics. Embodiments of the
present disclosure provide the establishment of GFD session over the MMTP protocol.

When delivered within MMTP, GFD session may be mapped on exactly one packet_id

WO 2015/012645 PCT/KR2014/006829

[67]

[68]

[69]

[70]

[71]

14

flow.

Each file delivered within a GFD session requires association of transport delivery
information. This includes, but is not limited to information such as the transfer length.
Each file delivered within a GFD session may also have associated content specific pa-
rameters such as name, identification, and/or location of the file, media type, size of
the file, encoding of the file or message digest of the file. In alignment with HTTP/1.1
protocol as defined in IETF RFC2616, which is incorporated by reference herein, each
file within one generic asset may have assigned any meta-information about the entity-
body, i.e. the delivered file. Additional details of the GFD operation discussed below.
The files delivered in a GFD session may have to be made available to an application,
for example through a proxy cache or by other means. Each object is then delivered
through the GFD session.

Before a receiver can establish a GFD session, the receiver may need to obtain
sufficient information, such as, for example, session access information and GFD
session Information. The session access information for the GFD session, when
operating in MMT, is defined in 23008-1, which has been incorporated by reference
herein. The GFD session information is described in greater detail below. The GFD
Session Description could be in a form such as the Session Description Protocol (SDP)
as defined in RFC4566, XML metadata as defined in RFC3023, or HTTP/MIME
headers as defined in RFC2616, etc., each of these RFC standards documents are
expressly incorporated by reference herein.

GFD Session Information: the GFD protocol delivers files. In the GFD mode, each
file is assigned a Transmission Object Identifier (TOI) parameter and a code point (CP)
parameter. The TOI parameter provides that object is associated with a unique
identifier within the scope of a GFD session. Each object is associated with a code
point. A code point summarizes specific object and object delivery properties. Packets
with the same TOI may have the same value in the code point.

The GFD table provides a list of code points. Each code point is dynamically
assigned a code point value. Semantics of the GFD Table are provided in Table 3
below.

Table 3

WO 2015/012645 PCT/KR2014/006829

[72]

[73]

15
[Table 3]
Element or Attribute Name Use Description
GFDTable The element carries a GFDTable
CodePoint 1..N defines all Code Points in the GFD session
Legend:

For attributes: M=Mandatory, O=Optional, OD=0Optional with Default Value, CM=Conditionally
Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @

A code point may include the maximum transfer length of any object delivered with
this code point signaling. In addition, a code point may include any of the following in-
formation: the actual transfer length of the objects, any information that may be present
in the entity-header as defined in RFC2616, section 7.1, incorporated by reference
herein, a content-location-template as described below using the TOI and packet_id
parameter, if present; and specific information on the content, for example how the
content is packaged, etc. The TOI and packet_id may be used to generate the content-
location for each TOI and packet_id. If such a template is present, the processing as
described below regarding the content-location template may be used to generate the
content-location and the value of the URI may be treated as the content-location field
in the entity-header. Within one session, at most 256 code points may be defined. The
definition of code points may be dynamically setup in the GFD Session Description.

An example of the semantics for the code point is provided in Table 4 below.
Table 4

WO 2015/012645 PCT/KR2014/006829
16
[Table 4]
Element or Attribute Name Use Description
CodePoint defines the Code Points in a GFD session

@value M defines the value of the code point in the GFD
session as provided in the CP value of the
GFD packet header The value may be
between 1 and 455. The value 0 is reserved.

@maximumTransferLength M specifies the maximum transfer length in bytes
of any object delivered with this code point in
this GFD session.

@constantTransferLength oD specifies if all objects delivered by this code

default: point have constant transfer length. If this

'false' attribute is set to TRUE, all objects may have
transfer length as specified in the
@maximumTransferLength attribute.

@contentLocationTemplate O specifies a template to generate the Content-
Location of the entity header.

EntityHeader 0.1 specifies a full entity header in the format as
defined in RFC2616, section 9.1. The entity
header applies for all objects that are
delivered with the value of this code point.

Legend:

[74]

[75]

Mandatory.

For attributes: M=Mandatory, O=0Optional, OD=0Optional with Default Value, CM=Conditionally

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @

A code point may include a @contentLocationTemplate attribute. The value of

@contentLocationTemplate attribute may contain one or more of the identifiers as
listed in Table 5 below. In each URL, the identifiers from Table 5 may be replaced by

the substitution parameter defined in Table 5. Identifier matching is case-sensitive. If

the URL contains unescaped $ symbols which do not enclose a valid identifier then the

result of URL formation is undefined. The format of the identifier is also specified in

Table 5 below.
Table 5

WO 2015/012645 PCT/KR2014/006829

[76]

[77]

[78]

[79]

17
[Table 5]
$<Identifier>$ |Substitution parameter Format
$$ Is an escape sequence, i.e. "3" is not applicable

replaced with a single "$"

$PacketID$ This identifier is substituted with the | The format tag may be
value of the packet_id of the associated |present.If no format tag is
MMT flow. present, a default format tag
with width=1 may be used.

$0I1$ This identifier is substituted with the | The format tag may be
Object Identifier of the corresponding |present.If no format tag is

GFD packet. present, a default format tag

with width=1 may be used.

Each identifier may be suffixed, within the enclosing '$' characters following this
prototype: "%0[width]d". The "width" parameter is an unsigned integer that provides
the minimum number of characters to be printed. If the value to be printed is shorter
than this number, the result may be padded with zeros. The value may not be truncated
even if the result is larger. The @contentLocationTemplate may be authored such that
the application of the substitution process results in valid URIs. Strings outside
identifiers may only contain characters that are permitted within URLs according to
RFC 3986, incorporated by reference herein.

GFD operation: the GFD mode of MMTP delivers regular files. When delivering
regular files, the object represents a file. If the code point defined in the GFD Session
description contains entity-header fields or entity-header fields that can be generated,
then all of these entity-header fields may apply to the delivered file.

FIGURE 8 illustrates an exemplary structure for a GFD mode packet structure 800 in
accordance with various embodiments of the present disclosure. The payload packets
800 sent using MMTP may include a GFD payload header 802 to 818 and a GFD
Payload 820 as illustrated in FIGURE 8. In some special cases a GFD sender may need
to produce packets that do not contain any payload. This may be required, for example,
to signal the end of a session. The GFD payload header 802 to 818 has a variable size.
In the GFD payload header 802 to 818, all integer fields are carried in "big-endian" or
"network order" format, that is, the most significant byte (octet) first. Bits designated
as "padding" or "reserved" (r) are set to O by senders and ignored by receivers. Unless
otherwise noted, numeric constants in these examples are in decimal form (base 10).

In this exemplary embodiment, the semantics and length of each field of the GFD
mode packet structure 800 are provided as follows: the length field 802 includes 16

WO 2015/012645 PCT/KR2014/006829

[80]

[81]

[82]

18

bits and indicates the size of entire payload including this field; the S field 804 may be
1 bit long and indicates the number of full 32-bit words in the TOI field (the TOI field
is 32*S + 16*H bits in the length field 802, e.g., the length is either O bits, 16 bits, 32
bits, or 48 bits); the H field 806 may be 1 bit long and allows the TOI field lengths to
be multiples of a half-word (16 bits), while ensuring that the aggregate length of the
start_offset and TOI fields is a multiple of 32 bits; the L field 808 may be 1 bit long
and indicates whether this is the last delivered packet for this object; the B field 8§10
may be 1 bit long and indicates whether this packet contains the last byte of the object;
the code point (CP) field 812 may be 8 bits long and includes an opaque identifier that
is passed to the packet payload decoder to convey information on the packet payload.
The mapping between the code point and the actual codec is defined on a per session
basis and communicated out-of-band as part of the session description information.
The Object Metadata (M) field 814 may be 1 bit long and this flag indicates whether
the object metadata provided as part of the payload or not. When set to 1, the payload
is MIME entity, where the header may contain at least the content-type and the
content-location headers. The reserved field (RES) may be 3 bits long and is set to 0;
the start_offset field 818 (16+32*0+16*H) indicates the location of the current
payload data in the object; and the GFD payload field 820 includes the GFD payload.

The object identifier may be set to a unique identifier of the generic object that is
being delivered. The mapping between the object identifier and the object information
(such as URL and MIME type) may be done explicitly or implicitly. For example, a
sequence of DASH segments may use the segment index as the object identifier and a
numerical representation identifier as the packet_id. This mapping may also be
performed using a signaling message.

For the GFD Payload 820, the bytes of the object are referenced such that byte O is
the beginning of the object and byte T-1 is the last byte of the object with T the transfer
length of the object. The data carried in the payload of an MMTP packet may consist
of a consecutive portion of the object starting from the beginning of byte X and ending
at the beginning of byte X + Y where X is the value of start_offset field in the GFD
packet header and Y is the length of the payload in bytes. Y may not be carried in the
packet but framing may be provided by the underlying transport protocol.

The MMT protocol (MMTP) is an application layer transport protocol designed to ef-
ficiently and reliably deliver MMT packages. MMTP can be used for delivery of both
timed and non-timed media data. It supports several features, such as media mul-
tiplexing, network jitter calculation, which are essential to deliver content composed of
various types of coded media data. MMTP may run on top of the existing protocols,
e.g. User Datagram Protocol (UDP) and IP. In the present disclosure, a specific
carriage of the data formatted other than MMT payload format as is required. A single

WO 2015/012645 PCT/KR2014/006829

[83]

[84]

[85]

[86]

19

MMTP packet may carry exactly one MMT payload. MMTP assumes that the sending

entity performs congestion control and thus congestion control function is not specified
in this specification. This is because MMTP runs on top of UDP/IP and will be used by
a wide variety of applications this function is left to implementation of sending entities.

MMTP supports the multiplexing of different assets over a single MMT packet flow.
MMTP delivers multiple types of data in the order of consumption at the receiving
entity to help the synchronization between different types of media data without in-
troducing a large delay or requiring large buffer. MMTP also supports the multiplexing
of media data and signaling messages within a single packet flow. A single MMT
payload may be carried in only one MMT packet.

MMT protocol defines two packetization modes, GFD mode and MPU mode. The
GFD mode (e.g., download mode) defines a mode packetizing media data based on the
size of the payload to be carried and the MPU mode (e.g., streaming mode) defines a
mode packetizing media data based on the type of data to be carried in the payload.
MMT protocol supports mixed use of packets with two different modes in a single
delivery session. A single packet flow of MMT packets can be arbitrary composed of
payloads with two types. MMTP provides the structure and definitions to calculate and
remove jitter introduced by the underlying delivery network, so that constant delay for
data stream can be achieved. By using the timestamp field in the packet header, jitter
can be precisely calculated without requiring any additional signaling information and
protocols.

FIGURE 9 illustrates an exemplary structure for an MMTP packet 900 in accordance
with various embodiments of the present disclosure. In this exemplary embodiment,
the semantics and length of each field of the MMTP packet 900 are provided as
follows: version (V) field 902 may be 2 bits long and indicates the version number of
the protocol. This field 902 may be set to '00' to comply with this specification. The
type field (object type) 904 is 6 bits. This field 904 indicates the payload type, i.e., the
mode. In an example, at least one of payload type values may be provided in Table 6
below. For the fragmentation and aggregation indication data unit of each payload type
may be provided in Table 6 below.

Table 6

WO 2015/012645 PCT/KR2014/006829

[87]

[88]

[89]

20
[Table 6]
Value |PayloadType |Definition of payload data Semantics of
‘object_identifier’

0x00 |MPU format-aware fragments of MPU (MPU sequence number
0x01 |Generic a generic object such as a TOI

Object complete MPU or an object of

another type

0x02 |signaling a single complete signaling

message message

0x03 |repair symbol |a single complete repair symbol

0x04 ~ [ISO reserved

0x1F [for future use

0x20 ~ [Reserved for

0x3F |private use

Continuing with the semantics and length of each field of the MMTP packet 900, the
FEC_type (FEC) field 906 may be 2 bits long and indicates the type of FEC scheme
used to protect MMT packets. An example of values and associated descriptions for
this field 906 may be listed in Table 7 below.

Table 7
[Table 7]
Value Description
0 MMT packet without AL-FEC protection
1 MMT packet with AL-FEC protection (FEC source packet)
2 MMT packet for repair symbol(s) (FEC repair packet)
3 Reserved for future use

Continuing with the semantics and length of each field of the MMTP packet 900, the
reserved (RES) field 908 may be 3 bits long and is reserved for future use; the
packet_counter flag (C) field 910 may be 1 bit long and a 1" indicates that the
packet_counter field is present; the RAP_flag (R) field 912 may be 1 bit long and,
when set to '], indicates that the payload contains a random access point to the data
stream of that data type, the extension_f{lag (X) field 914 may be 1 bit long and a 'l’
indicates that the header_extension field is present, the last (L) field 916 may be 1 bit
long and a '1" indicates that the last one of the packets with same value of the

object_identifier field; the packet_id field 918 may be 16 bits long and includes an

WO 2015/012645 PCT/KR2014/006829

[90]

[91]

[92]

[93]

21

integer value assigned to each asset to distinguish packets of one asset from another.
Separate values are assigned to signaling messages and FEC repair flows. The
packet_id is unique throughout the lifetime of the delivery session and for all MMT
flows delivered by the same MMT sending entity. The mapping between the packet_id
and the asset_id is signaled by the MMT Package Table as part of a signaling message.
For Application Layer - Forward Error Correction (AL-FEC), the mapping between
packet_id and the FEC repair flow is provided in the AL-FEC message. The packet _id
is unique for all MMT packet flows delivered by the same MMT sending entity.

Continuing with the semantics and length of each field of the MMTP packet 900, the
object_identifier field 920 may be 32 bits long and includes an identifier of the ap-
plication layer object from the current payload is extracted. The exact semantics and
usage of this field 920 may depend on the type of the payload. The
packet_sequence_number field 922 may be 32 bits long and includes an integer value
that is scoped by the packet_id and starts from arbitrary value incremented by one for
each MMT packet. This value wraps around to '0' after its maximum value is reached.
The timestamp field 924 may be 32 bits long and specifies the time instance of MMT
packet delivery. The NTP time is used in timestamp as specified as the "short-format"
in clause 6 of IETF RFC5905, NTP version 4, which is incorporated by reference
herein. This timestamp specifies the time at the first bit of MMT packet. The
packet_counter field 926 may be 32 bits long and includes an integer value for
counting the MMT packet. The value is incremented by the sending of an MMT packet
and is different from the value packet_id. This field 926 starts from arbitrary value in-
cremented by one for each MMT packet sent. The value of the field 926 wraps around
to '0' after its maximum value.

The extension header field 928 is includes user-defined information. The header
extension mechanism is provided to allow for proprietary extensions to the payload
format to enable applications and media types that require additional information to be
carried in the payload format header. The header extension mechanism is designed in
such a way that it may be discarded without impacting the correct processing of the
MMT payload. The extension header in the field 928 may have the format as il-
lustrated in FIGURE 10, which illustrates an exemplary structure for header extension
1000 in accordance with various embodiments of the present disclosure.

Continuing with the semantics and length of each field of the MMTP packet 900, the
payload data field 930 includes the payload data; and the source FEC payload ID field
932 may be 2 bits long and may be used only when the value of FEC type is set to '1".
An MMT packet with FEC type = 1 may be used for AL-FEC protection and after AL-
FEC protection this field may be added to the MMT packet.

In these illustrative embodiments, the present disclosure provides a harmonized

WO 2015/012645 PCT/KR2014/006829

[94]

[95]

[96]

22

structure for MMTP with two layers enabling indication of specific parts of an MPU
for fragmented delivery. As a first layer, the payload type (e.g., download mode,
streaming mode, GPU mode, MPU mode, etc.) is signaled by type (or object type) field
in the MMTP Header. As the second layer, the delivery data unit type is signaled by
the DU _type field in the MPU mode payload header. Accordingly, the embodiments of
the present disclosure provide a transmission protocol supporting both downloading
and streaming in the same protocol by integrating the GPU mode and MPU mode
within the MMTP.

FIGURE 11 illustrates an exemplary diagram 1100 of packetization of timed media
data in accordance with various embodiments of the present disclosure. The packe-
tization of an MPU that contains timed media may be performed in an MPU format-
aware and/or MPU format agnostic mode. In the MPU format agnostic mode, the MPU
is packetized into data units of equal size (except for the last data unit, of which the
size may differ) or a predefined size according to the size of MTU of the underlying
delivery network by using GFD. In other words, the packetization of the MPU format
agnostic mode may only consider the size of data to be carried in the packet. The type
field for the MMTP packet header is set to 0x00 to indicate that the packetization is
format agnostic mode.

In the MPU format-aware mode the packetization procedure takes into account the
boundaries of different types of data in MPU to generate packets by using MPU mode.
The resulting packets carry delivery data units of either MPU metadata, movie
fragment metadata, or MFU. The resulting packets may not carry more than two
different types of delivery data units. The delivery data unit of MPU metadata is
assigned the DU_type 0x01. The MPU metadata includes the 'ftyp' (file type) box, the
‘mmpu’ (an MPU) box, the 'moov' (Movie) box, and any other boxes that are applied to
the whole MPU. The 'ftyp' box contains a type of a file, the ‘mmpu’ box contains a con-
figuration of a MPU, and the 'moov' box contains codec configuration information.
The delivery data unit of movie fragment metadata consists of the 'moof’ (movie
fragment) box and the 'mdat' (media data) box header (excluding any media data) and
is assigned the DU_type 0x02. The 'mdat' box contains media data and control in-
formation of the media data, and the 'moof’ box contains header information of the
media data. The media data, MFUs in mdat box of MPU, is then split into multiple
delivery data units of MFU in a format aware way. This may, for example, be
performed with the help of the MMT hint track. The MFU may include 1) only media
data, 2) media data with a sequence number, and 3) media data with some control in-
formation. Each MFU is prepended the MFU header, which has the syntax and
semantics. The MFU header is followed by the media data of the MFU.

FIGURE 12 illustrates an exemplary diagram 1200 of packetization of non-timed

WO 2015/012645 PCT/KR2014/006829

[97]

[98]

[99]

[100]

23

media data in accordance with various embodiments of the present disclosure. The
packetization of non-timed media data may also be performed in two different modes.
In the MPU format agnostic mode, the MPU is packetized into delivery data units of
equal size (except for the last data unit, of which the size may differ) or a predefined
size according to the size of MTU of the underlying delivery network by using GFD
mode. The type field of MMTP packet is set to 0x00 to indicate that the packetization
is generic. In the format agnostic mode, the MPU is packetized into the packet
containing delivery data units of either MPU metadata or MFU by using MPU mode.
The MPU metadata contains the 'ftyp' box, the 'moov' box, the 'meta’ box and any other
boxes that are applied to whole MPU. Each delivery data unit of MFU contains a
single item of the non-timed media. Each item of the non-timed data is then used to
build an MFU. The MFU consists of an MFU header and the non-timed MFU data.

The depacketization procedure is performed at the MMT receiver to obtain the
transmitted MPU. The depacketization procedure may operate in one of the following
modes, depending on the application needs: an MPU mode, a fragment mode, and a
media unit mode. In the MPU mode, the depayloadizer regenerates the full MPU
before forwarding the MPU to the application. This mode is appropriate for non-time
critical delivery, i.e. the MPU's presentation time as indicated by the CI is sufficiently
behind the MPU's delivery time. In the fragment mode, the depayloadizer regenerates a
complete fragment including the fragment metadata and the 'mdat’ box with media
samples before forwarding it to the application. This mode does not apply to non-timed
media. This mode is suitable for delay-sensitive applications where the delivery time
budget is limited but is large enough to recover a complete fragment. In the media unit
mode, the depayloadizer extracts and forwards media units as fast as possible to the ap-
plication. This mode is applicable for very low delay media applications. In this mode,
the recovery of the MPU is not required. The processing of the fragment media data is
not required but may be performed to resynchronize. This mode tolerates out of order
delivery of the fragment metadata, which may be generated after the media units are
generated. This mode applies to both timed and non-timed media.

Using the MFU sequence numbers, receiver is able to detect missing packets and
apply any error correction procedures such as FEC or ARQ to recover the missing
packets. The payload type may be used by the sender to determine the importance of
the payload for the application and to apply appropriate error resilience measures.

Each GFD delivery session may have a GFDT that is local to the given session. A
file that is delivered within the GFD session, but not described in the GFDT is not
considered a 'file' belonging to the GFD delivery session. An object that is received
with an un-mapped code point should be ignored by a GFD receiver.

The files in the GFD session may have to be provided to an application, for example

WO 2015/012645 PCT/KR2014/006829

[101]

[102]

[103]

[104]

24

in a composition information document or a media presentation description, as defined
in ISO/IEC 23009-1, which is incorporated by reference herein, may refer to the files
delivered using MMTP as GFD objects. The file may be referenced through the URI
provided or derived from content-location, either provided in-band or as part of the
GFD session description. In certain cases, the files have an availability start time in the
application. In this case the GFD session may deliver the files such that the last packet
of the object is delivered such that it is available latest at the receiver at the availability
start time as announced in the application. Applications delivered through the GFD
mode may impose additional and stricter requirements on the sending of the files
within a GFD session.

Within a session, a sender (e.g., sending entity 101) transmits a sequence of packets
within the session. Several objects may be delivered within the same GFD session. If
more than one object is to be delivered within a session, then the sender may use the
TOI field. In this scenario, each object may be identified by a unique TOI within the
session, and the sender may use corresponding TOI for all packets pertaining to the
same object. The mapping between TOIs and files carried in a session is described in
the GFD session description as well as in the entity-header fields if entity mode
delivery is applied.

The GFD header, as discussed above, may be used. The GFD packet header includes
a code point field that may be used to communicate to a receiver the settings for in-
formation that is established for the session and may even vary during a session. The
mapping between settings and code point values is communicated in the GFD session
description.

For example, let T > 0 be the transfer-length of any object in bytes, the data carried
in the payload of a packet consists of a consecutive portion of the object. Then for any
arbitrary X and any arbitrary Y > 0 as long as X + Y is at most T a packet may be
generated. In under this criteria the following may hold: (A) the data carried in the
payload of a packet may consist of a consecutive portion of the object starting from the
beginning of byte X through the beginning of byte X + Y; (B) the start_offset field in
the GFD packet header may be set to X and the payload data may be added into the
packet to send; and (C) if X + Y is identical to T, the packet header flag B may be set
to 1, else the packet header flag B may be set to 0.

The following exemplary procedure may be used by a sender to deliver an object to
generate packets containing start_offset and corresponding payload data. First, the
sender sets the byte offset counter X to 0. Then, for the next packets to be delivered set
the length in bytes of a payload to a fixed value Y, which is a) reasonable for a packet
payload (e.g., ensure that the total packet size does not exceed the MTU), b) such that
the sum of X and Y is at most T, and c) such that it is suitable for the payload data

WO 2015/012645 PCT/KR2014/006829

[105]

[106]

25

included in the packet. The sender then generates a packet according to the rules a-c
from above. Then if X + Y is equal to T, the sender sets the packet header flag B to 1,
else the sender sets the packet header flag B to 0, increments X = X + Y and returns to
generate the packet according to rules a-c.

The order of packet delivery may be arbitrary, but the sender may perform delivery
in the absence of other constraints delivery with increasing start_offset number. The
transfer length may be unknown prior to sending earlier pieces of the data. In this
situation, T may be determined later. However, this does not affect the sending process
above. Additional packets may be sent following the rules in (A)-(C) from above. In
this situation, the B flag may only be set for the packet that contains the last portion of
the object.

The GFD Session Description contains one or multiple code points identified by
different code point values. Upon receipt of each packet, the receiver (e.g., one or more
of receiving entities 110-116) may proceeds with the following steps. First, the
receiver parses the packet header and verifies that it is a valid header. If it is not valid,
then the packet may be discarded without further processing. Second, the receiver
parses the code point value and verifies that the GFD session description contains a
matching code point. If it is not valid, then the packet may be discarded without further
processing. Third, the receiver processes the remainder of the packet, which includes
interpreting the other header fields appropriately and using the source_offset and the
payload data to reconstruct the corresponding object as follows: a) the receiver can
determine from which object a received packet was generated by the session in-
formation, and if present, by the TOI carried in the payload header; b) upon receipt of
the first packet for an object, the receiver uses the Maximum Transfer Length received
as part of the Object Transmission Information to determine the maximum length T' of
the object; c) the receiver allocates space for the T' bytes that the object may require; d)
the receiver computes the length of the payload, Y, by subtracting the packet header
length from the total length of the received packet; e) the receiver allocates a Boolean
array RECEIVED[O0..T'-1] with all T entries initialized to false to track received object
symbols. The receiver keeps receiving packets for the object block as long as there is at
least one entry in RECEIVED still set to false or until the application decides to give
up on this object.) For each received packet for the object (including the first packet),
the steps to be taken to help recover the object are as follows: 1) let X be the value of
the source_offset field in the GFD packet header of the packet and let Y be the length
of the payload, Y, computed by subtracting the packet header length from the total
length of the received packet; ii) the receiver copies the data into the appropriate place
within the space reserved for the object and sets RECEIVED[X ... X+Y-1] = true; iii) if

all T entries of RECEIVED are true, then the receiver has recovered the entire object;

WO 2015/012645 PCT/KR2014/006829

[107]

[108]

[109]

[110]

[111]

26

and g) once the receiver receives a packet with the B flag set to 1, it can determine the
transfer length T of the object as X+Y of the corresponding packet and adjust the a
Boolean array RECEIVED[0..T'-1] to RECEIVEDI0..T-1].

GFD CodePoint: the information about the files delivered using the GFD mode is
indicated in the MP Table if the asset_scheme code is set to "GeneralFile". The
generic objects that are delivered using the GFD mode may be grouped together as an
MMTP flow identified by the packet id. Packets that carry generic objects using the
GFD mode may be marked with type 1 in the MMTP packet header type field. The
GFD table defines one or multiple code points. The code point table may be provided
in Table 8 below.

Table 8

[Table 8]
Syntax Value No. of bits Mnemonic
CodePoint () {
table_ id 8 uimsbf
version 8 uimsbf
length 16 uimsbf
value N1 8 uimsbf
maximumTransferLength N2 48 uimsbf
constantTransferLength N3 8 uimsbf
contentLocationTemplateSize N4 8 uimsbf
contentLocationTemplate[N5] N5 8*N5 char
EntityHeaderSize N6 16 uimsbf
EntityHeader[N7] N7 8*N7 char
}

While various embodiments described herein discuss MMT data communication, it is
noted that the various embodiments of the present are not limited to MMT commu-
nications. For example, the fixed delay and buffer size determinations may be applied
to any suitable type of data or media content delivery and/or any suitable type of
transmission system in accordance with the principals of the present disclosure.

FIGURE 13 illustrates a process for processing a transport packet at a receiving
entity in accordance with an illustrative embodiment of the present disclosure. For
example, the process depicted in FIGURE 13 may be performed by some or all of the
receiving entities 110-116 in FIGURE 1. The process may also be implemented by the
electronic device 1500 in FIGURE 15.

The process begins with the receiving entity receiving a transport packet (step 1305).
The receiving entity then identifies a payload type from a field indicating the payload
type in the packet header (step 1310). For example, in step 1310, the receiving entity

WO 2015/012645 PCT/KR2014/006829

[112]

[113]

[114]

[115]

[116]

[117]

27

may parse the packet header and to identify the value in the object type field, such as
field 904 in FIGURE 9, and identifying the corresponding payload type in accordance
with Table 6. If the payload type is the generic mode, the receiving entity processes the
generic mode payload data (step 1315).

If the payload type is streaming mode, the receiving entity identifies a delivery data
unit type from a field indicating the delivery data unit type in a streaming mode
payload header (step 1320). For example, in step 1320, the receiving entity may
identify the delivery data unit type of the DU data in the transport packet such as the
type of data in MMT payload.

For example, the receiving entity may parse the streaming mode payload header,
such as illustrated in FIGURE 4, to identify the value in the DU_type field 404 to
identify the delivery data unit type in accordance with Table 1. For example, the DU
data may include one of: a complete MPU, MPU metadata, movie fragment metadata,
a timed MFU, a non-timed MFU, a signaling message, or recovery symbols based on
the value included in the DU type field.

Thereafter, the receiving entity identifies information about whether MFU(s) are
present in the transport packet from a fragmentation indicator field in the streaming
mode payload header (step 1325). For example, in step 1325, the transport packet
includes one or more fragments of an MPU arranged as MFUs. The transport packet
may include a plurality of delivery data units, each delivery data unit including a DU
header and DU data. The receiving entity may determine whether the DU data
includes: one or more delivery data unit headers and complete delivery data units, a
delivery data unit header and a first fragment of a delivery data unit, a fragment of the
delivery data unit that is neither the first nor the last part, or a last fragment of the
delivery data unit based on the value in the fragmentation indicator field in accordance
with Table 2.

The receiving entity then processes the DU data (step 1330). For example, in step
1330, the receiving entity may process the DU data according to the identified delivery
data unit type. The receiving entity may process and decode the DU data to display the
media via a user interface to the user associated with the receiving entity.

FIGURE 14 illustrates a process for generating a transport packet at a sending entity
in accordance with an illustrative embodiment of the present disclosure. For example,
the process depicted in FIGURE 14 may be performed by the sending entity 101 in
FIGURE 1. The process may also be implemented by the electronic device 1500 in
FIGURE 15.

The process begins with the sending entity generating a transport packet (step 1405).
For example, in step 1405, the sending entity may generate the packet to include

downloading or streaming data. The sending entity may include a plurality of delivery

WO 2015/012645 PCT/KR2014/006829

[118]

[119]

[120]

[121]

[122]

[123]

28

data units with each delivery data unit including a DU header and DU data.

The sending entity then includes an identifier of a payload type in a field indicating
the payload type in a packet header for the transport packet (step 1410). For example,
in step 1410, the sending entity may include a value corresponding to object type, such
as in Table 6, in a type field of the packet header, such as in field 904 in FIGURE 9.

The sending entity then determines whether the payload type is a streaming mode
payload type (step 1415). If the payload type is a type other than the streaming mode,
for example, the generic (GFD) mode, the sending entity then generates the transport
packet according to the payload time and proceeds to step 1430 to send the generated
transport packet.

If, however, the payload type is a streaming mode payload type, the sending entity
includes an identifier of a delivery data unit type in a field indicating the delivery data
unit type in a streaming mode payload header (step 1420). For example, in step 1420,
the sending entity may include a value of corresponding to the delivery data unit type
for the packet in a field in the streaming mode payload header, such as illustrated by
the DU _type field 404 of the streaming mode payload header in FIGURE 4 accordance
with the delivery data unit types Table 1. For example, the DU type field may indicate
that the DU data includes one of: a complete MPU, MPU metadata, movie fragment
metadata, a timed MFU, a non-timed MFU, a signaling message, or recovery symbols
based on the value included.

Thereafter, the sending entity includes an identifier of information about whether
MFU(s) are present in the packet in a fragmentation indicator field in the streaming
mode payload header (step 1425). For example, in step 1425, the transport packet may
include one or more fragments of an MPU arranged as MFUs. The sending entity may
indicate that the DU data includes: one or more delivery data unit headers and
complete delivery data units, a delivery data unit header and a first fragment of a
delivery data unit, a fragment of the delivery data unit that is neither the first nor the
last part, or a last fragment of the delivery data unit based on a value included in the
fragmentation indicator field in accordance with Table 2.

The sending entity then sends the generated transport packet (step 1430). For
example, in step 1430, the sending entity may send the transport packet to a receiving
entity to receive and process the transport packet, for example, according to the
process illustrated in FIGURE 13.

Although FIGURES 13 and 14 illustrate examples of processes for processing and
generating transport packets by receiving and sending entities, respectively, various
changes could be made to FIGURES 13 and 14. For example, while shown as a series
of steps, various steps in each figure could overlap, occur in parallel, occur in a

different order, or occur multiple times.

WO 2015/012645 PCT/KR2014/006829

[124]

[125]

[126]

[127]

[128]

29

FIGURE 15 illustrates an example electronic device 1500 in which various em-
bodiments of the present disclosure may be implemented. In this example, the
electronic device 1500 includes a controller 1504, a memory 1506, a persistent storage
1508, a communications unit 1510, an input/output (I/O) unit 1512, and a display
1514. In these illustrative examples, electronic device 1500 is also one example of the
sending entity 101 and/or the receiving entity 110 in FIGURE 1.

Controller 1504 is any device, system or part thereof that controls at least one
operation, such a device may be implemented in hardware, firmware or software, or
some combination of at least two of the same. For example, the controller 1504 may
include a hardware processing unit, processing circuitry, media coding and/or decoding
hardware and/or software, and/or software program configured to control operations of
the electronic device 1500. For example, controller 1504 process instructions for
software that may be loaded into memory 1506. Controller 1504 may include a number
of processors, a multi-processor core, or some other type of processor, depending on
the particular implementation. Further, controller 1504 may be implemented using a
number of heterogeneous processor systems in which a main processor is present with
secondary processors on a single chip. As another illustrative example, controller 1504
may include a symmetric multi-processor system containing multiple processors of the
same type.

Memory 1506 and persistent storage 1508 are examples of storage devices 1516. A
storage device is any piece of hardware that is capable of storing information, such as,
for example, without limitation, data, program code in functional form, and/or other
suitable information either on a temporary basis and/or a permanent basis. Memory
1506, in these examples, may be, for example, a random access memory or any other
suitable volatile or non-volatile storage device. For example, persistent storage 1508
may contain one or more components or devices. Persistent storage 1508 may be a
hard drive, a flash memory, an optical disk, or some combination of the above. The
media used by persistent storage 1508 also may be removable. For example, a
removable hard drive may be used for persistent storage 1508.

Communications unit 1510 provides for communications with other data processing
systems or devices. In these examples, communications unit 1510 may include a
wireless (cellular, WiFi etc.) transmitter, receiver, and/or transceiver, a network
interface card and/or any other suitable hardware for sending and/or receiving commu-
nications over a physical or wireless communications medium. Communications unit
1510 may provide communications through the use of either or both physical and
wireless communications links.

Input/output unit 1512 allows for input and output of data with other devices that

may be connected to or a part of the electronic device 1500. For example, input/output

WO 2015/012645 PCT/KR2014/006829

[129]

[130]

[131]

30

unit 1512 may include a touch panel to receive touch user inputs, a microphone to
receive audio inputs, a speaker to provide audio outputs, and/or a motor to provide
haptic outputs. Input/output unit 1512 is one example of a user interface for providing
and delivering media data (e.g., audio data) to a user of the electronic device 1500. In
another example, input/output unit 1512 may provide a connection for user input
through a keyboard, a mouse, external speaker, external microphone, and/or some
other suitable input/output device. Further, input/output unit 1512 may send output to a
printer. Display 1514 provides a mechanism to display information to a user and is one
example of a user interface for providing and delivering media data (e.g., image and/or
video data) to a user of the electronic device 1500.

Program code for an operating system, applications, or other programs may be
located in storage devices 1516, which are in communication with the controller 1504
through the bus system 1502. In some embodiments, the program code is in a
functional form on the persistent storage 1508. These instructions may be loaded into
memory 1506 for processing by controller 1504. The processes of the different em-
bodiments may be performed by controller 1504 using computer-implemented in-
structions, which may be located in memory 1506. For example, controller 1504 may
perform processes for one or more of the modules and/or devices described above.

In some embodiments, various functions described above are implemented or
supported by a computer program product that is formed from computer-readable
program code and that is embodied in a computer-readable medium. Program code for
the computer program product may be located in a functional form on a computer-
readable storage device that is selectively removable and may be loaded onto or
transferred to electronic device 1500 for processing by controller 1504. In some il-
lustrative embodiments, the program code may be downloaded over a network to
persistent storage 1508 from another device or data processing system for use within
electronic device 1500. For instance, program code stored in a computer-readable
storage medium in a server data processing system may be downloaded over a network
from the server to electronic device 1500. The data processing system providing
program code may be a server computer, a client computer, or some other device
capable of storing and transmitting program code.

Although the present disclosure has been described with an exemplary embodiment,
various changes and modifications may be suggested to one skilled in the art. It is
intended that the present disclosure encompass such changes and modifications as fall

within the scope of the appended claims.

WO 2015/012645

[Claim 1]

[Claim 2]

[Claim 3]

[Claim 4]

[Claim 5]

[Claim 6]

[Claim 7]

[Claim 8]

PCT/KR2014/006829
31

Claims
A method of generating a transport packet by a sending entity, the

method comprising:

generating a transport packet to include a packet header, a payload
header and a payload, the packet header comprising an identifier of a
payload type in a field indicating one of a plurality of payload types,
the plurality of payload types comprising a first payload type of a
download mode and a second payload type of a streaming mode; and
sending the transport packet.

The method of claim 1, wherein the download mode indicates a generic
file delivery (GFD) mode packetizing media data based on a size of the
payload to be carried,

the streaming mode indicates a media processing unit (MPU) mode
packetizing media data based on a type of data to be carried in the
payload, and

the download mode and the streaming mode are used in a single
delivery session.

The method of claim 1, wherein the plurality of payload types further
comprise at least one of a third payload type indicating that the payload
comprise a signaling message and a fourth payload type indicating that
the payload comprise a forward error correction (FEC) repair symbol.
The method of claim 1, wherein the transport packet includes one or
more fragments of a media processing unit.

The method of claim 1, wherein, if the identifier of a payload type
indicates the second payload type of the streaming mode, the payload
header comprises a type field indicating a data type of the payload.

The method of claim 5, wherein the type field indicates one of metadata
of a media processing unit, metadata of a movie fragment, and a timed
or non-timed media data.

The method of claim 6, wherein the metadata of the media processing
unit comprises a ftyp box including a type of a file, a mmpu box
including a configuration of the media processing unit, and a moov box
including codec configuration information, and

the metadata of the movie fragment comprises a moof box including
header information of media data and a portion of a mdat box.

An apparatus in a sending entity capable of generating a transport

packet, the apparatus comprising:

WO 2015/012645

[Claim 9]

[Claim 10]

PCT/KR2014/006829
32

processing circuitry configured to:

generate a transport packet to include a packet header, a payload header
and a payload, the packet header comprising an identifier of a payload
type in a field indicating one of a plurality of payload types, and the
plurality of payload types comprising a first payload type of a
download mode and a second payload type of a streaming mode; and
a transmitter configured to send the transport packet.

A method of processing a transport packet by a receiving entity, the
method comprising:

receiving a transport packet to include a packet header, a payload
header and a payload, the packet header comprising an identifier of a
payload type in a field indicating one of a plurality of payload types,
and the plurality of payload types comprising a first payload type of a
download mode and a second payload type of a streaming mode; and
processing the payload according to the packet header and the payload
header.

An apparatus in a receiving entity capable of processing a transport
packet, the apparatus comprising:

a receiver configured to receive the transport packet to include a packet
header, a payload header and a payload, the packet header comprising
an identifier of a payload type in a field indicating one of a plurality of
payload types, and the plurality of payload types comprising a first
payload type of a download mode and a second payload type of a
streaming mode; and

processing circuitry configured to

process the payload according to the packet header and the payload

header.

WO 2015/012645 PCT/KR2014/006829

1/5
[Fig. 1]
100
101 105 110
/ /
Sending Receiving
Entity Entity
e [SBl111
/// \\
; (L \
/ \ 102 1120
l/ \V4 }{(115 \\ ~X~ 112}
125~ 103~[BS| | // ;
= / /
\ \\\ // 113/
RN e [R]-114
N ya \\\\ ////

Presentation

Information Transport
Characteristic

———

Asset #3 ‘ MPU #1

Asset #2 ‘ MPU #1

<

MPU #2 MPU #3]

Asset #1 ‘ MPU #1 H\MPU\#Z\ MPU #3 ’

Presentation timeline t

Y

WO 2015/012645

2/5
[Fig. 4]
400
§ 404 206"
0 1 2 / / 3
01234567890123456789012'345678901
length (402) DU_type ‘A| fi ‘ reserved
counter (410) DU length (412)
DU_Header (414)
DU _data
| DU_length |
[Fig. 5]
500

A

0 1 2 3
012345678901234567890123456788¢01

movie_fragment_sequence_number (502)

sample_number (504)

offset (506) ‘ priority ‘ dep_counter

508 510
[Fig. 6]

600

R

0 1 2 3
012345678901 234567890123456789¢01

| item_ID (602)
[Fig. 7]
700
0 1 2 3
012345678901234567890123456789¢01
| message._id (702) | version(704) | RES(706) |
[Fig. 8]
800

§\ 808
804 806/ 810 814 816

81234567819012345\62789/012345367\890/1
length (802) s|H[L[s] cP12) |M[RES
start_offset (length = 16+16*H+32*S) (818)
Generic File Delivery Payload (820)

PCT/KR2014/006829

WO 2015/012645
3/5
[Fig. 9]
900

§ 910 914
902 906 912 / 916 908

8,/1234567\819\012345627890123453678901
v=0| type (904) |FEC|C|R|X]L|RES] packet_id (918)
Object Identifier (920)
packet_sequence_number (922)
timestamp (924)
packet_counter (926)
extension header (928)
payload data (930)
source FEC payload ID (932)

[Fig. 10]

1000

0 1 2 3
012345678901234567890123456789¢01
type length
header_extension_value

[Fig. 11]
1100
ftyp mmpu moov moof mdat | e moof mdat
\
| | N I
M M
Fragment | 2| | | ... Fragment | ¢ | | |
MPU Meta dala Melzdata D j Metzdata E D
[Fig. 12]
1200
ftyp mmpu moov meta ltlem 1 ltlem 2
I /o Voo \
| /o [\
MPU Meta data MFU MFU

PCT/KR2014/006829

WO 2015/012645 PCT/KR2014/006829
4/5

RECEIVE A TRANSPORT PACKET 1305

v

GENERIC MODE IDENTIFY A PAYLOAD TYPE FROM
AN OBJECT TYPE FIELD IN L1310

THE PACKET HEADER
1315

STREAMING MODE
PROCESS THE GENERIC MODE
PAYLOAD DATA IDENTIFY A DELIVERY DATA UNIT TYPE
FROM A DU TYPE FIELD IN 1320
A STREAMING MODE PAYLOAD HEADER

v

IDENTIFY INFORMATION ABOUT WHETHER

MFU(S) ARE PRESENT IN THE MMTP PACKET

FROM A FRAGMENTATION INDICATOR FIELD |32
IN THE MPU MODE PAYLOAD

v

PROCESS THE DU DATA 1330

[Fig. 13]

END

[Fig. 14]

GENERATE A TRANSPORT PACKET 1405

v

INCLUDE AN IDENTIFIER OF A PAYLOAD TYPE
INAN OBJECT TYPE FIELD IN AN PACKET §—1410
HEADER FOR THE TRANSPORT PACKET

PAYLOAD TYPE STREAMING MOD
PAYLOAD TYPE?

INCLUDE AN IDENTIFIER OF INFORMATION

ABOUT WHETHER MFU(S) ARE PRESENT IN

THE PACKET IN A FRAGMENTATION 1420

INDICATOR FIELD IN THE STREAMING MODE
PAYLOAD HEADER

v

INCLUDE AN IDENTIFIER OF A DELIVERY
DATAUNITTYPE INADUTYPEFIELD N~ }—1425
AMPU MODE PAYLOAD HEADER

le

SEND THE TRANSPORT PACKET 1430

END

WO 2015/012645 PCT/KR2014/006829

5/5
[Fig. 15]
1500 ot
Display
Y
1510 1504 1512
! ? 9
Comm&']}itcatio” Controller Input/Qutput Unit
y
Storage Devices
1506 1508
— 1516
ersisten
Memory Storage

International application No.
PCT/KR2014/006829

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
HO04L 12/951(2013.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
HO4L 12/951; GO6F 15/16; HO4L 1/00; HO4N 7/173; GO6F 17/00; HO4W 4/00; HO4L 12/56; HO4J 3/24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: payload, transport packet, header, streaming, download.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2008-0040498 A1 (VIDYA SETLUR et al.) 14 February 2008 1,4,8-10
See paragraphs [0009], [0041]-[0044]; claims 1-6, 22, 31; and figure 1.

Y 3,67

A 2

Y WO 2013-077662 A1 (SAMSUNG ELECTRONICS CO., LTD.) 30 May 2013 3
See paragraphs [0047]1-[0060]; and figures 3-4.

Y WO 2009-045051 A2 (SK TELECOM CO., LTD.) 09 April 2009 5-7
See paragraphs [0091]-[0110]; claim 10; and figures 4-10.

A US 2009-0022137 A1 (BEHROUZ AGHILI et al.) 22 January 2009 1-10
See paragraphs [0029]-[0039]; claim 1; and figures 2-4B.

A US 2008-0134266 A1 (YOUNG-SEOK KANG) 05 June 2008 1-10
See paragraphs [0059]-[00641, [0133]-[0139]; and figures 3-4.

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priotity ¢claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, nse, exhibition or other
means

"P" document published prior to the international filing date but later

than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory undetlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

'

myn

ng"

Date of the actual completion of the international search

24 October 2014 (24.10.2014)

Date of mailing of the international search report

03 November 2014 (03.11.2014)

Name and mailing address of the [ISA/KR
International Application Division
« Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
Republic of Korea

Facsimile No, +82-42-472-7140

Authorized officer

KIM, Seong Woo

Telephone No. +82-42-481-3348

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/KR2014/006829
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2008-0040498 Al 14/02/2008 CN 101518027 A 26/08/2009
EP 2057817 A2 13/05/2009
WO 2008-017973 A2 14/02/2008
WO 2008-017973 A3 14/08/2008
WO 2013-077662 Al 30/05/2013 KR 10-2013-0057937 A 03/06/2013
WO 2009-045051 A2 09/04/2009 KR 10-1034758 Bl 17/05/2011
KR 10-2009-0034500 A 08/04/2009
WO 2009-045051 A3 28/05/2009
US 2009-0022137 Al 22/01/2009 AR 067123 Al 30/09/2009
TW 200915770 A 01/04/2009
WO 2008-157770 A2 24/12/2008
WO 2008-157770 A3 12/02/2009
US 2008-0134266 Al 05/06/2008 CN 101257634 A 03/09/2008
CN 101257634 B 23/11/2011
EP 1950969 A2 30/07/2008
EP 1950969 A3 27/08/2008

KR 10-2008-0047263 A 28/05/2008

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - wo-search-report
	Page 41 - wo-search-report

