

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2012/172913 A1

(43) International Publication Date
20 December 2012 (20.12.2012)

WIPO | PCT

(51) International Patent Classification:
H01J 37/12 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/JP2012/062572

(22) International Filing Date:
10 May 2012 (10.05.2012)

(25) Filing Language:
English

(26) Publication Language:
English

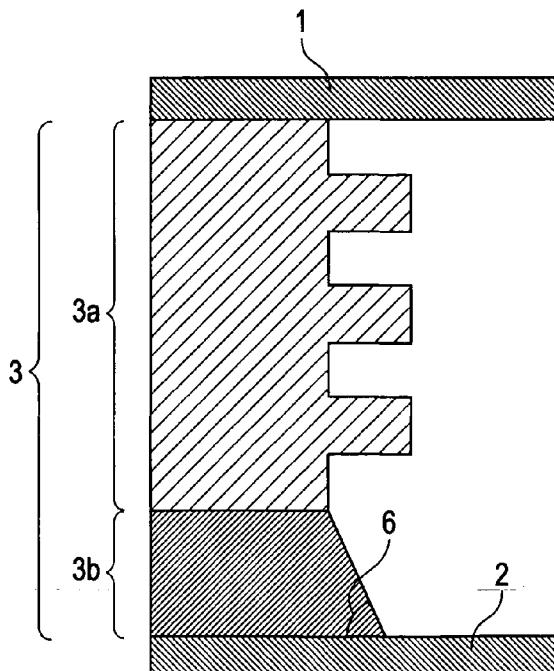
(30) Priority Data:
2011-131963 14 June 2011 (14.06.2011) JP

(71) Applicant (for all designated States except US): CANON KABUSHIKI KAISHA [JP/JP]; 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo, 1468501 (JP).

(72) Inventor; and

(75) Inventor/Applicant (for US only): TSUNODA, Koichi [JP/JP]; c/o CANON KABUSHIKI KAISHA, 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo, 1468501 (JP).

(74) Agents: OKABE, Yuzuru et al.; No. 602, Fuji Bldg., 2-3, Marunouchi 3-chome, Chiyoda-ku, Tokyo, 1000005 (JP).


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: CHARGED PARTICLE BEAM LENS

FIG. 1B

(57) Abstract: A charged particle beam lens includes a first electrode 1 including a surface having at least one aperture 4 and a second electrode 2 including a surface having at least one aperture 4 and also includes between the electrodes a support 3 which electrically insulates the first and second electrodes from each other and supports the electrodes. A surface of the support 3 extending between the first electrode and the second electrode includes a non-flat portion 3a having at least one of a projected portion and a depressed portion and includes a tapered portion 3b, and an angle formed by the tapered portion 3b and the surface having the aperture 4 of the second electrode 2 is larger than 0 degree and smaller than 90 degree. The charged particle beam lens can inhibit the charged state of the support supporting the electrodes from fluctuating and inhibit effects on the trajectory of a charged particle beam passing through the aperture of the electrodes.

WO 2012/172913 A1

DESCRIPTION**Title of Invention****CHARGED PARTICLE BEAM LENS****Technical Field**

[0001] The present invention relates to a technique in the field of charged particle optical systems used in apparatuses using a charged particle beam such as an electron beam and, more particularly, to a charged particle lens used in an exposure device.

Background Art

[0002] In the production of semiconductor devices, an electron beam exposure technique is a major candidate for enabling exposure of a micropattern not larger than 0.1 micrometer. An exposure device using such an electron beam exposure technique employs an electro-optical element for controlling optical characteristics of an electron beam. Electron lenses include electromagnetic ones and electrostatic ones. In particular, an electrostatic electron lens does not require a coil core, has a simpler configuration, and is more easily downsized, compared to an electromagnetic electron lens. A multi-beam system for simultaneously drawing patterns without using any mask by a plurality of electron beams has been proposed among electron beam exposure techniques.

[0003] An electrostatic charged particle beam lens has a structure in which electrodes are stacked with an insulator between the electrodes. When an electric field is applied between the electrodes, a point where a surface of the insulator, a surface of the electrodes, and space are in contact with each other serves as a triple junction. At the triple junction, electrons are emitted from the surface of the electrode serving as a cathode due to the electric field concentration effect. The emitted electrons directly collide with the insulator or enter the insulator after reaching an

anode and being reflected from the anode to electrically charge the surface of the insulator. The electric charge on the surface of the insulator results in generation of an electric field. The electric field may deflect the trajectory of an electron beam.

[0004] To cope with such problem, there has been proposed the idea of inhibiting electrification of the surface of an insulator by forming unevenness at the surface of an insulator (see PTL 1). There is also available a proposal for tapering a surface of an insulator and changing the state of an electric field at and near a triple junction by adjusting the taper angle (see NPL 1).

Citation List

Patent Literature

[0005] PTL 1: Japanese Patent Application Laid-Open No. 2006-49702

Non Patent Literature

[0006] NPL 1: Osamu Yamamoto et al., "Insulation performance and flashover mechanism of bridged vacuum gaps," T. IEE Japan, Vol. 110-A, No. 12, 1990

Summary of Invention

Technical Problem

[0007] However, application of the proposed methods alone does not easily enable sufficient control of the trajectory of an electron emitted from a triple junction.

Accordingly, emitted electrons may vary widely in initial trajectory and in position of collision with an insulator. The variation may result in insufficient stability in the charged state of the surface of the insulator to affect the trajectory of an electron beam.

Solution to Problem

[0008] In consideration of the above-described problem, a charged particle beam lens according to the present invention includes a first electrode including a surface having at least one aperture and a second

electrode including a surface having at least one aperture and also includes a support intervening between the first electrode and the second electrode to electrically insulate the first and second electrodes from each other and support the first and second electrodes. A side surface of the support intervening between the first electrode and the second electrode includes a non-flat portion having at least one of a projected portion and a depressed portion and includes a tapered portion of a tapered shape, and an angle formed by the tapered portion and the surface having the aperture of the second electrode is larger than 0 degree and smaller than 90 degree.

Advantageous Effects of Invention

[0009] According to the charged particle beam lens of the present invention, formation of the non-flat portion enables inhibition of the amount of electric charge on the surface of the support. Additionally, formation of the tapered portion enables generation of an electric field where a charged particle emitted from a triple junction receives force in a direction away from the support around the tapered portion. Therefore, a charged particle emitted from the triple junction follows a trajectory leaving from the support, and the electrification-induced power to attract a charged particle is inhibited in the non-flat portion due to the reduced amount of electric charge. Accordingly, a flying charged particle tends to reach an electrode on the other side before colliding with the support or tends to collide with the support and stay there because the flying charged particle is unlikely to generate a secondary charged particle due to small energy of the collision. It is thus possible to inhibit the charged state of the support from fluctuating due to collision of a charged particle emitted from the triple junction and to inhibit effects

on the trajectory of a charged particle beam passing through the aperture in the electrodes.

[0010] Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.

Brief Description of Drawings

[0011] Fig. 1A is a cross-sectional view for describing a charged particle beam lens according to an embodiment of the present invention.

Fig. 1B is a cross-sectional view for describing a charged particle beam lens according to an embodiment of the present invention.

Fig. 1C is a cross-sectional view for describing a charged particle beam lens according to an embodiment of the present invention.

Fig. 2A is a cross-sectional view for describing the principle of inhibiting the charged state of a support of a charged particle beam lens according to the present invention from fluctuating.

Fig. 2B is a cross-sectional view for describing the principle of inhibiting the charged state of a support of a charged particle beam lens according to the present invention from fluctuating.

Fig. 2C is a cross-sectional view for describing the principle of inhibiting the charged state of a support of a charged particle beam lens according to the present invention from fluctuating.

Fig. 3A is a cross-sectional view for describing the functions of a non-flat portion and a tapered portion of supports of the charged particle beam lens.

Fig. 3B is a cross-sectional view for describing the functions of a non-flat portion and a tapered portion of supports of the charged particle beam lens.

Fig. 4A is a graph for describing advantageous effects of the non-flat portion and tapered portion of the supports.

Fig. 4B is a graph for describing advantageous effects of the non-flat portion and tapered portion of the supports.

Fig. 5A is a diagram and a view for describing a charged particle beam exposure device according to an embodiment of the present invention.

Fig. 5B is a diagram and a view for describing a charged particle beam exposure device according to an embodiment of the present invention.

Description of Embodiments

[0012]A charged particle beam lens according to the present invention is characterized in that a side surface of a support intervening between electrodes (a surface extending between the electrodes) includes a non-flat portion and a tapered portion and that a taper angle formed by the tapered portion and a surface having an aperture of the electrodes is larger than 0 degree and smaller than 90 degree. The non-flat portion is formed on the side of one of the electrodes, and the tapered portion is formed on the side of the other electrode. The non-flat portion and tapered portion may be formed so as to be completely separate from each other or so as to overlap at least partially with each other. The non-flat portion inhibits the charged state of the support from fluctuating mainly by trapping a charged particle entering a depressed portion by a projected portion. The tapered portion inhibits the charged state of the support from fluctuating mainly by separating a charged particle away from the support. In any case, these two portions work in concert with each other to inhibit the charged state of the support from fluctuating. The non-flat portion and tapered portion are desirably separated from each other from the viewpoint of sufficient fulfillment of the function of inhibiting the charged state of the support from fluctuating by separating from the support a charged

particle from the tapered portion and trapping a charged particle in the non-flat portion, easy processing, structural compactness, and so on. However, depending on the overall design, the material used, and the like, the above-mentioned function is sufficiently fulfilled even if the non-flat portion and tapered portion are formed so as to partially or completely overlap with each other. Thus such an overlapped structure can be used.

First Embodiment

[0013] A first embodiment of the present invention will be described with reference to Figs. 1A to 1C and 2A to 2C. Fig. 1A is a cross-sectional view of a charged particle beam lens according to the present embodiment with the details omitted, and Fig. 1B is an enlarged view illustrating the details of the area 1B surrounded by the dotted line in Fig. 1A. As illustrated in Fig. 1A, the charged particle beam lens according to the present embodiment includes two electrodes, a first electrode 1 and a second electrode 2. The two electrodes are electrically insulated and separated from each other by a support 3 intervening between the electrodes and are supported in a predetermined positional relationship. An aperture 4 of the electrodes 1 and 2 lets a charged particle beam emitted from a light source (not shown) pass through. The aperture 4 in the electrodes 1 and 2 is arranged such that a central axis 5 is substantially common to the electrodes and define an optical axis of the lens. As illustrated in Fig. 1B, a side surface of the support 3 intervening between the electrodes 1 and 2 (a surface of the support 3 extending between the electrodes 1 and 2) includes a non-flat portion 3a having one of a projected portion and a depressed portion on the first electrode side and includes a tapered portion 3b on the second electrode side. A taper angle 6 of the tapered portion 3b formed by the

tapered portion and a surface having the aperture 4 of the second electrode 2 is larger than 0 degree and smaller than 90 degree. A surface of the tapered portion 3b can be curved or stepped, as needed. A tip position of the tapered portion 3b in contact with the second electrode 2 and a tip position (a top surface position) of a projected portion of the non-flat portion 3a can be set so as to be substantially parallel to a normal line of the second electrode 2 (a direction of the optical axis along the central axis 5 of the aperture 4), if necessary. This setting enables effective fulfillment of the functions of the non-flat portion and tapered portion. The non-flat portion 3a can, of course, have projected portions with different top surface positions (heights). In the present embodiment, the non-flat portion 3a and tapered portion 3b are completely separately formed. A projected portion of the non-flat portion 3a extends in substantially parallel to the surfaces of the electrodes 1 and 2. The term "substantially parallel" in the present invention refers not only to a case where two objects are completely parallel but also to a case where two objects are nonparallel to such a degree that the advantageous effects of the present invention can be achieved and a case where a plurality of projected portions projects in nonparallel to each other. Accordingly, even a case where two objects are deliberately designed to be nonparallel and a case where two objects are made nonparallel due to a machining error are permissible as long as the advantageous effects of the present invention can be achieved. According to the findings of the present inventor, even if there is an inclination of plus or minus 3 degree, such case can be regarded as being substantially parallel as long as the inclination does not cause adverse effects. The degree of inclination

is desirably set within plus or minus 1 degree.

[0014] The configuration as in Fig. 1C is adopted when electrodes with the above-described configuration are used as an electrostatic charged particle beam lens. Note that details are also omitted in Fig. 1C. A charged particle beam lens in Fig. 1C is an Einzel electrostatic lens in which the electrodes 1 and supports 3 are arranged so as to be symmetric with respect to the second electrode 2 in Fig. 1A. The charged particle beam lens is made to function as an electrostatic lens by applying a ground potential to the two upper and lower electrodes 1 and a negative potential to the central electrode 2, for example.

[0015] A mechanism for stabilizing electrification of the support 3 with the above-described configuration will be described. A process during which a surface of the support 3 (simply illustrated here as a flat surface) is electrically charged will first be described with reference to Fig. 2A. Fig. 2A illustrates one half of the charged particle beam lens in Fig. 1A which is symmetric with respect to the central axis 5 of the aperture 4. When a ground potential is applied to the electrode 1 and a negative potential is applied to the electrode 2, a junction of the support 3, the electrode 2, and a vacuum region 8 serves as a triple junction 7 to cause electric field concentration. In particular, an electron is emitted from the triple junction 7 on the cathode side into the vacuum region 8 due to the tunnel effect. The emitted electron flies, for example, as indicated by a trajectory 9 to collide with the support 3 or reaches the electrode 1 at the ground potential and is reflected from the electrode 1 with a certain probability to collide with the support 3. The support 3 emits a secondary electron from the surface. As a result, the surface of the support 3 is positively charged. The positively charged support 3 is more

likely to attract an electron. The flight distance of a secondary electron to be more easily attracted decreases gradually, and the energy of collision with the support 3 decreases gradually. When collision energy reaches a level where the secondary electron emission coefficient of the support 3 is 1, electrification is brought into equilibrium.

[0016] However, since electrons emitted from the triple junction 7 vary in emission angle and energy, the electrons vary widely in position, angle, and energy of collision with the support 3. The charged state of the support 3 fluctuates slightly. A secondary electron generated by collision of an electron with the support 3 repeats collision with the support 3 until the electron reaches an anode (the electrode 1), and variation in collision position causes wider fluctuations in charged state. For stabilization of the charged state, it is thus necessary to cause an electron emitted from the triple junction 7 to collide with the support 3 at a distance as far as possible and reduce the number of collisions of an electron with the support 3 when the electron flies to the anode (electrode 1).

[0017] A mechanism for stabilizing the charged state of the support 3 according to the present embodiment will be described with reference to Figs. 2B and 2C. The function of a non-flat portion having a projected portion will first be described. Fig. 2B is an enlarged view of the non-flat portion 3a in Fig. 1B. Fig. 2B illustrates surfaces 3c and 3d of the projected portion, an electric field 10 to be applied, and an electron trajectory 9. For example, if an electron collides with the surface 3c, the surface 3c emits a secondary electron at a position of the collision. The secondary electron behaves as indicated by the electron trajectory 9, for example. In this case, the surface

3c is positively charged at the collision position, and the emitted secondary electron collides with the surface 3d. Since the flight distance to the collision is short, the secondary electron is not accelerated, and the amount of the energy of the collision is small. The surface 3d is negatively charged at a position of the collision. As a result, for the overall projected portion, electric fields generated by positive and negative electric charges cancel each other to produce the apparent effect of reducing electric charge. Since a second electron repeats collision at the surface 3d, gradually loses energy, and then stops, an electron hardly moves to the anode (electrode 1). Accordingly, the number of times when an electron with energy collides again with the support 3 is reduced, and electric charge is inhibited from fluctuating. The depressed portion can be handled as having peak and valley positions shifted by a half cycle from peak and valley positions of the projected portion, and hence the same as in the case of the projected portion occurs.

[0018] The function of a tapered portion in Fig. 2C will be described. The electrodes 1 and 2 are electrodes. The tapered portion 3b is inserted between the electrodes 1 and 2 to cause the electrodes 1 and 2 to have a potential difference. Fig. 2C also illustrates the electric field component 10, which passes through only the vacuum region 8 between the electrodes 1 and 2, and an electric field component 11 which passes through the tapered portion 3b and vacuum region 8. Consider here a potential at a position indicated by a dotted line 12 which is equidistant from the electrodes 1 and 2. Since the dielectric constant of the tapered portion 3b is not less than 1, the electric field component 11 is different in electric field strength from the electric field component 10, which passes through only the vacuum region 8. Accordingly, a position where the

electric field component 11 and dotted line 12 cross and a position where the electric field component 10 and dotted line 12 cross are different in potential to cause a potential difference. Especially if the dielectric constant is not less than 1, the potential at the position where the electric field component 11 and dotted line 12 cross is lower than the potential at the position where the electric field component 10 and dotted line 12 cross. The potential difference produces the effect that an electron emitted from the triple junction 7 receives force in a direction parallel to the dotted line 12 and moves away from the tapered portion 3b. If the taper angle 6 is one of 0 degree and 90 degree, the dielectric constant is uniform on a path of the electric field component 11, as in the electric field component 12, the potential difference as described above is not generated. If the taper angle 6 is 45 degree, and the path of the electric field component 11 has a large region where the dielectric constant varies, the potential difference described above is large, and thus the effect of moving an electron away from the tapered portion 3b is largest.

[0019]As described above, in the present embodiment, a tapered portion is provided on the cathode side to keep an emitted electron away from the support 3, and one of a projected portion and a depressed portion is provided on the anode side to reduce the amount of electric charge and not to attract an electron. This reduces the number of collisions with the support 3 on the cathode side and on the anode side and stabilizes the charged state.

Example.

[0020]An example in which specific materials and dimensions are applied to the first embodiment will be described. In the present example, electrodes 1 and 2 each are

made of single crystal silicon and have a thicknesses of 100 micrometer. The diameter of an aperture 4 is 30 micrometer. A support 3 is made of glass that is an insulating material and has a thickness of 400 micrometer. Ceramic or the like can be used as the material for the support 3 instead of glass. The support 3 is sandwiched between the electrodes 1 and 2, and the electrodes 1 and 2 are installed in parallel to a plane a normal of which is a central axis 5 of the aperture 4. A surface of a non-flat portion on the electrode 1 side of the support 3 has three projected portions, and the level difference of each projected portion (the difference between a bottom surface of a depressed portion and a top surface of the projected portion) is 20 micrometer. The support 3 also includes a tapered portion on the electrode 2 side, which is in contact with the electrode 2 to form an angle of 75 degree. A ground potential was applied to the electrode 1, and a potential of -3.7 kV was applied to the electrode 2. When fluctuations in the amount of deflection of an electron beam passing through the aperture 4 were measured, indicating that the present embodiment reduced fluctuations by 80%, compared to the support 3 with a smooth surface.

[0021] A desirable range for the surface shape of the support 3 will be described. A simulation of calculating an electrostatic field by the boundary element method and calculating an electron trajectory by the Monte Carlo method was performed to discuss the desirable range. Fig. 3A illustrates a configuration in which the tapered portion 3b has been omitted from the support 3 in Fig. 1B. Fig. 3A illustrates a level difference d [micrometer] between a projected portion and a depressed portion and a distance P [micrometer] between projected portions. Assume here that the distance P is 80 micrometer and that the ratio between the length of

a projected portion and the length of a depressed portion is 1:1. A desirable range for a projected portion as illustrated in Fig. 3A will first be described. The function of the projected portion or the depressed portion is to form a barrier in a direction of motion of an electron and is to prevent an electron flying from the cathode side (the electrode 2 side) from repeating collision until the electron reaches an anode. However, if a barrier in the direction of motion of an electron is low, an electron flies over the barrier. As a result, the electron having flown over the barrier repeats collision until the electron reaches the anode (the electrode 1 side). Accordingly, the rate of electrons flying over the projected portion was calculated while the level difference d micrometer of a support 13 illustrated in Fig. 3A was varied. Fig. 4A illustrates a result of the calculation. The abscissa of Fig. 4A represents the level difference d micrometer while the ordinate represents the rate of electrons flying over the level difference d . The result showed that when the level difference d was 20 micrometer, the rate of escape from the projected portion was substantially zero. The level difference d is thus desirably not less than 20 micrometer.

[0022] Fig. 3B illustrates a configuration in which the non-flat portion 3a has been omitted from the support 3 in Fig. 1B. Fig. 3B illustrates a taper angle θ . A region h of a support 14 where a tapered portion is provided is set to be 80 micrometer long. The function of the tapered portion is to keep an electron away from the support and inhibit the charged state of the support from fluctuating. A charge variation was calculated while the taper angle θ degree illustrated in Fig. 3B was varied. Fig. 4B illustrates a result of the calculation. The abscissa of Fig. 4B represents the

taper angle θ degree while the ordinate represents a relative value when the charge variation in the case of a taper angle of 90 degree is taken as 1. The result shows that advantageous effects are stably obtained when the taper angle θ is not less than 45 degree and not more than 75 degree.

Second Embodiment

[0023] A second embodiment of the present invention will be described with reference to Figs. 5A and 5B. The present embodiment relates to a charged particle beam exposure device using a plurality of charged particle beams. Portions having the same functions as in the first embodiment are denoted by the same reference signs, and a redundant description of the portions will be omitted.

[0024] Fig. 5A is a diagram illustrating the configuration of a multi charged particle beam exposure device according to the present embodiment. The exposure device of the present embodiment is a so-called multi-column type one including individual projection systems. An emitted electron beam extracted from an electron source 108, serving as a charged particle source, by anode electrodes 109 and 110 forms an irradiation optical system crossover 112 by a crossover control optical system 111. As the electron source 108, a so-called thermionic electron source, such as LaB₆ or BaO/W (dispenser cathode), is used. The crossover control optical system 111 includes two stages of electrostatic lenses. Each of the electrostatic lenses in the first and second stages includes three electrodes. The electrostatic lens is an Einzel electrostatic lens in which a negative voltage is applied to the middle electrode, and the top and bottom electrodes are grounded.

[0025] Electron beams 113 and 114 emitted from the irradiation optical system crossover 112 over a wide area are

converted into parallel beams 116 by a collimator lens 115 and are applied to an aperture array 117. Multi electron beams 118 into which the beams are divided by the aperture array 117 are individually converged by a converging lens array 119 and are focused onto a blanker array 122. The aperture array 117, converging lens array 119, and blanker array 122 are denoted by reference numeral 150. The converging lens array 119 is an electrostatic lens including three porous electrodes (having a plurality of apertures) and is controlled by a lens control circuit 105. The converging lens array 119 is an Einzel electrostatic lens in which a negative voltage is applied to only the middle electrode of the three electrodes, and the top and bottom electrodes are grounded. The aperture array 117 is placed at a pupil plane position of the converging lens array 119 (a front focal plane position of the converging lens array) so as to be responsible for defining an NA (convergence semi-angle). The blanker array 122 is a device including individual deflecting electrodes and individually turns on or off beams according to a drawing pattern, based on a blanking signal which is generated by a drawing pattern generating circuit 102, a bitmap conversion circuit 103, and a blanking command circuit 106. When the beam status is on, no voltage is applied to the deflecting electrodes of the blanker array 122. On the other hand, when the beam status is off, a voltage is applied to the deflecting electrodes of the blanker array 122 to deflect a multi electron beam. A multi electron beam 125 deflected by the blanker array 122 is blocked by a stop aperture array 123 in a subsequent stage (on the downstream side) and is turned off. A plurality of aligners 120 are controlled by an aligner control circuit 107 to adjust the incidence angle and incidence position of an electron beam. A controller 101

controls the entire circuit.

[0026] In the present embodiment, a blanker array has a two-stage configuration. A second blanker array 127 and a second stop aperture array 128 having the same structures as the structures of the blanker array 122 and stop aperture array 123 are arranged in a subsequent stage. A multi electron beam having passed through the blanker array 122 is focused onto the second blanker array 127 by a second converging lens array 126. The multi electron beam is further focused onto a wafer 133 by third and fourth converging lens arrays 130 and 132. The second converging lens array 126, third converging lens array 130, and fourth converging lens array 132 are Einzel electrostatic lens arrays, like the converging lens array 119.

[0027] In particular, the fourth converging lens array 132 is an objective lens, and the demagnification factor of the fourth converging lens array 132 is set to about 100. With this setting, an electron beam 121 (whose spot size is 2 micrometer in terms of FWHM) on an intermediate imaging plane of the blanker array 122 is reduced to one-hundredth on the surface of the wafer 133, and a multi electron beam whose spot size is about 20 nm in terms of FWHM is focused onto the wafer. A multi electron beam on the wafer 133 can be scanned by a deflector 131. The deflector 131 is formed of an opposing electrode and includes four stages of opposing electrodes for two-stage deflection in each of the x and y directions (a two-stage deflector is illustrated as one unit in Fig. 5A for simplicity). The deflector 131 is driven according to a signal from a deflection signal generating circuit 104.

[0028] During pattern drawing, the wafer 133 is continuously moved in the X direction by a stage 134. An electron beam 135 on the wafer surface is deflected in the Y direction by the deflector 131 based on a result of

real-time length measurement by a laser length measuring machine. Additionally, the blanker array 122 and second blanker array 127 individually turn on or off beams according to a drawing pattern. A beam 124 is a beam which is on, while the beam 125 and a beam 129 are beams which are off. With the configuration, a desired pattern can be drawn on the surface of the wafer 133 at high speed in a short drawing time.

[0029] As has been described above, a charged particle beam exposure device according to the present embodiment includes a charged particle source, an irradiation charged particle optical system which applies a charged particle beam emitted from the charged particle source, and a substrate having at least one aperture which is irradiated with the charged particle beam from the irradiation charged particle optical system. The charged particle beam exposure device also includes at least one deflector which individually deflects a charged particle beam from a plurality of apertures of the substrate to control blanking and includes a charged particle beam lens according to the present invention which is provided at least one position on the downstream side of a charged particle beam on the substrate and is capable of high-precision drawing.

[0030] Fig. 5B illustrates a charged particle beam lens which is the same as the charged particle beam lens described in the first embodiment with reference to Fig. 1C except that a plurality of apertures 4 are present. An exposure device with less drawing errors can be obtained by installing the electrostatic lens as each of the first to fourth converging lens arrays 119, 126, 130, and 132 in the above-described multi charged particle beam exposure device.

[0031] While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the

disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.

[0032] This application claims the benefit of Japanese Patent Application No. 2011-131963, filed June 14, 2011, which is hereby incorporated by reference herein in its entirety.

Reference Signs List

- [0033] 1 first electrode
- 2 second electrode
- 3 support
- 3a non-flat portion
- 3b tapered portion
- 4 aperture
- 6 taper angle

CLAIMS

[Claim 1] A charged particle beam lens comprising a first electrode including a surface having at least one aperture and a second electrode including a surface having at least one aperture, wherein the lens includes a support intervening between the first electrode and the second electrode to electrically insulate the first and second electrodes from each other and support the first and second electrodes in a predetermined positional relationship, wherein a side surface of the support intervening between the first electrode and the second electrode includes a non-flat portion having at least one of a projected portion and a depressed portion and includes a tapered portion, and wherein a taper angle formed by the tapered portion and the surface having the aperture of the second electrode is larger than 0 degree and smaller than 90 degree.

[Claim 2] The charged particle beam lens according to claim 1, wherein the non-flat portion is formed on the side of the first electrode, the tapered portion is formed on the side of the second electrode, and the non-flat portion and tapered portion are formed so as to be separate from each other or so as to overlap at least partially with each other.

[Claim 3] The charged particle beam lens according to claim 1 or 2, wherein the non-flat portion includes a projected portion and a depressed portion, and a level difference between a top surface of the projected portion and a bottom surface of the depressed portion is not less than 20 micrometer.

[Claim 4] The charged particle beam lens according to any one of claims 1 to 3, wherein the taper angle formed by the tapered portion and the surface having the

aperture of the second electrode is not less than 45 degree and not more than 75 degree.

[Claim 5] The charged particle beam lens according to any one of claims 1 to 4, wherein a tip position of the tapered portion in contact with the second electrode and a top surface position of the non-flat portion are collinear in a direction of an optical axis along a central axis of the aperture.

[Claim 6] A charged particle beam exposure device comprising:
a charged particle source;
an irradiation charged particle optical system which applies a charged particle beam emitted from the charged particle source;
a substrate having at least one aperture which is irradiated with the charged particle beam from the irradiation charged particle optical system;
at least one deflector which individually deflects charged particle beams from a plurality of apertures of the substrate to control blanking; and
a charged particle beam lens according to any one of claims 1 to 5 which is provided at least one position on the downstream side of a charged particle beam on the substrate.

1/7

FIG. 1A

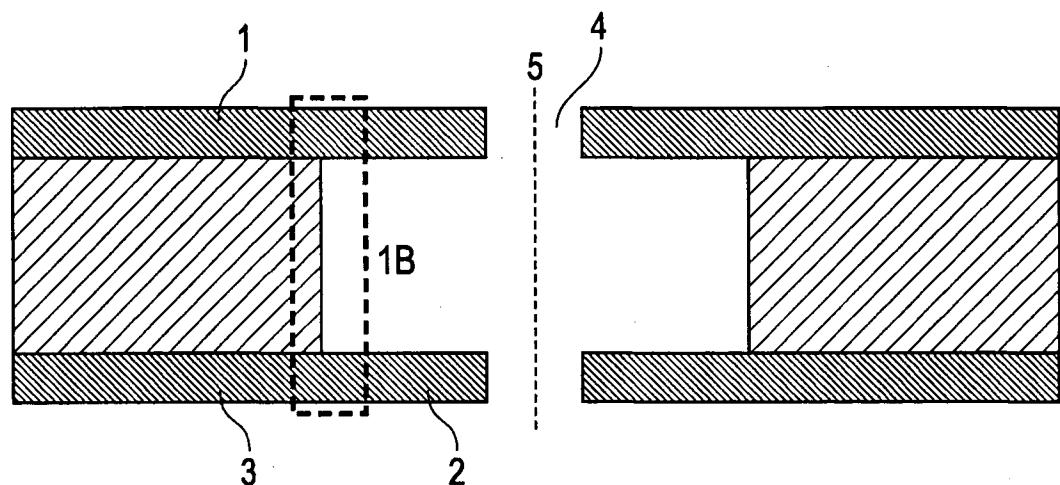
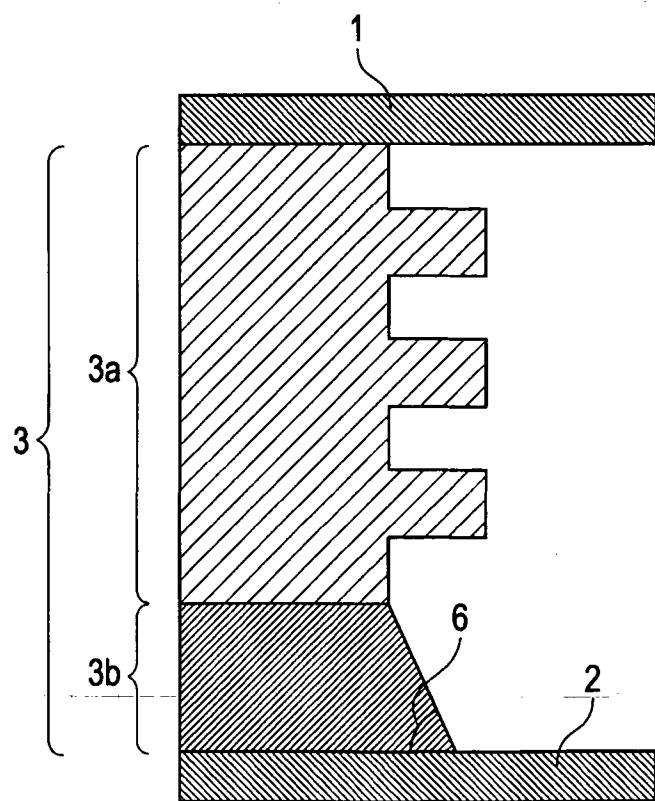
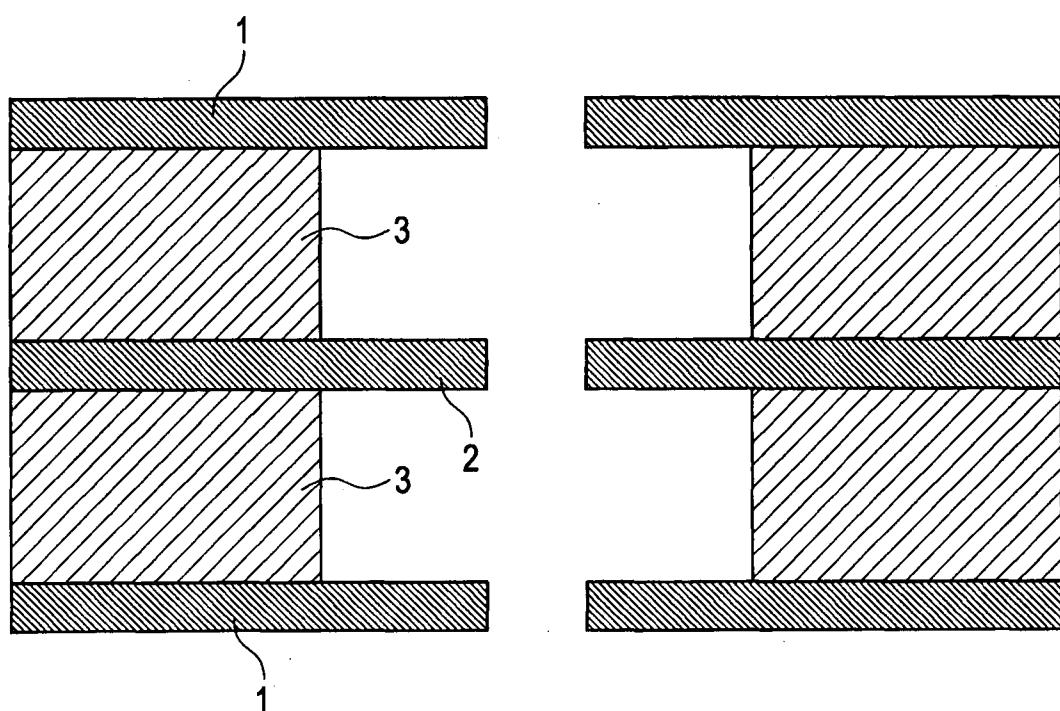




FIG. 1B

2/7

FIG. 1C

3/7

FIG. 2A

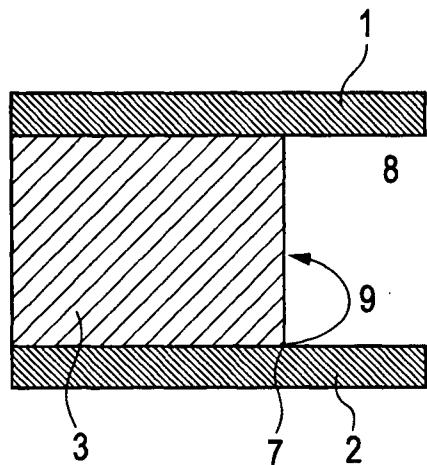


FIG. 2B

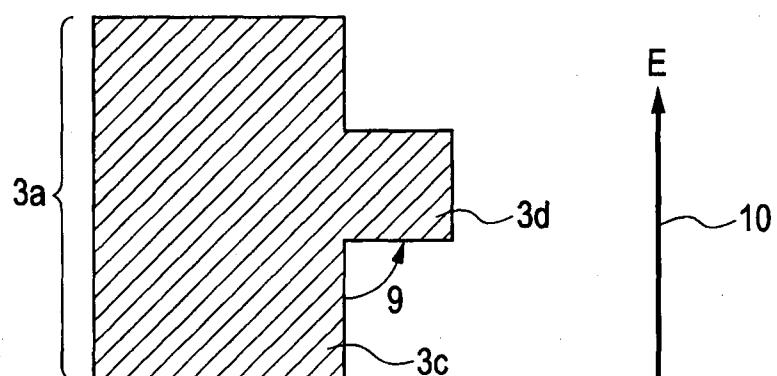
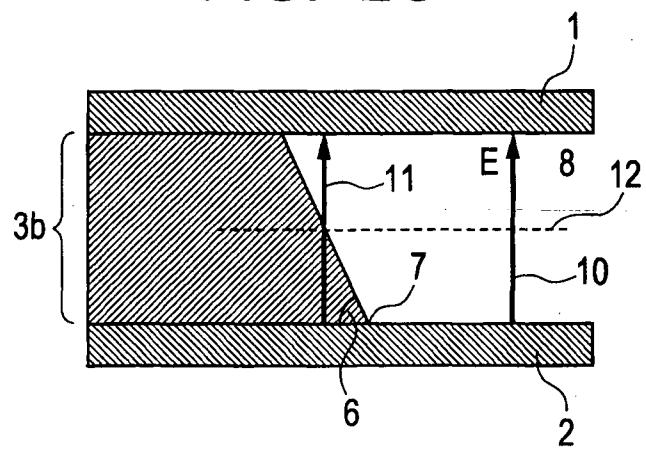



FIG. 2C

4 / 7

FIG. 3A

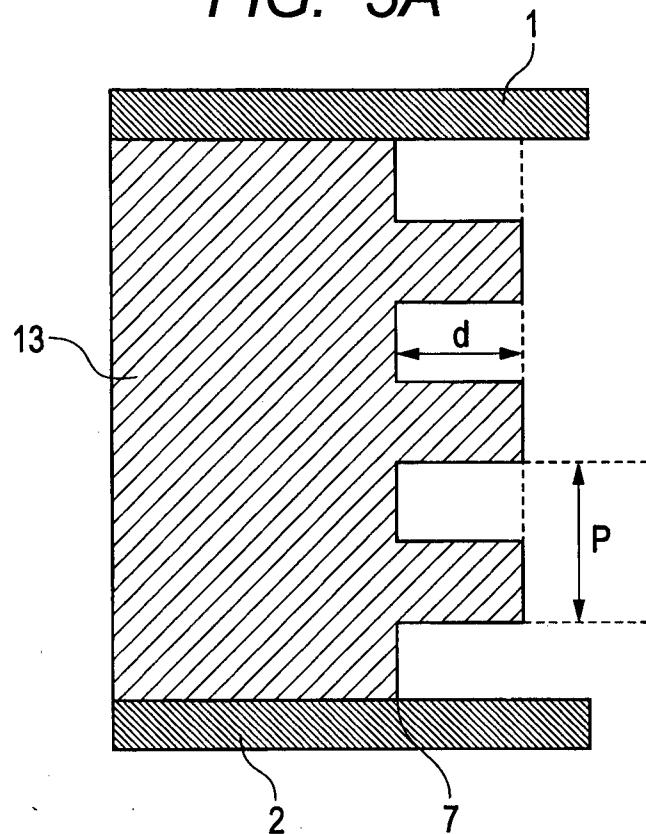
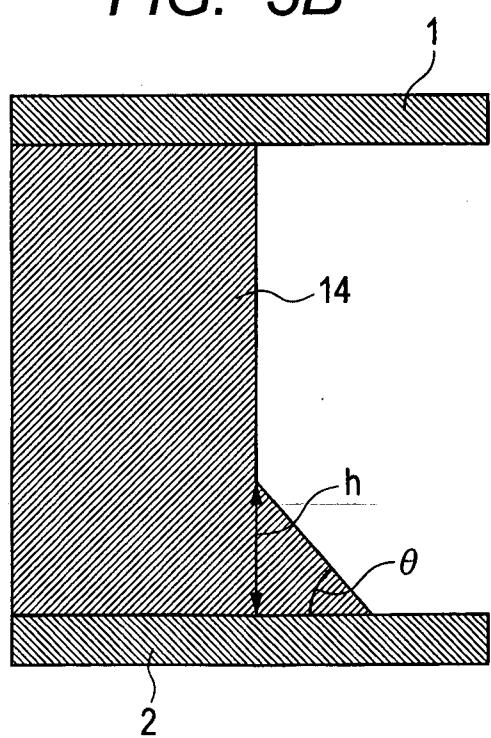
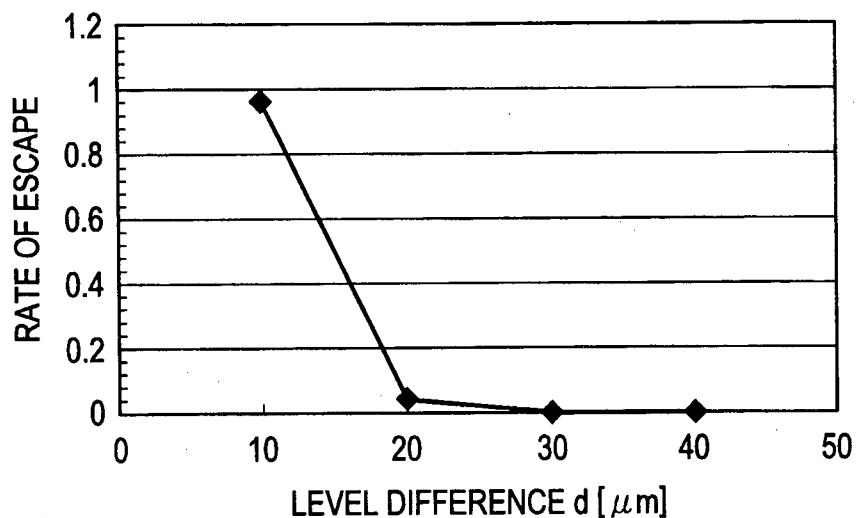
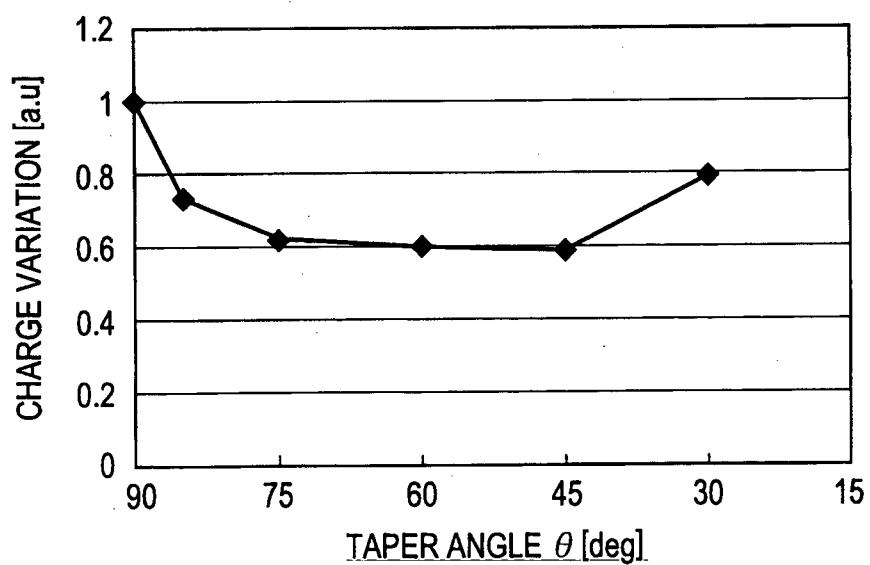
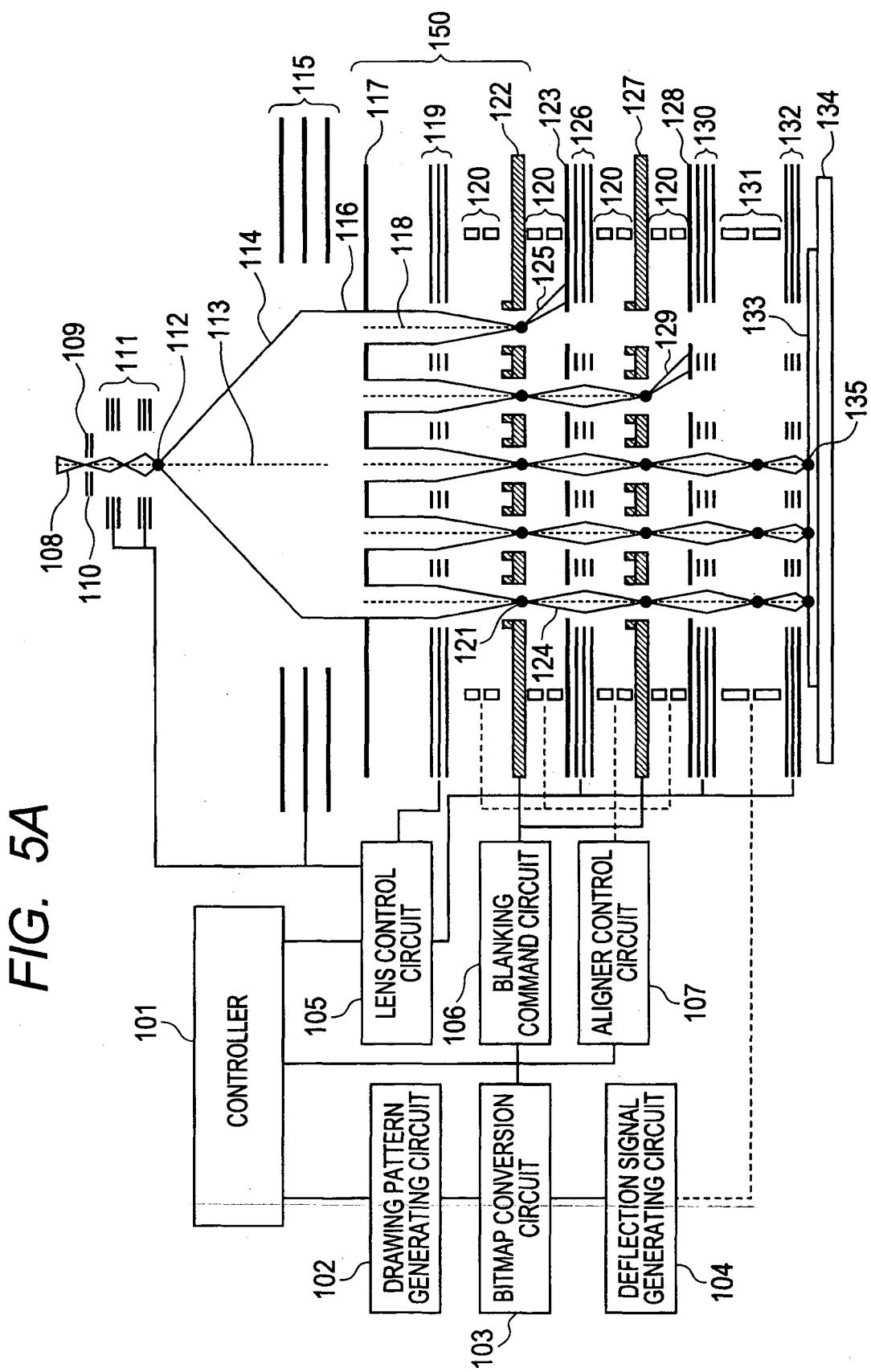
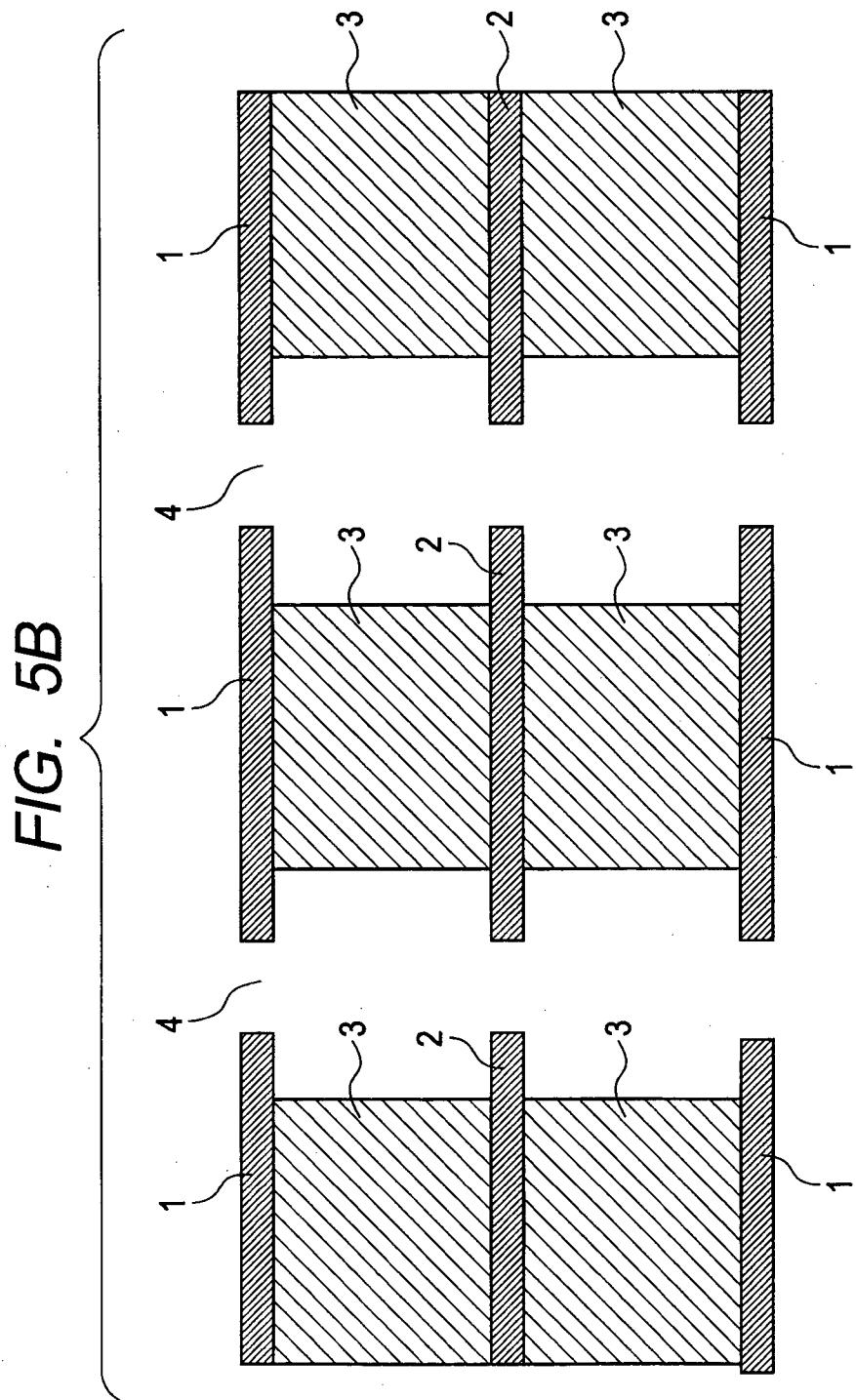



FIG. 3B

5 / 7

FIG. 4A


FIG. 4B

6/7

7/7

INTERNATIONAL SEARCH REPORT

International application No

PCT/JP2012/062572

A. CLASSIFICATION OF SUBJECT MATTER
INV. H01J37/12
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2 940 020 A (MARTIN MULLER) 7 June 1960 (1960-06-07) figure 5 -----	1
A	US 5 177 366 A (KING MONROE L [US] ET AL) 5 January 1993 (1993-01-05) figure 3 -----	1
A	WO 2009/014406 A2 (CEBT CO LTD [KR]; KIM HO SEOB [KR]) 29 January 2009 (2009-01-29) figure 5 -----	1

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
3 August 2012	13/08/2012

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Oestreich, Sebastian

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/JP2012/062572

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 2940020	A	07-06-1960	NONE		
US 5177366	A	05-01-1993	DE	69302729 D1	27-06-1996
			DE	69302729 T2	02-01-1997
			EP	0559359 A1	08-09-1993
			JP	3302436 B2	15-07-2002
			JP	6068837 A	11-03-1994
			US	5177366 A	05-01-1993
WO 2009014406	A2	29-01-2009	CN	101743607 A	16-06-2010
			JP	2011510431 A	31-03-2011
			KR	20100037095 A	08-04-2010
			TW	200924008 A	01-06-2009
			US	2010200766 A1	12-08-2010
			WO	2009014406 A2	29-01-2009