(54) 发明名称
辅助鉴定锁阳属植物的方法及其专用引物

(57) 摘要
本发明公开了辅助鉴定锁阳属植物的方法及其专用引物。本发明所提供的用于鉴定锁阳属植物的引物对，由序列表中序列1所示的引物和序列表中序列2所示的引物组成。本发明所提供的辅助鉴定锁阳属植物的方法，包括以下步骤：以待鉴定植物的基因组DNA为模板，用允许要求1所述的引物对进行PCR扩增，得到PCR扩增产物；检测测序检测所述PCR扩增产物，若所述PCR扩增产物为1064bp的片段，则确定所述待鉴定植物候选为锁阳属植物。该方法不仅可以弥补中药材的形态鉴定中的主观因素，同时具有用量少、效率高、稳定性和准确性高，准确可靠的特点，对于规范锁阳的药材使用有着重要的意义。
1. 一种用于鉴定锁阳属植物的引物对，由序列表中序列1所示的引物和序列表中序列2所示的引物组成。

2. 一种辅助鉴定锁阳属植物的方法，包括以下步骤：

 以待鉴定植物的基因组DNA为模板，用权利要求1所述的引物对进行PCR扩增，得到PCR扩增产物；测序检测所述PCR扩增产物，若所述PCR扩增产物为1064bp的片段，则确定所述待鉴定植物候选为锁阳属植物。

3. 一种辅助鉴定锁阳属植物的方法，包括以下步骤：

 以待鉴定植物的基因组DNA为模板，用权利要求1所述的引物对进行PCR扩增，得到PCR扩增产物；琼脂糖凝胶电泳检测所述PCR扩增产物，若所述PCR扩增产物在凝胶上显示为1000bp-1100bp的条带，则确定所述待鉴定植物候选为锁阳属植物。

4. 根据权利要求3所述的方法，其特征在于：所述琼脂糖凝胶电泳是采用1.5%琼脂糖凝胶电泳，在电压为5v/cm下进行。

5. 根据权利要求3或4所述的方法，其特征在于：

 所述PCR扩增的反应条件为：94℃预变性5分钟；然后按照下列参数进行循环反应：94℃变性45秒，58℃～62℃复性40秒，72℃延伸70秒，循环30次，循环反应结束后在72℃保持7分钟。

6. 根据权利要求5所述的方法，其特征在于：所述锁阳属植物为锁阳。

7. 权利要求1所述的引物对在辅助鉴定锁阳属植物中的应用。

8. 根据权利要求7所述的应用，其特征在于：所述锁阳属植物为锁阳。
辅助鉴定锁阳属植物的方法及其专用引物

技术领域
[0001] 本发明涉及生物技术领域中辅助鉴定锁阳属植物的方法及其专用引物。

背景技术
[0002] 锁阳为锁阳科（Cynomoriaceae）锁阳属（Cynomorium L.）植物。锁阳（Cynomoriumsocialimum Rupr.）的肉质茎，植物锁阳又名乌兰高腰、不老药、金不换，为多年生全寄生草本植物，寄生于蒺藜科（Zygophyllaceae）白刺属（Nitraria L.）植物的刺根上，锁阳主产于内蒙古、新疆、甘肃、青海、宁夏等地的半荒漠或荒漠地带，是重要的中药和蒙药植物。
[0003] 锁阳性温、味甘，《本草纲目》中记载：锁阳，大补阴气，益精血，利大便，润燥养筋，治痿弱。现代医学研究表明，锁阳中富含挥发性物质、鞣质类化合物、酚类化合物、三萜类化合物、微量元素和氨基酸等，具有提高免疫功能、清除自由基、抗氧化、防突变、抗癌等活性。锁阳中的熊果酸、熊果酸丙二酸半脂、乙酰熊果酸和缩合鞣质具有很强的抑制艾滋病毒蛋白酶的作用。由于锁阳的特殊药用价值，自古以来被广泛用于临床治疗。
[0004] 锁阳药材来源于民间采挖，随着锁阳应用价值的提升，滥采乱挖现象愈演愈烈，野生锁阳资源日益减少。因此，市场上也出现了利用列当混淆使用，也有利用锁阳冒充肉苁蓉，草苁蓉的情况发生。
[0005] 鉴于锁阳药材资源紧张以及市场上存在伪品等问题，传统的形态鉴别要求有一定的经验，对于破碎后的药材就更加难以准确鉴别。因此需要快速、准确鉴别药材真伪的方法。目前对人参、黄芪、管花肉苁蓉等重要药材的分子生物学鉴别方法已有报道，但尚未见到锁阳分子生物学鉴定方法的报道。

发明内容
[0006] 本发明的一个目的是提供一种用于鉴定锁阳属植物的引物对。
[0007] 本发明所提供的用于鉴定锁阳属植物的引物对，由序列表中序列1所示的引物和序列表中序列2所示的引物组成。
[0008] 本发明的另一个目的是提供一种辅助鉴定锁阳属植物的方法。
[0009] 本发明所提供的辅助鉴定锁阳属植物的方法，包括以下步骤：
[0010] 以待鉴定植物的基因组DNA为模板，用权利要求1所述的引物对进行PCR扩增，得到PCR扩增产物；测序检测所述PCR扩增产物，若所述PCR扩增产物为1064bp的片段，则确定所述待鉴定植物候选为锁阳属植物。
[0011] 以待鉴定植物的基因组DNA为模板，用权利要求1所述的引物对进行PCR扩增，得到PCR扩增产物；琼脂糖凝胶电泳检测所述PCR扩增产物，若所述PCR扩增产物在凝胶上显示为1000bp-1100bp的条带，则确定所述待鉴定植物候选为锁阳属植物。
[0012] 所述琼脂糖凝胶电泳是采用1.5%琼脂糖凝胶电泳，电压为5V/cm下进行。
[0013] 所述PCR扩增的反应条件为：94℃预变性5分钟，然后按照下列参数进行循环反
应：94℃变性45秒，58℃～62℃或58℃或60℃或62℃复性40秒，72℃延伸70秒；循环30次；循环反应结束后在72℃保持7分钟。

[0014] 所述锁阳属植物为锁阳。
[0015] 所述引物对在辅助鉴定锁阳属植物中的应用也属于本发明的保护范围。
[0016] 所述锁阳属植物为锁阳。
[0017] 本发明设计了可以鉴别锁阳的一对高效特异性引物，该引物在给定的反应条件下，能够特异性地鉴别锁阳，对于伪品锁阳不能扩增出相应的DNA片段。本专利所使用的方法直接分析生物基因型而非表现型，所以鉴定结果不受环境因素、样品形态和材料来源的影响。该方法不仅可以弥补中医药材形态鉴别的主观因素，同时具有用量少、效率高、稳定性高的准确可靠的特点，对于规范锁阳的药材使用有着重要的意义。

附图说明
[0018] 图1为实施例1中方法I的PCR反应产物电泳检测结果。
[0019] 图2为实施例1中方法II的PCR反应产物电泳检测结果。
[0020] 图3为实施例1中方法III的PCR反应产物电泳检测结果。

具体实施方式
[0021] 下述实施例中所使用的实验方法如无特殊说明，均为常规方法。
[0022] 下述实施例中所用的材料、试剂等，如无特殊说明，均可从商业途径得到。
[0023] 采用北京百泰生物技术有限公司的新型快速植物基因组DNA提取试剂盒（离心柱型）提取肉苁蓉、锁阳、黄花列当、草苁蓉等植物中提取总DNA，利用PCR方法扩增多个基因片段，得到的基因片段纯化后测序，根据锁阳与肉苁蓉、草苁蓉、黄花列当等列当科植物基因片段序列差异较大的区域及锁阳属植物特有的基因序列，设计出一对鉴别的PCR引物：
[0024] 引物1：ggagatgggatgacatgt（序列表中序列1）
[0025] 引物2：cgcagacgtgttcttactac（序列表中序列2）
[0026] 利用全自动DNA合成仪按上述DNA序列进行合成，即可得到鉴定粉末的白色结晶。
[0027] 实施例1.鉴定中药材锁阳
[0028] 方法Ⅰ
[0029] 一、提取不同样品的基因组DNA
场）作为待鉴定的样品，同时使用肉苁蓉（*Cistanche deserticola Ma*）（购自于内蒙古福瑞大药房）、草苁蓉（*Boschniakia rossica*）（购自于内蒙古福瑞大药房）和黄花列当（*Orobanche cernostachya Hance*）（公众可从内蒙古大学获得，记载过该材料的非专利文献是，韩继新，杨九艳，邵红霞，鞠爱华，2011）。蒙药黄花列当化学成分的研究，内蒙古大学学报（自然科学版），41（6）：669-672）为阴性对照，采用北京百泰克生物技术有限公司的新型快速植物基因组 DNA 提取试剂盒（离心柱型）（产品目录号为 DP3111）分别提取以上材料的基因组 DNA。具体方法如下：

[0031] （1）取 0.03g 干燥植物茎段组织在研钵中，加入液氮充分研磨成细粉。

[0032] （2）将步骤（1）得到的不同植物组织细粉（新鲜肉苁蓉组织 100mg，不同产地干燥锁阳、草苁蓉和黄花列当各 30mg）分别加入 1.5m1 离心管，不解冻，向离心管加入 550μl 65℃预热的 BufferPl（BufferPl 加入 0.2%（v/v）β-巯基乙醇）和 4μl RNaseA，剧烈涡旋震荡混匀 1 分钟，室温放置 10 分钟。

[0033] （3）加入 130μl BufferP2，充分混匀，12000rpm 离心 3 分钟。

[0034] （4）小心吸取上清到一个分离柱 A，注意不要吸到界面物质，12000rpm 离心 1 分钟，收集下液。

[0035] （5）加入 1.5 倍体积的 BufferP3 后，立刻轻柔涡旋，充分混匀。

[0036] （6）将上一步所得混合物（包括可能出现的沉淀）加入一个吸附柱 AC 中（吸附柱放入收集管中），12000rpm 离心 1 分钟，倒掉收集管中的废液。

[0037] （7）加入 700μl 漂洗液 WB（第一次使用前请先在 15ml 漂洗液 WB 中加入 60ml 无水乙醇），12000rpm 离心 1 分钟，弃掉废液。

[0038] （8）加入 500μl 漂洗液 WB，12000rpm 离心 1 分钟，弃掉废液。

[0039] （9）将吸附柱 AC 放回空收集管中，13000rpm 离心 3～5 分钟，尽量除去漂洗液，以免漂洗液中残留乙醇抑制下游反应。

[0040] （10）取出吸附柱 AC，放入一个干净的离心管中，在吸附膜的中间部位加 50μl 洗脱缓冲液 EB（洗脱缓冲液事先在 65℃～70℃水浴中预热），室温放置 3～5 分钟，12000rpm 离心 1 分钟收集 DNA。

[0041] （11）DNA 放置在 -20℃备用。

[0042] 通过以上方法分别得到采集自新疆乌鲁木齐市的锁阳、采集自甘肃安西县的锁阳、采集自青海海西市的锁阳、采集自内蒙古杭锦旗的锁阳、采集自宁夏陶乐的锁阳、肉苁蓉、草苁蓉和黄花列当的基因组 DNA。

[0043] 二、聚合酶链式反应（PCR）

[0044] 分别以步骤一得到的采集自新疆乌鲁木齐市的锁阳、采集自甘肃安西县的锁阳、采集自青海海西市的锁阳、采集自内蒙古杭锦旗的锁阳、采集自宁夏陶乐的锁阳、肉苁蓉、草苁蓉和黄花列当的基因组 DNA 为模板，以引物 1（如序列表中序列 1 所示）和引物 2（如序列表中序列 2 所示）组成引物对，采用大连宝生物的 TaKaRa TaqTM 试剂盒（购自大连宝生物公司，产品目录号为 DR001AM），进行 PCR 扩增，具体方法如下：

[0045] （1）反应体系：

[0046] 该反应体系由待鉴定植物的基因组 DNA 模板 20ng，序列表中序列 1 所示的引物、序列表中序列 2 所示的引物、PCR 扩增缓冲液、Taq 酶、dATP、dCTP、dTTP、dGTP、MgCl₂ 和去离子水组成。
子水组成;所述 PCR 扩增缓冲液由 Tris-HCl、KCl 和去离子水组成；

[0047] 以上各成分在反应体系中的浓度分别为：待鉴定植物的基因组 DNA 模板 0.8ng/μL，序列中序列 1 所示的引物 0.4μmol/L，序列中序列 2 所示的引物 0.4μmol/L，Tris-HCl(pH8.3)10mmol/L，KCl 50mmol/L，Taq 酶 0.1U/μL，dATP 0.2mmol/L，dCTP 0.2mmol/L，dGTP 0.2mmol/L，dTTP 0.2mmol/L 和 MgCl2 1.0mmol/L。

[0048] 以上各成分混匀后，瞬时离心。

[0049] (2) 聚合酶链式反应条件：

[0050] 该反应在 PCR 仪上进行，反应条件为：94℃预变性 5 分钟，然后按下列参数进行 30 次循环反应：

[0051] 变性 94℃ 45 秒，
[0052] 复性 58℃ 40 秒，
[0053] 延伸 72℃ 70 秒，

[0054] 循环反应结束后在 72℃保持 7 分钟，PCR 反应结束，得到反应产物，将得到反应产物在 4℃保存。

[0055] 三、对 PCR 反应产物进行电泳检测

[0056] 分别取步骤二得到的采集自新疆乌鲁木齐市的棉阳、采集自甘肃安西县的棉阳、采集自青海海西市的棉阳、采集自内蒙古杭锦旗的棉阳、采集自宁夏陶乐的棉阳、肉苁蓉、草苁蓉和黄花列当的 PCR 反应产物 5μl，与 1μl 加样缓冲液混合均匀，用 1.5％琼脂糖凝胶（含 0.5％溴化乙锭），在电压为 5V/cm 下进行检测。同时，以 1μl 加样缓冲液和 5μl 不添加 DNA 模板的 PCR 反应产物的混合溶液为空白对照。

[0057] 电泳检测结果如图 1 所示，图 1 中，泳道 M 为 1kbDNA 分子量梯度泳，泳道 1 为采集自新疆乌鲁木齐市的棉阳，泳道 2 为采集自甘肃安西县的棉阳，泳道 3 为采集自青海海西市的棉阳，泳道 4 为采集自内蒙古杭锦旗的棉阳，泳道 5 为采集自宁夏陶乐的棉阳，泳道 6 为肉苁蓉，泳道 7 为草苁蓉，泳道 8 为黄花列当，泳道 9 为空白对照。从图 1 可见，泳道 1、泳道 2、泳道 3、泳道 4 和泳道 5 的棉阳样品在琼脂糖凝胶电泳上显示为 1000bp~2000bp（具体为 1000bp~1100bp，实际上是 1064bp）的条带，而泳道 6,泳道 7 和泳道 8 的阴性对照以及泳道 9 的空白对照均为未出现 1064bp 的条带，此结果说明该鉴定方法准确可靠。

[0058] 四、对 PCR 反应产物进行测序检测

[0059] 分别将步骤二得到的 PCR 扩增产物进行测序，测序结果显示：采集自新疆乌鲁木齐市的棉阳、采集自甘肃安西县的棉阳、采集自青海海西市的棉阳、采集自内蒙古杭锦旗的棉阳、采集自宁夏陶乐的棉阳的扩增产物为 1064bp 的条带，肉苁蓉、草苁蓉、黄花列当和空白对照的扩增产物未得到 1064bp 的条带。此结果说明该鉴定方法准确可靠。

[0060] 方法 II

[0061] 一、提取不同样品的基因组 DNA

[0062] 与方法 I 相同。

[0063] 二、聚合酶链式反应 (PCR)

[0064] 除聚合酶链式反应条件中复性温度为 60℃以外，其余方法均与方法 I 相同。

[0065] 三、对 PCR 反应产物进行电泳检测

[0066] 电泳检测方法与方法 I 相同。
电泳检测结果如图 2 所示，图 2 中，泳道 M 为 1kbDNA 分子量梯度，泳道 1 为采集自新疆乌鲁木齐市的锁阳，泳道 2 为采集自甘肃安西县的锁阳，泳道 3 为采集自青海省海西市的锁阳，泳道 4 为采集自内蒙古杭锦旗的锁阳，泳道 5 为采集自宁夏陶乐的锁阳，泳道 6 为肉苁蓉，泳道 7 为草苁蓉，泳道 8 为黄花列当，泳道 9 为空白对照。从图 2 可见，泳道 1、泳道 2、泳道 3、泳道 4 和泳道 5 的锁阳样品在琼脂糖凝胶电泳上显示为 1064bp 的条带，而泳道 6、泳道 7 和泳道 8 的阴性对照以及泳道 9 的空白对照均为未出现 1064bp 的条带，此结果说明该鉴定方法准确可靠。

四、对 PCR 反应产物进行测序检测
测序检测结果与方法 I 中无显著差异。

方法 III
一、提取不同样品的基因组 DNA
与方法 I 相同。
二、聚合酶链式反应 (PCR)
除聚合酶链式反应条件中复性温度为 62℃外，其余方法均与方法 I 相同。
三、对 PCR 反应产物进行电泳检测
电泳检测方法与方法 I 相同。
电泳检测结果如图 3 所示，图 3 中，泳道 M 为 1kbDNA 分子量梯度，泳道 1 为采集自新疆乌鲁木齐市的锁阳，泳道 2 为采集自甘肃安西县的锁阳，泳道 3 为采集自青海省海西市的锁阳，泳道 4 为采集自内蒙古杭锦旗的锁阳，泳道 5 为采集自宁夏陶乐的锁阳，泳道 6 为肉苁蓉，泳道 7 为草苁蓉，泳道 8 为黄花列当，泳道 9 为空白对照。从图 3 可见，泳道 1、泳道 2、泳道 3、泳道 4 和泳道 5 的锁阳样品在琼脂糖凝胶电泳上显示为 1064bp 的条带，而泳道 6、泳道 7 和泳道 8 的阴性对照以及泳道 9 的空白对照均为未出现 1064bp 的条带，此结果说明该鉴定方法准确可靠。

四、对 PCR 反应产物进行测序检测
测序检测结果与方法 I 中无显著差异。
序列表

110 内蒙古大学

120 辅助鉴定锁阳属植物的方法及其专用引物

130 CGGNARG1120244

160 2

210 1
211 20
212 DNA
213 人工序列
220
223
400 1
ggagatggga ttgcacatgt 20

210 2
211 20
212 DNA
213 人工序列
220
223
400 2
cgcgagactt gtttcattac 20