03/104920 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 December 2003 (18.12.2003)

PCT

(10) International Publication Number

WO 03/104920 A2

(51) International Patent Classification”: GO6F

(21) International Application Number: PCT/US03/17585

(22) International Filing Date: 5 June 2003 (05.06.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
607385,988 5 June 2002 (05.06.2002) US
60/385,979 5 June 2002 (05.06.2002) US
10/206,810 25 July 2002 (25.07.2002) US

(71) Applicant: THE NASDAQ STOCK MARKET, INC.
[US/US]; 1801 K Street, N.W., Washington, DC 20006
(US).

(72) Inventors: FAILLA, Santino; 20 Marcy Drive, Southing-
ton, CT 06489 (US). BILIS, Georgia; 23 Wedgewood
Drive, Watertown, CT 06795 (US). EASTERBROOK,
George, David, Jr.; 78 Old Forge Hollow Road, Bantam,
CT 06750 (US). VINCENT, Timothy; 30 Sportsman
Drive, Shelton, CT 06484 (US).

(74) Agent: MALONEY, Denis, G.; Fish & Richardson on
P.C., 225 Franklin Street, Boston, MA 02110 (US).

(84) Designated States (regional): European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: INFORMATION DISTRIBUTION PROCESS AND METHOD

Securities Processor #1

Matching Process|

) 14a
Order Book

Random Access Memory

Securities Processor #30
- 62dd

Matching Process

28
~

14dd
Order Book

Insert

Proc.
(74)

Proc.

Query j |

(94)

e
26 '
Distrib. Proc]

-«——— User Query

Execution
File

Order History
File

Delivery
File

Order Status
File

Y] 3

Response ——»

bus 48

O (57) Abstract: A process for distributing information in an electronic market includes an insertion process to insert, in a file that
resides in a storage medium, information representing an activity relating to a security interest stored in an order book that resides

=

in main memory and is accessible by a matching process.

10

15

20

25

WO 03/104920 PCT/US03/17585

Information Distribution Process and Method

RELATED APPLICATIONS

This application claims the priority of U.S. Provisional Patent Application No.
60/385,988, entitled “Security Processor”, and filed on June 5, 2002 and to U.S.
Provisional Patent Application No. 60/385,979, entitled “Supermontage Architecture”, and
filed on June 5, 2002.

BACKGROUND

This invention relates to electronic securities trading, and the processing and
displaying of information relating to electronic securities trading.

Electronic equi|ty markets, such as The Nasdaq Stock Market ™ collect, aggregate,
and display pre-trade information to market makers. In The Nasdaq Stock Market = for
example, this pre-trade information can take the form of a quote that represents a single or
an aggregate of same-priced principal or agency orders. A market, such as The Nasdaq
Stock Market ™ also provides trading platforms through which market participants may

trade securities in the marketplace.

SUMMARY

According to an aspect of this invention, a process for distributing information in
an electronic market includes an insertion process to insert, in a file that resides in a
storage medium, information representing an activity relating to a security interest stored
in an order book that resides in main memory and is accessible only by a matching
process.

According to a further aspect of the invention, a method for distributing
information in an electronic market includes inserting, in a file that resides in a storage
medium, information representing an activity relating to a security interest stored in an
order book that resides in main memory and is accessible only by a matching process.

According to a further aspect of the invention, a computer program product
residing on a computer readable medium for distributing information in an electronic
market includes instructions for causing a computer to insert, in a file that resides in a

storage medium, information representing an activity relating to a security interest stored

10

15

20

25

30

WO 03/104920 PCT/US03/17585

in an order book that resides in main memory and is accessible only by a matching
process.

According to a further aspect of the invention, a method for distributing
information in an electronic market includes inserting into a persistent store information
representing an activity relating to a security interest stored in an order book in a main
memory of a securities processor and directing queries for status of the order book
information to a process that controls the persistent store.

One or more of the following features may also be included.

A user query relating to the security interest stored in the file that resides in the
storage medium may be received. The file may contain information representing activities
relating to security interests stored in at least two order books that reside in main memory.
A securities processor may include the order book. The storage medium may be a
sequential access storage device. The file may be partitioned. The activity relating to the
security interest may include an order. The file may be searched. The information may be
retrieved from the file. The received user query may be responded to. A user query
relating to the information stored in the persistent store may be received. The main
memory may be random access memory. The main memory may be a cache.

One or more advantages can be provided from the above. By inserting security
information from one or more securities processors into a server’s storage, the information
may be quickly accessed from the common storage location. Further, by transferring the
information with a dedicated central processing unit (CPU), trade processing by a separate
CPU is not interrupted to concurrently transfer of the information. Additionally, the
dedicated CPU can receive and process queries from users without taxing the trade
processing CPU. By balancing the concurrent trade processing and responding to user

queries, a user is also better able to conduct securities trading.

DESCRIPTION OF DRAWINGS
FIG. 1 is a block diagram of a server.
FIG. 2 is a block diagram of a random access memory and a server storage.
FIG. 3 is a block diagram of securities processors and files.
FIG. 4 is a block diagram of an order history file.

FIG. 5 is a flow chart for storing information from a securities processor.

WO 03/104920 PCT/US03/17585

FIG. 6 is a flow chart for processing a user query.

10

15

20

25

30

WO 03/104920 PCT/US03/17585

DETAILED DESCRIPTION

Referring to FIG. 1, a server 10 is shown that includes a securities processor 12
that contains an order book 14, which resides in random access memory 16 that stores
securities trade information and an execution log file 18, a delivery log file 20, an order
activity log file 22, and a quote log file 24 that stores data related to processing incoming
orders against the information in the order book. The server 10 also includes a distribution
process 26 resident in a portion of another random access memory 28 that retrieves and
distributes the data in the log files 18, 20, 22, 24 into another storage 30 in the server 10.
The distribution process 26 stores the data from the securities processor 12 along with data
retrieved from other securities processors (not shown) in an order history file 32, a
delivery file 34, an execution file 35, an order status file 38, a quote history file 40, and an
inside history file 42.

The securities processor 12 is one portion of a computerized trading system, which
trades securities electronically by processing one-sided or two-sided transactions entered
by a user (e.g., a market participant). Users typically access and use the computerized
trading system via a computer, thus allowing the users to enter security trades themselves
or through professional traders/brokers. For efficient securities trading, one central
processing unit (CPU) 44 executes instructions from the distribution process 26 and an
operating system (O/S) 46, for example, to receive and respond to user queries (e.g.,
market participants) over a bus 48, while another CPU 50, which is not interrupted by the
user queries, concurrently processes trades received over network 52 by executing
instructions stored in an O/S 54, along with other instructions stored in the server storage
56.

The server storages 30, 56 store respective operating systems 46, 54 along with
respective log files 18, 20, 22, 24 and files 32, 34, 36, 38, 40, 42. In some
implementations, the server storages 30, 56 may individually or in combination be a hard
disk drive, a tape drive, an optical drive, a redundant array of independent disks (RAID), a
random access memory (RAM), or a read-only memory (ROM), for example, or other

similar sequential access storage device or devices that provides a persistent store of the

10

15

20

25

30

WO 03/104920 PCT/US03/17585

recorded information. Typically, server 10 is a multi-processing, fault-tolerant system that
includes multiple central processing units that each have a dedicated main memory
system, in this implementation random access memory 16, or share a common main
memory pool. While being executed by the central processing unit(s) of server 10,
multiple instantiations of securities processor 12 may reside in the main memory system of
server 10. Further, the processes and subroutines of securities processor 12 may also be
present in various levels of cache memory incorporated into server 10. Also while the log
files 18, 20, 22, 24 and the files 32, 34, 36, 38, 40, 42 are stored on separate server
storages 30, 56, in some implementations the log files and files may be stored on the same
server storage or other similar sequential access storage device or devices that provides a
persistent store of the log files and files. Also while one server 10 includes the server
storages 30, 56 and the random access memories 16, 28, in some implementations two or
more servers may share server storages 30, 56.

Referring to FIG. 2, the securities processor 12 that accesses portions of the server
storage 56 and resides in the random access memory 16 is shown. For example, to
perform a trade for a particular security, a user enters an order into the computerized
trading system that is received and directed to the securities processor 12 assigned to the
particular security. In some implementations, the securities processor 12 may be assigned
to two or more securities in order to distribute the volume of securities trading over a
number of securities processors. In some other implementations, the securities processor
12 may be assigned to one heavily traded, high volume security to reduce trading volume
of that security on other securities processors (not shown).

The securities processor 12 may be assigned to one particular security and store
related security trading interest in the order book 14 residing in the random access
memory 16 of that securities processor 12. By random access memory is meant main
memory or alternatively one or more levels of cache memory. In some implementations a
matching process may load portions of the order book into a level of cache memory from
the main memory. Alternatively, the securities processor 12 may be assigned to multiple
securities and correspondingly, the order book 14 residing in random access memory 16 of
that securities processor stores the trading interests of those multiple securities. In some
implementations, to store interests for multiple securities, the order book 14 in random

access memory 16 may be partitioned into multiple sections, dimensions, or files to store

10

15

20

25

30

WO 03/104920 PCT/US03/17585

the interests assigned to the securities processor 12. Here the order book 14 resides within
the execution space of the random access memory 16 that has the matching process 62.
However, in some implementations the order book 14 resides in an execution space of the
random access memory 16 that is separate from another execution space having the
matching process 62. Also, the order book 14 is exclusively accessible by the matching
process 62 regardless whether or not both reside in the same execution space of the
random access memory 16.

In addition to the support for a horizontally scalable archiéecture, the in memory
order book 14 provides for reliable transaction processing at extremely high rates for an
individual security. The internal state of the securities processor 12 is adjusted by
processing incoming transactions in strict first-in, first-out serial sequence. The
transaction rates capable for this approach exceeds those rates provided by traditional file
based approaches and provide a reliable approach to use the order book 14 in random
access memory 16 to hold the state of the book. By inserting, updating and retrieving
elements (records) from the in-memory order book 14 instead of a disk file, throughput
substantially increases. Also, logic for allocating and freeing memory, maintaining lists
and index tables associated with the in-memory order book 14 may be encapsulated
random access memory 16.

In general, an order directed to the securities processor 12 is received by an order
entry process 58 that performs cursory checking functions (e.g., order eligibility, order
syntax, etc.) on the received order. If the received order fails one or more of the cursory
functions the order is returned to the user, however, if the cursory functions are passed, the
received order is logged to a matching trigger 60 stored in the server storage 56. The
matching trigger 60 queues the received order along with, for example, other orders,
quotes, deliveries, or supervisory commands that are received by the securities processor
12 for the security or securities assigned to the securities processor. Typically the received
order represents a new order for processing (e.g., match against open orders, add as new
open orders, etc.) while the supervisory commands, for example may cancel, modify, or
execute other similar actions against existing orders stored in the order book 14 residing in
random access memory 16.

Once queued into the matching trigger 60, the received order is held in the

matching trigger until pulled into a matching process 62 by an order management process

10

15

20

25

30

WO 03/104920 PCT/US03/17585

64. The matching process 62 matches portions of the received order, i.e., executes and
allocates the received orders and stores the unmatched portion of the order in the order
book 14. After pulling the received order, which is at least partially marketable and has
cleared initial validations, the matching process 62 attempts to execute all or part of the
received order with one or more orders on the contra side of the order book 14. Upon
pulling the received order, the matching process 62 checks and validates the received order
(e.g., marketability check, apply short sale rule, etc.) with definite and unambiguous
knowledge of the current state of the market for the particular security. Some of the
validations are specific to orders received while some validations are specific for quotes
received by the securities processor 12 or the validations may be common to quotes and
orders. In this particular example, after the securities processor 12 receives an order, if the
check or validation fails the received order is returned to the user (e.g. market participant)
unexecuted.

One factor that is considered by the matching process 62 is the quantity of the
received order. Matching of the received order continues until the entire received,
marketable order is exhausted. In executing the received order to the fullest extent, a
display size of the received order, as well as a reserve size, if any, are combined and the
matching process 62 continues to execute this combined quantity of the received order
against contra side orders stored in the order book 14 until exhaustion of the received
order. To match against orders stored in the order book 14, the stored orders have an open
status and are on the opposite side of the market to that of the received order. Once the
received order is completely exhausted, the matching process 62 is complete and the
execution is reported to other processes internal and external to the securities processor 12.

Another factor concerning the matching process 62 is the marketability of the
received order. After passing the previous validations during the order entry process 58,
the matching process 62 determines whether the received order is marketable. The
received order is marketable if the order is a limit or other type of priced order and the
received order’s price locks or crosses the inside for the particular security. For a received
order which is a bid, the inside is locked or crossed if the bid price is higher than the
current best (i.e., lowest) ask price; alternatively, for a received order which is an ask

order, the inside is locked or crossed if the ask order price is lower than the current best

10

15

20

25

30

WO 03/104920 PCT/US03/17585

(i.e., highest) bid price. The received order can also be marketable if it is a market type
order.

Subsequently, if the order is marketable, further validations are performed using
current inside market prior to retrieving an order stored in the order book 14 to match
against. However, if after the received order is determined marketable and subsequently
matched against a security interest retrieved from the order book 14, the inside spread
changes which may result in the price of the received order not locking or crossing the
market that occurrence could end the matching process 62. Also, if the received order, or a
portion of the received order, is not marketable or not fully executable, the remainder is
added to the order book 14 for matching to a future order received by the securities
processor 12.

After the received order is determined marketable and subsequent validations
based on current inside market are passed, the order management process 64 searches
contra orders stored in the order book 14 that correspond to the particular security of the
received order. To search the orders stored in the order book 14, the order management
process 64 may use parameters associated with the received order. In some
implementations, one parameter associated with the received order is a market participant
ID that may be passed to the order management process 64 as a search parameter. By
searching with the market participant ID, internalization, preferenced orders, or regular
matching may be performed by the order management process 64. A matching preference
may also be associated with the received order. For example, the received order may
specify a matching condition that causes the matching algorithm to match based on a
price/time priority, a price/fee/time priority, a price/size priority, or other preference. Also,
the order management process 64 checks that a retrieved order from the order book 14 is
available for matching (e.g., it is not in outage, etc.).

To initiate matching the received order, the matching process 62 determines the
total quantities that can be executed in the current matching cycle. The quantities are, for
example, the total executable display quantity for market participant’s non-unlisted trading
privileges (non-UTPs), the total executable reserve quantity for non-UTPs, and the total
executable UTP quantity. The UTP quantity is segregated in some embodiments because
the UTPs are allocated against only after all the display quantities and reserve quantities

for non-UTPs at a particular price level are exhausted. These quantities are used to

10

15

20

25

30

WO 03/104920 PCT/US03/17585

determine how much quantity from the display and reserve size of a retrieved order can
used in a match and whether a retrieved UTP order can be filled. Once the total executable
quantities are defined, the orders for allocation are retrieved from the order book 14 in
accordance with the appropriate prioritization algorithm and the use of internalization.

The order management process 64 retrieves an order from the order book 14 and
determines if the retrieved order meets the execution preference and requirements of the
current match. For example, if a received order is specified with a prioritization preference
of price/fee/time priority, and the order management process 64 retrieves an order from the
order book 14 with fees, then this retrieved order is skipped. The order management
process 64 continues to search the order book 14 for orders at a price level until an order
that does not have access fees is found. If the order of this type is not found, the order
management process 64 starts over and retrieves orders from the order book 14 that charge
fees. After all orders residing in the order book 14, at a price level that meet the specified
requirements for the match are exhausted, the matching cycle continues at the next price
level provided the market is still crossed.

To execute a match between the received order and the order retrieved from the
order book 14, the order management process 64 determines if the match, for example, is
an automatic execution, an odd lot, or a delivery and assigns the appropriate execution
type to the execution. After matching the received order, the order management process
64 updates the retrieved order in the order book 14. For example, the retrieved order may
be completely exhausted and updated as ‘executed’ or, in another example, the retrieved
order may have been partially executed and the remainder of the order is stored in the
order book 14 with an open status. Also, during the matching of the received order, as the
displayed size is exhausted, orders can be replenished from the reserve size. As portions
of the received orders are matched by orders on the order book 14, the order management
process 64 updates the order book 14 to reflect the matches. The order management
process 64 also checks if the received order should be refreshed. If the order is refreshed
and the market is still crossed, the order management process 64 continues matching.
Otherwise, the order management process 64 completes by reporting the portion executed
to the execution log file 18, stored in the server storage 56, and other processes included in

the securities processor 12 and external 68 to the securities processor.

10

15

20

25

30

WO 03/104920 PCT/US03/17585
10

In some implementations matching process 62 includes a looping function that is
triggered when the received order is identified as being executable. The matching process
62 attempts to match a portion of the received order and continues matching the received
order as long as the received quantity is greater than zero and the market is still crossed. If
either of these conditions fail, then the matching process 62 is completed and executions
are reported to the execution log file 18 and the other processes internal and external 68 to
the securities processor 12.

During operations of the securities processor 12, the order book 14 is exclusively
accessible by the matching process 100, which serves as an interface and the single point
of access to the order book. By restricting access of the order book 14 to the matching
process 62, other processes included in or related to the securities processor 12 do not
interfere with operations of the order book 14. For example, in some computerized
trading systems an order book may, for example, be scanned to provide securities
information to users during the same time period in which orders are retrieved from the
order book for matching to a received order. Interruptions, such as this, for allowing
access and sharing of the order book between the matching process and other lower
priority processes slows the matching process and reduces trading efficiency. Also, by
restricting access to the order book 14, security information throughput significantly
increases. Thus, by isolating the order book 14 to interact exclusively with the matching
process 62, matching speed and efficiency increases.

Besides receiving and processing an order, other activities related to the security or
securities assigned to the securities processor 12 may be received. For example, a quote
update may be received by the securities processor 12 and pulied from the matching
trigger 60 by the matching process 62 for adding the quote in the order book 14 or
preparing the quote for matching. If the received quote does not lock or cross the market,
the order book 14 is updated by replacing an existing quote or adding the received quote
as an initial quote. In another example, a two-sided quote may be received by the security
processor 12 and pulled from the matching trigger 60 by the matching process 62. The
side of the quote that does not lock or cross the market may update an existing quote or
may add the quote as an initially received quote in the order book 14. The quote side that
locks or crosses the inside is matched by the matching process 62 and any remainder will

be added to the order book 14. Also, the marketable side of a received quote is removed

10

15

20

25

30

WO 03/104920 PCT/US03/17585

1
from the order book 14 and replaced by any remainder after matching. A received quote
may also include a relative update (e.g., a size increment or a size decrement) in which the
matching process 62 adjusts the existing quote in the order book 14 for the relative size
changes.

Supervisory commands (e.g., closing positions for a specific market participant,
blocking a market participant’s positions from being opened during the market opening
process, purging a market participant’s orders, or other similar commands) may also be
received by the securities processor 12 and pulled from the matching trigger 60 by the
matching process 62 for execution. However, supervisory command activities are
complete, inclusive, and are implemented as modular plug-in components.

After matching, for example, the received order, or a portion of a received order,
against one or more orders in the order book 14 and prior to pulling the next activity order
from the matching trigger 60, the order management process 64 reports the matching of
the received order, or a portion of the received order, to the order activity log file 22
located in the server storage 56. Since the order activity log file 22 receives the report
from the order management process 64 prior to pulling the next order from the glatching
trigger 60, the order activity log file has the current status of the order book 14, ‘and thus
the current status of the market before any further processing. Thus, if an unforeseen:
catastrophe occurs, such as losing the information contained in the order book 14, the
order book may be rebuilt based on the information backed-up in order activity log file 22.

Besides reporting the execution of the received order or a portion of the received
order, the order management process 64 may report, for example, executing a delivery
order, executing an odd-lot order, adding a quote, canceling an order, canceling/replacing
an order, purging an order, updating the order book 14 to reflect executions or adding an
unmatched received order or a portion of the received order, or other similar activity
associated to the securities processor 12. Also, in some implementations the order activity
log file 22 may, for example, be a data file, a database, or other data storage structure
residing in server storage 56. Once stored in the order activity log file 120, the activities
may be disseminated, for example, to trade participants, an Automated Confirmation
Transaction (ACT) system, other interested parties, or processes internal or external to the

securities processor 12.

10

15

20

25

30

WO 03/104920 PCT/US03/17585

12

In particular, one process associated with the securities processor 12, which
accesses the activities stored in the order activity log file 22 is an order file builder process
70. The order file builder process 70 constructs an order file 72 that provides near real-
time disaster recovery of the order book 14 for a number of potential failure scenarios, as
well as the contingent redeployment of activity processing to secondary securities
processors (not shown). Each potential failure point in the trading system is supported by
a level of redundancy, ranging from immediate system-level backup to delayed manual
takeover. In the interest of rapid recovery for virtually all failures, a degree of automatic
processing is allowed, but in general manual intervention is always an option. At lower
failure levels, for example the failure of the securities processor 12, the securities
processor is attempted to be restarted. As failure severity increases, such as the loss of the
CPU 50 (shown in FIG. 1), the level of automation employed decreases. Ultimately, the
most serious catastrophic failure, such as a loss of the entire server 10, may permit little
automatic recovery.

To provide disaster recovery, the order file builder process 70 builds and maintains
the order file 72 by retrieving the activities stored in the order activity log file 22. In some
implementations, the order file 72 is stored on the server storage 56 and has the latest
updates for open orders or orders with a special status (e.g., the market participant requests
closing their positions due to equipment trouble, a display and reserve quantity are zero
but the delivery quantity is greater that zero, etc.). While the order file builder process 70
stores activities related to updating the order book 14, activities not needed for
reconstructing the order book 14, such as executed or canceling orders, are filtered from
the material stored in the order file 72. By storing these activities, the order file 72
provides the current status of the security interests residing in the order book 14 to provide
fast recovery in the event of a malfunction of the securities processor 12 or reassigning
one or more securities to another security processor.

As mentioned, since the order book 14 resides in random access memory 16, such
as main memory and in some implementations is accessed only by the matching process.
In main memory information may be quickly stored on the order book as compared, for
example, to order books residing in a magnetic medium (e.g., diskette, hard disk, etc.)
which typically have much longer access times for storing and retrieving orders. Due to

the fast accessibility of the random access memory 16, the order book 14 may also be

10

15

20

25

30

WO 03/104920 . PCT/US03/17585
quickly rebuilt by retrieving information stored in the order file 72, as compared to
rebuilding order books stored on a slower access hard disk or other magnetic medium.

Besides storing executions and activities related to a received order in the
execution log file 18 and the order activity log file 22, information associated to deliveries
are stored in the delivery log file 20 and information associated with quotes received by
the securities processor 12 are stored in the quote log file 24. Each of these log files 18,
20, 22, 24, which reside in the server storage 56, may be accessed by the distribution
process 26 (shown in FIG. 1) to disperse the infonnatic;n stored in the log files respectively
into the order history file 32, the delivery file 34, the execution file 36, the order status file
38, the quote history file 40, and the inside history file 42. These files 32, 34, 36, 38, 40,
42 store data from the securities processor 12 and other securities processors (not shown)
which may reside in server 10 (shown in FIG. 1) so that the data may be accessed by users
(e.g., market participants, maker makers, etc.) without interrupting trading processing by
the securities processors.

Referring to FIG. 3, in some implementations thirty securities processors 12a-12dd
may be used to balance trading processing and provide data from respective log files 18a-
dd, 20a-dd, 22a-dd, 24a-dd for dispensing into the order history file 32, the delivery file
34, the execution log 36, the order status file 38, quote history file 40, and the inside
history file 42. The distribution process 26 includes an insert process 74 that retrieves the
data from the log files of the respective securities processors 12a-dd and stores the data in
the files 32, 34, 36, 38, 40, 42. For example, the order history file 32 receives, from the
insert process 74, and stores data representing events related to each order received by 'the
securities processors 12a-dd. The order status file 38 receives the current status of the
orders in each order book 14a-dd that reside in each matching process 62a-dd for each of
the securities processors 12a-dd. For example, one order may be completely exhausted
and have an ‘executed’ status and another order may be partially executed and retains an
‘open’ status. Typically, matching of an incoming order continues so long as the incoming
order has a quantity remaining that is executable against orders on the respective order
book. Orders such as these have an open status and must be on the market side opposite
the incoming order. The execution file 36 receives from the insert process 74 an execution
report for each order received and executed by the securities processors 12a-dd while the

delivery file 34 contains a report for deliveries executed by the securities processors 12a-

10

15

20

25

30

WO 03/104920 PCT/US03/17585

14

dd. The inside history file 42 and the quote history file 40 respectively contain a history of
the inside prices for each security assigned to the securities processors 12a-dd and the
history of quotes received and stored in the order books 14a-dd of each securities
processor 12a-dd as made by a market maker. In some implementations the inside history
file 42 and the quote history file 40 may have access restricted to market regulators, such
as MarketWatch ™, or other securities regulating entities.

Referring to FIG. 4, an example structure 76 for the order history file 32 is shown.
The order history file structure 76 partitions the order history file 32 for efficient data
accessing, for example, by forming a Cartesian coordinate system 78 of file partitions 80a-
88dd. Each file partition 80a-88dd is assigned a position along an x-axis 90 and a y-axis
92 of the coordinate system 78 so that file partitions (e.g., 80a, 80D, ..., 80dd) along the X-
axis 90 are separated in accordance to the order histories for each of the thirty securities
processors 12a-12dd (shown in FIG. 3) that are labeled here as “SP #1” through “SP #30”.
Continuing along the y-axis 92, the file partitions (e.g., 80a, 82a, ..., 88a) separate order
histories in accordance to the trading frequency of the securities assigned to each of the
thirty securities processors 12a-dd. For example, file partition 80a contains the order
history of the most heavily traded security (SEC#1) assigned to the first securities
processor (SP#1) 12a. The next file partition 82a, along the y-axis 92, has the order
history, for example, of the next two heavily traded securities (SEC#2, #3) assigned to the
first securities processor 12a. This progression continues along the y-axis 92 to the last
file partition 88a, for the first securities processor 12a, which has the order history for the
least-frequently traded security (SEC #12) assigned to the first securities processor 12a.
Similar partitioning is used along the y-axis 92 for the remaining securities processors
12b-12dd, however, as shown in file partition 82b, the trading frequency of the securities
assigned to the file partitions (e.g., SEC #2, #3, #4) may differ from the trading frequency
in file partitions for the other securities processors (e.g., file partition 80a has order
histories for securities #2 and #3). Also, the number of securities assigned to a particular
securities processor may also vary, for example, the first securities processor (SP#1)1s
assigned twelve securities (SEC #1-#12) while the last securities processor (SP #30) is
assigned only ten securities (SEC #1-10).

Returning to FIG. 3, along with the order history file 32, the delivery file 34, the
execution file 36, the order status file 38, the inside history file 40, and the quote history

10

15

20

25

30

WO 03/104920 PCT/US03/17585

15

file 42 may be individually or in combination partitioned to improve data accessing
efficiency of the information inserted by the insert process 74 from the respective order
log files 22a-dd, execution log files 18a-dd, delivery log files 20a-dd, and quote log files
24a-dd of the securities processors 12b-12dd. By partitioning the files 32, 34, 36, 38, 40,
42, the inserted information from the securities processors 12a-dd is distributed and may
be quickly accessed from the Cartesian coordinate layout.

The distribution process 26, located in the random access memory 28, also
includes a query process 94 for accessing the information stored in the files 32, 34, 36, 38,
40, 42. Typically, a user (e.g., a market participant) interested in a portion of the stored
information transmits a query over the bus 48 to the query process 94. After receiving the
query, the query process 94 processes the user query and retrieves the information of
interest from the files 32, 34, 36, 38, 40, 42. If the information, or a portion of the
information, is not present in any of the files 32, 34, 36, 38, 40, 42, a message may be
transmitted from the query process 94 to the user that sent the query. If the information is
present, it may be retrieved by the query process 94 and transmitted to the user that sent
the query, along with other parties with bus 48 access. Since the distribution process
manages inserting the information from the securities processors 12a-dd to the files 32, 34,
36, 38, 40, 42, the matching process 62 (shown in FIG. 2) is not overloaded by user
queries that can slow trading processing.

Typically user queries are predominantly high volume queries that do not have to
be supported by the CPU 50 (shown in FIG. 1), thus allowing the CPU to continue to
process quotes and orders. For example, a user may send a query for a scan of the order
information in the order history file 32. In response to the query, the information may be
published onto the bus 48 or a summary of the information, created on a real-time basis or
before the time of the query, may be published over the bus. Along with scanning the
order history file 32, queries may also be received over the bus 48 to scan the contents of
the order status file 34, the execution file 36, or the delivery file 38. Since the inside
history file 42 and the quote history file 40 contain sensitive information, permission may
be required to access the information in these particular files. Besides scanning a file, an
incoming query may also request other information, for example, a market participant may
request that the top entry of one or more of the files 32, 34, 36, 38 be read and published

over the bus 48.

10

15

20

25

30

WO 03/104920 PCT/US03/17585

16

Also, in some implementations the information in the files 32, 34, 36, 38, 40, 42
may not be maintained overnight and the information is erased from the files at a certain
time, usually after the after-hours trading session and before trading on the next trading
day. During the daily spin, the history of open order information is published to support
individual order queries, so the information is erased prior to the real-time publishing.
Also, since modifications to security symbols and corporate actions (e.g., securities split,
dividends, mergers, acquisitions, etc.) do not occur during trading hours, security symbol
issues, corporate action issues, or other similar issues do not impact the user»queries and
responses and from the files 32, 34, 36, 38, 40, 42.

Referring to FIG. 5, a procedure 100 for storing information entered into a
processor that processes securities trades and other transactions, e.g., securities processor
is shown. The procedure 100 starts 102 by pulling 104, for example, information entered
into one or more of: the order activity log file activity 22, the execution log file 18, the
delivery log file 20, or the quote log file 24 (shown in FIG. 1) of the securities processor
12 (also shown in FIG. 1). Once the information is pulled from one or more of the log
files, the procedure 100 inserts 106 the information to one or more of: the order history file
32, the delivery file 34, the execution file 36, the order status file 38, the quote history file
40, or the inside history file 42 (also shown in FIG. 1) based upon the type of information.
Once inserted 106 into one or more of the files, the procedure 100 stores 108 the
information into a partition of the selected file(s). As mentioned, the partitioning may be
based on a Cartesian coordinate system that includes, for example, an x-axis for parsing
the file partitions as a function of the securities processors and a y-axis for parsing the file
partitions as a function of the trading frequency of the security or securities assigned to
each securities processor. Once the information is stored 108 in the particular file partition
of the selected file(s), the procedure 100 checks 110 for another entry into the log files of
each securities processor. If a new entry is detected, the procedure 100 returns to pull 104
Tche newly entered information and repeats the operations. If no entry into the log files is
detected, the procedure 100 stops 112.

Referring to FIG. 6, a procedure 200 to satisfy status queries and the like is shown.
The procedure 200 may execute concurrently with the procedure 100 shown in FIG. 5.
The procedure 200 starts 202 by receiving 204 a query from a user (e.g., a market

participant, a market maker, MarketWatch'™, etc.) of the electronic market and is typically

10

15

20

25

30

WO 03/104920 PCT/US03/17585

17

received over the bus 48 (shown in FIG. 1). Once the query is received 204, the procedure
200 searches 206 the one or more of: the order history file 32, the delivery file 34, the
execution file 36, the order status file 38, the quote history file 40, or the inside history file
42 (shown in FIG. 1) based upon the user query to deliver information in response to the
query. Once the files have been searched 206, the procedure 200 retrieves 208
information from one or more particular file partitions to respond to the user query. After
retrieving 208 the information, the procedure 200 publishes 210 a response to the query
over the bus 48 (also shown in FIG. 1) to the inquiring user and possibly other parties.
After publishing 210 the response over the bus 48, the procedure 200 determines 212 if
another query has been entered by a user. If another query has been entered by a user, the
procedure 200 returns to receive 204 the query and repeats the processing of the query. If
the procedure 200 determines 212 that another query has not been entered, the procedure
200 stops 214.

By inserting security information from one or more securities processors into a server
storage, the information may be quickly accessed from the common storage location.
Further, by transferring the information with a dedicated CPU 44 (shown in FIG. 1), trade
processing by the separate CPU 50 (also shown in FIG. 1) is not interrupted by the
concurrent transferring of the information. Additionally, the dedicated CPU 44 can
receive and process queries from users without taxing the trade processing CPU 50. By
balancing the concurrent trade processing and responding to user queries, a user is also
better able; to conduct securities trading.

Th\e distribution process 26 described herein is not limited to the software
embodiment described above; it may find applicability in any computing or processing
environment. The distribution process may be implemented in hardware, software, or a
combination of the two. For example, the distribution process may be implemented using
circuitry, such as one or more of programmable logic (e.g., an ASIC), logic gates, a
processor, and a memory.

The distribution process may be implemented in computer programs executing on
programmable computers that each includes a processor and a storage medium readable by
the processor (including volatile and non-volatile memory and/or storage elements). Each
such program may be implemented in a high-level procedural or object-oriented

programming language to communicate with a computer system. However, the programs

10

15

20

WO 03/104920 PCT/US03/17585
18
can be implemented in assembly or machine language. The language may be a compiled
or an interpreted language.

Each computer program may be stored on an article of manufacture, such as a
storage medium (e.g., CD-ROM, hard disk, or magnetic diskette) or device (e.g., computer
peripheral), that is readable by a general or special purpose programmable computer for
configuring and operating the computer when the storage medium or device is read by the
computer to perform the functions of the distribution process. The distribution process
may also be implemented as a machine-readable storage medium, configured with a
computer program, where, upon execution, instructions in the computer program cause a
machine to operate to perform the functions of the distribution process described above.

Embodiments of the order book may be used in a variety of applications. Although
the distribution process is not limited in this respect, the distribution process may be
implemented with memory devices in microcontrollers, general purpose microprocessors,
digital signal processors (DSPs), reduced instruction-set computing (RISC), and complex
instruction-set computing (CISC), among other electronic components.

Embodiments of the distribution process may also be implemented using integrated
circuit blocks referred to as core memory, cache memory, or other types of memory that
store electronic instructions to be executed by a microprocessor or store data that may be
used in arithmetic operations.

A number of embodiments of the invention have been described. Nevertheless, it
will be understood that various modifications may be made without departing from the

spirit and scope of the invention.

WO 03/104920 PCT/US03/17585

19

WHAT IS CLAIMED IS:
1. A process for distributing information in an electronic market comprises:

an insertion process to insert, in a file that resides in a storage medium, information
representing an activity relating to a security interest stored in an order book that resides in

5 main memory and is accessible only by a matching process.

2. The process of claim 1 further comprising a query process to receive a user query

relating to the sécurity interest stored in the file that resides in the storage medium.

3. The process of claim 1 wherein the file contains information representing activities

relating to security interests stored in at least two order books that reside in main memory.
10 4. The process of claim 1 wherein a securities processor includes the order book.

5. The process of claim 1 wherein the storage medium is a sequential access storage

device.
6. The process of claim 1 wherein the file is partitioned.

7. The process of claim 1 wherein the activity relating to the security interest includes an

15 order.
8. The process of claim 2 wherein the query process searches the file.

9. The process of claim 2 wherein the query process retrieves the information from the
file.

10. The process of claim 2 wherein the query process responds to the received user query.

20 11. A method for distributing information in an electronic market comprises:
\ inserting, in a file that resides in a storage medium, information representing an

activity relating to a security interest stored in an order book that resides in main memory

and is accessible only by a matching process.

10

15

20

WO 03/104920 PCT/US03/17585
20

12. The method of claim 11 further comprising:
receiving a user query relating to the security interest stored in the file that resides

in the storage medium.

13. The method of claim 11 wherein the file contains information representing activities

relating to security interests stored in at least two order books that reside in main memory.
14. The method of claim 11 wherein a securities processor includes the order book.

15. The method of claim 11 wherein the storage medium is a sequential access storage

device.
16. The method of claim 11 wherein the file is partitioned.

17. The method of claim 11 wherein the activity relating to the security interest includes

an order.

18. The method of claim 12 further comprising searching the file.

19. The method of claim 12 further comprising retrieving the information from the file.
20. The method of claim 12 further comprising responding to the received user query.

21. A computer program product residing on a computer readable medium for distributing

information in an electronic market, comprises instructions for causing a computer to:
insert, in a file that resides in a storage medium, information representing an

activity relating to a security interest stored in an order book that resides in main memory

and is accessible only by a matching process.

22. The computer program product of claim 21 further comprising instructions to cause
the computer to:
receive a user query relating to the security interest stored in the file that resides in

the storage medium.

10

15

20

WO 03/104920 PCT/US03/17585

21

23. The computer program product of claim 21 wherein the file contains information
representing activities relating to security interests stored in at least two order books that

reside in main memory.

24. The computer program product of claim 21 wherein a securities processor includes the

order book.

25. The computer program product of claim 21 wherein the storage medium is a

sequential access storage device.

26. The computer program product of claim 21 wherein the file is partitioned.

27. The computer program product of claim 21 wherein the activity relating to the

security interest includes an order.

28. The computer program product of claim 22 further comprising instructions to cause
the computer to:

search the file.

29. The computer program product of claim 22 further comprising instructions to cause
the computer to:

retrieve the information from the file.

30. The computer program product of claim 22 further comprising instructions to cause
the computer to:

respond to the received user query.

31. A method for distributing information in an electronic market comprises:
inserting into a persistent store information representing an activity relating to a
security interest stored in an order book in a main memory of a securities processor; and
directing queries for status of the order book information to a process that controls

the persistent store.

WO 03/104920 PCT/US03/17585

22

32. The method of claim 31 further comprising receiving a user query relating to the

information stored in the persistent store.

33. The method of claim 31 wherein the activity relating to the security interest includes

an order.

34. The method of claim 31 wherein the main memory is random access memory.

35. The method of claim 31 wherein the main memory is a cache.

PCT/US03/17585

WO 03/104920

1/6

ur

.................... nun 4
7 Buissaoold
Jjue
L m_ 9 _ jeljusd \\ G6l ye
— [ons | [o Jf)
a4
/ S/O| {MOIsIH| [sniels
/ $89201d _ opisu | [4ep10 FNET [=Tal
uonnqusia or =
u.. <«l»| [B1F 2w | oud N | oM
9 fowapy oisi [~ [uonnosx3| 9€ fuoisiH
.,., MMNMMM_ ajonpd ov 2¢.7148pI0

i
1 o4 a4
| | 6o |9 | Bo1
| ea | 81129X3
! 9|l
=&
| Bo1 fnov | |
L9 | | opio | 1
e _
| vz 2 |
| o

98

N

[A%]

asuodsay

L
o
.

:3/./ / \
I A | B \ /
1 /
[/ \ y
! \ _
A doog | \ AN Y
p [1oPiO | | I\
e !
Nﬂ 10889201 \ e
S9NUN09S A
Aowo i/ .
$S900Y \ /
wiopuey
<ot / ones Ny
nwn
Buissesoid| 05 \
enuey [- sepeil

PCT/US03/17585

WO 03/104920

2/6

9g

obelioig 1onI9g

Z'9ld
99 /> (se)ssaooid [puiaixa OL

|||||||||||||||||||||||||||||| .
I
_ |
_ I
" ss9201d "
_ 1epling |
" 9|4 “
_ JopI0 _
! 1 yoog JaplO |
_] ’ < !
“ 0. “
i v + "
| I
| I
| I
| I
_ |
_ I
| _
_ ssa201d !

_
| Juswabeuep < "
| 19910 |
I

I
! $5920id]
" 9 * Buiyojey "
I 106611 I
_ 2o !
" $89001d A !
A A3 ~ !

1
" Jap10 ac |

P e * S, Iossenoig senunoss

19pI0 pansoay

PCT/US03/17585

WO 03/104920

3/6

€ 'Old

8Y sng

<«——— 9suodsay

Aonp lesn ————»

e e o — ————— — e — . — ——— ——

ppz9 -1

yoog JapiQ

PP¥L
ssao0ld Buiyoien

OE# 108S8001d SaN0Sg

uoinooxy

ST
Aaorsiy

apisu

ol

ol
snje)s 18pi0

SlE
Asnijeg

AlojsIH 18pi10

0014 quIsig
9z

ald
bo1
ajonpd

Alows|\ SS920Yy wopuey

8

ajid
6o

4

yoog JapiQ
eyl
ss200l1d Buiyojep

ezg

L# J0SS8001d SB)UN2ag

PCT/US03/17585

WO 03/104920

4/6

9.

06

‘o TH
o3s
dS

L# 0dS

wan |[CH#dS

qo08

eg8

8.

¥ ‘B4

ajid
Ai0)siH 19p10

PCT/US03/17585

WO 03/104920

5/6

G 'Old

¢lJossaooud
SaNLN0as 8y} O
Anue Jsyjouy

(113

(s)eiy ay} Jo uopped \
Ojul uojjew.Iojul 810}g 801

1

ajy Aojsiy 810nDd "9

ol Aojsiy apisu] G

ajy Aienyeq v |

9|} uoynoaxy ‘¢

o} snje)s 1epJQ 2

ol K103y 10p10 *1 \

:JO 910W 1O SUO uoNewoul Yasu| | 901

‘a|1} Boj ayonb

"o|ij Boj Asenlep "¢

"a|i 6oj uonoaxe g

"8I} 6o} AyAnoe J19plIo °| /

:0Jul paisjue UoRewoU! find | q,

2 L39S

00l

PCT/US03/17585

WO 03/104920

6/6

9'Old on |

¢ palsus

Asenb Jayjouy

oA zLe

-snq Jano Alenb Jesn 0} esuodsai ysiiqnd /
oLc

}

"(s)uonued aji) WOl UOHEULIOJUI SASHISY /
) 802

-f1anb Josn 0] asuodsal 10} Sofl} Yoleasg /
90¢

4

("019 ‘ yyUOIeMISHIBIN ‘IadEL JodIEW “yuedoiped

— 1oyseWw “B8) Jasn woy Aenb ansiosy
. Y02

(s ™

20¢

00¢

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

