PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4 : (11) International Publication Number: WO 88/ 01772
GO6F 15/16 Al | 13 International Publication Date: 10 March 1988 (10.03.89)
e (21) International Application Number: PCT/US87/02181 (Si) Designated States: DK, NO.

(22) International Filing Date: 28 August 1987 (28.08.87)

. Published
. With international search report.
. (31) Priority Application Number: 902,290
(32) Priority Date: 29 August 1986 (29.08.86)
(33) Priority Country: Us

(71) Applicant: THINKING MACHINES CORPORA-
TION [US/US]; 245 First Street, Cambridge, MA
02142 (US).

(72) Inventor: HILLIS, W., Daniel ; 135 St. Paul Street,
Brookline, MA 02146 (US).

(74) Agent: MORRIS, Francis, E.; Pennie & Edmonds, 1155
Avenue of the Americas, New York, NY 10036 (US).

(54) Title: A SYSTEM TO ALLOCATE THE RESOURCES OF A VERY LARGE SCALE COMPUTER

320

330+

(57) Abstract

A system for a massively parallel computer (330) allocates the computer’s resources among a large number of users
(310A-310N) in a time sharing environment. This is accomplished by dynamically dividing the computer (330) into inde-
pendently usable processor arrays (400) that allows a multiplicity of data bases (470, 480, 490) to be run simultaneously.
Further, each of the 1,000,000 possible physical processors (PPU) are able to simulate additional virtual processors on the
order of 1,000,000,000,000. A device of this size can be shared by a large number of users (310A-3 10N) with each user op-

erating on only a portion of the entire computer (330).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international appli-
cations under the PCT.

France ’ ML Mali

AT Austra R
AU Australia GA Gabon MR Mauritania
- BB Barbados GB United Kingdom MW Malawi
BE Belgium HU Hungary NL Netherlands
BG Bulgaria IT TItaly o .NO' Norway
BJ Benin JP Japan : RO Romania
BR Brazil) KP Democratic People’s Republic SD Sudan
CF Central African Republic of Korea SE Sweden
CG Congo KR Republic of Korea SN Senegal
CH Switzerland LI Liechtenstein SU Soviet Union
CM Cameroon LK SriLanka ' TD Chad
DE Germany, Federal Republic of LU Luxembourg TG Togo
DK Denmark MC Monaco US United States of America
FI Finland MG Madagascar

3

PCT/US87/02181

WO 88/01772
s 1-
A SYSTEM TO ALLOCATE THE RESOURCES OF
A VERY LARGE SCALE COMPUTER
5
10
15

20

25

30

36

Background of. the Invention

) This relates to massively parallel processors.and,
in particular, to improvements in the methods and apparatus

first disclosed in tha 400 patent.

As shown in Figure 1A of the ‘400 patent which is
reproduced in Figure 1, the computer system of those
disclosures comprises a mainframe computer 10, a
microcontroller 20, an array 30 of parallel processing
integrated circuits 35, a data source 40, a first buffer and
nultiplexer/demultiplexer 50, first, second, third and fourth
bidirectional bus control circuits 60, 65, 70, 75, a second
buffer and multiplexer/demultiplexer 80, and a data sink 90.
Mainframe computer 10 may be a suitably programmed
commercially available general purpose computer such as a VAX
(TM) computer manufactured by Digital Equipment Corp.
Microcontroller 20 is an instruction sequencer of
conventional design for generating a sequence of instructions

WO 88/01772 - ' 7 PCT/US87/02181

10

15

20

25

30

.35 .

that are applied to array 30 by means of a thirty-two bit
parallel bus-22. Microcontroller 20 receives from array 230 a
signal on 1ine 26. This signal is a general purpose or

' GLOBAL signal that can be used for data output and status

information. Bus 22 and line 26 are connectéd in parallel to
each IC 35. As a result, signals from microcontroller 20 are
applied simultaneously to each IC 35 in array 30 and the:
signal applied to microcontroller 20 on line 26 is formed by
combining the signal outputs from all of ICs 35 of the array.
Array 30 contains thousands of identical 1cs 35;
and each IC 35 contains several identical processor/memories
36. In the embodiment disclosed in the ’400 patent, it is
indicated that the array may contain up to 32,768 (= 215)
identical ICs 35; and each IC 35 may contain 32 (= 25)
identical processor/memories 36. At the time of filing of
this application for patent, arrays containing up to 4096 -

(= 212) identical ICs 35 containing 16 (= 24),identical

processor/memories each have been manufactured and shipped by
.the assignee as Connection Machine (TM) computers.

Processor/memories 36 are organized and
interconnected in two geometries. One geometry is a
conventional two-dimensional grid pattern in which the
processor/memories are organized in a rectangular array and
connected to their four nearest neighbors in the array. For
convenience, the sides of this array are identified as NORTH,
EAST, SOUTH and WEST. To connect each processor/memory to
its four nearest neighbors, the individual processor/memories
are connected by electrical conductors between'adjacent
processor/memories in each row and each column of the grid.

The second geometry is that of a Boolean n-cube of
fifteen dimensions. To understand the n-cube connection
pattern, it is helpful to number the ICs from 0 to 32,767 and
to express these numbers or addresses in binary notation
using fifteen binary digits. Just as we can specify the
position of an object in a two dimensional grid by using two

WO 88/01772

10

15

20

25

30

35

PCT/US87/02181

-3-

numbers, one of which specifies its position in the first
dimension of the two-dimensional grid and the other which
specifies it position in the second dimension, so too we can
use a number to identify the position of an IC in each of the
fifteen dimensions of the Boolean 15-cube. In an n-cube,
however, an IC can have one of only two different positions,
0 and 1, in each dimension. Thus, the fifteen digit IC -
address in binary notation can be and is used to specify the
Ic’s position in the fifteen dimensions of the n-cube.
Moreover, because a binary digit can have only two values,
zero or one, and because each IC is identified uniquely by
fifteen binary digits, each IC has fifteen other ICs whose
binary address differs by only one digit from its own
address. We will refer to these fifteen ICs whose binary
address differs by only one from that of a first IC as the
first IC’s nearest neighbors. Those familiar with the
mathematical definition of a Hamming distance will recognize
that the first IC is separated from each of its fifteen
nearest neighbors by the Hamming distance one.

To connect ICs 35 of the above-referenced
applications in the form of a Boolean 15-cube, each IC is
connected to its fifteen nearest neighbors by 15 input lines
38 and fifteen output lines 39. Each of these fifteen input
lines 38 to each IC 35 is associated with a different one of
the fifteenrdimensions of the Boolean 15-cube and llikewise
each of the fifteen'output lines 39 from each IC 35 is
associated with a different dimension.

To permit
communication through the interconnection pattern of the
Boolean 15-cube, the results of computations are organized in
the form of message packets; and these packets are routed
from one IC to the next by routing circuitry in each IC in
accordance with address information that is part of the

packet.

WO 88/01772 - PCT/US87/02181

10

15

20

25

30

35

-4-

An illustrative processor/memory 36 is disclosed in
greater detail in Pigure 7A of the ‘400 patent. As shown in
Figure 73, the processor/memory comprises 32x12 bit random
access memory (RAM) 250, ‘arithmetic logic unitv(ALU)VZBO and
flag controller 290. The ALU operates on data from three
sources, two registers in the RAM and one flag input, and
produces two outputs, a sum output that is written into one
of the RAM registers and a carry output that is made
available to certain registers in the flag controller as well
as to certain other processor/mémories.

The inputs to RAM 250 are address busses 152, 154,
156, 158, a sum output line 285 from ALU 270, the message
packet input line 122 from communication interface unit (CIU)
180 of Figure 6B of the 400 patent and a WRITE ENABLE line
298 from flag controller 290. The outputs from RAM 250 are
lines 256, 257. The signals on lines 256, 257 are obtained
from the same column of two different registers in RAM 250,

~ one of which is designed Register A and the other Register B.

Busses 152, 154, 156, 158 address these registers and the

columns therein in accordance with the instruction words from

7microcontroller 20.

ALU 280 comprises a one-out-of-eight decoder 282, a
sum output selector 284 and a carry output selector 286. As
detailed in the ‘400 patent, this enables it to produce sum
and carry outputs for many functions including ADD, logical
OR and logical AND. ALU 280 operates on three bits at a
time, two on lines 256, 257 from Registers A and B in RAM 250
and one on line 296 from flag controller 250. The ALU has
two outputs: a sum on line 285 that is written into
Register A of RAM 250 and a carry on line 287 that may be
written into a flag register 292 and applied to the North,
East, South, West and DAISY inputs of the other
processor/memories 36 to which this processor/memory is

PCT/US87/02181

WO 88/01772

10

15

20

25

30

35

-

connected; The signal on the carry line 287 can also be’
supplied to the communications interface unit 180 via message

packet output line 123.
Each integrated circuit 35 also includes certain

supervisory circuitry for the processor/memories on the IC
and a routing circuit 200 for connecting the IC to its
nearest neighbor ICs in the Boolean n-cube. As disclosed in
the ‘400 patent, supervisory circuitry comprises a timing
generator 140, a programmable logic array 150 for decoding
instructions received from microcontroller 20 and providing
decoded instructions to the processor/memories of the IC, and
a communications interface 180 which controls the flow of
outgoing and incoming message packets between the
processor/memories of an IC and routing circuit associated
with that Ic.

Routing circuit 200 controls the routing of message
packets to and from nearest neighbor ICs in the Boolean n-
cube. Through this circultry, message packets can be routed
from any IC to any other IC in the Boolean n-cube. .As shown
in Figure 6B of the ’400 patent, circuit 200 comprises a line
assigner 205, a message detector 210, a buffer and address
restorer 215 and a message injector 220 connected serially in
this order in a loop so that the output of one element is
provided to the input of the next and the output of message
injector 220 is provided to line assigner 205. Line assigner
205 comprises a fifteen by fifteen array of substantially
identical routing logic cells 400. Each column of this array
controls the flow of message packets between a nearest
neighbor routing circuit 200 in one dimension of the Boolean
15-cube. Each row of this array controls the storage of one
message packet in routing circuit 200. Message detector 210
of a routing circuit supplies message packets addressed to
processor/memories associated with this particular routing
circuit to a communications interface unit (CIU) 180; and

WO 88/01772 PCT/US87/02181

10

15

20

25

30

35

-6-

message injector 220 injects a message packet from CIU 180
into the group of message packets circulating in the routing

circuit.
Nine such routing logic cells 400 are illustrated

in Figure 11 of the /400 patent which is reproduced as Figure

2 hereof. The three cells in the left hand column are
associated with the first dimension, the three in the middle
column are associated with the second dimension and the three
in the right hand column are associated with the fifteenth
dimensioni. Each column of cells has an output bus 410
connected to the output line 39 associated with its
dimension. With respect to the rows, the three cells in the
bottom row are the lowermost cells in the array and recelve
inputs from input lines 38. The top three cells are the
uppermost cells in the array. The middle three cells are
representative of any cell between the bottom and the top but

-as shown arerconnected to the bottommost row.

Also shown in Figure 2 are three processing and
storage means 420 which represent the portions of the message
detector 210, buffer and address restorer 215 and message
injector 220 of routing circuit 200 that process and store
messages from the corresponding three rows of cells 400 in
line assigner 205. Twelve similar processing and storage
means (not shown) are used to process and store messages from
the other rows. , 7

If no routing conflicts are encountered, a message
packet will be routed from an input to a routing cell of the
first dimension to the,registef in the processor/memory to
which it is addressed during one message cycle. If there are
routing conflicts, the message packet will be temporarily
stored in the processing and storage means of a routing
circuit at one or more intermediate points:; and more than one
routing cycle will be required to route the message packet to
its destination.

WO 88/01772

10

15

20

25

30

35

PCT/US87/02181
-7

Figure 2 provldea.& convenient summary of the input
and output terminals of each routing cell 400. As indicated
by the three cells 400 along the bottom row, message packets
from the different dimensions of the Boolean 15-cube are
applied to NAND gates 405. These gates are enabled at all
times except during the reset condition. The output of each
NAND gate 405, which is the inverted message packet, is ‘
applied to an input terminal L-in of one of cells 400 in the
lowermost row. A signal representing the presence of a
message packet at terminal L-in is also applied to an input
terminal LP-in of the same cell. For each cell in the bottom
row, this message present signal 1s held at ground which has
the effect of conditioning the cell in the next column in the
bottom row for further processing of the message packet
received at the cell. Such message present signals
representing the presence of a message packet at an input to
the cell are used throughout routing circuit 200 to establish
data paths through circuit 200 for the message packets.

A message packet received from one of lines 38 is
routed out of the lowermost cell 400 in one column from the
terminal M-oUT and is appiied to the terminal M-IN of the
cell 400 in the column immediately to its right. At the same
time, the message present signal is routed out of the
terminal MP-oUT to the terminal MP-IN of the cell immediately
to the right. '

The signal received at the M-IN terminal of any
cell 400 may be routed out of the cell on any one of the BUS
terminal, the U-OUT terminal or the M-OUT terminal, depending
on what other signals are in the network. The BUS terminals
of all the cells 400 in one coliumn are connected to common
output bus 410 that 1is connected through an NOR gate 415 to
output line 39 to the nearest neighbor cell in that dimension
of the Boolean n-cube. The other input to NOR gate 415 is a
timing signal t-INV-OUT-n where n is the number of the
dimension. This timing signal complements the appropriate

WO 88/01772 PCT/US87/02181

10

15

20

25

30

35

address bit in the dupllcate address in the message packet so
as to update -this address as the message packet moves through
the Boolean 15-cube.

Messages that leave the cell from the U-out
terminal are applied to the L-in terminal of the cell
immediately above it in the column and are processed by that
cell in the same fashion as any signal received on an L-in
terminal. The message present signal is transferred in the
same fashion from a UP-out terminal to an LP-in terminal of
the cell immediately above it.

The circuitry in the cells 400 in each column is
designed to place on output bus 410 of each column (or
dimension) the message addressed to that dimension which is
circulating in the row closest to the top and to compact all
rows toward the top row. To this end, control signals Grant
(G) and All Full (AF) are provided in each column to inform
the individual cells of the column of the status of the celils
above them in the column. In particular, the Grant (G)
signal controls access to output bus 410 of each column or
dimension by a signal that is applied down each column of
cells through the G-in and G-out terminals. The circultry
that propagates this signal provides bus access to the
uppermost message packet in the column that is addressed to
that dimension and prevents any messages in lower cells in
that column from being routed onto the output bus. The All
Full (AF) signal controls the transfer of messages from one
cell 400 to the cell above it in the same column by
indicating to each cell through the AF-out and AF-in
terminals whether there is a message in every cell above it
in the column. 1If any upper cell is empty, the message in
each lower cell is moved up one cell in the column.

- For the cells in the top row, the input to the
terminal is always high. For these cells, the input signal
to the G-in terminal is the complement of the reset signal
and therefore is high except during reset. As a result, a

WO 88/01772 PCT/US87/02181

10

15

20

25

30

35

-9~

message packet in the top cell in a column will normally have
access to output bus 410 1f addressed to that dimension. 1If,
however, an output line 39 should become broken, this line
can be removed from the interconnected 15-cube network by
applying a low signal to the G-in input terminal of the top
cell of the dimension associated with that line. At the
bottom row of cells 400, the Grant signal from the G-out
terminal ls used to control a pass transistor 425 that can
apply a ground to the output bus. 1In particular, if there is
no message to be forwarded on that output line, 0-bits are

written to the output line of that dimension.
Ooperation of certalin flip-flops in the cell is

controlled by the timing signals t-COL-n where n is the
number of the dimension while other flip-flops are clocked by
the basic clock signal phi 1. As will become apparent from
the following description, the routing cells in each column
operate in synchronism with all the other routing cells in
the same column of all the routing circults in array 30.

summary of the Invention

The use of thousands of ldentical
processor/memories operating in parallel opens up whole new
vistas of computation. Problems which could not be attempted
because of the limitations of serial computers now can be
executed in reasonable time using a parallel computer such as
the Connection Machine Computer.

This vast increase in computing power has
stimulated interest in even more complicated problems that
tax currently avallable parallel computers and has stimulated
demand for larger and larger parallel computers. At the same
time, extremely iarge computers are not needed for every
problem that can advantageously be addressed by a pérallel
computer. Some problems simply do not have sufflcient data
to take up all the resources of a large parallel computer!?

WO 88/01772 , PCT/US87/02181

10

15

20

25

30

35

-~i0-

and others do not make severe demands on the comput1tiona1
powers of a parallel computer. Unless a way can be found to
utilize substantial portions of the parallel computer at all
Eimes, it is very difficult to justify such computers on
economic grounds. - '
One compromise is to use excess processing and
memorv capacitv to simulate additiohal parallel processors.

" o , ' In
accordance with that technique, the memory assoclated with
each physical processor can be divided into a plurality of
sub-memories and each sub-memory can then be used in
succession as if it were assoclated with a separate
processor. Thus, a first instruction or set of instructions
is applied to all the processors of the parallel computer to
cause at least some processors to process data stored at a
first location or locations in the first sub-memory.
Thereafter, the same first instruction or set of instructlons
is applied to all the processors of the computer to cause at
least some processors to process data stored at the same
First location in a second sub-memory. And so forth for each -
of the sub-memories. While this technique is quite useful in
many situations, the physical processor that processes the
data for each group of simulated processors i{s still only a
conventional serial (or von Neumann) processor. As a result,
if a large number of simulated processors and/or a large
amount of data are assoclated with the physical processor,
there is a von Neumann bottleneck at the physical processor.

The present invention is directed to a method and
apparatus for improving the utilization of a parallel
computer by allocating the resources of the parallel computer
among a large number,of users. In accordance with the
invention, a parallel computer is subdivided among a large
number of users to meet the requirements of a multipliclity of
databases and programsrfhat are run simultaneously on the
computer. This is accomplished by means for dividing the

WO 88/01772 ' PCT/US87/02181

10

15

20

25

30

35

~1i-

parallel computer into a plurality of processor arrays, each
of which can.be used independently of the others. This
division is made dynamically in the sense that the division
can readily be altered and indeed in a time sharing
environment may be altered between two successive time slots
of the frame.

Further, the parallel computer ls organized so as
to permit the simulation of additional parallel processors,

by each physical processor

in the array and to provide for communication among the
simulated parallel processors. In accordance with the
{invention, not only ie it possible for the simulated
processors associated with a specific physical processor to
communicate with one another but it is also possible for any
simulated processor associated with any physical processor to
communicate with any other simulated processor assoclated
with any physical processor in the parallel computer. By
analogy to concepts of virtual memory, we will refer to these
simulated processors as virtual processors hereafter.
Further, in accordance with the invention, means are also
provided for storing virtual processors in virtual memory.

As a result of this design, it 1s possible to build
a parallel computer with a number of physical processors on
the order ~£ 1,000,000 and a number of virtual processors on
the order of 1,000,000,000,000. Moreover, since the computer
can be dynamically reconfigured into a plurality of
independent processor arrays, a device thils slze can be
chared by a large number of users with each user operating on
only a portion of the entire computer having a capacity
appropriate for the problem then being addressed. 1In
particular, approximately 1,000 users can be lnterfaced to
the parallel computer by a local area network.

To provide for communication among the processors,
the physical processors are interconnected in the form of a
binary n-cube of sufficient size to assign each physical

WO 88/01772 PCT/US87/02181

10

15

20

25

30

35

-]2=

processor a unique location in the cube and each virtual
processor is.assigned its own address. Thus the addressing
structure allows for addresses for up to 240 virtual
processors. '

other features of the parallel computer of the
present invention include the following:

The computer supports a normal word-at-a-time
instruction set. 1In addition, it supports an exactly
{somorphic set of parallel instructions. For each word-at-
a-time operation the corresponding data parallel operation
operates'concurrenfly on an entlire set of data. '

The computer provides hardware support for the
distributlion and synchronous execution of Instructions across
multiple processors. As a result, operatiors across the 7
machine happen in completely determined times with respect to
one another.

' A user may allocate as much redundancy as necessary
to ensure the fall-safe operation of important transactions.
This may range from simple self-checking in noncritical
applications, to full quadruple modular redundancy for fall-
safe transactions. Since the redundant elements are 7
allocated only when necessary, the cost of redundancy is
incurred only_wheh such redundancy 1is desired.

Brief Descriptlion of Drawings

These and other objects, features and advantages of
the invention will be more readily apparent from the
following description of a preferred embodiment of the
invention in which: ,

7 Figure 1 is a schematic dlagram of a parallel
processor of the ptlor art;

Filgure 2 ls a schematic diagram of a routing
circuit of the parallel processor of Figﬁfe 1

WO 88/01772 PCT/US87/02181

10

20

25

30

35

-13~-

Figure 3 is a general schematic diagram of a
preferred embodiment of the invention:

Figure 4 1s a schematic dlagram of a processor
unit of the present invention:

Flgures 5 and 6 are schematlc iillustrations
depicting the organization of processor units of Figure 4
into an array of parallel processors’

Figure 7 is a detalled schematic diagram

{1lustrating an element of the processor unit of Figure 4:
Flgures 8-12 are detailed schematic diagrams of

elements of Fidure 7!
Figure 13 is an illustration of the addressing

scheme for the preferred embodiment of the invention: and
Figure 14 is a schematic illustration useful in

understanding a portion of the invention.

Detailed Description of Preferred Embodiment

As shown in Figure 3, the preferred embodiment of
the present invention is a system 300 comprising a plurallty
of user terminals 310A-N, a local area network 320, and a
processor array 330. Illustratively, each termlnal includes
a console 312 having a keyboard 314 and a CRT display 316,
some form of hardcopy output such as a printer (not shown)
and an interface 318 between the terminal and the local area
network 320. Conventional personal computers can be used as
terminals 310 if desired.

Processor array 330 illustratively comprises
262,144 (= 218) physical processor units (PPU), four
megabytes of high speed read/write or random access memory
associated with each processor, substantial additional lower
speed mass storage read/write memory and extensive support
circuitry. The terabyte of high speed memory typically is
provided by integrated circuit memory chips. The mass

storage read/write memory may, for example, be 32,768 (= 2!

)

WO 88/01772 PCT/US87/02181

10

15

20

25

30

35

-i4-

hard disk drives each with a capacity of 300 megabytes and a
total capacity of ten terabytes. The 262,144 PPUs are
connected in an eighteen-dimensional hypercube in which each
PPU is connected along each of the eighteeh edges of the
hypercube to elghteen adjacent PPUs, as described in more
detail below. ’ - '

Local area network 320 connects terminals 310 with
some of the PPUs ih processor array 330 so that a specific
terminal communicates with a specific PPU. These PPUs, in
turn, dynamically control other PPUs in the array and the
other PPUs may recursively control stili more PPUs, so as to
provide adequate processing and memory for a specific
problem. Preferably the local area network is as flexible as
a cross-bar switch so that any terminal can be connected to
any PPU connected to the network and that these connections
can be varied whenever desired, even as often as required in
a time sharing environment. Any of the numerous conventional
local area networks, such as the Ethernet (TM) system or a
digital PBX, can be used for this purpose provided it has
sufficient capacity to connect the number of terminals that
are to be included in system 300. A plurallty of local area
networks can be used if deslired. Illustratively, the local
area network should be able to connect 1,000 terminals in the
system of the present invention. 7

As will be apparent, the apparatus of the present
invention supports a much larger amount of random access
memory than is practical on a conventional machina. This
allows entire databases to be stored in main memory where the
access. time is potentially thousands of times faster than
disks. Terabyte main memories typlcally are not economical
on a serial machine since such a large memory is too
expensive to keep ldle while a single user ls accessing
merely one location. This problem does not occur in the
present invention since many portions of the memory are being
accessed simultaneously.

WO 88/01772 PCT/US87/02181

10

15

20

25

30

35

-15-

Following the teaching of the above-referenced °913
application, -each PPU can be operated as a plurallty of
virtual processors by subdividinq the memory assoclated with
the PPU and assigning each sub-memory to a different virtual
processor. In accordance with the invention, the subdlvision
of memory can even extend to virtual memory such as that on
disk or tape storage. Further, each virtual processor tan be
regarded as the equivalent of a physical processor in
processing operations in the computer.

In accordance with the invention, the user can
specify to the PPU his requirements for data processing and
memory and the PPU can then form a group of processors (both
physical processors and virtual processors) sufflcient to
satisfy these requirements. Advantageously, the group of
processors 1s organized recursively so that one processor
controls one or more other processors and these other
processors control still more processors and so forth.
Preferably, each element of the database is stored on a one-
to-one basis with one of the processors and the processors
are organized in the same structure as the database. Aé a

result of this arrangement:

1. Each processor'is able to execute normal von
Neumann type operations including arithmetic/logic
operations, data movement, and normal control flow of
operations such as subroutine calls and branches.

2. Each procéssor is able to allocate a set of
data processors which will be under its control during
parallel instruction execution. The allocating processor is
called the control processor and the allocated processors are
called data processors. These are relative terms since data
processors have the full capabilities of the control
processors and are able to allocate data processors

themselves.

WO 88/01772 ' PCT/US87/02181

10

15

20

25

30

35

-16-

3. Each processor is able to select a context set
from among its allocated data processors. Thls context set
i{s the set of data to be operated upon in parallel. The
context set is chosen according to some condition applied to
all of the data processors or to all of the data processors
in the current context set. Context sets may be saved and
restored.)

4. Each processor may perform parallel operations
concurrently on all of the data in its context set. The
parallel operations are exactly the same as the sequential
operations in category 1, except that they are applled to all
data in the context set concurrently. These include all ddta
manipulations, memory referencing (communications), and
control flow operations. As far as the programmer is able to
see, these operations take place simultaneously on all
proéessors in the data set.

5. Each processor is-able to access the shared
database and load portions of its data elements into lts
memory. A virtual processor is also able to update the
databases. '

The instructions of the parallel computer of the
present invention are similar to the instructions of a
conventional computer. They may be divided into three
categories: local instructions, parallel instructions, and
context instructions.

The local instructions are exactly the instructions
of a conventional computer, including subroutine calls,
conditional and unconditional branches, returns, register-
based arithmetic data movement, logical operations, and
testing. The local instructions are executed within the
control processor. '

The parallel instructions are exactly like the
local instructions except that they are executed concurrently
on the context set of data processors. Groups of parallel
instructions, called orders, are executed on all virtual data

WO 88/01772 : PCT/US87/02181

10

20

25

30

35

-17-

processors in the context set simultaneously. For each local
data instruction there is a corresponding parallel data
instruction. _

The context instructions are used to specify the
set of virtual data processors to be executed upon in
parallel. There are four context instructions:

set the context to be all virtual processors
satisfying some condition;:

restrict the context to be some subcontext of
processors within the current context, satisfying some
condition;

push the current context onto a stack:

pop the current context off the stack.

These context instructions may be intermixed with parallel
data instructions into groups to form orders.

The order is the basic unit of synchronization in
the parallel computer of the present invention. An order s
the unit of communication between a control processor and a
data processor. In the simplesE case, an order ls a single
instruction. It may also be a group of instructions that can
be executed together without concern for synchronizatlon
across physical data processors within the order. The basic
action of a control processor is to lssue an order through
the alpha router (Fig. 7) and walt for confirmation that it
has been executed by all data processors. Different virtual
processors can, and in general will, execute various
instructions within the order at different times.

An order is also the basic unit of caching for
instructions in the system. This means that the number of
instructions allowed in an order is limited. Since an order
may contain a call instruction, the number of operations
performed by an order may be arbitrarily large. 1In addition
to subroutine calls, an order may contain simple loops and
conditional branching within the order.

WO 88/01772 - PCT/US87/02181

10

15

20

25

30

35

-ig8-

Instructions are grouped into orders according to
simple rules.that assure that the instructions within the
order can be executed asynchroncusly. This can be
accomplished, for example, by allowing instructions that
involve non-local communication only as the last instruction
in an order.)

Orders are broadcast from control processors to
data processors through the alpha router. Itris the alpha
router’s responsibility to signal the control processor when
the order has been executed by all data processors. This
signalling mechanism is also used to combine condition codes

for control of programming flow within the control processor.

As shown in the schematic diagram of Figure 4, each
PPU comprises a microprocessor 350, function circuitry 360,
and memory 370. Optionaily'the PPU may also include a
special mathematical circult for performance of mathematical
operations at high speed. Microprocessor 350, memory 370,
and mathematical circuit 380 can be conventional integrated
circuits. For example, microprocessor 350 can be an Intel
8086 and mathematical circuit 380 can be a floating point
accelerator, such as the Intel 8087. Alternatively, the
Motorola 68000 can be used and microprocessors such as the
Falrchild Clipper are especially advantageous since they have
separate instruction and data pins.

' Memory 370 can be any high speed, large capacity
read/write memory. Illustratively, the memory is a four
megabyte memory provided by an array of thirty-two 4 x 64
kilobit integrated circuit chips. Additional memory lis
advantangeously used to store parity and error control bits
for error detection and correction. As memory chips of
greater capacity become avallable, such chips can be used to
increase the size of the memory and/or to decrease the number
of integrated circuit chips required.

WO 88/01772

10

20

25

30

35

PCT/US87/02181
-19-~

_ Function circuitry 360 is responsible for memory
interface, message trouting, error correction, instruction
distribution and synchronization, data caching, and virtual
processor control. This circuitry receives information from
the PPU and produces address information suitable for driving
the dynamic memorles. It also moves data to and from the
data pins of the PPU and the data pins of the dynamic memory.
The function circultry also performs all management functions
required to operate the PPU as a virtual processor. This
organization of microprocessor 350, function circuitry 360,
and memory 370 such that function circultry 360 is located
between microprocessor 350 and memory 370 permits the
microprocessor to address vastly greater amoﬁnts of memory
than in the system described in the ’400 patent where the
microprocessor and the memory are coupled together directly.
At the same time, the present organization also accommodates
message package routing as will be described below.

The PPUs are organized in units of sixteen such
that the integrated circuits of sixteen PPUs 0-15. and support
circuitry are mounted on a single circuit board 400 as shown
in Figure 5. The'supporﬁ circultry includes a disk interface
410, a general input/output circult 420, self-checking
circuitry 430, clock circuitry 440, an identification circuit
450, and performance measurement circuitry 460.

Disk interface 410 ls a standard SCSI (small
computer system interface) interface connected to PPU 0. It
is designed to connect to a mass storage module 470 described
below. Its maximum communication bandwidth is approximately
10 megabits per second. The other PPUs on clircuit board 400
interface with the mass storage module through PPU 0 which
acts as a flle server.

Input/output circuit 420 is a 32-bit wide parallel
port or a serial port, connected to PPU 1. This port has a
maximum bandwidth of approximately 50 megabits per second.
Ccircuit 420 interfaces local area network 320 to PPU 1 which

WO 88/01772 ' ' PCT/US87/02181

10

15

20

25

30

35

appears on the hetwork as another terminal or~simp1y as a
parallel or serial port. The other PPUs on circult board 400
interface with input/output circuit 420 through PPU 1. As a
result of this arrangement, a user at any terminal 310A-N can
selectively address any PPU in processor array 330 in much
the same way as a user can telephone any telephone connected

to the telephone hetwork.

Self-checking circuitry 430 is capable of detecting
any fault that occurs on circult board 400, so that the
module can be removed from the system. Advantageously, it is
connected to a light-emiting dicde that provides a visual
indication that the module ls off-line to ald in maintenance.
Each clrcuit board contalhs its own clock circuitry 440,
which is synchronized with the clock circultry of the other
PPUs of the sYstem. Identification circuit 450 is an
electrically erasable non-volatile memory that contains the
manufacturing and maintenance history of the board, the
serial number, etc. Performance measurement circultry 460
monitors the sowaare-performance.»

Mass storage module 470 illustrativély comprises a
standard disk controller 480 and a standard 5-1/4 lnch 300-
megabyte drive 490, with provision for adding up to seven
additional drives on the same controller, for a total storage
capacity of 2400-megabytes. ,

circuit boards 400 and storage modules 470 are
mounted in cabinets 500 comprising banks 502 of sixteen
boards 400 and sixteen modules 470. Thus, in the case of a
system of 262,144 PPUs, 1,024 (= 210) cabinets afe used to
house the PPUs. The cabinets are interconnected by means of
fiber optic communication lines. Each cabinet accordingly
contains one or more communication modules 505 comprising at
least one fiber optic transcelver which is used to multiplex
and transmit data between cabinets. The transceivers may be
conventional fiber optic transceivers with a data rate of 100

megabits per second and a capability of time multiplexing

WO 88/01772 : PCT/US87/02181

10

20

25

30

35

-2]=-

communications from the various PPUs in one cabinet to those
in the other cabinets so as to take advantage of the greater
bandwidth of fiber optic communication lines. Advantageously,
at least two transcelvers are used in each communication
module so that signals can simultaneously be transmitted and
received at each communication module.

PPUs 330 preferably are interconnected in the
hypercube in accordance with the teachings of the above-
referenced 943 application. Thus each PPU s connected in
the cube hetwork to four other PPUs on the same circult board
corresponding to four dimensions of the hypercube and to four
PPUs on four other circuit boards in a cabinet corresponding
to four more dimensions of the hypercube. 1In the case of a
system of 262,144 PPUs, each PPU in a cabinet is connected to
ten PPUs in ten different cabinets. These ten other
connections correspond to the ten remaining dimensions of the
hypercube. The connectlions of each cabinet over each of
these ten dimensions is made through a separate

communications module 505.
As shown in Figure 7, the function circuitry

contains nine major functiohal units: an address mapper 510,

. a memory interface 520, a virtual processor sequencer 530, a

data cache 540, an error corrector 550, an alpha router 560,
a beta router 570, an interceptor 580, and an order cache
590. Illustratively, all these functional units are
implemented on a single integrated circuit or chip but a
plurality of chips may also be used. Address pins 532 and
data pins 582 connect vp sequencer 530 and interceptor 580 to
microprocessor 350 of the PPU. Address pins 522 and data
pins 552 connect memory lnterface 520 and error corrector 550
to memory 370 of the PPU. Alpha pins 562 and cube plns 572
connect alpha and beta routers 560, 570 of a PFU to other
alpha and beta routers of other PPUs, as will be described in

more detall below.

WO 88/01772 , | : PCT/US87/02181
' -22-

‘As shown in Figure 8, address mapper 510 comprises
a PPU address register 605, an onset register 610, a VP
offset register 615, a VP increment register 620, and a page
table 625. The mapper also comprises first, second, and
third multiplexers 630, 635, 640 and first and second adders
645, 650. An input to the address mapper is received from VP
sequencer 530 via address bus 602 and an output from the
mapper is provided to memory interface 520 via physical
address bus 652. Two bits of page bits are supplied to vp
sequencer 530 via page bits lines 654. As indicated, the
address bus is twenty-four bits wide and the physical address
bus is twenty-two bits wide.

To understand the operation of the address mapper,
it is helpful to understand the addressing scheme for the
system of the present invention. As shown in Flgure 13,

10

15 ,
there are four types of addresses that are stored in the

system: locatives! router addresses: virtual addresses: and
physical addresses. To support enough virtual processors to
satisfy the needs of 1,000 useps,'the syétém of the present
invention supports virtual processors even if stored in
20 virtual memory. Thus, even data physically stored on disks
can be associated with a virtual processor. As a result, the
system of the present inventlon is designed to support up to
a trillion (¥ 2) virtual processors. Since the entire
address space may in principle be used by a sinqle user, the
CM2 supports an addreséing structure with a 64-blt address

space.

25

The most general form of address ls the locative,
which requires 64 blts of storage. A locative is capable of
pointing to any memory location within any virtual processor

3 {n the entire system. The most significant 40 bits of the

locative specify which virtual processor 1s being accessed.
The least significant 24 bits specify an offset within that
virtual processor. Since 254 s larger than the size of

virtual memory for the entire system, there is room for
35

WO 88/01772 PCT/US87/02181

10

15

20

25

30

35

-23-

redundancy in the coding. 1In particular, the 40 bits
specifying the virtual processor separately specify the PPU
in which the virtual processor resides (18 bits) and the word
within the virtual memory of that physical processing unit at
which the virtual processor begins (22 bits). A virtual
processor may begin on any even 32-bit boundary within the
physical processing unit’s 24-bit virtual address space.

Router addresses are the addresses used by the
communications network. They are essentially a compacted form
of locatives that are formed by adding together the 24-bit
offset and four times the 22-blt offset section of the
virtual processor address. A router address specifies a
single word in the virtual memory of some physical processor
unit within the system. The length of a router address is 42
bits, which corresponds to the number of words of virtual
memory on the entire system.

within a PPU, all pointers are stored in terms of
24-bit virtual addresses. In such an address, 8 bits
represent a page of memory and 16 bits represent the address
of a byte within that page. The page is the unit of demand-
based caching for the virtual memory system. At any given
time, up to 64 pages may physlcally be within memory.

The 24-bit virtual address is mapped onto a 22-bit
physical address by page table 625. The page table is a
256-word by 6-bit lookup table that maps each of the 2" pages
in virtual memory into-the 26 pages in physical memory.

Address mapper 510 takes the virtual address
entering the function circultry and converts it elther to a
physical address fof memory or to a router address for
communications. The address mapper is designed to support
three different modes of addressing: normal, virtual
processor relative, and extended. In normal addressing mode,
a 24-bit physical address is taken directly from the PPU and
split into an 8-bit page number and a 16-blt offset. The 8-
bit page number is used as an index into page table 625 that

wo 88/61772 ' | , PCT/US87/02181

10

15

20

25

30

35

;24-

contains the mapping of virtual pages onto physical memory.
In the case where the reference page is in physical memory,
the page table will produce a 6-bit address telling in what
part of physical memory the page resides. This is combined
with the 16-bit offset to form a 22-bit physical address that
goes directly to the memory interface. 1In the case where the
referenced page is "swapped out,” the page table will so
indicate by the settings of the page bit and a trap will be
taken to allow the page to be loaded in from secondary
storage into physical memory. Pages are loaded in on a
first-in/first-out basis, so that a new page will be loaded
on top of the least tecently loaded page. It is also
possible for the use of the page blts to "wire in” certain
pages so they will never be moved off onto secondary storage.

The second mode of addressing is virtual processor
relative. In this case, the address coming in from the bus
is taken to be an offset relative to the virtual processor
offset address for the virtual processor currently being
executed. These two 24-bit addresses are added together by
adder 650 to create a 24-blt virtual address that is then
converted into a physical address through the page table as
before. The virtual processor offset 1s set by.the virtual
processor sequencer or, perhaps, by incrementing in the case
of fixed size virtual processors. '

The final form of addressing is the mechanism by
which the interprocessor communication is accomplished. 1In
this case, the relevant function is computed through the beta
router and the address is calculated as follows: The 18-bit
address of the destination PPU 1s concatenated onto the sum
of a 24-bit physical address coming from the chip (the
offset) and the 24-bit onset word loaded into the onset
register 610. Typically this is loaded by the previous cycle
during an extended addressing operation. When a message
address is recelved, the memory portion of the received
address, which was computed from the sum of an onset and an

WO 88/01772 PCT/US87/02181

10

16

20

25

30

35

«25-

offset, is used as a virtual memory address and is indexed
into the physical address through the page table as in normal
addressing.

Memory inhterface unit 520 is responsible for the
physical multiplexing of the addressing and the memory
refresh for dynamic rams. As shown in Figure 9, interface
unit 520 comprises a refresh counter 660, a row number
register 665, a multiplexer 670, and a comparator 675.
Multiplexer 670 multiplexes the 22-5it physical address onto
the 11 address pins. Refresh counter 660 may be reset for
diagnostic purposes. The memory interface unit is also
designed to take advantage of fast block mode accesses as
supportéd today by most dynamic rams. In order to do this,
the memory interface unit stores the row number of the last
row accessed in row register 665. If comparator 675
determines that an access is performed to the same row as the
previous access, then a fast cycle will be performed that
strobes only the column portion of the address. Thus,
references to the same block of memory can be performed in
approximately half the time required for a general random
access. This ls particularly important for accessing blocks
of sequential data. '

virtual processor sequencer 530 is a simple finite
state machine for quickly executing the list operations
required for the overhead of virtual processors. A PPU
implements multiple virtual processors by multiplexing thelr
operation sequentially in time. A certain portion of the
PPU’s memory space (including its virtual memory) lis
allocated to each virtual processor although the amount of
virtual memory per virtual processor is completely variable.
Typically, virtual processors implemented by a PPU are
engaged in several different tasks. For each task, the PPU
must sequence through all processors in the current context
of the task to apply the order being executed. It must also
sequence through each of the orders associated with the

WO 88/01772 PCT/US87/02181

10

15

20

25

30

35

sequence of tasks. However, it 1s not necessary to sequence
through the virtual processors implemented by the PPU that
are not in the context of the task being executed. As a
result, there is a significaﬁt savings in the time required
to sequence through the virtual processors implemented by the
PPU. : ' o

Both virtual processors and multiple task context
switching are supported directly in hardware. The
organization of virtual processors in memory is shown
schematically in Figure 14. The tasks are linked together
into a circular 1ist called the task list, and the PPU at any
given time contains a pointer to one -of the tasks in the task
1ist. wWith the ald of sequencer 530, the PPU cycles through
each task in turn, executing an order for every virtual
processor in the context of the current task before golng on
to the next task. Thus, if the context is relatively small,
the execution will take place in a smaller amount of time
than 1f all the virtial processors are in the current
context. ' '

Each task has associated with it a header that
contains three pleces of information: a pointer to the
current context, a pointer to a stack stored as linked list,
and a pointer to the 1lst of all the virtual processors in
the task. The sequencer also contains a pointer to the next
task in the task list and auxiliary information about the
task, such as priority and run statistics. The PPU
determines the location of each virtual processor in virtual
memory by following a linked 1ist, starting with the context
pointer and continuing until a null terminator is reached.
These lists are stored in a protected region of memory.

To execute a "push-context” instruction, the PpU
allocates a new storage element and pushes the current
context pointer onto the stack, changing the stack pointer to
the top of the stack. A ”pop-context” instruction is just
the reverse, except if the stack underflows then the top

WO 88/01772

10

15

20

25

30

35

PCT/US87/02181

-27-

level context pointer is used. The next most common
operation is.restricting the context to a subset of the
current context according to some condition. 1In this case,
the virtual processor list is split according to the
condition, starting from the current context. The virtual
processors that meet the specified condition are appended at
the end of the 1ist. A pointer to the tall of the list then
becomes the current context. This way the sequence of nested
subsets that represent the successive contexts are stored
efficiently. With this scheme, virtual processors that are
not in the current context incur no overhead during order
execution. 7

As shown in Flgure 10, virtual processor sequencer
530 contains five primary reglsters, each of which is capable
of holding the most significant 22 bits of a virtual
processor address. Context register 680 holds a pointer to
the beginning of the current context list.- Stack register
685 holds a polinter to the context stack for the current
task. Top register 690 holds a pointer to the top of the
context list of the current stack. Task reglster 695 holds a
pointer to the next task in a task 1list and next register 700
holds a pointer to the next virtual processor in the virtual
processor list. Additional registers may be used to store
auxiliary information as needed. The output of sequencer 530
is selected by multiplexer 715 in response to signals from a
programﬁable logic array (PLA) 710.

The virtual processor sequencer contains within it
a finite state machine implemented in state register 705 and
PLA 710 for manipulating these registers and for controlling
the registers in the address mapper and order cache. This
finite state machine sequences through the list manipulating
instructions necessary to perform the overhead of swapping
both tasks and virtual processors. The outputs of the state
machine depend on the current state and on the condition bits

coming from the rest of the function circuitry, for example,

WO 88/01772 PCT/US87/02181

10

15

20

25

30

35

;zg-

the page bits of page table 625. The PLA is also able to
make conditionally dependent transitions based on whether or
not the current data is null as detected by a null detector
720. In a sense, the virtual processor sequencer is a very
simple computer without an arithmetic unit.

Data cache 540 is a completely cohventional cache
for caching read-only data.

Error corrector 550 is standard single -bit error
correction, mulkiple-bit error detection logic, based on a
6-bit Hamming code. As shown in Figure 11, it comprises line
drivers 740, 745, 750, 755, error control circults 760, 765
for computing parity bits, exclusive-OR gate 770 for
detecting parity errors, a decoder 775 for determining if an
error can be corrected, and an exclusive-OR gate 780 for
correcting a detected error. Error control circult 760 adds
error correction bits to all data written to physical memory.
All data read from physical meﬁory is checked by recomputing

" in error control circuit 765 the parity bits for the data

read from memory and comparing these bits at XOR gate 770
with the parity bits read from memory. Decoder 775
determines if an error can be_corrected ahd does so by
applying the appropriate signal to XOR gate 770 if possible.
If a multiple error occurs, a unit fallure is signalled by
decoder 775. o

The alpha and beta routers 560,570 are used for

instruction and data distribution, respectively, and may

share physical communications wires, although the routing
hardware is separaté. As shown in Fiéure 12, alpha router
560 comprises an array of AND gates BOOA-N controlled by
flip-flops 805A-N, first and second OR gates 810, 815, an
array of multiplexers 820A-N controlled by flip-flops 825A-N,
a first multiplexer 830 controlled by flip-flops 832; 834,
and a second multiplexer 840 controlled by a flip-flop 842.
Input lines B802A-N are applied to AND gates 800A-N and output
lines 822A-N extend from multiplexers 820A-N. These lines

WO 88/01772

10

.15

20

25

30

35

PCT/US87/02181

.20 -

connect the alpha router of a PPU to the alpha routers of the
nearest neighbor PPUs in the binary hypercube. Accordingly,
the number of AND-gates 800A-N, multiplexers. B20A-N and their
associated circultry corresponds to the number of dimensions
of the hypercube, illustratively eighteen, but only three
have been shown for purposes of illustration. Since the
input and output lines associated with each dimension go to
the same alpha router, these lines can be multiplexed if
desired. Moreover, since these 1lines go to the same PPUs as
the input and output lihes of the beta router, they can also

be multiplexed with the lines of the beta router.
The alpha router is used to distribute and

synchronize instructions. It essentially serves the same
function as the instruction distribution tree and global-or
trees described in the ’400 patent, except that any
processor, Or any number of processors simultaneously, may be
sources of instructions. These instructions are bunched into
groups called orders. Execution of an order is synchtonlzed
across the whole machine by the alpha router, so that one
order will be executed completely before the next order is
issued.

Orders that are to be broadcast are received on the
orders in line from local interceptor 580 and orders that are
received from other routers are provided via the orders out
line to order cache 540. Synchronization signals indicating
completion of a received order are provided by the PPU to the
router on the synch in line and signals indicating completion
of an order by other PPUs are provided to the PPU on the
synch out line.

The mode of operation of the alpha router is
controlled by the flip-flops in accordance with signals
received from the PPU. Thus, if the local PPU is to
broadcast orders to other PPUs, flip-flop 842 sets
multiplexer 840 to transmit the signal on the orders in line
and flip-flops 825A-N set multiplexers 820A-N for

WO 88/01772 | - | PCT/US87/02181

10

15

20

25

30

35

-30~

transmission of these signals. If the local PFU ls to
recelve orders from another PPU, flip-flops 832, 834 are set
so as to specify the particular incoming dimension line to
multiplexer B30 from which the order is expected. If the
order is to be passed through to another PPU, flip-flop 842
also sets multiplexer 840 to transmit the signal from
multiplexer 830 to multiplexers 820A-N. By this arrangement,
a PPU can broadcast orders to each of its nearest nelghbors
and thereby control them; and each PPU can listen for orders
from one of its hearest neighbors so as to be controlled by
it. ,

After an order has been issued, the PPU that lssued
the order monitors the'perforﬁance of the order by means of
the synchronization signals. A PPU issues a synch signal via
the synch in line to OR-date 815 and by setting flip-flops
825A-N so that multiplexers B20A-N transmit the signal from
OR-gate 815. A synch signal is received by setting flip-
flops BOS5A-N so as to enable AND-gates 800A-N to pass a
received signal to OR-gate 810. The output of OR-géte 810
can also be passed on to other PPUs via an input to OR-gate
815. By this arrangement, a PPU can listen selectively for
synch signals from those nearest neighbor PPUs which it
controls and ignore signals from other PPUs which it does not
control. ,

The beta router 570 is essentiallY.the same type of
router as described in the 7400 patent. As shown in
Figure 2, it has an array of input and output 1ines 38, 39
which communicate with the beta routers of the nearest
neighbor PPUs in the hypercube via cube pins 572 of Figure 7.
Message packets are provided to beta router 570 from the
microprocessor via address mapper 510 and data cache 540 and
received message packets are provided to the microprocessor
through these same elements. The input and output lines can
be multiplexed together and these lines can also be
multiplexed with lines 802A-N and 822A-N of the alpha router.

WO 88/01772 PCT/US87/02181

10

15

20

25

30

35

~3i-

The beta router is responsible for essentlally

three different functions. It routes message packets from
one PPU to another, the same function performed in the 400
patent. It generates message packets corresponding to memory
requests from the PPU with which it is assoclated to memories
associated with other ppus. It recelves incoming message
packets from other PPUs that are destined to the PPU with
which it is associated and delivers these messages
appropriately. While these latter two functions are new, the
routing of the message packet in each function is the same as
that disclosed in the ’400 patent.

A fully configured parallel computer of the present
invention is an expensive‘resource, probably too expensive to
be tied up by a single user for any large period of time.

One of the design premises of the computer is that it may be
used simultaneously by thousands of users. While a user’s
peak requirements may be very high, it is assumed that the
average requirement will be relatively modest, say a hundred
million instructions per second per user. In addition, It is
assumed that users will be able to take advantage of shared
resources other than just the computing cycles, for example,
information in shared databases.

The technique used for sharing the resources may be
called space sharing, by analogy to time sharing, since the
users divide the space-time resource of the computer by
sharing it in space as well as time. In thie sense, space
sharing might be more accurately called ”space-time sharing,”
since it can also involve multiplexing in time. Space-time
sharing would work even if every user presented the entire
system with a uniform load at all times, but it works better
than this in terms of perceived benefits to the user because
of the following non-uniformities in a typlcal user load:

WO 88/01772 , , : PCT/US87/02181

10

15

20

25

30

35

-32-

Idle Time: Many users wﬁen they are "using the
machine” in.fact require very few cycles most of the time.
This is particularly true of a transaction-based system
supporting queries and a shared database.

Non-Uniform Parallelism: When executing a parallel
program, there may be many points in the program where it is
possible to efficiently utilize hundreds of thousands of
virtual processors simultaneously. There may be other points
where a single word-at-a-time execution is sufficiént.

Non-Uniform Memory Requirements: Many users will
fequire direct access to only a relatively small portion of
the computer’s one terabyte memory at any given time.

Commonality of Data: Many users may be accessing
the same database within a short period of time, allowing it
to be kept in main memory at relatively low cost. A simllar
argument holds to shared software.

To exploit these non-uhiformities,:ﬁhe computer
dynamically allocates physigal processors to virtual
processors, based on runtime requirements. Thus a uéer
consumes resources in proportion to what the application
actually uses, as opposed to in proportion to how much it
might conceivably use. - 7

A feature of the beta router makes it possible to
subdivide the array of PPUs among different users so as to
provide for space sharing. As shown in Figure 2, the G-in
input terminal controls access to the communication line 39
which conveys a message packet from one PPU to another. IFf
this line is broken, it can be rémoved from the network by
applying a low signal to the G-in inpdt terminal assocliated
with that line. In accordance with the present invention,
any sub-cube of the hypercube can be isolated from the rest
of the hypercube by applyindg a low signal to the G-in input
terminals associated with the communication lines that
connect the sub-cube to the rest of the hypercube. For
example, a sub-cube of 256 PPUs can be isolated from the

WO 88/01772

10

15

20

25

30

35

PCT/US87/02181

-33-

eighteen-dimension hypercube simply by applying low signals
ko the G-in input terminals associated with the communication
lines for dimensions eight through eighteen at each of the
256 PPUs of the sub-cube. At the same time, numerous other
sub-cubes in other parts of the hypercube can similarly be
isolated from the hypercube by applying low-signals to the
G-in input terminals assoclated with the communication 1ine
for the dimensions that are not used.

To accomplish this, the microprocessor of each PPU
is given access to the G-in input terminal so that it can
impose a low signal in response to a specifled configuration
of a sub-cube. Access illustratively may be furnished by a
flip-flop (not shown) whose output state can be controlled by
the microprocessor of the PPU.

In accordance with the invention, a tag bit in the
instruction identifles paraliel insktructions that are to be
executed in parallel by other PPUs. Interceptor 580 tests
this tag bit. All data accessed from memory by the PPU
passes through the interceptor 580. If the tag blt of the
data indicates that it is a parallel instruction, then a no-
op instruction is sent to the data pins and the interceptor
sends the parallel instruction to the alpha router for
broadcast to other PPUs. If the tag bit does not indlcate a
parallel instruction, the instruction is passed by the data
pins to the PPU.

Order cache 590 is a memory used for storing orders
from the alpha router. Virtual processor sequencer 530 will
cause the PPU to access instructions from the order cache to
implement the action on each virtual processor. The order
cache is essentially an instruction cache for the
instructions that are being operated upon in parallel by each
task. Illustratively, the cache is 256 words deep.

Because of the computer’s internal duplication of
components, it is naturally suited to achieve fault-tolerance

through redundancy. Advantageously, all storage in the

WO 88/01772 PCT/US87/02181

10

15

20

25

30

35

Y

database is on at least two physically separate modules so
that when a storage module fails, data from a backup module
is used, and duplicated to create another backup. When a
processor module falls, it is isolated from the system until
it can be replaced and physical processors are allocated from
the remaining pool of functioning processors.

The most difficult problems in a fault-tolerant
system of this kind are detecting and isolating fallures when
they occur, and déaling with the task that is being processed
at the time the fallure occurs. Here, there is a tradeoff

‘between the degree of certainty that a task will complete

flawlessly and the amount of hardware allocated for the task.
In the parallel computer of the present invention, the user
is able to make this tradeoff at runtime, depending upon the
criticality of the task. A task may by executed in one of
three modes according to the amount of redundancy required.

In the simplest mode of operation of the system,
self-checking hardware such as error corrector circuitry 550
of Figure 11 is used to detect and isolate failures. This
hardware is capable of detecting the most frequent type of
errors and fallures, for example, uncorrectable memory
errors, loss of power, and uncorrectable errors in
communication. Whenever a fault is detected by the self-
checking circuitry, in the self-checking mode of operation,
the current transaction is aborted and the hardware is
reconfigured to isolate the defective part. The transaction
is then restarted from the beginning.

While the self-checking circuitry will detect most
errors that occur, it is not guaranteed to detect every type
of error. In particular, many errors that occur within the
PPU itself will not be detected. 1In dual redundant mode, the
operation system executes two identical copies of the program
onto two physically separate isomorphic sets of processors
and compares the intermediate results at regular intervals.

(The wires of the tommunications system, which are in the

WO 88/01772

10

15

20

25

30

35

PCT/US87/02181
-315-

pattern of an n-dimensional cube, provide exactly the right
communications paths for this type of comparison.) The
comparison mechanism guarantees the detection of errors
however and why they occur. Once the errors are detected in
dual redundant mode, they are handled in exactly the same
manner as in self-checking mode. Both processors are isolated
from the system until diagnostics are able to determine which
processor was at fault.

A disadvantage of the self-checking and dual modes
of redundancy is that they require restarting a transaction
if an error occurs. This may be acceptable for tasks that
cannot be broken down conveniently into relatively small
transactions. Also, some tasks have real-time processing
requirements that do not allow for the retry of a
transaction. For either of these two situations, quadruple
redundancy mode is the appropriate mode for achieving fail-
safe operation.

In quadruple redundancy mode, four ldentical coples
of the application are run in synchrony. Each task compares
its operations with another in a circular fashion: for
example, A checking B, B checking ¢, € checking D, and D
checking A. When an error occurs, it is both detected and
isolated by the pattern of mismatch comparison In this case,
the correct state of the process is copied from one of the
non-erring tasks into another sub-cube and the oéeration is
continued without significant interruption. Quadruple,
rather than triple, redundancy is used so that the
appropriate wires for comparison are available in the n-
dimensional cube.

As will be apparent, numerous variations may be
made in the above described method and apparatus within the
spirit and scope of the inventioh. For example, while the
invention has been described in the context of an array of
parallel processors organized in the form of a binary
hypercube, it will be understood that other organizations can

WO 88/01772 | | PCT/US87/02181

10

15

20

25

30

35

-36—

also be used as set forth in the ’400 patent. Obviously in
such cases, suitable modification will also be required for
communication apparatus such as the alpha and beta routers
described above for signalling in the processor array.

WO 88/01772

10

15

20

25

30

35

PCT/US87/02181

-37-
What is claimed is!

1. A parallel computer comprisiné a plurality of
processor units, each processor unit comprising a processor,
a read/write memory and a control clrcuit, said control
circuit comprising:

means for interconnecting sald processor units by
routing addressed message packets from one processor unit to
another in said parallel computer, and

means for preventing message packets from belng
routed between a first group of operating processor unité and
a second group of operating processor units, whereby said
parallel computer is divided into two or more pluralities of
processor units which do not interact with each other.

2. The computer of claim 1 wherein the
interconnecting means comprises communication lines between
processor units and routing means for routing message packets
to said communication lines including means for controlling
access to saild communication lines on a priority basis and
sald preventing means comprises means for setting sald
controlling means so as to prevent access to saild

communication lines.

3. A parallel computer comprising a plurallty of
processors each of which can execute instructions in serial
order and means for distinguishing between instructions which
are to be executed in parallel by sald plurality of
processors and those which are not.

4. The computer of claim 3 wherein sald means for
distinguishing between instructions is a tag bit in each
instruction and means for detecting sald tag bit and for
providing for implementation of the instruction in parallel
when the tag bit ldentifies a parallel instruction.

WO 88/01772 ' ' PCT/US87/02181

10

i5

20

25

30

35

-38- -

5. A parallel computer comprising:

a plurality of processors each of which has its own
read/write memory, ,

means for interconnecting said processors by
signalling lines to form a hypercube,

- means for sub-dividing said plurality of processors

into at least first and second isomorphic groups of a
plurality of processors, sald groups also being isomorphic
with respect to the data contained in read/write memory
associated with said processors, and ,

means using the signal 1lines that interconnect sald
processors in a hypercube to detect errors in the executlion
of computer instructions by comparing the results of domputer
instructions performed in parallel on the first and second
groups. '

6. A parallel computer comprising a plurallty of
processors each of which has its own read/write memory, means
for_operéting'each of said processors and read/write memory
so as to simulate additional processors, and means for
controlling said processors included said simulatad
additional processors recursively so that one processor
controls at least one other processor and séid other
processor controls at least one more processor.

7. A parallel computer comprising a plurality of
processors and means for signalling between said processors,
said means comprising signalling lines between sald
processors, means for routing addressed message packets
between said processors, means for broadcasting instructions
from a first processor to selected other processors and means
at said first processor for monitoring communication lines
from said selected other processors for signals indicating

performance of said broadcasted instructions.

WO 88/01772

10

15

20

25

30

35

PCT/US87/02181

-3Q~

8. The parallel computer of claim 7 further
comprising means for synchronlzing the broadcasting of
instructions in response to signals detected by said

monitoring means.

9. A method for detecting errors in the operation
of a parallel computer comprising the steps of:

interconnecting with signal lines a plurality of
processors each of which has its own read/write memory to
form a hypercube

sub-dividing sald plurality of processors into at
least first and second isomorphic groups of a plurallty of
processors, sald groups also being isomorphic with respect to
data contained in each read/write memory assocliated with said
processors, and '

using the signal lines that interconnect salid
processors to form a hypercube to detect errors in the
execution of computer instructions by comparing the results
of computer instructions performed in parallel on the first

and second groups.

WO 88/01772 PCT/US87/02181

1/12

2.:
o.S
an
=
1] c
€ i 0 -
gFl 52 .) 23|
‘* (= ToY7
I | = oy 4
1 [lo = T 10 m " - mr i
! i
9| ;’3’ 0 I | , g | ©
il __P.u__llll_..'f ~
- % 0 0 é----.gn 'ﬂl 8 ~
g z O n —m " v ol
© o - Q [-
@ © oallll o 1 gl 5 "l a
N S\
g4l l gal
©
ol N
o ¥
o~
\ Y
p—

Source

210
Micro~
Computer |<# controller

SUBSTITUTE SHEET

PCT/US87/02181

WO 88/01772

2/12

-one

e > o of

A Yoo
LA

86l

198

2 ‘
el Siv
- \ﬁﬂﬁ.

111 1 1 ._ﬁ H 4 3 &
- - Jv ~) b
oW’ h - 1 O_AVL %JMJ .-.s—...m.
» . no-an M- -
- oov | 110-0 w-nie
004 T - s..o?-..l !.o OON&] $400-4

i no-am-§

 aatae

1) 4
an0-AM-~§ 6¢ \&la

SAn0-ANI -$

R, 2 ‘old

SUBSTITUTE SHEET

WO 88/01772

PCT/US87/02181

3/12

FIG. 3

320
-
330
300
FIG. 4
350, 360 address , v
uProc. 11¢ p| Laxsak
s data |
i
| 4 '
T address !
' []
‘. LY X) ... L X} .“ '
:malh chip ' communications |
¢ =~380 '
: ' !
QCesesascesd '
370 :
i
!
_ L4x 64 k

SUBSTITUTE SHEET

WO 88/01772 PCT/US87/02181
4/12
400 470
({
PPUJ LPRUO "L‘r’: 410 ;’L‘rﬁ"h | 480 490
prul [PPUI
[eru] Ieeud YO 420] S
pru] [PPUd I\ —
self 420 VN
PPU PPU checkerr s 300 Mbytes
PPU | [PPU] |clock \

. synch44c E ess®®%ugy
PPU] LFFU I
prus] [P [0 459 '\-ﬁ{-':.

PERF. Seeeect
WEAS3EQ

WO 88/01772 PCT/US87/02181

5/12

-L—§ — I . 502
oo \
] 200 | ar0
\ 505/ 1 500
502
coos N
a00 | 4ro0
\505 " L. 500

WO 88/01772 PCT/US87/02181

6/12

FIG. 7

10 520
Addres » Memory 22
ress (o
Address Plns Mapper Interface Address Pins
s:2 [P 530
Sequencer 550
582 * * £340 Error
Data Pins Data — Corrector 4—-\-5 Data Pine
l Cache — aso
Interceptor ¢ 570
[572
Beta —) cubePina
5805 L————»{ Router
590 560
\J Order Alpha 562y
Cache * Router N P Apha Plns
4+

| TE Shiggy

WO 88/01772

7/12

FIG. 8

PCT/US87/02181

605
PPU Address 16 572
- N
i L \ E Router Add 3
Onset S / 3 outer ressoms-—
24 ' Beta Router
] N 24: ela Houter :
630 MERIIEENIEL SRR S
645 570
{ 24 +' L 640
mux 16 22 Phy
~ Add
P A%
8 Page Table 8
- » 2
635 65 24 6x8
Vp Offset
625) '\2
620y]
coel Vp Increment 24
24
Address Bus Page Bits

SUBSTITUTE SHEET

WO 88/01772 : PCT/US87/02181

8/12

FIG. 9

6
Fs 675
h@;tﬂow -
- Page Mode
x%':dess / mux Address Pins
refresh count

6605 670

FIG. 10

Addresgy Bus
715
mux Control Order Address

LSBs T T next state
ntext 680 | | ’
k 685
stac > PLA 710

—top 690 [—*
—jtask 695 — :
—>{ next 700 I State 705:
Data 720 .. Sense Bits

SUBSTITUTE SHEET

WO 88/01772

PCT/US87/02181
9/12
. 740
Data Out
\
Data Pins
Dala L’ﬁ | %J
78 760 745
750
DEC] GenEcc
T Ecc Pins
775 770 Genacc |
765 755

SUBSTITUTE spyger

WO 88/01772 PCT/US87/02181
10/12
802A 800A 820A
805A l—i 5 L g3on
3 810 “L—l
85 825A
~ T
-1 3
8OON 820N
802N 805N|—D ' ga2 j")
\) Q_J 822N
Q
830 825N
840
X _
)
832~ I - Synch In
>
Synch Out
834~
<+ Orders In
—
Ordars Out

SUBSTITUTE spegr

WO 88/01772 PCT/US87/02181

11/12

FIG. 13

40 24
Locative | vittual Processor Offset

Onset PPY Onset Word x4

18 24
Router Address PPU Memory
8 ¢ 18
Virtual Address [Page [Byte |
Page Table
256 x 8
22
Physical Address Memory

WO 88/01772

FIG

12/12

14

current context

NELN

task list
\ / . conlext stack
RN

PCT/US87/02181

taskt [context \
vp vp vp vp vp
sk [IS
L "QE
O\
vp vp vp

4
to other tasks

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT —
International Application No PCT/US87/02181 I

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 3
According to International Patent Classification (IPC) or to both National Classification and IPC

INT. CL. 4 GO6F 15/16

U.s. CL. 364/200

i, FIELDS SEARCHED

Minimum Documentation Searched ¢

Classification System | Classification Symbols

i
i
U.s. j 364/200 364/900

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Inciuded in the Fields Searched &

lil. DOCUMENTS CONSIDERED TO BE RELEVANT !¢

Category'l Citation of Document, 18 with indication, where apgropriate. of the relevant passages 17 IReIevant to Claim No. 18
i !
| &
Y, {Us,A, 4,644,496 (Andrews) 17 February 1987 ?1,2,5,9
Y, lUS,A, 4,639,857 (McCanny) 27 January 1987 1,2,5,9

P
P
Y [US,A, 4,247,892 (Lawrence) 27 January 1981 1,2,5,9,
¢ |US.a, 4,523,273 (Adams, III et al.) Il Jumne |[1,2,5,9

11985
i
Y 'US,A, 3,343,135 (Freiman et al.) 19 , 1-9
’ }September' 1967
iUS,A, 4,191,996 (Chesley) 4 March 1980 1-9
1US,A, 4,384,273 (Ackland et al.) 17 May 1983 ;1-9
Y US,A, 4,390,966 (Kawashima et al.) 28 June 3,4
11983 ,
Y US,A, 4,524,415 (Mills, Jr. et al.) 18 June 6
'1985 '
a,p |Us,A, 4,622,632 (Tanimoto et al.) Il 1-9
|
INovember 1986 : !
i
‘ |
3
i I
| |
* Spaecial categories of cited documents: 15 “T" later dociun;ant puglishted afterﬂtihcta intt?‘r\:ﬁtional"ﬂ\irt\g dgtt:
. P iori te and not in conflict wi o application bu
“A" document defining the general state of the art which is not or priority da i :
Considered to be of particular relevance ;:ru‘bee%égnunderstand the principle or theory underlying the
“E" earlier document but published on or after the international x" document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
uL” d?‘cul_'mant \;Jlxc!h may él;r%w r:ioubtgl ont prio;itty cl?im(szhor involve an inventive step
which is cited to establish the publication data of ana or wy" document of particular relevance; the claimed invention
citation or ather special reason (as specified) cannot be considered to involve an inventive step when the
u@" document refarring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means {netnhts. sr;mh combination being cbvious to a person skilled
in the art,

wpr document published prior to the international filing date but

later than the priority date claimed ug" document member of the same patent family

1v. CERTIFICATION
Date of the Actual Completion of the International Search 2

7 October 1987 2 9 OCT 1987

Signature of Authorized Officer 30

Holert & Mo
ISA/US Robert B. Harrell

Date of Maliling of this International Search Report 3

International Searching Authority L

Form PCT/ISA/210 (second sheet) (October 1981)

International Application NOPCT IUS 8 7 / 0 2__1_8_1!

1. DOCUMENTS CONSIDERED TO BE RELEVANT V(CONTINUED FROM THE SECOND SHEET)

~ Relevant to Claim No *

Citatgon‘o-f—l‘)ocumént, 1% with indication, where appropriate, of the relevant passages {7

_Ca.legory‘é
Y Tsutomu Hoshino. "An Invitation-to the 1,2,5,7-9
World of PAX" IEEE Computer, (May 1986),
. pp-68-80.
A | Charles L. Seitz. "The Cosmic Cube” 1,2,5,9

communications of the ACM, vol. 28, no. !
(January 1985), pp. 22-23.

Y Kenneth E. Batcher "Design of a Massively
Parallel Processor" IEEE Transactioms on
Computers, vol. C-29, no. 9 (September 1980) 1,2,5,9
pp. 836-840. .

Y ° Asbury et 2l. "Concurreat Computers ILdeal 1,2,5,7-9
for Inherently Parallel Problems'" Computer
Design, (September !, 1985), pp. 99-102, 104,

106-107.
Preparata et al. "The Cube-Connected Cycles:
A A versatile Network for Parallel 1,2,5,9

Computation”
Communications of the ACM, vol. 24, no. 5
(May 1981), pp. 300-309.

Y Hillis, W.D. "Chapter 4 The Prototype" Im:
The Connection Machine (Massachusetts, MIT, 1-5,7-9

1985), pp. 71-90, 145-172.
Y Hillis, W.D. "The Connection Machine", 1-9

Massachusetts, MIT (1 September 1981)
pp. 1-21,23-29. A.I. Memo note No. 646.

Y NCR45CG72 GAPP Application Note No. 3, Ohio, 1,2,5,9
NCR Corporationm, 1985. pp. 1-23.

Y NCR45CG72, Ohio, NCR Corporation, [984. o 1,2,5,9
pp- I-12.

Form PCT/ISA/210 (extra sheet) (May 1986)

=~

International Application NopCTan 8] / 02 1 8 1_|

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

'

i
| |

V.D OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 10

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the foilowing reasons:

1.D Claim numbers ___... .., because they reiate to subject matter 12 not required to be searched by this Authority, namely:

2.[:] Claim numbers _____._..... , because they relate to parts of the international application that do not comply with the prescribed require-
ments to such an extent that no meaningful international search can be carried out 13, specifically:

Vl.[m OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING !!

This International Searching Authority found muitiple inventions in this inlernational application as follows: Grou P I
(claims 1,2,5,9) drawn to a parallel computer (364 subclass
200), Group II (claims 3,4) drawn to a data processing
system (364 subclass 200), Group IIT (claim 6) drawn to a
virtual processing system (364 subclass 200), Group IV

(claims 7,8) drawn to a broadcasting network (364 subclass 900)
1. As all required additional search fees wera timely paid by the applicant, this international search report covers all searchable claims
of the international application. Telephone Pract ice '

2.[:] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only
those claims of the international application for which fees were paid, specifically claims:

3.[__-_} No required additional search fees were timely paid by the applicant. Consequently, this International search report is resiricted to
the invention first mentioned in the claims; it is covered by cfaim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not
invite payment of any additional fes.

Remark on Protest
D The additional search fees were accompanied by applicant’s protest.
@ No protest accompanied the payment of additional search fees,

Form PCT/ISA/210 (supplemental sheet (2)) (October 1981)

PCT/US87/02181

Attachment to Form PCT/US87/ISA/210, Part VI. 1.

Telephone apprcvél:

$420 payment approved by Francis E. Morris (Reg.
No. 24,615) on 7 October 1987 for Groups II, III,
IV, charge to Deposit Account No. 16-1150.

Counsel was advised that he has a right to protest
and that any protest must be filled no later than
15 days from the date of mailing of the search
report (Form 210).

Reasons for holding lack of unit of invention:

Inventions I, II, III, IV are related as
subcombinations disclosed as useable together in a
single combination such as a massively parallel
processing system. In this instant case, each of
the different inventions have separate utility,
such as use in combinations which lacked
distinctive features toward which the other
inventions are drawn. ‘

For example, invention I could be used in a
parallel computer system which did not have means
for distinguishing between instructions to be
executed in a parallel or in a serial £fashion
(e.g., redundant processors).

Time Limit for Filing a Protest
Applicant is hereby given 13 days from the
mailing date of this Search Report in which to file a
protest of the holding of lack of unity ofrinvenﬁicn.
In accordance with BCT Rule 40.2 applicant may protest
the holding of lack of unity only with reépectrto the

group(s) paid tfor.

w»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

