(54) Title: METHOD AND SYSTEM FOR COMPENSATING FOR EXTERNAL IMPEDANCE OF AN ENERGY CARRYING COMPONENT WHEN CONTROLLING AN ELECTROSURGICAL GENERATOR

(57) Abstract:
A control system for use with an electrosurgical generator which delivers electrosurgical energy to tissue has a control module. The module includes a processor executing an algorithm. The algorithm has the steps of determining a sensed voltage value corresponding to a sensed voltage signal output by the electrosurgical generator and determining a sensed current value corresponding to a sensed current signal output by the electrosurgical generator. The algorithm has the steps of determining phase information corresponding to a phase shift between the voltage signal and the current signal and determining a characteristic related to the electrosurgical energy delivered to the tissue using the phase information, the sensed voltage value and the sensed current value.
ABSTRACT OF THE DISCLOSURE

A control system for use with an electrosurgical generator which delivers electrosurgical energy to tissue has a control module. The module includes a processor executing an algorithm. The algorithm has the steps of determining a sensed voltage value corresponding to a sensed voltage signal output by the electrosurgical generator and determining a sensed current value corresponding to a sensed current signal output by the electrosurgical generator. The algorithm has the steps of determining phase information corresponding to a phase shift between the voltage signal and the current signal and determining a characteristic related to the electrosurgical energy delivered to the tissue using the phase information, the sensed voltage value and the sensed current value.
BACKGROUND

The present disclosure is directed to a control system for an electrosurgical generator and, more particularly, the present disclosure relates to an electrosurgical generator that includes a control system that compensates for the impedance of external components connected to the generator, such as a cable.

Technical Field

An electrosurgical generator transfers energy from the generator to a patient via cables. Surgeons control the energy application by adjusting the basic power level of the electrosurgical generator by using a hand or foot switch to control the power applied over time. However, manual control of the energy application has certain limitations, such as the overall reliability in achieving an intended power level, and other various difficulties associated with assessing and/or accessing feedback information (e.g., visual and tactile feedback), particularly during endoscopic procedures.
A circuit for automatically controlling the output of an electrosurgical generator is disclosed in U.S. Patent No. 6,210,403 to Klicek, currently owned, and assigned to Sherwood Services AG. U.S. Patent No. 6,210,403 relates to an electrosurgical generator control, which is responsive to the tissue impedance between active and return electrodes during desiccation.

Impedance associated with inductance, capacitance, and resistance in components through which energy flows from the generator to the patient can change the amount of actual energy delivered to the patient by the generator. For example, cables transferring electrosurgical energy generated by the generator to an electrosurgical delivery device have inductance, resistance and shunt capacitance that may affect the energy flow. A monopolar cable in which the active and return lines are separated has a small amount of capacitance but has a greater amount of inductance. A bipolar cable having the active and return lines included within the same cable has higher capacitance but a reduced inductance. Other components may introduce impedance into the energy flow, e.g., board traces, blocking capacitors and handheld electrosurgical delivery devices (e.g., electrosurgical handsets, pencils, etc.).

When tissue impedance (e.g., the impedance of the patient tissue between electrodes delivering the electrosurgical energy) is low, the generator is able to produce high current and low voltage. The inductance and resistance of the cable (and/or other components that may introduce impedance) reduces the amount of voltage delivered to the patient proportional to the amount of current delivered, i.e., as the current increases
the voltage drops across the cable and/or other components. This drop makes it difficult to accurately measure the voltage at the patient end or tissue site. When tissue impedance is high, the output voltage increases, causing more current to flow through the capacitance of the cable and/or the other components. The additional current is known as leakage current. Leakage current decreases the actual current delivered to the patient. Furthermore, impedance in the cable and/or the other components interferes with accurately measuring the tissue impedance.

In addition to taking into account impedances for cables and/or the other components, phase difference between voltage and current at the output of the generator provides valuable information for accurately determining the actual electrosurgical energy being delivered to the patient. However, it is not known to use complex impedance information for the cable and/or the other components together with the voltage, current and phase information at the output of the electrosurgical generator for calculating energy loss in the cable and/or the other components and therefore actual electrosurgical energy delivered to the patient.

SUMMARY

According to one embodiment of the present disclosure, there is provided a control system associated with an electrosurgical generator generating electrosurgical energy which is delivered to a patient. The system includes a control module having at least one processor. The processor executes an algorithm having the steps of: determining at least one of a sensed voltage value corresponding to a sensed voltage
signal output by the electrosurgical generator and determining a sensed current value. The sensed current value corresponds to a sensed current signal output by the electrosurgical generator. The algorithm also includes the steps of determining phase information corresponding to a phase shift between the at least one voltage signal and at least one current signal; and determining a characteristic related to the electrosurgical energy delivered to the patient using the phase information, the sensed voltage value and the sensed current value.

In another embodiment of the present disclosure, the algorithm further may include the step of sampling impedance information corresponding to impedance of at least one energy-carrying component. The characteristic step may further include using the sampled impedance information and modulating the electrosurgical energy delivered to the patient using the sampled impedance information.

The control system may obtain the phase information from circuitry selected from the group consisting of zero cross phase detector circuitry, processing circuitry and any combinations thereof. The processing circuitry may be configured to execute an algorithm selected from the group consisting of a single-band Fourier transform algorithm, a multi-band Fourier transform algorithm, an FFT algorithm, a Goertzel algorithm, an equivalent to a Fourier transform algorithm and any combinations thereof.

The impedance information may be associated with at least one parameter selected from the group consisting of an inductance of the component, a resistance of
the component, a capacitance of the component, a leakage capacitance of the component and any combinations thereof. The impedance information may also be obtained by a device selected from the group consisting of a user input device, an encoded readable information associated with the at least one component, a mechanical device setting associated with the at least one component, a stored information accessible to the at least one processor and any combinations thereof.

The characteristic of the electrosurgical energy delivered to the patient may be selected from the group consisting of voltage, current, impedance and power.

In another embodiment of the present disclosure, the algorithm may include the step of: controlling at least one of voltage, current and power output by the electrosurgical generator in accordance with the determined at least one characteristic related to the delivered electrosurgical energy.

According to still another embodiment of the present disclosure, a control system may be provided with a control module including at least one processor. The processor being configured to execute an algorithm with the steps of: determining at least one of a sensed voltage value corresponding to a sensed voltage signal output by the electrosurgical generator and determining a sensed current value corresponding to a sensed current signal output by the electrosurgical generator. The algorithm also includes the steps of: determining impedance information corresponding to impedance of at least one energy carrying component; and determining at least one characteristic
related to the electrosurgical energy delivered to the patient using the impedance information and at least one of the sensed voltage value and the sensed current value.

The impedance information of this embodiment may also be associated with at least one of inductance, resistance, capacitance, leakage capacitance of the at least one component and a combination thereof. Alternatively, the impedance information may be associated utilizing one of the aforementioned input devices.

Another embodiment according to the present disclosure includes a method for regulating electrosurgical energy output by an electrosurgical generator. The method includes the steps of determining a sensed voltage value corresponding to a sensed voltage signal output by the electrosurgical generator, and determining a sensed current value corresponding to a sensed current signal output by the electrosurgical generator. The method also includes the steps of: determining a phase shift value corresponding to a phase shift between the voltage signal and current signal; and determining a characteristic related to the electrosurgical energy delivered to the patient using the phase shift value and at least one of the sensed voltage value and the sensed current value. The method further has the step of: determining at least one of voltage, current and power output by the electrosurgical generator in accordance with the determined characteristic related to the delivered electrosurgical energy.

According to another aspect of the present disclosure, there is provided a method for compensating an output of an electrosurgical system for an external device
of an electro-surgical system. The method includes the steps of: determining an impedance factor of the external device utilizing a first algorithm and determining a voltage factor adjacent an electrode utilizing a second algorithm. The method also has the steps of determining a current factor adjacent the electrode utilizing a third algorithm; and determining a phase parameter factor of the output utilizing a fourth algorithm and determining power lost in the external device using at least one of the impedance factor, the voltage factor, the current factor, and the phase parameter factor to obtain a difference value. The method further includes the steps of comparing the difference value to a threshold value related to the external device and modulating at least one of the power, the load, and the current depending on the relationship of the difference value to the threshold value.

The phase parameter factor of the output may be calculated by a phase differential of a voltage signal and a current signal of the output.

The phase parameter factor of the output may also be calculated by a plurality of phase differentials between successive voltage signals and current signals of the output.

The electro-surgical generator may also be configured to include a current sensor for measuring the output current delivered by the generator, a microprocessor electrically connected to the current sensor and an impedance sensor for calculating one or more parameters of an electro-surgical energy. The generator may also include
an electrical conduit defined therein which has an encoded rating. The encoding rating communicates to an input of the electrosurgical generator. The encoded rating can relate to a loss of energy from the conduit. The electrosurgical generator outputs a compensated signal to attribute for the loss from the conduit. The encoded rating may optionally be displayed on an exterior of the conduit, and may be automatically or manually communicated to a receiver of the generator. Alternatively, the encoded rating is wirelessly communicated to the generator by a transmitter, a receiver or a transceiver.

10 **BRIEF DESCRIPTION OF THE DRAWINGS**

Various embodiments are described herein below with reference to the drawings wherein:

FIG. 1 is a schematic diagram of an electrosurgical system in accordance with one embodiment of the present disclosure;

FIG. 2 is a plot of a voltage at a load to which electrosurgical energy is applied compared to calculated voltage at the load, including calculations performed using a control system of the electrosurgical system shown in FIG. 1;

FIG. 3 is a plot of a current at a load to which electrosurgical energy is applied compared to calculated current at the load, including calculations performed using a control system of the electrosurgical system shown in FIG. 1;
FIG. 4 is a plot for a high end of impedance of load impedance at a load to which electrosurgical energy is applied compared to calculated load impedance at the load, including calculations performed using a control system of the electrosurgical system shown in FIG. 1;

FIG. 5 is a plot for a low end of impedance of load impedance at a load to which electrosurgical energy is applied compared to calculated load impedance at the load, including calculations performed using a control system of the electrosurgical system shown in FIG. 1;

FIG. 6 is a plot for a low end of impedance of power at a load to which electrosurgical energy is applied compared to calculated power at the load, including calculations performed using a control system of the electrosurgical system shown in FIG. 1; and

FIG. 7 is a plot for a high end of impedance of power at a load to which electrosurgical energy is applied compared to calculated power at the load, including calculations performed using a control system of the electrosurgical system shown in FIG. 1.
DETAILED DESCRIPTION OF THE EMBODIMENTS

Embodiments of the presently disclosed system and method are described with reference to the drawings, where like reference numerals refer to similar elements throughout the various figures. Referring to FIG. 1, there is shown an exemplary embodiment of an electrosurgical system 2 having an electrosurgical generator 10 providing electrosurgical energy to a patient, also referred to as the load. A control system 12 is provided for controlling the output of the electrosurgical generator 10. The electrosurgical generator 10 outputs energy including a voltage V_{in} 26, which is transferred or carried to the patient, tissue, or destination via one or more energy carrying components, such as a cable, a blocking capacitor, a circuit board, a handset of an electrosurgical instrument, etc. The cable and/or the other components collectively have exemplary characteristics represented by box 14, which may be represented as a series inductor and shunt capacitor. A first impedance Z_{src} 28 associated with box 14 includes resistance R_{src} 30 and inductance L_{src} 32. A second impedance Z_{Lkg} 34 associated with box 14 includes capacitance C_{Lkg} 36 through which a leakage current I_{Lkg} 38 flows. The electrosurgical energy is delivered to the patient via at least one electrode 16 of the electrosurgical instrument. A voltage V_{load} 40 and a current I_{load} 42 are delivered to the patient having a load impedance Z_{load} 46, which is associated with the tissue resistive load, R_{load} 44.

The electrosurgical instrument may be configured in a bipolar configuration, where first electrode 16 and second electrodes 48 are both present in the
electrosurgical instrument with the second electrode 48 providing the return path for the output of electrosurgical generator 10. In a monopolar configuration, the electrosurgical instrument includes the first electrode 16 while the second electrode 48 is connected to a surface near the patient and provides the return path. The active ends of first and second electrodes 16, 48 are electrically connected to electrosurgical generator 10 by one or more conductive cables. Monopolar and bipolar configurations used in electrosurgical generators are electrically equivalent and equally suited for use with control system 12 of the present disclosure.

The electrosurgical generator 10 may include a power supply (not explicitly shown) for generating energy and an output stage (not explicitly shown) for modulating the energy, such as via a waveform generator. The power supply generates energy, such as RF, microwave, ultrasound, infrared, ultraviolet, laser or thermal energy. In the exemplary embodiment, the power supply generates RF energy having a high voltage and a frequency of about 470KHz.

The electrosurgical generator 10 and/or control system 12 may be connected, e.g., via a network, such as the internet, to a remote processor, such as, a server and/or database providing processing resources, such as, information (e.g., instrument operating information, mappings), storage, algorithms and/or programs. Updated information may be provided on a regular basis and downloaded to the generator 10 and/or control system 12 as needed and/or prior to surgery. As can be appreciated, this enables the user to obtain updated information regarding operation of the instrument,
electrical parameters, patient parameters, control parameters, etc. In addition, this also enables the generator manufacturer to provide updated information on a regular basis. A user may also be able to receive diagnostics remotely in this fashion relating to the instruments and/or generators being utilized, either on demand by the user, prior to an operation, or automatically during a scheduled download.

The control system 12 may include one or more digital signal processors 20 and a control module 22 executable on the processor(s) 20. The digital processor(s) 20 and/or control module 22 may include one or more digital signal processors (DSP) and associated circuitry. The control system 12 may further include circuitry including analog, digital and/or logic devices (not explicitly shown). The DSPs may be upgradeable using flash ROM as is known in the art. Upgrades for the DSPs may be stored on computer readable media such as compact flash media, magnetic disks, optical disks, magnetic tape, or other suitable media. Furthermore, the control system 12 may reside at least partially on the remote processor. The DSPs could be replaced by any system capable of mathematic operations. In one such embodiment, the control system 12 may be a field programmable gate array.

The control module 22 includes suitable software instructions executable by the processor 20 for processing input data, and for generating control signals that are output to the electrosurgical generator 10 for regulating the electrosurgical energy output by the electrosurgical generator. The software instructions may be stored in a storage medium such as a memory internal to the processor 20 and/or a memory
accessible by the processor 20, such as a disk drive, a compact flash, a wireless
memory, an internal memory, an external memory, e.g., ROM, an external hard drive,
floppy diskette, CD-ROM, etc. Control signals from the control module 22, which control
the electrosurgical generator 10, may be converted to analog signals by a digital-to-
analog converter (DAC), which may be integrated with processor 20 or external thereto.

The electrosurgical generator 10 obtains information, such as complex
impedance information for the cable and/or the other suitable components (Z_{src} 28 and
Z_{Lkg} 34), phase information related to the phase relationship between the current and
voltage signals output by the electrosurgical generator, information relating to the
voltage and/or current output by the electrosurgical generator 10 generated by at least
one of sensors 18, digital information generated by a processing device (not shown),
and/or a combination thereof. The above stated information may be provided to the
control system as input data and processed by the control system 12. A portion of the
input data may be entered by a user via one or more user interfaces (not explicitly
shown, e.g., a knob, slider, a keypad, etc.), which may be provided, for example, on a
panel of the electrosurgical generator 10.

At least a portion of the input data is provided by sensors 18, which include a
voltage sensing circuit 18a and a current sensing circuit 18b for sensing the voltage and
current, respectively, output by the electrosurgical generator 10. In the exemplary
embodiment described, the voltage sensing circuit 18a and the current sensing circuit
18b output respective signals V_{rms}, I_{rms}, which are representative of the voltage and
current sensed, respectively. The sensors 18a, 18b provide the actual current and the voltage waveforms, but the root mean squared voltage and room mean squared current are determined by the control system 12. It should be appreciated that the actual waveforms are used as the phase of the signal cannot be readily calculated from the root mean squared values \(V_{rms} \), \(I_{rms} \). The sensors 18a and 18b are operatively coupled to the control system 12 for providing \(V_{rms} \) and \(I_{rms} \) signals to the control system 12. Circuitry may be provided for interfacing between the device providing input signals (e.g., user input device, sensors 18, etc.) and the electrosurgical generator, such as for converting the input signals into a form and/or form that is compatible with the control system 12. For example, an A/D converter may be provided for converting \(I_{rms} \) and \(V_{rms} \) into digital signals that can be processed by the control system 12.

The phase information describes a phase difference between current and voltage waveforms output by the electrosurgical generator 10. In one embodiment of the disclosure, the phase information is provided by circuitry, such as zero cross phase detector circuitry (not explicitly shown). In another embodiment of the disclosure, the phase information is determined by the control system 12 or an external processing system by execution of a suitable software algorithm, such as a single-band Fourier transform algorithm, a multi-band Fourier transform algorithm, an FFT algorithm, a Goertzel algorithm, an equivalent to a Fourier transform algorithm or a combination thereof. U.S. Patent Application No. 10/719,305, which is incorporated herein by reference in its entirety, describes a control system that uses a Goertzel algorithm to determine the phase difference between the voltage waveform and the current.
waveform output by an electrosurgical generator. The phase difference is used to
determine the output of the electrosurgical generator and compensate for energy
delivery to the operating site.

Relevant information from U.S. Patent Application No. 10/719,305 related to an
exemplary implementation of the Goertzel algorithm is described below. In an
exemplary embodiment, the Goertzel algorithm is advantageously implemented as a
second order recursive infinite impulse response filter, as shown below.

The Goertzel algorithm is defined by the equation:

\[
H(f) = \frac{1 - \exp \left(\frac{2\pi f_i}{f_s} \right) Z^{-1}}{1 - 2 \cos \left(\frac{2\pi f_i}{f_s} \right) Z^{-1} + Z^{-2}}
\]

Where \(f_i \) is the frequency of interest and \(f_s \) the sampling frequency.

Second Order Recursive Goertzel Filter

Input

\[2 \cos \left(\frac{2\pi f_i}{f_s} \right) Z^{-1} \]

\[\exp \left(-j\pi \frac{f_i}{f_s} \right) \]

Output

\[Z^{-1} \]

The Goertzel algorithm is implemented digitally as:
\[v_k[n] = x[n] + 2 \cos \left(\frac{2\pi k}{N} \right) v_k[n-1] - v_k[n-2] \]

where \(v_k \) is the output of the filter, \(x \) is the input sample of the waveform and \(n \) is the sample number.

Since the output frequency of electrosurgical generator 10 is known, and preferably, about 470 KHz, the digitally implemented Goertzel algorithm calculates the real and imaginary frequency components of the known waveform using the following formulae:

\[
\text{Real} = (v_k[n-1] - (v_k[n-2] \times \cos (2\pi k/N))
\]

\[
\text{Imaginary} = (v_k[n-2] \times \sin (2\pi k/N))
\]

\[
\text{Magnitude} = \sqrt{\text{Real}^2 + \text{Imaginary}^2}
\]

\[
\text{Phase} = \text{ATAN} (\text{Imaginary}/\text{Real})
\]

DSPs of control module 22 calculate the voltage phase (Voltage_Phase) for a voltage signal sensed by voltage sensing circuit 18a and the current phase (Current_Phase) for a current signal sensed by current sensing circuit 18b according to the above-mentioned formulae. Calculation of Voltage_Phase and Current_Phase may be performed concurrently. Additionally, the phase shift, preferably in radians, between the voltage signal and the current signal can then be calculated by subtracting the difference in the current and voltage phases as follows:

\[
\text{VIPhase} = \text{Current_Phase} - \text{Voltage_Phase}.
\]
This phase calculation is implemented to calculate the phase differential between the voltage signal and the current signal. In an embodiment, the DSPs of control module 22 include (e.g., store and/or execute) the Goertzel algorithm along with associated processing software to determine the phase difference VIPhase between the voltage signal and the current signal. Additionally, control module 22 may determine a magnitude value of both the voltage and current signals according to the magnitude formula provided above.

The impedance information, e.g., Z_{src} 28 and Z_{Lkg} 34, are represented in rectangular form. Z_{src} 28 includes impedance related to inductance L_{src} 32 and resistance R_{src} 30 associated with the cable and/or the other suitable components. Z_{Lkg} 34 includes impedance related to capacitance C_{Lkg} 36 within the cable and/or the other components, such as leakage capacitance between active and return lines of the cable. Z_{src} 28 and Z_{Lkg} 34 may be provided as configuration file parameters to the control system 12, such as by hard coding them into the system software of the control system 12, or inputting them to the control module 22 either automatically or by a user. For example, Z_{src} 28 and Z_{Lkg} 34 may be read directly from the cable and/or the other components by way of reading in (e.g., sensing, scanning and/or decoding) an encoding provided in association with or actually affixed to or embedded in the cable and/or the other component itself (e.g., a bar code, an optical reader, a radiofrequency identification or RFID tag, a transmitted code, a resistor arrangement, a color code, resistance, capacitance, mechanical pin setting, etc.). A computer readable storage medium (e.g., a ROM associated with a handset, a smart card and/or a user insertable
memory) may be provided in association with the cable and/or the other components for storing information related thereto, including Z_{arc} 28 and/or Z_{Lkg} 34. Thus, the control module 22 is capable of compensating for many different types of cable and other suitable components. The components for reading in the encoded impedance information may be included with the control system 12 or external thereto.

In one embodiment, the control module 22 performs the following algorithm for determining the current, voltage and power output by the electrosurgical generator 10 to compensate for the impedance in the cable and/or the other components as represented in FIG. 1. A different circuit configuration may be used other than the configuration shown in FIG. 1, and the algorithm performed may be different to correlate with the different circuit configuration.

Assuming a sinusoidal structure regardless of the actual waveform, the V_{rms} and I_{rms} values are converted to complex polar (phasor) form of magnitude (V_{mag} and I_{mag}) and phase (in radians) (e.g., V_{phase} and I_{phase}), where V_{phase} is the phase shift between the voltage and current waveforms in radians. V_{phase} may be obtained, for example, by an algorithm using the Goertzel filter, as described above, where the phase shift of V_{in} 26 is assumed to be 0.

The algorithm proceeds as follows:

$$V_{\text{mag}} = V_{\text{rms}} \cdot \sqrt{2}$$
\[V_{\text{phase}} := 0 \]

\[\text{Imag} := \text{Irms} \cdot \sqrt{2} \]

\[I_{\text{phase}} := V_{\text{Iphase}} \]

The polar form values are then converted to rectangular form complex numbers as follows, where \(V_{\text{sen}} \) and \(I_{\text{sen}} \) are the values from the voltage sensor 18a and current sensor 18b in complex rectangular form, respectively:

\[V_{\text{sen}} := \text{Vmag} + 0.1i \]

\[I_{\text{sen}} := \text{Imag} \cdot \cos(V_{\text{Iphase}}) + \text{Imag} \cdot \sin(V_{\text{Iphase}}) \cdot i \]

Using complex math, the following calculations for determining \(V_{\text{load}} \) and \(V_{\text{load, rms}} \) are performed:

\[V_{\text{load}} := V_{\text{sen}} - I_{\text{sen}} \cdot Z_{\text{src}} \]

The algorithm converts back to RMS using the magnitude of \(V_{\text{load}} \) as follows:
\[V_{load_rms} := |V_{load}| \cdot \frac{1}{\sqrt{2}} \]

Using the complex math, the following calculations for \(I_{kg\ 38}, I_{load\ 42} \) and \(I_{load_rms} \) are performed:

\[I_{Ikg} = \frac{V_{load}}{Z_{Ikg}} \]

\[I_{load} := I_{sen} - I_{Ikg} \]

The algorithm converts back to RMS using the magnitude of \(I_{load} \) as follows:

\[I_{load_rms} := |I_{load}| \cdot \frac{1}{\sqrt{2}} \]

\(R_{load\ 44} \) is calculated as the magnitude of the complex ratio of \(V_{load\ 40} \) and \(I_{load\ 42} \) as follows:

\[R_{load} := \left| \frac{V_{load}}{I_{load}} \right| \]
The average power delivered to the load is calculated, given that:

\[P_{\text{avg, load}} := V_{\text{load, rms}} \cdot I_{\text{load, rms}} \cdot \cos(\phi) \]

and

\[P_{\text{avg, load}} := \text{RE} \left| V_{\text{load}} \cdot I_{\text{load, conj}} \right|, \]

where \(V_{\text{load, 40}} \) and \(I_{\text{load, 42}} \) for the above equation are complex RMS phasors and \(I_{\text{load, conj}} \) is the complex conjugate of \(I_{\text{load, 42}} \).

The algorithm converts \(V_{\text{load, 40}} \) and \(I_{\text{load, 42}} \) to the RMS phasor as follows:

\[P_{\text{avg, load}} := \text{RE} \left(\frac{V_{\text{load}}}{\sqrt{2}} \cdot \frac{I_{\text{load}}}{\sqrt{2}} \right) \]

\(P_{\text{avg, load}} \) as calculated above may be used to adjust the power to the load. Alternatively, the \(P_{\text{avg}} \) calculated from the \(V^*I \) samples may be used, where \(P_{\text{avg}} \) represents the average power delivered to the entire network.

With reference to FIGS. 2-7, the improvement in accuracy by utilizing characteristics related to electrosurgical energy delivered to a patient using phase information is demonstrated by performing calculations that would be performed by the control module 22 using exemplary input parameters, including phase information. The
characteristics determined include at least power, voltage, current and impedance at the load. The results are compared to results from calculations that do not use phase information to actual measured values. Furthermore, it is shown that the use of phase information correctly compensates for measuring on a generator side of a blocking cap of an electrosurgical generator system.

The following equations are used to determine the transfer function of box 14 show in FIG. 1, where the input parameters are defined as follows:

Vin frequency is:

\[f_o \coloneqq 470 \text{ KHz} \]

The \(j\omega \) term for the reactance is:

\[s \coloneqq 2 \cdot \pi \cdot i \cdot f_o \]

Cable and/or other component inductance is:

\[L_0 = 2 \times 10^{-6} \cdot \text{H} \]
Cable Capacitance (usually is equal to around 200pF, but is exaggerated here for illustrative purposes and clarity):

\[C_o = 600 \text{pF} \]

5 Cable resistance:

\[R_w = 0.7 \Omega \]

Blocking capacitor:

\[C_b = 47000 \text{pF} \]

10 Arbitrary input voltage:

\[V_{in} = 150 \text{V} \]

The below equations are for equivalent capacitor resistance and equivalent inductance resistance of the cable, etc., without using phase information, but using magnitude values.
Equivalent capacitor resistance:

\[X_C = \left| \frac{1}{s \cdot C_0} \right| \]

\[X_C = 564.379\Omega \]

Equivalent blocking capacitor resistance:

\[X_{cb} = \left| \frac{1}{s \cdot C_b} \right| \]

\[X_{cb} = 7.205\Omega \]

Equivalent inductance resistance added with the wire resistance:

\[X_1 = |s \cdot L_0| + R_w \]

\[X_1 = 6.606\Omega \]

A range of load impedance is set from 1 to 1kΩ:
\[R_0 := 1\Omega, 2\Omega \ldots 1000\Omega \]

Voltage at the Load:

The actual voltage at the load is calculated, where \(R_{eq} \) combines the load impedance with the cable capacitance, which are shown in FIG. 1 to be parallel. By using the \(s \) parameter in the equation, the phase information is kept in tact.

\[
R_{eq}(R_0) = \frac{R_0 \cdot \frac{1}{s \cdot C_0}}{R_0 + \frac{1}{s \cdot C_0}}
\]

The transfer function for the resonating circuit, including the blocking capacitor is as follows:

\[
V_o(R_{eq}) = \frac{V_{in} \cdot R_{eq}}{R_{eq} + s \cdot L_0 + R_w + \frac{1}{s \cdot C_b}}
\]
\(I_{in} \), the signal off the sensors with phase information is calculated as follows:

\[
I_{in}(R_{eq}) = \frac{V_{in}}{R_{eq} + s \cdot L_0 + R_w + \frac{1}{s \cdot C_b}}
\]

The above equation shows all the variables involved with measuring current \(I_{in} \), the measurement from the current sensing circuit 18b, measured in rectangular format. In reality only the magnitude of the current and the phase angle between the voltage and current is measured, where the measurements would be provided in polar form \(I \angle \phi \), which would need to be converted to rectangular coordinates for the following equation:

\[
V_{src_cplx}(I_{in}) = I_{in} \cdot \left(s \cdot L_0 + R_w + \frac{1}{s \cdot C_b} \right)
\]

Without considering phase information for the voltage at the load, the magnitude of the voltage delivered to the load is:
\[V_1(V_{\text{src_cmplx}}) := |V_{\text{in}} - V_{\text{src_cmplx}}| \]

With respect to FIG. 2, trace 202 shows voltages at the load \((V_o) \), trace 204 shows calculated voltages at the load without using phase information \((V_{\text{sw}}) \), and trace 206 shows calculated voltages at the load \((V_i) \) using phase information. Traces 206 coincides with trace 202 throughout the range shown, while trace 204 is significantly displaced from trace 202 for the range 1Ω-20Ω, indicating that below 20Ω the voltage is not accurately calculated without using phase information, and that the calculations using the phase information accurately measure the voltage at the load.

Current at the load:

In this example, the actual current at the load is calculated by dividing the actual calculated voltage at the load \((V_o) \) and dividing it by the impedance at the load as follows:

\[I_o(V_o, R_o) := \frac{V_o}{R_o} \]

The leakage current is calculated using the phase information as follows:
\[I_{\text{lkg_cmplx}}(V_1) = \frac{V_1}{\frac{1}{s \cdot C_0}} \]

The sensor measurement is used with the phase information as follows:

\[I_1(l_{\text{lkg_cmplx}}, l_{\text{in}}) = |I_{\text{in}} - l_{\text{lkg_cmplx}}| \]

With respect to FIG. 3, a range of interest is set for the load impedance ranging from 1k\(\Omega\) to 10k\(\Omega\), where \(R_o := 1000, 1001 \ldots 10000 \)

Trace 302 corresponds to the load current as follows:

\[I_{\text{out}}(R_o) \cong I_0 \left(V_o \left(R_{eq}(R_o) \right), R_o \right) \]

Trace 304 corresponds to calculation of the load current without phase information:

\[I_{\text{sw_out}}(R_o) = I_{\text{sw}}(l_{\text{in_sw}}(R_{eq}(R_o)), l_{\text{lkg}}(V_{\text{source}}(l_{\text{in_sw}}(R_{eq}(R_o)))) \]
Trace 306 corresponds to calculations for the load current phase information:

\[I_{load}(R_o) = I_1 \left(I_{kg_cmplx}(V_1(V_{src_cmplx}(I_{in}(R_{eq}(R_o))))), I_{in}(R_{eq}(R_o)) \right) \]

As shown in FIG. 3, trace 306 substantially coincides with trace 302 throughout the range shown indicating that the calculations using the phase information accurately measure the current at the load, while trace 304 lags below trace 302 for load impedance values 2kΩ or above. The differential between traces 304 and 302 would increase if the output voltage were to be increased.

Impedance at the Load:

The actual load impedance is \(R_o \).

The load impedance with the phase information is calculated as follows:

\[R_I(V_I,I_I) = \frac{V_I}{I_I} \]

Since the measured load voltage is off at the low impedance and the measured current is off at the high impedance, the load range is split into two sections.
FIG. 4 shows the high end of impedance:

Trace 402 corresponds to the load impedance as follows:

\[R_0 := 500, 501 \ldots 5000 \]

Trace 404 corresponds to calculation and compensation for the load impedance without phase information as follows:

\[Z_{sw}(R_0) = R_{sw} \left(V_{sw}(V_{source}(I_{in_sw}(R_{eq}(R_0))) \cdot I_{sw}(I_{in_sw}(R_{eq}(R_0))) \cdot I_{kg}(V_{sw}(V_{source}(I_{in_sw}(R_{eq}(R_0)))) \right) \]

Trace 406 corresponds to calculation and compensation for the load impedance with phase information as follows:

\[Z_1(R_0) = R_1 \left(V_{\text{src_cmplx}}(I_{in}(R_{eq}(R_0))) \cdot I_{I_{kg_cmplx}}(V_{\text{src_cmplx}}(I_{in}(R_{eq}(R_0)))) \cdot I_{I_{in_eq_cmplx}}(V_{\text{src_cmplx}}(I_{in}(R_{eq}(R_0)))) \cdot I_{I_{eq_cmplx}}(R_{eq}(R_0)) \right) \]

Trace 408 corresponds to calculation for load impedance without compensation.

Trace 404 is significantly displaced from trace 402. Trace 406 substantially coincides with trace 402, indicating accurate calculation and compensation of the load impedance. Trace 408 stays at around 500Ω due to the equivalent capacitor resistance of the cable.
FIG. 5 shows the low end of impedance:

Trace 502 corresponds to the load impedance as follows:

\[R_o := 1, 1.1 \ldots 30 \]

Similar to trace 404, trace 504 corresponds to calculation and compensation of the load impedance without phase information as follows:

\[Z_{sw}(R_o) = R_{sw}(V_{sw}(V_{source}(I_{in_{sw}}(R_{eq}(R_o))))), I_{sw}(I_{in_{sw}}(R_{eq}(R_o))), I_{lkg}(V_{sw}(V_{source}(I_{in_{sw}}(R_{eq}(R_o)))))) \]

Similar to trace 404, trace 506 corresponds to calculation and compensation of the load impedance with phase information as follows:

\[Z_{I}(R_o) = R_{I}(V_{I_{src_{cmplx}}(I_{in_{R_{eq}(R_o)}}), I_{I_{lkg_{cmplx}}(V_{I_{src_{cmplx}}(I_{in_{R_{eq}(R_o)}})}), I_{in_{R_{eq}(R_o)}}})) \]

Similar to trace 408, trace 508 corresponds to calculations for load impedance without compensation as follows.

Trace 504 is significantly displaced from trace 502. Trace 506 substantially coincides with trace 402, indicating accurate calculation and compensation of the load impedance. Trace 508 stays at around 500Ω due to the equivalent capacitor resistance of the cable.
While only the range 1-30Ω is shown, trace 504 is accurate for the range 20 to 2000Ω; however, below 20 ohms trace 504 is displaced from trace 502. Trace 508 shows the impedance calculation with no correction performed. Trace 508 is close to the load impedance between 0 and 400Ω. Trace 506 coincides with trace 502 for the entire range, indicating accurate calculation and compensation of the load impedance.

Power at the Load:

The actual power at the load is:

\[
P_0(V_o, R_o) = \left| \frac{V_o^2}{R_o} \right|
\]

The power at the load with phase information is calculated as follows:

\[
P_1(V_1, I_1) = V_1 \cdot I_1
\]

The power at the load without any correction is calculated as follows:

\[
P_{uc}(I_{in_sw}) = V_{in} \cdot I_{in_sw}
\]
With respect to FIG. 6, power at the load for a low impedance range is shown, where

\[R_0 := 1, 1.1 \ldots 20 \]

With respect to FIG. 7, power at the load for a high impedance range is shown, where

\[R_0 := 500, 501 \ldots 5000 \]

Traces 602 and 702 correspond to the following:

\[P_{out}(R_o) = P_o(v_o(R_{eq}(R_o)), R_o) \]

Traces 604 and 704 correspond to the following:

\[P_{sw_out}(R_o) = P_{sw}(v_{sw}(v_{source}(v_{in_sw}(R_{eq}(R_o)))), I_{sw}(v_{in_sw}(R_{eq}(R_o))), l_{kg}(v_{sw}(v_{source}(v_{in_sw}(R_{eq}(R_o)))))) \]

Traces 606 and 706 correspond to the following:

\[P_{load}(R_o) = P_1(v_{1_src_cmplx}(v_{in}(R_{eq}(R_o))), l_{1_kg_cmplx}(v_{1_src_cmplx}(v_{in}(R_{eq}(R_o)))), I_{in}(R_{eq}(R_o))) \]

Traces 608 and 708 correspond to the following:
\[P_{\text{uc-out}}(R_0) = P_{\text{uc}}(\text{in}_{\text{sw}}(R_{\text{eq}}(R_0))) \]

Trace 606 coincides with trace 602, and trace 706 coincides with trace 702, indicating accurate calculation and compensation of the power at the load.

Accuracy of calculations for power at the load without compensation is degraded for impedances that are below 10 ohms and above 200 ohms. Accuracy of calculations for power at the load with compensation but without phase information is degraded for impedances that are below 15 ohms and above 3000 ohms. Using phase information would correct the calculations for power at the load across the entire impedance range.

Errors in compensation for voltage and current at the load are compounded when calculating impedance and power at the load. Provision of phase information in addition to impedance information for the cable and/or the other components contributes to accurate measurement and calculation of parameters of the energy delivered at the load.

Advantageously, the use of the phase difference information and/or the complex impedance information for the cable and/or the other components maximizes accuracy for determining characteristics related to energy delivered to the patient because the present disclosure compensates for the radiofrequency energy lost in the energy-carrying component, and delivers another amount of accurate radiofrequency energy to the patient to attribute for the energy loss. Accurate determination of
characteristics related to delivered energy may be used, for example, to track energy delivery and/or tissue effect, compensate for energy losses for providing energy having desired characteristics (current, voltage, power, etc.) to the patient, etc. Furthermore, the use of the phase difference information and/or the complex impedance information advantageously contributes to obtaining an accurate measurement of the patient impedance (Z_{load}, which is substantially equivalent to R_{load}), which may be altered due to factors, such as impedance of the cable and/or the other components.

Although this disclosure has been described with respect to particular embodiments, it will be readily apparent to those having ordinary skill in the art to which it appertains that changes and modifications may be made thereto without departing from the spirit or scope of the disclosure. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosures be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments.
WHAT IS CLAIMED IS:

1. A control system for use with an electrosurgical generator that delivers electrosurgical energy to tissue, the control system comprising:
 a control module including at least one processor, said at least one processor executing an algorithm comprising the steps of:
 determining a sensed voltage value corresponding to a sensed voltage signal output by the electrosurgical generator;
 determining a sensed current value corresponding to a sensed current signal output by the electrosurgical generator;
 determining phase information corresponding to a phase shift between the at least one voltage signal and at least one current signal; and
 determining a characteristic related to the electrosurgical energy delivered to the tissue using the phase information, the sensed voltage and the sensed current.

2. The control system according to Claim 1, wherein the algorithm further comprises the step of: sampling impedance information corresponding to impedance of an energy carrying component; and wherein the determining at least one characteristic step further comprises: using the sampled impedance information, and modulating the electrosurgical energy delivered to the tissue using the sampled impedance information.

3. The control system according to Claim 1, wherein the phase information is obtained from circuitry selected from the group consisting of zero cross phase detector circuitry, processing circuitry and any combinations thereof.

4. The control system according to Claim 3, wherein the processing circuitry executes an algorithm selected from the group consisting of a single-band Fourier transform algorithm, a multi-band Fourier transform algorithm, an FFT algorithm, a Goertzel algorithm, an equivalent to a Fourier transform algorithm and any combinations thereof.
5. The control system according to Claim 2, wherein the sampled impedance information relates to at least one parameter selected from the group consisting of an inductance of the energy-carrying component, a resistance of the energy-carrying component, a capacitance of the energy-carrying component, a leakage capacitance of the energy-carrying component and any combinations thereof.

6. The control system according to Claim 2, wherein the sampled impedance information is obtained by a device, the device selected from the group consisting of a user input device, an encoded readable information associated with the at least one energy-carrying component, a mechanical device setting associated with the at least one energy-carrying component, a stored information accessible to the at least one processor and any combinations thereof.

7. The control system according to Claim 1, wherein the at least one characteristic of the electrosurgical energy delivered to the patient is selected from the group consisting of voltage, current, impedance and power.

8. The control system according to Claim 7, wherein the algorithm further comprises the step of controlling at least one of voltage, current and power output by the electrosurgical generator in accordance with the determined at least one characteristic related to the delivered electrosurgical energy.

9. A control system for use with an electrosurgical generator that delivers electrosurgical energy to tissue, the control system comprising:

 a control module including at least one processor, said at least one processor executing an algorithm comprising the steps of:

 determining a sensed voltage value corresponding to a sensed voltage signal output by the electrosurgical generator;

 determining a sensed current value corresponding to a sensed current signal output by the electrosurgical generator;
determining impedance information corresponding to impedance of at least one energy-carrying component; and
determining a characteristic related to the electrosurgical energy delivered to the patient using the impedance information, the sensed voltage and the sensed current.

10. The control system according to Claim 9, wherein the impedance information relates to at least one of inductance, resistance, capacitance, leakage capacitance of the at least one energy-carrying component and any combination thereof.

11. The control system according to Claim 9, wherein the impedance information is obtained via at least one of a user input device, an encoded information associated with the at least one energy-carrying component, a mechanical device setting associated with the at least one energy-carrying component, a stored information accessible to the at least one processor, and any combinations thereof.

12. The control system according to Claim 9, wherein the at least one characteristic of the electrosurgical energy delivered to the patient is selected from the group consisting of voltage, current, impedance and power.

13. The control system according to Claim 12, wherein the algorithm further comprises the step of controlling at least one of voltage, current and power output by the electrosurgical generator in accordance with the determined characteristic related to the delivered electrosurgical energy.

14. An electrosurgical generator comprising:
a control system including:
a control module including at least one processor, said at least one processor executing an algorithm comprising the steps of:
determining at least one of a sensed voltage value corresponding to a
sensed voltage signal output by the electrosurgical generator;

determining a sensed current value corresponding to a sensed current
signal output by the electrosurgical generator;

determining a phase shift value corresponding to a phase shift between
the voltage and current signals;

determining a characteristic related to the electrosurgical energy delivered
to the patient using the phase shift value, the sensed voltage and the sensed current;
and modulating the electrosurgical energy based in part on the characteristic.

15. The electrosurgical generator according to Claim 14, wherein the
algorithm further comprises the step of determining impedance information
corresponding to impedance of at least one energy-carrying component; and
using the impedance information in the determining step to determine at
least one of voltage, current and power.

16. The electrosurgical generator according to Claim 14, wherein the phase
shift value is obtained from circuitry selected from the group consisting of zero cross
phase detector circuitry, processing circuitry and any combinations thereof.

17. The electrosurgical generator according to Claim 14, wherein the
processing circuitry executes an algorithm selected from a single-band Fourier
transform algorithm, a multi-band Fourier transform algorithm, an Fast Fourier
transform algorithm, a Goertzel algorithm, and a combination thereof.

18. The electrosurgical generator according to Claim 14, wherein the
algorithm further comprises the step of determining at least one of voltage, current and
power output by the electrosurgical generator in accordance with the determined
characteristic related to the delivered electrosurgical energy.
19. A method for regulating electrosurgical energy output by an electrosurgical generator, the method comprising the steps of:
 determining a sensed voltage value corresponding to a sensed voltage
signal output by the electrosurgical generator;
 determining a sensed current value corresponding to a sensed current
signal output by the electrosurgical generator;
 determining a phase shift value corresponding to a phase shift between
the voltage signal and a current signal;
 determining a characteristic related to the electrosurgical energy delivered
to the tissue using the phase shift value, the sensed voltage value and the sensed
current value; and
 determining at least one of voltage, current and power output by the
electrosurgical generator in accordance with the determined characteristic related to the
delivered electrosurgical energy.

20. The method according to Claim 19, further comprising the step of
determining impedance information corresponding to impedance of at
least one energy-carrying component; and
 using at least the impedance information to determine at least one of
voltage, current and power output.

21. A method for compensating an output of an electrosurgical system for an
external device of an electrosurgical system comprising the steps of:
 determining an impedance factor of the external device utilizing a first
algorithm;
 determining a voltage factor adjacent an electrode utilizing a second
algorithm;
 determining a current factor adjacent said electrode utilizing a third
algorithm;
determining a phase parameter factor of the output utilizing a fourth algorithm;

determining at least one of the power, current, and voltage lost in the external device using at least one of the impedance factor, the voltage factor, the current factor, and the phase parameter factor to obtain a difference value;

comparing the difference value to a threshold value related to the external device; and

modulating at least one of the power, the load, and the current, the modulation of the at least one of the power, the load, and the current being dependent on the relationship of the difference value to the threshold value.

22. The method of claim 21, wherein the step of calculating the phase parameter factor of the output includes the step of calculating a phase differential of a voltage signal and a current signal of the output.

23. The method of claim 22, wherein the step of calculating the phase parameter factor of the output includes the step of calculating a plurality of phase differentials between successive voltage signals and current signals of the output.

24. An electrosurgical system comprising:
an electrosurgical generator configured to deliver energy;
an electrosurgical treatment tool adapted to connect to the generator, said electrosurgical treatment tool including at least one electrode, and an impedance sensor;
a current sensor configured to measure the output current delivered by the generator, said electrosurgical generator including: a microprocessor electrically connected to the current sensor and the impedance sensor that calculates one or more parameters of an electrosurgical energy;
said electrode of said treatment tool including a conduit defined therein for transmitting electrosurgical energy therethrough, said conduit including: an encoded rating capable of being communicated to an input of the electrosurgical generator, said
encoded rating relating to a loss of energy from the conduit; and wherein the
electrosurgical generator outputs a compensated signal attributable to the energy loss
from the conduit.

25. The apparatus of Claim 24, wherein said encoded rating is automatically
or visually communicated to the generator.
FIG. 2

Measured Voltage at the load from 1 to 1KΩ
FIG. 3

Measured Current at the load from 1k to 10KΩ

R_0

10^{-4}

10^3

10^{-1}

$10^{0.15}$

$10^{0.1}$

$10^{0.05}$

10^{0}

10^{-1}

10^{-2}

10^{-3}

10^{-4}

302 ≃ $I_{out}(R_0)$

304 ≃ $I_{sw.out}(R_0)$

306 ≃ $I_{load}(R_0)$
FIG. 4

Measured load impedance from 500 to 5KΩ
R_0

Power at the load from 500 to 5KΩ

FIG. 7