(54) 发明名称
单一端口信号复示器

(57) 摘要
本发明涉及单一端口信号复示器。所述复示器被并行链接到通信信道 (3)，在该通信信道上仅需要一个接入点 (5)。所述复示器 (4) 包括放大器，混合电路以及反馈，并且该复示器 (4) 提高了在导电介质上进行的通信的覆盖范围和传输能力，而没有传统复示器的缺点，传统复示器的缺点是必须中断线路并且需要至信道的两个接入点。
1. 单一端口信号复示器，其包括以下元件和连接：
 - 混合电路（12），其具有被连接至通信信道（3）的双向端口（12a）和输出端口（12b）；其中，所述输入端口和所述输出端口被隔离；以及
 - 放大器（11），所述放大器（11）的输出被连接至所述混合电路（12）的所述输入端口（12b）和所述放大器（11）的输入被连接至所述混合电路（12）的所述输出端口（12c）；
 从而所述复示器可以被并行于所述通信信道（3）进行配置，而不需要中断所述通信信道（3），以及所述复示器通过单一接入点（5）而接入所述信道（3）。

2. 根据权利要求1所述的单一端口信号复示器，其中，所述混合电路（12）被适应于在所述接入点（5）的所述通信信道（3）的阻抗，从而获得没有振荡的信号增益。

3. 根据权利要求2所述的单一端口信号复示器，其中，如果在所述接入点（5）的所述通信信道（3）的所述阻抗是固定的且已知的，则所述混合电路（12）被设计为适应于所述固定的且已知的阻抗。

4. 根据权利要求2所述的单一端口信号复示器，其中，如果在所述接入点（5）的所述通信信道（3）的所述阻抗是预先未知的，则使用自适应混合电路（12）以自适应所述未知的阻抗。

5. 根据权利要求4所述的单一端口信号复示器，其中，所述自适应混合电路（12）包括：
 - 加法/减法器电路（14），其中正输入输入为通信信道（3）的信号且负输入输入为自适应滤波器（15）的输出；
 - 阻抗（13），其将所述放大器（11）的输出与所述通信信道（3）的接入点（5）进行连接；并且
 - 所述自适应滤波器（15）的输入为所述放大器（11）的输出，且所述自适应滤波器（15）的输入为所述加法/减法器电路（14）的负输入；并且
 - 由所述加法/减法器电路（14）的输出至所述单一端口信号复示器的所述放大器（11）的所述输入的反馈；
 从而在将所述滤波器（15）自适应于在所述放大器（11）的输出与至所述通信信道（3）的所述接入点（5）之间的转移函数之后，实现受控的信号增益。

6. 根据权利要求5所述的单一端口信号复示器，其中，所述自适应滤波器（15）包括数字有限脉冲响应FIR滤波器（24）。

7. 根据权利要求5所述的单一端口信号复示器，其中，所述自适应滤波器（15）包括模拟有限脉冲响应FIR滤波器（33）。

8. 根据权利要求6或7所述的单一端口信号复示器，其中，所述有限脉冲响应FIR滤波器通过阶梯算法被调整。

9. 根据权利要求4所述的单一端口信号复示器，其中，所述自适应混合电路（12）的自适应包括：
 - 断开所述反馈，将所述接收器保留在开环路；
 - 将信号注入所述放大器（11）中，该信号的光谱含量在所述通信信道（3）中使用的带宽内；
 - 随着将被注入的信号的隔离最大化，进行所述开环混合电路（12）的自适应；并且
10. 根据权利要求 1 所述的单一端口信号复示器，其中，所述复示器通过已知的响应传输线路 (37) 被连接至所述通信信道 (3)，其中，在所述混合电路 (12) 的所述输出和所述放大器 (11) 的所述输入之间的反馈环路中加入补偿 (39)。

11. 根据权利要求 1 所述的单一端口信号复示器，其中，所述复示器通过未知的响应传输线路 (37) 被连接至所述通信信道 (3)，其中，在所述未知的响应传输线路 (37) 和所述混合电路的所述双向端口 (12a) 之间加入延迟。

12. 根据权利要求 1 所述的单一端口信号复示器，其中，所述复示器 (4) 通过未知的响应传输线路 (37) 被连接至所述通信信道 (3)，其中，在所述复示器 (4) 的所述反馈环路中加入延迟。

13. 根据权利要求 1 所述的单一端口信号复示器，其中，所述复示器 (4) 通过未知的响应传输线路 (37) 被连接至所述通信信道 (3)，其中，在所述混合电路 (12) 的所述输出和所述放大器 (11) 的所述输入之间的反馈环路中加入补偿 (39)，所述补偿的值根据由所述通信信道 (3) 的一个或更多节点所接收的信号而被调整。

14. 根据权利要求 13 所述的单一端口信号复示器，其中，复示信号的所述补偿将由通信网络的一个或更多节点接收的信号最大化。

15. 根据权利要求 13 所述的单一端口信号复示器，其中，复示信号的所述补偿将由通信网络的一个或更多节点接收的信号最小化。

16. 根据权利要求 1 所述的单一端口信号复示器，其中，所述通信信道 (3) 为电力网络。

17. 根据权利要求 1 所述的单一端口信号复示器，其中，所述通信信道 (3) 为同轴电缆。

18. 根据权利要求 1 所述的单一端口信号复示器，其中，所述通信信道 (3) 为双绞线。
单一端口信号复示器

发明目的

正如本说明书的名称所表述的，本发明涉及用于使用物理介质作为通信信道的任何通信系统的信号复示系统，其特征在于，不需要中断所述物理介质以引入复示设备，而是该复示设备可以被并行连接从而保持了复示信号的优点，即达到更大的覆盖范围和更强的传输能力。特别地，这种设备适合于电力网络上的通信，其中在大多数环境下不需要中断电力线路以设置信号复示器 (signal repeater)。

因此，本发明的设备的主要优点在于，提高通信信号的覆盖范围和传输能力，而不需要切断通信信道以插入所述的复示器设备。

发明背景

通信系统通常被分为通过空气介质（无线通信系统）或通过导电介质的通信系统。

在两种类型的系统中，由于两种介质的固有损耗，被传输的信号将逐渐衰减，直到其低于可能的接收器的敏感阈值，因此，在特定的距离，通信将被中断。

一般来说，为了提高覆盖范围，或增强传输能力，需要包括信号复示器或者再生器。如果通信通过空气介质进行，那么复示器的情况并不是特别有问题。相对的，如果通信介质是导电的，很可能复示器要被设置于所述介质之外，从而中断了通信信道。在很多情况下，由于所使用的通信信道的类型（例如，电力网络），这并不能被执行。

本发明示出了一种导电信号复示器，其提高了任何通信系统的覆盖范围和传输能力，而并不需要切断或者中断该导电介质。

在现有技术中，存在一些具有相关概念的专利或专利申请，但是其并不影响本发明的新颖性或创造性。例如，名称为“用于优化电缆网络传输的混合放大 - 再生器”的专利US659823281公开了一种放大过程，但是其在再生器设备的两端进行2到4线转换(2-to-4wire conversion)并且以数字方式将每个传输方向分别放大。本发明提出一种替代的系统，其中不需要信号的中断或者每个方向独立的放大，从而简化了所需的硬件并节省了最终的成本。

另一个例子是名称为“自适应混合电路”的专利申请US3973099A1，其描述了一种具有由分接延迟线路滤波器制做的有源混合的2到4线转换器。正如已经在之前的参考文件中所发生的，使用2到4线转换器（2-to-4wire converter）并涉及将信道打开，以插入相互面对的两个这种设备，以实现双向复示器的功能，这是本发明的设备并不需要的，在本发明的设备中，仅需要接入至信道的一个点，而无需中断传输介质。

发明内容

为了实现上述段落所指出的目的并且防止上述段落所指出的缺点，本发明包括了单一端口信号复示器，该单一端口信号复示器被并行设置于通信介质而无需中断所述通信信道，从而通过单一接入点以接入所述介质，该单一端口信号复示器包括混合电路（具有被连接至通信信道的双向端口，还具有输入端口和输出端口，其中输入端口和输出端口是
隔离的）；以及放大器，该放大器的输出被连接至混合电路的输入端口，并且该放大器的输入被连接至混合电路的输出端口。

[0012] 为了使该信号复示器的运行最优化，需要使混合电路在接入点适应于通信信道的阻抗，从而获得没有振荡的信号增益。

[0013] 根据由复示器在至信道的接入点处所观察到的阻抗是否是已知的，确定混合电路的自适应通过设计被固定或者必须是可自适应的。如果通信信道在接入点的阻抗是固定的且已知的，混合电路就被设计为适应于所述已知的固定的阻抗。相反的，如果通信信道在接入点的阻抗预先是未知的，则使用自适应混合电路以自适应于所述未知的阻抗。

[0014] 自适应混合电路的实施将由如下组成，加法/减法器电路，其中正弦输入是通信信道的信号并且负弦输入是自适应滤波器的输出；阻抗，其将放大器的输出与至通信信道的接入点进行连接；以及自适应滤波器，该自适应滤波器的输入是放大器的输出，并且该自适应滤波器的输出是所述加法/减法器电路的负弦输入；以及加法/减法器电路的输出对单一端口信号复示器的放大器的输入的反馈。结果是，将滤波器自适应于放大器的输出和至通信信道的接入点之间的转移函数之后，实现了受控的信号增益。

[0015] 形成自适应混合电路的核心的自适应滤波器能够以多种方式而被实施，在其中，可以借助数字有限脉冲响应（FIR）滤波器或者借助模拟有限脉冲响应（FIR）滤波器。在上述任何例子中，使用模拟或数字FIR需要调整滤波器的响应，这可以通过采用线性滑动算法而进行。

[0016] 在运行具有自适应混合电路的模拟单一端口复示器之前，需要对信道进行初始化自适应。这可以通过以下步骤进行：断开反馈，以使得系统处于开环；将信号注人放大器；信号的功率变化在通信信道使用的带宽内；随着被注人的信号的隔离最大化而进行开环混合电路的自适应；并且最后再次关闭环路以进行复示器设备的正常运行。

[0017] 通常不可能将模拟单一端口复示器直接连接到至通信信道的接入点，必须使用传输线路将复示器连接至该接入点。在这种情况下，在复示过程中，必须考虑所述传输线路的响应。如果通过已知的响应传输线路将复示器连接至通信信道，就将混合电路的输出和放大器的输入之间的反馈环路内的补偿加入到复示器中。

[0018] 相反，如果通过未知的响应传输线路将复示器连接至通信信道，就将该未知的响应传输线路和混合电路的双向端口之间的延迟加入到复示器中，或者，将所述延迟加入到复示器设备的反馈环路内。

[0019] 在复示器通过未知的响应传输线路被连接到通信信道的情况下，另一种可能是，补偿被加入到混合电路的输出与放大器的输入之间的反馈环路中，该补偿的值根据通信信道的一个或更多节点所接收的信号而被调整。

[0020] 复示信号的补偿可以被用于最大化通信网络的一个或更多节点所接收到的信号，或者最小化在所述节点接收到的信号。

[0021] 最后，虽然单一端口信号复示器可以被应用于任何的导电介质，电网，双绞线和同轴电缆的特定特征使得其对于使用本发明的设备是适合的通信信道。

[0022] 为了更好的理解本说明书，附加上了作为说明书一部分的附图，其中，以示意性和非限制性的特征描述了本发明的目的。
附图说明
[0023] 图 1 描述了在由两个通信节点构成的通信网络中使用的单一端口信号复示器的例子。
[0024] 图 2 示出了在加入单一端口信号复示器之前和之后获得的结果的一些图形。
[0025] 图 3 描述了本发明的通用设备，其包括以环路形式连接起来的放大器和混合电路。
[0026] 图 4 示出一种替代的实施例，其中自适应混合电路包括阻抗，加法 / 减法器电路和自适应滤波器。
[0027] 图 5 中描述了前面附图的设备，以及描述了接入点信号的理论等效电路，用于进行复示效果的理论计算。
[0028] 图 6 示出了借助梯度算法进行系统识别的形式，该梯度算法可以被用于设备中，以进行自适应混合电路中的滤波器的自适应。
[0029] 图 7 描述了使用数字滤波的本发明设备的一个替代的实施例。
[0030] 图 8 示出了使用模拟滤波的本发明设备的一个实施例。
[0031] 图 9 图示地描述了在将其放在真实通信环境下操作之前，开环电路的适应过程。
[0032] 图 10 示出了单一端口复示器通过传输线路的连接。
[0033] 图 11 示出了使用传输线路在通信线路的不同点处的信号引起的效果，该传输线路用于连接单一端口信号复示器。
[0034] 图 12 描述了本发明的设备，其具有在反馈环路内的传输线路的效果的补偿器。
[0035] 图 13 示出了当使用未知传输线路将本发明的设备连接到通信信道时，信噪的效果，以及当本发明的设备包括延迟器时所接收到的信号。
[0036] 图 14 示出了一个实施例，其中补偿器的系数用接收器节点的信息进行计算，从而信号在所述接收器节点的输入被最小化。
[0037] 图 15 示出了一个实施例，该实施例的情况是：从相邻网络的通信节点出来的信号需要被最小化，因而调整单一端口信号复示器环路的补偿器的系数。

具体实施例
[0038] 下面描述本发明的一个实施例，参考附图中采用的编号。
[0039] 理论上看，本发明的设备所要解决的问题包括设计一种电路，该电路将通过通信信道的信号放大，而不需要中断所述信道。图 1 示出了一个典型的实例，其中具有两个通信节点，传输器 1 和接收器 2 通过通信信道 3 被连接。本发明的设备 4 在接入点 5 被连接到信道 3 以实现信号复示效果。
[0040] 图 2 示出了关于通信信道 3 不同点处的频率的信号振幅的三个图形。被标号为 6 的图形示出了在传输器节点 1 的输出的信号。被标号为 7 的图形示出了在信道的接入点 5 的信号，而被标号为 8 的图形示出了在接收器节点 2 的输入的信号。如果不使用本发明的单一端口复示器，根据被描述出的水平 (9)，信号通过信道 3 并且被逐渐衰减，从而接收器节点 2 可能不能检测到它，这是由于信号比它的灵敏阈值要低。通过使用本发明的设备 4，信号将增大到水平 10，这将有利于对其在接收中的检测。
[0041] 单一端口信号复示器的一般视图可以如图 3 所示。该设计包括了以反馈环路形式
被连接起来的放大器11和混合电路12。该混合电路12具有三个端口：双向端口12a（其通过接入点5被连接到通信信道）、输入端口12b（其接收放大器11的输出信号）以及输出端口12c（其与放大器11的输入相连接）。根据混合电路的规则，在该混合电路12的输入端口12b与输出端口12c之间将会很大的衰减，从而被放大的信号将通过上分支（upper branch）而被传输；即，从输入端口12b到双向端口12a，而信道的信号将通过下分支（lower branch）而被获得；即，从双向端口12a到输出端口12c。

由于反馈电感被用于进行复消过程，为了防止振荡，需要将混合电路自适应于相同的阻抗。该阻抗可以被朝向信道从接入点5到所述信道3而观察到。

如果在所述接入点5的阻抗是已知的，混合电路12可以在设计阶段被适应而具有适当的值。如果所述阻抗未知，就需要使用自适应混合电路12并且进行初始化适应以实现所希望的效果。

图4示出一个实施的实例，其中自适应混合电路12由加法/减法器电路14，自适应滤波器15以及固定值的阻抗13组成。加法/减法器电路14的正值输入被连接到至信道3的接入点5，而负值输入被连接到自适应滤波器15的输出。加法/减法器电路14的输出被作为复示器4的放大器11的输入而被引入，而该放大器11的输出被连接到自适应滤波器15的输入且通过固定的阻抗13被连接到通信信道3。可以由复示器通过接入点5而被观察到的阻抗由阻抗16表示。

图5示出一个原理图，其中描述了在接入点5的信道3的理论等效电路（信号和阻抗）。

为了进行理论研究，在接入点5处的通信信道3的效果（电压，Vin，和阻抗，Zi）被信号发生器18和两个电阻分压器17所描述，信号发生器的电压值是接入点的电压的两倍（2*Vin），且两个电阻分压器17阻抗是通信信道的阻抗的两倍（2*ZL）且其最初是未知的。该Zi的值与图4中的阻抗16的值一致。

在本发明设备的该实施例中，从几个方面详细说明了复示器4。放大器11具有基于频率的（frequency-dependent）转移函数G，固定阻抗13包括值为R的自适应阻抗，并且自适应滤波器15的转移函数被称为Hest。

放大器11试图放大输入信号，由于电路反馈的发生，该输入信号最初在通信信道中没有振荡。为此目的，必须尽可能消除被反馈朝向放大器11的接收端的传输信号，允许反馈同时不消除所期望的接收信号。如果通信信道3的阻抗被保持为恒定（在时间和频率上）的值R，混合电路将仅包括简单的电阻电路。但是由于信道的阻抗（Zi）是未知的，混合电路需要具有可配置转移函数Hest的滤波器，从而对于信道的阻抗一直保持是自适应的，并且从而实现消除传输信号的最大化。

电路的这种效果可以通过控制其运行的方程而被描述。通过这些方程，可能根据存在于线路中的原始电压而获得输出电压比率。该输出电压比率如果是正值，将代表本发明的设备的放大效果。

\[V_{in} = V_{sw} \cdot G \] (方程1)

\[V_{sw} = V_{out} - V_{rb} \] (方程2)

\[V_{rb} = V_{in} \cdot H_{est} \] (方程3)

进行叠加：
$V_{out} = 2 \cdot V_{in} \cdot X_1 + V_{ib} \cdot X_2$ (方程 4)

其中:

$$X_2 = \frac{Z_L}{Z_L + R} = H_j$$ 并且 $X_1 = \frac{R}{2 \cdot Z_L + R} \cdot H_f = \frac{1}{2} \cdot \frac{R}{Z_L + R} = \frac{1}{2} \cdot H_f$

将 X_1, X_2 和 (方程 1), (方程 2) 以及 (方程 3) 带入方程 (方程 4):

$$V_{out} = V_{in} \cdot \frac{R}{Z_L} \cdot H_f + V_{ib} \cdot H_f$$ (方程 5)

$$V_{out} = V_{in} \cdot \frac{R}{Z_L} \cdot H_f + \left(V_{out} - V_{ib} \cdot H_f \right) \cdot G \cdot H_f$$ (方程 6)

为了获得作为 V_{in} 的函数的 V_{out}, 必须将 V_{ib} 从方程 (方程 5) 中分离出来并带入 (方程 6):

$$V_{ib} = \frac{V_{out} - V_{in} \cdot \frac{R}{Z_L} \cdot H_f}{G \cdot H_f}$$

$$V_{out} = V_{in} \cdot \frac{R}{Z_L} \cdot H_f + \left(V_{out} - V_{in} \cdot \frac{R}{Z_L} \cdot H_f \right) \cdot G \cdot H_f$$ (方程 7)

$$V_{out} = V_{in} \cdot \frac{R}{Z_L} \cdot H_f \cdot \left(1 + G \cdot H_f \right)$$ (方程 8)

该输出电压通常是输入电压与放大因数相乘。如果执行了信号消除器的函数和自适应电阻的自适应，则将实现本发明设备所期望的效果。

在自适应条件下 $H_{est} = H_f$:

$$V_{out} = V_{in} \cdot \frac{R}{Z_L} \cdot H_f \cdot \left(1 + G \cdot H_f \right)$$

如果进一步, $Z_L = R$:

$$V_{out} = V_{in} \cdot \left(\frac{1}{2} + \frac{G}{4} \right)$$

那么, 在给定条件下, 如此而获得了在接入点 5 的输入电压的放大, 该输入电压的放大与图 5 中所使用的放大器 11 的增益直接成某一比例因数。

在完成以上实现时该电路没有振荡, 就需要采用自适应滤波器 15, 即, 得到滤波器的系数, 通过该系数而获得期望的输出信号。为此目的, 可以使用任何的梯度算法。例如, LMS (最小均方) 算法是特别适合的, 因为其运算量很低。

梯度通常通过误差信号和输入信号被估算, 因此更新滤波器的系数或权重的形式对应于以下表达式:

$$W[n+1] = W[n] + 2 \mu \cdot e[n]X[n]$$

其中 W 是自适应滤波器的权重, e 是误差信号, X 是输入信号并且 μ 是自适应参数。
[0075] LMS 算法允许将其用于线性系统的识别，从而自适应滤波器 15 将被适应使其具有所期望的响应（在接入点的信道的阻抗所确定）。具有 LMS 的系统识别的一般视图可以如图 6 所示，其中输入信号 x[n] (19) 将是向自适应滤波器 15 和系统 20 的输入信号，该系统将被执行自适应，其在本例中是在放大器 11 的输出和至通信信道 3 的接入点 5 之间的响应。将 d[n] (21) 和 y[n] (22) 的输出相减，产生误差信号 e[n] = d[n] - y[n] (23)，该值将修正自适应滤波器 15 直至达到最小的误差信号，在这种情况下，自适应滤波器 15 具有的响应将接近所期望的响应。

[0076] 有两种实施自适应滤波器的基本形式：数字形式或模拟形式。

[0077] 为了使用数字滤波器，需要将信号从模拟域转换到数字域，进行滤波并返回到数字域。为此目的，模拟到数字以及数字到模拟转换器将被使用，如图 7 中的实施例所示。

[0078] 在图 7 中，自适应滤波器 15 被衰减器 28，抗混叠滤波器 29，数字到模拟转换器 26 以及自适应数字有限脉冲响应（FIR）滤波器 24 所替代，它们的系数从误差信号被计算，该误差信号是加法 / 减法器 14 的输出。来自通信信道的信号也通过衰减器 28，抗混叠滤波器 29 和数字到模拟转换器 26 在此之后，其作为正输入而被引入到加法 / 减法器 14。该实施例与一般实施例的区别在于，包括了在放大器 11 之前的训练序列发生器 30 和复用器 31，数字到模拟转换器 25 以及平滑滤波器 27。这些电路一方面允许从数字域传到模拟域，另一方面用来执行滤波器的自适应。

[0079] 图 8 显示本发明设备的另一个实施例，此处使用了模拟滤波器。在这个例子中，由于不需要改变域，滤波器仅包括可编程的增益放大器 32 或者 PGA，有限脉冲响应滤波器 33 以及可变衰减器 34。

[0080] 如果使用自适应混合电路，在使用单一端口信号复用器之前，需要使其适应在接入点的通信信道的阻抗。为此目的，该设备必须在开环的条件下被连接到通信信道，并且自适应必须在静止的时刻进行。

[0081] 一旦实现了自适应，环路就再次闭合。如果没有进行该过程，电路的反馈将可能导致复用器的振荡。

[0082] 自适应过程的一个实例如图 9 所示。在这个例子中，用于自适应的信号是白噪声，该白噪声具有的光谱含量宽度足够覆盖复用器设备的工作带宽。

[0083] 白噪声发生器 35 的输出信号通过转换器 25 被转换到模拟域，并且所述信号通过可编程增益放大器 32 被注入到自适应滤波器 15 中且通过固定阻抗 13 被注入到通信信道 3 中。该信号也被引入到电路 36 中，该电路 36 通过 LMS 算法进行系数的计算。该电路 36 也需要借助转换器 26 被转换到数字域的加法 / 减法器 14 的输出信号。计算出的系数 (w[n]) 通过转换器 25 被转换到模拟域，并且被引入到模拟 FIR 滤波器 33 (或者如果滤波器是数字的，数字 FIR 滤波器的系数不需要转换过程)。

[0084] 根据该模拟，白噪声需要至少高于线路噪声信号 26dB，从而适合地操作自适应过程。自适应所需的时长将主要依赖于使用的系数的数量和所选择的自适应算法。对于 LMS 算法和 20 个系数，则需要的时间根据模拟在 1 到 15 微秒之间。

[0085] 对于本发明设备的一般应用，假设单一端口信号复用器 4 到通信信道 3 的连接直接在至信道 3 的接入点处被实施。根据网络的拓扑，在实际情况下，难于直接实施这种连
接，所以需要在复示器 4 的输出和至信道 3 的接入点 5 之间使用传输线路 37 以进行所述连接。这种情况在图 10 中被描述，其中单一端口信号复示器 4 通过具有一般长度 L 的传输线路 37 被连接到接入点 5。

【0086】图 11 示出在复示器 4 通过传输线路 37 被连接的情况下，根据在系统的不同点处的频率的振幅值。图示 (6) 示出在传输器节点 1 的输出的信号。图示 (8) 和 (38) 示出在接收器节点 2 的输入的信号。在之前的图示 (8) 中没有对传输线路 37 的效果进行补偿，而在之后的图示 (38) 中对单一端口信号复示器的反馈环路中的线路的效果进行了补偿。如前面的图示中所示，表示了单一端口信号复示器没有被应用 (9) 以及被应用 (10) 的情况下在不同点处的信号。

【0087】我们可以看到，如果没有被质地补偿，传输信道 37 根据频率而对信号的振幅进行修改。

【0088】如果所述传输信道 37 具有已知的转移函数，就可能补偿复示器的反馈环路中的效果。图 12 示出了一个实施例，其中包括带有响应的补偿块 39，使得该补偿块 39 补偿将单一端口信号复示器连接至到信道 3 的接入点 5 的传输线路 37 的效果。

【0089】如果所述传输信道 37 具有未知的转移函数，可能的解决方法是，在复示器自身中，产生额外的相移，该相移的幅度的数量级大于由传输信道 37 引入的相移的相移的相容。所述的延迟可以被置于反馈环路内或所述环路外。图 13 示出对于使用具有额外延迟的复示器的情况，在系统的不同点处的信号。图示 (6) 示出在传输器节点 1 的输出的信号，而图示 (8) 示出不使用延迟的接收器节点 2 的输入的信号，图示 (40) 则示出使用延迟的接收器节点 2 的输入的信号。正如以上的例子，编号 (9) 的水平表示不采用单一端口信号复示器的信号，而编号 (10) 的水平表示采用单一端口信号复示器的信号。

【0090】所述延迟的值与线路 37 的值相比必须很高，使得显著的效果是增加的延迟效果。因此，将实现具有波峰（结构效应）和波谷（破坏效应）的纹波效应，并且在接收节点 2 的输入的一般效果将是正值信号增益，正如通过对比没有复示器 9 以及设置复示器 9（在该情况下，包括延迟）所接收的信号的值而可以看到的。

【0091】直到现在，描述了一种自治系统，该自治系统没有来自传输器节点 1 和接收器节点 2 的信息的任何反馈。通过通信所产生的信息，就可能以最优的方式调整单一端口信号复示器，以实现最佳化设备可以达到的复示效果。这个例子如图 14 所示，其中接收器节点 2 将收到其通信的信息发送到复示器 4，从而后是调整补偿器 39，直到向接收器节点 2 的输入信号最优化。

【0092】在一些情况下，需要信号复示用于实现信号在接收器节点 2 的信号最小化（例如，使来自于相邻网络的信号的干扰最小化）。正如图 15 中所示的情况，补偿器 39 根据从接收器节点 2 所接收的信息而被调整，直到获得相邻网络的节点 39 的输入信号的最小值。