BUTTER PAT PACKAGE

Inventor: Lee Peters, 750 Plymouth Road
S.E., Grand Rapids, Mich. 49506

Filed: Apr. 24, 1972

Appl. No.: 247,138

U.S. Cl. 426/119; 206/507; 229/2.5; 217/26.5; 426/130; 426/389

Int. Cl. B65b 25/06; B65d 1/36

Field of Search 99/179, 171 CT, 171 CP, 99/171 TC, 171 R, 178; 206/72, 46 F, 503, 507, 509, 511; 220/97 D, 21; 217/26.5, 26; 229/2.5, 15; 426/106, 130, 119

References Cited

UNITED STATES PATENTS
1,782,232 11/1930 Grande 426/106
2,886,202 5/1959 Waller 220/21
3,197,058 7/1965 Hale 220/97 D X

Primary Examiner—Frank W. Lutter
Assistant Examiner—Steven L. Weinstein

ABSTRACT

Packages for embossed-surfaced pats of butter, and the like, comprising pocketed trays that hold the pats in surface-protected, spaced apart, and easily dispensable relationship to each other.

3 Claims, 26 Drawing Figures
3,896,239

1. BUTTER PAT PACKAGE

BACKGROUND OF THE INVENTION

For purposes of illustration this invention will be
described with butter, but with the understanding that it
is also applicable to other foods that have similar physi-
cal and marketing characteristics, such as margarine,
cheeses, ice-creams, and soft candies.

This invention is concerned solely with parts of a par-
ticular kind: those which have flat bases and multi-
cubic-dimensioned embossments on their upper sur-
faces. A detailed description of such surfaces is given
in my Pat. No. 3,410,699. This invention further limits
its concern to such parts when they are: (1) of the frac-
tional-ounce sizes, (2) bare-surfaced (i.e., without
embossment-conforming wrappers or coverings), (3)
without individual carrying plates (as in my Pat. No.
3,317,326), (4) packaged together in relatively large
multiples intended for use in restaurants and other
mass-feeding establishments, and/or for home party
use.

This invention further limits its concern for such parts
to problems in two specific phases in their commercial
life span: (1) the transportation phase, from point of
production to point of consumption, and then (2) dur-
ing the phase of dispensing from their shipping pack-
ages at the point of consumption. These two phases
pose problems peculiar to this kind of food alone; and
it is these problems that are the sole concern of this
invention.

Because butter is sticky, and embossed surfaces on it
are fragile and easily damaged, such parts, when bare-
surfaced, cannot be nested against each other, and/or
be in adhering contact with each other in their shipping
cases, without endangering the surface integrity of their
embossed surfaces. They must be packaged in a man-
er that maintains them in separated, spaced-apart,
non-weight-bearing, relationship to each other, both
vertically and horizontally in their shipping containers
during the hazardous, rough-and-tumble, conditions
and the upside-down and sideways positions encoun-
tered in the channels of trade.

The prior art shows butter-pat embossments that have
been designed and structured to bear the weight of at
least their own pat-sizes without being crushed or
mutilated while being shipped bare-surfaced. Such pats
cannot be packaged loose and/or in contact because
they cannot bear the weights of any other pats stacked
on top of them without having their embossed surfaces
stick together and being damaged by such adhesion and
crushed from such added weights; nor can they then be
dispensed in an easy non-damagable manner.

As in some of the prior art, it is also a general object
of this invention to package butter pats, which have
multi-cubic-dimensioned embossments on their upper
surfaces, together in relatively large quantities suitable
for restaurant use, that will maintain such pats out of
contact with each other while in transit in commercial
distribution and, at the same time, enable them to be
dispensed with ease and speed at point of serving; but
do so with methods and means that are improvements
over the prior art.

THE PRIOR ART DEFICIENCIES AND THE
OBJECTIVES TO OVERCOME THEM

In the prior art the accepted practice for protectively
packaging restaurant-sized embossed butter pats of the
kind embraced by this invention is to use two un-like
packaging pieces: one, a flat tray on which to rest the
flat side of the pats and, another, a blister-type cap to
cover and maintain in separated non-touching position,
each individual pat within the multiple-pat-holding
shipping container. This method of using two pieces of
packaging, while providing the essential protection
needed for embossed butter surfaces, especially so for
the large 1/4-lb. home-size pats, also approximately dou-
bles the cost of packaging materials. Such doubling of
packaging costs, for an item like restaurant-size butter
pats, which purchasers will buy or not buy on price dif-
fences of fraction of a cent, can spell the difference
between a sale or no sale; or between an item that is ac-
ceptable to the restaurant trade and one that is not.

It is another object of this invention, therefore, to
eliminate the need for two pieces of packaging materi-
als to accompany, hold, cover, and protect each em-
bossed butter pat of the kind embraced by this inven-
tion. Instead, this invention is designed to accomplish
these functions through utilization of a single piece of
packaging material.

The prior-art method of using two un-like pieces for
packaging embossed pats practiced the following steps
in the removal (dispensing) of the pats from their pack-
ages: first the two unlike but companion pieces (flat
tray and blister cover), enclosing a multiple number of
pats between them; are removed from their shipping
containers; then the blister-type cover is removed; and
then the pats are removed from the flat tray by sliding
the flat side of a knife or blade underneath the pats, lift-
ing them off the tray and depositing them on butter-
serving dishes. This method, and these steps, of dis-
ensing have the following deficiencies that leave them
short of giving complete commercial satisfaction.

1. Pats in loose, unstable, positions

Once the pats are released from the confinement of
their blister cover, they have nothing to prevent them
from sliding around when a waiter tries to slide a
blade underneath them to lift them from the trays. So,
to get a blade underneath them requires, for all practi-
cal purposes, an unattainable amount of dexterity and
practice. The pats, more often then not, due to dispens-
ing-blade pushing-pressure, will slide ahead of the lead-

edge of the blade, rather than stand still while a
blade is slipped underneath them.

It is an object, therefore, to provide a shipping tray
structured to hold embossed pats in fixed aligned posi-
tions while a dispensing blade is slipped underneath
them.

2. No positive guide-posts for dispensing blade

Since there is no means in the prior art of keeping the
pats in fixed straight-line positions on their flat trays
once the blister cover has been removed, and no posi-
tive means of keeping a blade tracking along a straight-
line (even if there was one among the loose pats), they
are extremely difficult to line up on a dispensing blade
in a centered, spaced-apart, and balanced manner that
will: (a) keep them from tipping off the blade during
transfer from tray to serving dish, and (b) enable them
to be handily tipped off the carrying blade (or the blade
slipped from under them) on to a serving dish.

The blades of ordinary dining knives used in restau-
rance are normally narrower than the normal 1 3/4 to
1 1/2 inches widths of my embossed pats, so that when the
flat bottoms of my pats are centered on the flat side of
such blades, the pats will project outwardly on both
sides of the blades by about one-fourth to three-eighths inch. Such outward projections enable a waitress to rest the projecting edges of the blade-held pats on a dish and then with an easy circular motion remove the pats from the blade. Also, with the pats perfectly balanced on a dispensing blade a waitress has her option as to which side of the blade she can use to remove the pats. Such an option is very helpful during the peak rush hours of restaurant service when waitresses must make every move count in serving her customers with the speed and dispatch they desire.

However, prior-art methods of packaging make it a practical impossibility to line up pats on a dispensing blade in perfectly uniform and balanced positions when the pats are not held stationary on their trays. A waitress cannot take the time or effort to line such loose pats evenly on a blade; they normally project far out on one side and some far out on the other side of such a blade. The net result in prior-art methods is that the pats are usually tumbled off the blade in helter-skelter, frequently upside-down, condition on to serving dishes which, in turn, necessitates additional time and effort to re-position the pats on the serving dishes.

It is thus a further object to supply an embossed-pat shipping tray that will serve as a positive positioning guide for aligning the flat side of a dispensing blade into perfect centered position underneath the pats, while at the same time provide equally-extending edges on both sides of the dispensing blade so as to give a waitress optional sides from which to dispense pats in an orderly manner onto butter dishes.

3. Trays that fail to prevent nesting

In the prior art, and in most any commercial packaging, it is important for low production costs to have all pieces of packaging standardized and identical. But such standardization for the present invention could also render it inoperative for the protection of my embossed butter surfaces. Because plastic trays that are thermo-formed would normally rest into each other at least partially (because angled sides are normally required to remove them from their forming dies and for compact low-cost shipment) they cannot provide vertical spaced-apart separation for packaged pats. Rather, because of their nestable structure, they would rest on, and thus destroy, the top surfaces of my embossed pats.

It is therefore another object to provide a tray packaging method having the advantages of a single, identical, standardized, tray structure, but without the nesting disadvantages inherent in such a tray.

4. Trays whose sides prevent easy dispensing

In the prior art, where the sides of a packaging tray are erect and rigid and the corners secured, it is difficult to insert a pat-removal blade underneath the first group of pats because such pats normally lie too close to the erected sides of the tray to allow a blade to slide under the pats at an easy and safe angle for pat pick up. To overcome this, the corners of such trays must be broken open and the sides lowered so a dispensing blade can enter the tray area at an angle that permits the blade to slide easily under the pats. However, when the corners are broken open and the sides of such trays lowered, the pats are no longer confined and then they become quite unmanageable for the pick-up blade to perform its pick-up function well.

It is therefore another object to provide a tray in which the sides remain rigid and the corners remain secured and intact, while at the same time provide easy access for a dispensing blade to be slipped into the tray area and underneath the tray-confined pats.

5. Trays that are flimsy

The trays used in the prior art are made of flat, non-reinforced cardboard, because of the need for low cost, are relatively flimsy. They are not intended for use outside their shipping containers, as for example, as trays for carrying pats any distance, or for carrying them with one hand while dispensing pats from them with another hand. In restaurant butter-pat service it is frequently necessary to provide diners, especially at banquets, with additional butter after the initially served amount has been consumed. Under the standard practice there is no method or means by which a tray of embossed pats, as packaged, can safely and expeditiously, without the tray buckling and/or spilling pats, be carried around in one hand while dispensing butter from it with the other hand.

It is therefore another object of this invention to provide a butter-pat carrying tray adapted to be carried in one hand while pats therein remain stationary, and pats therefrom can be easily removed and served by a blade manipulated by a person's other hand.

GENERAL DESCRIPTION OF THE INVENTION

Observation of the deficiencies inherent in the prior art did not point to any obvious solutions for curing them, even for one skilled in the art. For example, paper-board materials had already proved unmodifiable to meet the detailed protection and dispensing requirements of this invention. Thermformed plastic trays are modifiable so they can be structured to provide protection against crushing, but they normally require angled (less than 90°) sides to be easily removable from their forming dies and for economical nesting during shipment from tray-manufacturing plant to tray-loading plant. Such angled sides, therefore, would continue their nesting function in any stacked-tray arrangement, and thus would fail to give completely-separated protection against weight-bearing for the contents in a stacked-tray arrangement. Thus the prior art appeared impractical for the purposes of this invention.

However, I have found that thermoformed trays can be provided which have structural and functional advantages for the packaging of embossed butter pats. This solution makes use of a thermoformed rigid plastic tray structured as follows to hold embossed butter pats in the following functional manner:

1. Pockets, molded in straight rows within the tray, with two opposing sides (preferably those running transversely to the length of the rows) of each pocket along the same row partially opened (except for one side of one pocket at one end of each row so as to permit a dispensing blade to be inserted into the pockets underneath pocketed pats along a perfectly aligned pathway formed by the opened sides, while

2. The partially-closed sections of these pocket sides hold the pocketed pats entrapped in stationary and separated positions and serve as both back-stops to hold the pats stationary and as guide-rails for a dispensing blade that is pushed along the aligned pathway in a center-directed straight line underneath the pats.

3. In the pocket-structured aligned pathways within the tray, each pathway has substantially vertical sides, except for one side located at one end of each pathway, which is an acute angle of about 45°. This 45° angle serves the dual function of:
a. permitting a dispensing blade to be inserted underneath a row of aligned pats at an angle that makes such insertion easy and safe, rather than from a vertical tray-edge and steep-angled approach that would make the insertion action difficult to perform and damaging to the pats, and

b. extending one side of the tray to provide an off-center offset positioning for every alternate tray when such trays are stacked in reverse alternating non-identical sided positions in order to prevent the nesting that would otherwise take place if they were stacked in identical-sided positioning. Such off-center positioning provides a non-nesting, weight-bearing, continuous, columnar, stacked structure throughout the height of the stack whereby the embossed surfaces are held and transported in their containers without any weight upon their embossed surfaces.

4. The pockets also have two-opposing sides (preferably those running parallel to the length of the rows of packets) fully formed and closed which, in combination with the partially closed positions of the two opposing partially opened sides, form a continuous vertically upstanding tray-ribbing to serve as supports on which each alternating reverse-positioned stacked tray can bear the weight of the trays stacked above it, and as structural reinforcement for the trays to function as non-buckling individual carrying trays.

5. With trays designed to accommodate circular-base-configured pats a special advantage accrues: the underside of the thermoformed pocket walls also form pockets on the underside of the trays of a finger-gripper size that allows the fingers of a normal hand to be inserted into them, whereby the trays can be so well secured in a person's hand that the trays can be tipped practically on edge without danger of the trays sliding off one's hand. Thus a waitress can carry one around in a dining room and dispense from it at any number of tables and patrons.

Such sockets may be formed, for the purposes of this invention, to function with any shaped pat base: square, round, and/or any other polygonal configuration. They may be formed from any plastic sheet that is thermoformable for the structural purposes of this invention. I have found, for example, that thermoformable sheets made from polystyrene, polyvinylchloride, and polypropylene in gauges ranging from 0.005 to 0.02 inches, depending on the size and weight of pats to be supported, are satisfactory for the purposes of this invention.

Despite the apparent simplicity of this invention, the uniqueness and surprising nature of the pat-holding pockets in aligned rows within identical (and normally nesting) trays is indicated when consideration is given to the several extensive, interrelated, cooperating functions performed by these pockets. These are:

1. The protective shipping functions performed by:
 a. pocket walls enlarged at each corner, flat at their tops, and standing erect at about 90° angles except for those walls along one end of the trays where they are angled at 45°, whereby
 1. an off-center, non-nesting relationship is achieved between such trays when they are stacked on top of each other in alternating reversed-end positions which, in turn,

2. provides columnar weight-bearing vertical support throughout the entire height of a containered stack, and

3. a vertically spaced-apart, non-weightbearing, surface-protected relationship between the tray-pocketed embossed pats while

b. pocket walls that entrap each pat in a spaced-apart, non-touchable, horizontal relationship vis-a-vis every other pat in the same tray and case.

2. The dispensing functions performed by:
 a. Open pocket sides which
 1. still entrap and
 2. still keep pats in spaced apart relationship while cooperating to provide,

b. straight, open, aligned-walled pathways within the trays, with a vertical wall at one end and a 45° wall at the other end,
 1. down which the flat side of a dispensing blade can travel and
 2. be guided underneath the pocketed pats in
 3. a positively-aligned manner

4. to lay the pats on the blade in perfectly balanced and spaced-apart relationship for safe and easy dispensing which, in turn,

5. enables the pats to be dispensed from the trays and pockets with one hand while the trays are secured and gripped firm with one's other hand.

3. The contradictory functions of:
 a. packaging butter pats that are both
 1. highly protected, closely confined and completely inaccessible in shipment, yet
 2. without any alteration or modification of the tray structure, are very open and highly accessible at point of dispensing

b. Packaging which
 1. by itself is immobile and static, yet
 2. performs several active, moving, cooperating functions that involve the protection during shipment, and the ease and safety of movement during dispensing of embossed butter pats.

DESCRIPTION OF THE DRAWING

The invention will be explained in conjunction with illustrative embodiments shown in the accompanying drawing, in which --

FIG. 1 is a perspective view of several nestable trays formed in accordance with the invention which are separated but ready for nesting;

FIG. 2 is a perspective view of the trays in nested condition;

FIG. 3 is a reduced longitudinal sectional view taken along the line 3-3 of FIG. 2;

FIG. 4 is a perspective view of a packing box filled with trays carrying butter pats and which are stacked in non-nesting shipping condition;

FIG. 5 is a perspective view of several trays carrying butter pats which are stacked in non-nesting condition;

FIG. 6 is a top plan view of one of the trays shown carrying several pats of butter;

FIG. 7 is a longitudinal sectional view taken along the line 7-7 through the wall which connects adjacent pat-receiving channels;

FIG. 8 is a longitudinal sectional view taken along the line 8-8 through a pat-receiving channel;
FIG. 9 is a longitudinal sectional view taken along the line 9—9 of FIG. 12 showing two empty trays stacked atop two full trays in a non-nesting condition; FIG. 10 is a transverse sectional view taken along the line 10—10 of FIG. 11; FIG. 11 is a fragmentary top plan view of a corner of a tray showing a butter spatula removing butter pats from one row; FIG. 12 is a fragmentary sectional view taken along the line 12—12 of FIG. 11; FIG. 13 is a perspective view showing a waitress gripping the bottom of the tray and holding it upside down; FIG. 14 is a perspective view showing a waitress removing a row of butter pats with a butter spatula; FIGS. 15—26 are views similar to FIGS. 1—12, respectively, showing a tray for use with square butter pats.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIGS. 1—6, the numeral 30 designates generally a plastic thermoformed tray which is adapted to carry fragile, embossed food products such as butter pats and the like. The tray illustrated in FIGS. 1—14 is adapted for carrying generally hemispherical embossed butter pats 31, which have round peripheries.

The structure of the tray is such that a plurality of empty trays can be stored in nesting condition as illustrated in FIG. 2 to reduce the amount of space occupied by the trays when they are in shipment and storage between point of thermo-forming and pat-packaging, and can be stacked in weight-bearing pat-protecting condition as illustrated in FIGS. 4 and 5 when the trays are filled with pats. Each tray is identically formed, and each tray includes angled side walls 32 (FIG. 3) at one end of the tray and substantially vertical side walls 33 at the other end. When the trays are superposed so that the angled end walls 32 of the trays are aligned, the trays will nest. However, when the positions of alternate trays are reversed so that the angled end walls 32 and the straight walls 33 alternate (FIG. 9) and the outer edges of the trays are aligned, the pat-confining pockets of each tray will be offset from the pat-confining pockets of the adjacent trays, and the trays will be stacked in a non-nesting, weight-bearing condition in which the pats are confined within their respective trays without any weight upon their embossed surfaces.

Referring now to FIGS. 6—8 and 13, each tray is seen to include a plurality of elongated parallel channels 34, each of which includes a flat bottom wall 35 and opposite side walls 36 and 37. Each of the side walls 36 and 37 include outwardly curved or arcuate portions 36a and 37a and flat portions 36b and 37b which project inwardly beyond the outermost portions of the curved walls 36a and 37a and which extend parallel to the longitudinal axis of the elongated tray and the channels. The curvature of the curved walls 36a and 37a corresponds to the curvature of the peripheries of the pats 31, and the side walls thereby provide pat-confining pockets in which the pats can be received and secured against longitudinal and transverse sliding movement.

The side wall 36 of each channel is connected to the side wall 37 of the adjacent channel by a top connecting wall 38 to form an integral, relatively rigid structure. As can be seen best in FIG. 7, the curved side wall portions 36a and 37a of every other pocket of each channel curve downwardly toward the bottom wall 34, and the connecting wall 38 is thereby provided with flat portions 38a which extend parallel to the bottom wall 34 and curved portions 38b.

The two outermost channels 34a and 34b similarly include side walls 36 and 37, but the side wall 37 of channel 34a and the side wall 36 of channel 34b are of constant height. Channel 34a includes a laterally outwardly extending flange or top wall 39, and channel 34b includes a laterally outwardly extending flange or top wall 40.

Each of the channels 34 is closed at one end by an angled end wall 32 which extends at an angle of about 45° from the bottom wall 35 and is closed at the other end by a curved end wall 33 which extends substantially vertically from the bottom wall.

The width of each of the top connecting walls is relatively wide between the straight portions 36b and 37b of adjacent side walls, and these wider top wall portions and the straight side wall portions form supporting columns or posts 41 which extend for the full height of the tray. Referring to FIG. 13, each column or post provides a corresponding recess 42 in the bottom of the tray which extends upwardly between the spaced-apart side wall portions 36b and 37b, and a narrower recess 43 extends between the spaced-apart curved side wall portions 36a and 37a. The side walls 36 and 37 and the end wall 33 of each channel diverge outwardly slightly from bottom to top, and each tray can therefore be nested within another tray as shown in FIGS. 2 and 3. Each top connecting wall of each tray is received in a correspondingly shaped recess provided in the bottom of the tray immediately thereabove.

When the trays are filled with pats and it is desired to stack the trays in non-nesting relation, every other tray is reversed so that the angled end walls 32 and the straight end walls 33 will alternate (FIG. 9). The angled end walls 32 extend outwardly from the last pat-receiving pockets of the channels for almost one-half of the longitudinal dimension of the pockets. Accordingly, when the outer edges of the angled end walls 32 are aligned vertically with the outer edges of the substantially straight end walls 33, the pat-receiving pockets of each tray will be longitudinally offset with respect to the pockets of the trays immediately therebelow and immediately thereabove. The supporting posts 41 of each tray will thereby be brought into contacting relation with the bottom walls of the pockets of the tray thereabove by virtue of the narrow recesses 43 (FIG. 10). The height of the posts 41 and the outer side walls of the channels 34a and 34b is greater than the height of the pats, and the bottom walls 35 of each tray will be supported above the pats carried by the tray therebelow so that the pats can be transported without damage. Although the supporting posts of each tray are slightly offset from the supporting posts of the adjacent trays, each tray is rigidified by the fully formed continuous side walls 36 and 37, and the posts of the stacked trays provide a substantially continuous column or support throughout the entire stack so that a substantial number of trays can be stacked without damaging the bottom tray or the pats contained therein.

The stacked trays can be conveniently packaged in a shipping carton 44 (FIG. 4) which will maintain the trays in their pat-protecting stacked relationship during transit. Even if the shipping carton should be inverted during shipment, the trays will remain stacked, and the
embossed surface of each pat need not support any more weight than the weight of the pat itself.

When the pats are to be consumed, they can be easily removed from the tray by inserting the elongated blade 45 (FIGS. 11, 12 and 14) of a butter spatula 46 into one of the channels of the tray. The angled end wall 32 of the channel facilitates insertion of the blade between the first butter pat of the row and the bottom wall 35, and the flat portions 36a and 37a which form the support posts confine and guide the blade as it is pushed along the bottom of the pathway formed by the channel. The blade advantageously has a width slightly less than the minimum width of the channel, i.e., the distance between the flat wall portions 36b and 37b, and the butter pats will thereby be centered on the blade as it moves along the channel. The particular blade illustrated in FIG. 12 has a length sufficient to accommodate three pats, but a longer blade can be used if desired to permit as much as a complete row of pats to be removed simultaneously.

Referring to FIGS. 13 and 14, a tray can be carried by a waitress in one hand so that the pats can be dispensed at the point of consumption. The large recesses 42 at the bottom of the tray which correspond to the support posts 41 readily accomodate the fingers of the waitress and permit the tray to be held easily and safely in one hand.

FIGS. 15-26 illustrate a tray 130 which is similar to the tray 30 except that it is adapted to carry butter pats 131 having a substantially square periphery. Referring to FIG. 20, the tray 130 similarly includes elongated channels 134, each of which includes a bottom wall 135 and longitudinally extending side walls 136 and 137, and each channel is closed by an angled end wall 132 and a substantially vertically extending end wall 133 (FIG. 22). The side walls 136 and 137 include projecting portions 136b and 137b which define pat-receiving pockets in which the pats are secured against longitudinal and transverse sliding movement, and the spaced-apart side walls of adjacent channels are connected by top connecting wall 138. The projecting portions 136b and 137b of the side walls and the connecting wall 138 thereabove form support posts 141 which are wider than the straight side wall portions 136a and 137a and which extend for the full height of the tray.

The support posts 141 are hollow and form correspondingly shaped recesses in the bottom of the tray, and the spaced-apart straight portions 136a and 137a of the side walls form narrower recesses 143.

The trays 131 can be nested as described hereinafter with respect to the trays 30. The support posts 141 of each tray are received in the correspondingly shaped recesses in the bottom of the tray thereabove, and the walls between the pockets of adjacent channels are received in the recesses 143.

When the trays are carrying butter pats, the trays can be stacked by alternately reversing the trays as shown in FIG. 23. The angled end walls 132 extend outwardly from the last pocket of each channel for about one-half of the longitudinal dimension of the pockets, and when the outer edges of the trays are aligned as in FIG. 23, the support posts of each tray will engage the bottom walls of channels of the tray thereabove by virtue of the relatively narrow recesses 143. The support posts of each tray therefore support all of the trays above that tray, and the posts provide a substantially continuous columnar support for the trays. Referring to FIG. 18, the stacked trays can be shipped safely in a shipping carton 144.

As can be seen in FIGS. 25 and 26, the square pats can be dispensed from the trays 130 in the manner previously described with respect to the hemispherical pats. The angled end wall 132 permits the dispensing blade 145 to be easily inserted below the first pat, and the blade can be pushed along the path formed by the channels between the pats and the bottom wall 135. The width of the dispensing blade is slightly less than the minimum width of the channel, i.e., the spacing between the projections 136b and 137b, and the blade is thereby guided in a straight line so that the pat will be centered on the blade.

While in the foregoing specification detailed descriptions of specific embodiments of my invention were set forth for the purpose of illustration, it is to be understood that many of the details herein given may be varied considerably by those skilled in the art without departing from the spirit and scope of the invention.

I claim:

1. A nestable and stackable tray for food pats comprising a plurality of elongated parallel channels, each channel having a flat bottom wall, a pair of side walls extending upwardly from the bottom wall, and a first and second end walls, the first end wall extending generally vertically upwardly from the bottom wall and the second end wall extending from the bottom wall away from the first end wall and forming an obtuse included angle with the bottom wall, the first end walls of the channels being aligned transversely across the tray at one end incinerated and the second end walls of the channels being aligned transversely across the tray at the other end thereof, each side wall of each channel including a plurality of longitudinally spaced projections extending toward the projections of the other side wall of the channel to form pat-confining pockets between adjacent projections, adjacent side walls of each adjacent pair of channels being spaced apart and having the upper ends joined by a top wall, the portions of the top wall extending between the projections providing flat supporting surfaces extending generally parallel to the bottom walls, the extent of the second end wall of each channel in a direction parallel to the bottom wall being about one-half of the distance between adjacent pockets forming projections, whereby a plurality of the trays may be nested by aligning the first end walls of the trays and inserting the top walls of each tray into the spaces between adjacent channels of the tray immediately thereabove and a plurality of trays can be stacked and supported out of contact with food pats contained in the pat-confining pockets thereof by aligning the first end walls of each tray with the second end walls of the trays immediately thereabove and therebelow so that the flat supporting surfaces of each tray engage and support the bottom walls of the channels of the tray immediately thereabove.

2. The tray of claim 1 in which said obtuse included angle is about 135°.

3. A food pat package comprising a plurality of identical pat-carrying trays vertically stacked in horizontal plane position one on top of another within a shipping case, each tray being generally rectangular and having a plurality of elongated parallel channels, each channel having a flat bottom wall, a pair of side walls extending upwardly from the bottom wall, and a first and second end walls, the first end wall extending generally verti-
cally upwardly from the bottom wall and the second end wall extending from the bottom wall away from the first end wall and forming an obtuse included angle with the bottom wall, the first end walls of the channels being aligned transversely across the tray at one end thereof and the second end walls of the channels being aligned transversely across the tray at the other end thereof, each side wall of each channel including a plurality of longitudinally spaced projections extending toward the projections of the other side wall of the channel to form pat-confining pockets between adjacent projections, adjacent side walls of each adjacent pair of channels being spaced-apart and having the upper ends joined by a top wall, the portions of the top wall extending between the projections providing flat supporting surfaces extending generally parallel to the bottom walls, the extent of the second end wall of each channel in a direction parallel to the bottom wall being about one-half the distance between adjacent pocket-forming projections, a food pat contained within each pocket, the first end walls of each tray being vertically aligned with the second walls of the trays immediately thereabove and therebelow, the flat supporting surfaces of each tray engaging and supporting the bottom walls of the channels of the tray immediately thereabove.

* * * *