PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 9724676
06F 13 12/14, 9/44 Al

GOGF 13/00, ’ (43) International Publication Date: 10 July 1997 (10.07.97)

(21) International Application Number: PCT/US96/20133 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 23 December 1996 (23.12.,96)

(30) Priority Data:

08/581,730 29 December 1995 (29.12.95) US

(71) Applicant: TELE-COMMUNICATIONS, INC. [US/US]; 5619
DTC Parkway, Englewood, CO 80111 (US).

(72) Inventors: SWEENEY, Christopher, L.; 7974 West 108
Avenue, Broomfield, CO 80021 (US). STODGHILL,
Scott, A.; 81 Granite Way, Evergreen, CO 80439 (US).
DESHAZER, Kurt, A.; 7376 South Flower Street, Littleton,
CO 80123 (US). MARIMUTHU, Aravindan; Apartment
B206, 10700 E. Dartmouth, Aurora, CO 80014 (US).

(74) Agents: GATTO, James, G. et al.; Baker & Botts, L.L.P., The
Wamer, 1299 Pennsylvania Avenue, N.W., Washington, DC
20004 (US).

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
HU, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL,
PT, RO, RU, SD, SE, SG, S], SK, TJ, TM, TR, TT, UA,
UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB,
GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ,
CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: APPLICATION AND DATABASE SECURITY AND INTEGRITY SYSTEM AND METHOD

(57) Abstract

A system and method for ensuring the se- 120
curity and integrity of applications and databases. P4 16 " ;" Aq
The Subscriber Management System (100) com- Transaction 105 5 g:n‘:er 4
prises transaction generators (120). Each generator G‘"’;‘““ y 4 A 135
(120) is connected via a two-way communication \ Dota 150 /
link (105) to data directory servers (150). Each data 120 Directory ‘/ %5 A
directory server (150) is in turn connected via a e s'"f' J '
communications link (165) to multiple data servers 1 16!
(160). Each data server (160) is in tum connected Traneaotion Data 150 Dato){ B,
to one or more databases. The Subscriber Man- °‘"°2'°'°' Directory ‘/ Server | (¢
agement System (100) includes at least one control 5"’"2" 8 C D
application (175) for communications between the 120 m
DDS (150). S 160
Data 150 | 1¢
105 Dirsctory | |/ } O\
Transaction Sarv;r / ¢y
Generator Dota }
3 Server | 135
DDS FUNCTIONALITY ¢
o} ¢,
(o] 4 [e)
0 1307\ on ?&u’ m? o
120
Transaction I 175 | pata
Generator Server /160
N X-REF "
Sever w170
O
(o]
100 ®)
X—REF
So:qvor 170

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphiets publishing intemational

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinilad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 97/24676

10

15

20

25

30

PCT/US96/20133

APPLICATION AND DATABASE SECURITY
AND INTEGRITY SYSTEM AND METHOD

TECHNICAL FIELD OF THE INVENTION

This invention relates in general to maintaining the security and integrity of
applications and databases.
BACKGROUND OF THE INVENTION

In the past, a user’s access to applications has been controlled by the use of
passwords. Generally, the password provides a user with access to all applications,
with certain files, e.g., personal files, financial files, etc. being protected by a second
password. More elaborate access control schemes have used access control lists for
applications, databases, and systems. These access control schemes or systems have
significant shortcomings, including that they are not very flexible for large user
systems, users are provided access to applications and/or databases which are
outside the scope of their work, and thus a user may disturb these applications or
databases, and with password protection, the security may relatively easily be
breached.

With known systems and applications, there exist problems with identifying
and controlling which version of a particular application a user has access to and/or
is using. In some systems, when a user is interfacing with another user, support
personnel, etc., often it is required that the user verbally ask what version the other
1s using. Also in many cases, a new version is simply installed over the top of an oid
version, and new users access the new version automatically. This presents
problems in that, if the new version has a significant bug, then the old version needs
to be reinstalled, which is confusing and time consuming. Also, this does not allow
the testing of the new version before it is installed to all users.

With known systems and applications, problems exist in moving a particular

application from a developer to the system. Typically developers customize their

systems. This presents problems in moving the developed application from the
developer to the system, particularly in relation to troubleshooting the application

after it has been installed on the system. Also, problems exist with regard to

WO 97/24676 PCT/US96/20133

10

15

20

25

2

transferring the files that are necessary for the application to run. F requently, not
all of the desired files are transferred, or the files are transferred in an undesired
format.

SUMMARY OF THE INVENTION

In view of these and other shortcomings of the prior art, there is a need for

a system and method which insures the security and integrity of applications and
databases.

It is an object of the current invention to overcome the above described and
other shortcomings of the prior art.

It is a further object of the current invention to provide a security system
which is secure, ﬂexiblve, and allows the user to access only thosc applications or
stored procedures which are required for the user to do his work activity.

It is further an object of the present invention to ensure that a user is using
the desired, current version of a particular application.

It is another object of the present invention to provide a framework that
application developers use to facilitate transfer of the developer's work to the
system.

The present invention includes a user management system having a directed
acyclic graph structure to provide a user or group permission to access applications,
stored procedures, etc. The present invention also includes a version control
management system which insures a user is using the desired current version of an
application and provides a format for an application developer to facilitate the
development and implementation of an application onto a system.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention and the advantages

associated therewith may be acquired by referring to the accompanying drawings
wherein:
FIGURE 1 is a block diagram depicting the architecture of one embodiment

of a system for use in the present invention.

WO 97/24676

10

15

20

25

PCT/US96/20133

3

FIGURE 2 shows a simplified Directed Acyclic Graph (DAG).

FIGURE 3 is a flow chart illustrating, in a broad sense, the verification and
access method utilized when a user attempts to access an application.

FIGURE 4 is a flow chart illustrating, in a broad sense, the version control
management from the point of a user starting an application.

FIGURE 5 is a flow chart illustrating, in a broad sense, the version control
management system from the application development and version release
standpoint.

DETAILED DESCRIPTION OF THE INVENTION

The present inventive system and method is preferably utilized in a system

having an architecture as shown in U.S. Application Serial No. 08/405,766, filed
March 17, 1995, entitled "Method and Apparatus for Transaction Processing in a
Distributed Database System"; herein incorporated by reference. FIGURE 1
generally illustrates this system and architecture.

While the various aspects and embodiments of the invention are capable of
use in various systems and types of distributed database systems, for simplicity, the
system will be described in connection with a Subscriber Management System
(SMS) 100 having a distributed database. Such system is useful for, among other
things, cable system operations. However, the inventive system and method is not
limited to this described system. As shown in FIGURE 1, the SMS 100 comprises
a plurality of transaction generators 120 labeled 1 through N, where N = any
integer. Each transaction generator 120 is connected via a two-way communication
link 105 to one (or more) data directory servers (DDS) 150. The present invention
may include any number of data directory servers 150, but includes at least one.
Each data directory server 150 in turn is connected via a two-way communication
link 165 to multiple data servers (DS, - Ds,) 160. Each data server 160 is in turn
connected to one or more databases either as components of a single subsystem

(processor and database) or through a two way communication link 135

WO 97/24676 PCT/US96/20133

10

15

20

25

4

Additionally, each DDS 150 is connected via a two-way communication link 130
to one or more cross reference servers (X-ref, - X—ret:,, where N = any integer) 170.

FIGURE 1 indicates a block of 1 through N, (where N = any integer) DDSs
150 representing DDS functionality within the SMS. It is to be understood that,
although not shown, connections between transaction generators 120 and DDSs
150 as well as those between data servers 160 and DDSs 150 are preferably
individual connections rather than to a grouping of DDSs. For example, Transaction
Generator 1 is separately connected to each of the DDSs as is Data Server A.
Alternatively, however, DDS functionality may be grouped with common
connections to transaction generators 120 and/or data servers 160 as indicated in
FIGURE 1 so long as proper control between DDSs 150 is maintained.

Additionally, the SMS system 100 includes at least one control application
175 for communication between the DDS(s) 150 and a human operator and/or
another SMS process. The control application 175 provides, among other
functionality, a means for updating the internal rules used by the DDS(s) 150.

When a transaction is generated by a transaction generator 120 and sent to
a data directory server 150, the data directory server 150 determines the
appropriate server 160 for execution of the transaction. Preferably, this is
accomplished by the DDS 150 consulting the internal rules and identifying the
arguments associated with the transaction.

The SMS 100 of the present invention is designed to manage a very large
number of On Line Transaction Processing (OLTP) transactions occurring within
the system. The SMS 100 of the present invention provides users with the ability
to query across the entire database from any client in the system. Similarly, each
of the users may update data located anywhere within the SMS 100.

The transaction generators 120 in the system of the present invention may
be any devices capable of receiving input from a user and transmitting that input to
the Data Directory Servers (DDSs) 150. This type of device is often referred to as

a client and these terms are used interchangeably herein. These devices may be

WO 97/24676

10

15

20

25

PCT/US96/20133

5

dumb terminals (i.e., incapable of performing local processing) or they may have
various processing capabilities of their own. Examples of transaction generators
include, without limitation, PCS, RISC-based workstations and local area networks.
In typical applications, there will be a large number of transaction generators 120.
Thus, the SMS 100 is designed as an open platform environment which is hardware
independent. The transaction generators 120 may be homogeneous in terms of
interface and operation or they may be heterogeneous. In other words, all
transaction generators 120 may be of one type or there may be a variety of devices
interacting with the DDSs 150. It is also possible to permit customer interaction
with the SMS 100 through an ARU/ANI (Automated Interactive Voice Response
Unit/Automatic Number Indicator) (not shown). In this case, much of the
processing may be driven by the telephone number retrieved by the ANI when the
customer calls into the system.

The DDSs 150 of the present invention function as the middle tier of a three
tier client/server architecture. As illustrated in FIGURE 1, more than one DDS 150
may exist within the SMS 100. In such case, each of the DDSs 150 has
communication access to all of the other DDSs 150 as well as to each of the data
servers 160. The DDSs 150 serve three primary functions. After receiving a client
request, the selected DDS 150 first locates the appropriate server 160 for execution
of the request, it then submits the client request to the selected server and finally the
DDS 150 returns the result to the submitting client 120.

Transaction generators 120 requesting information from the SMS databases
must connect to a DDS 150 prior to accessing data. Through the use of internal
rules, the DDSs 150 determine where a remote procedure should run in order to
complete processing of a transaction. Access to the DDSs 150 may be efficiently
implemented through the use of remote procedure calls (RPC s) which are identified
in tables internal to the DDS 150. Any of a large number of standards for such

RPCs may be used with the current invention.

WO 97/24676 PCT/US96/20133

10

15

20

25

6

The DDS(s) 150 are preferably open server applications that provides a
mechanism to direct any data request associated with a generated transaction to a
data server 160 that can service the transaction generators' requests. Specifically,
the DDSs 150 may be open servers comprising the same or similar hardware as the
data servers 160 of the present invention. Alternatively, the DDSs 150 may be
configured differently from the data servers 160. The DDSs 150 function to
analyze the client's data request transaction and, based upon the transaction type
and a set of rules, directs the request to the appropriate data server 160. The types
of transactions which are received at the DDSs 150 are based upon a set of stored
procedures recognizable to the DDSs 150 and available to the transaction
generators 120. The DDSs 150 communicate with a plurality of data servers 160
each accessing one or more storage devices. In a preferred embodiment of this
invention the data servers 160 are Sybase SQL (Structured Query Language)
Servers which execute Sybase remote procedure calls (RPC). This invention is not,
however, necessarily limited thereto and the servers may be of any type so long as
the stored procedures are designed for processing by the particular server and the
associated database which are selected. It is possible to employ any number of
servers 160, transaction generators 120 and DDSs 150 in the SMS 100 of this
invention so long as the proper number of communication channels can be supplied
and supported.

The data servers 160 maintain the customer data and are accessible by each
of the transaction generators 120 through a DDS 150. Ina typical implementation,
the data servers 160 are SQL devices which are capable of executing the RPCs
transmitted by a DDS 150. The databases making up the enterprise can be either
homogenous or heterogeneous. In a homogeneous environment, particular
protocols for accessing each of the databases are consistent throughout the
enterprise. Conversely, in a heterogeneous environment, the particulars of database
access vary within the enterprise. In a heterogeneous environment, it is often

desirable, however, to render any differences in requirements within the enterprise

PCT/US96/20133

WO 97/24676

10

15

20

25

7

transparent to user working at the client site. That is, a user should not be aware
of any database heterogeneity and a user request should be processed in a standard
manner across all resources.

The databases which are accessed in a distributed system may all be located
together or they may be physically apart. They may be at the client location or they
may be at an alternate site. Databases may be relational databases such as SYBASE
(a trademark of Sybase, Inc.) or they may be as simple as a series of flat files.

In FIGURE 1, it can be seen that the DDSs 150 interface with a control
application 175. The control application 175 functions to allow a system operator
to store, update and modify stored procedures available to transaction generators
120. This is typically accomplished by downloading the update to the X-Ref Server
170 which loads the new rules base into the DDSs 150 at DDS startup.

The SMS system also includes one or more X-Ref Servers 170. The X-Ref
Servers 170 function as a resource available to the DDSs 150 for determining where
specific data resides in the system and for storing the rules base which is loaded into
the DDSs 150 at DDS start-up. The X-Ref Servers 170 contain a variety of global
tables which are continually updated as data is added, updated and deleted within
the system.

The present inventive system and method may be used on the above
described system or on any system having at least one server and at least one
database. The inventive application and database security and integrity system and
method includes The User Management System (TUMS) and Version Control
Management (VCM).

The User Management System (TUMS)

The User Management System (TUMS) uses a directed acyclic graph
mechanism to manage the users and their authorization to execute specific
applications. TUMS includes two parts: user administration and capability
administration. The user administration part manages the authorized user details

and generally provides the ability to:

WO 97/24676

1.

2.

3.

4.

5 5.

6.

10 7.

15

20

25

30

35

40

PCT/US96/20133

Add a new user.

Remove an existing user.

Assign a user to a database group.

Modify a user's database group.

Modify a user's data such as FirstName, LastName, LoginName,
Password, default BusinessUnit, Department, JobType,
PhoneNumber, list of applications authorized to execute, etc.
Select a list of users who meet certain criteria, such as clerks in a
certain department.

Modify the attributes of all the selected users.

The capability administration part manages the database group attributes and

authorizes permissions for the capabilities. Capability administration provides the

ability to:

NhW —~

10.
11

Add a new group by cloning from other groups.
Modify the name of an existing group.
Add a capability.
Remove an existing capability.
Make a capability to contain other capabilities, provided they are
not cyclic. (For example, A contains B, B contains C. It is not
allowed to have C contain A or B. The capability must go in one
direction as A » B — C).
Assign execute permission, such as REVOKE or GRANT database
permission, to a capability.
Propagate the execute permission to all the shared capabilities (For
example, in A=>B—C relationship, A's GRANT permission will
propagate that information to B, and B will pass it to C).
To avoid ambiguous permissions on shared capabilities. For
example, if the capabilities are A+ B — C
!

X-> Y
then, B is shared by 2 capabilities (A and Y). Suppose A grants
permission and Y revokes permission. In this case, B gets grants
permission because at least one of parent capability has Grant
permission.
Expand or collapse the shared capabilities from a given capability.
Locate any capability used in the graph.
Show whether a capability is: at the Root level (1.e. No parent
relationship), having only one link to the top or having multiple
parent relationships.

WO 97/24676

10

15

20

25

PCT/US96/20133

9

"Capability" relates to an abstraction of access to system resources.
Capabilities are the means by which groups of users are either granted or denied
access to system services. Capabilities are the means in which permissions are
assigned to system resources. Capabilities are also a means for extracting low level
details into higher level entities that managers can manipulate. Capabilities may
contain capabilities which may in turn contain other capabilities.

FIGURE 2 shows a simplified Directed Acyclic Graph (DAG). A Directed
Acyclic Graph is a collection of nodes and "edges" (lines) that connect them. As
shown, the edges have a direction to them, i.e., they are directed. The nodes
contain the capabilities which may contain other capabilities. FIGURE 2 includes
nodes 1 through 11. Nodes 1 through 6 represent the lowest level of detail and are
generally individual stored procedures. A stored procedure is a single function that
executes on the database server, the lowest level of execution control. The first
grouping relates to collections of stored procedures that perform some logical task.
The higher grouping relates to an application level. This hierarchy provides control
over the permissions. Thus, the Directed Acyclic Graph provides a structure and
means to set permissions which control when a user can work with applications,
tasks or stored procedures.

The directed acyclic graph requires at least two levels to operate. Typically,
the directed acyclic graph has between two and five layers.

Preferably, there is no access to raw tables. Database systems such as
Sybase have the capability to turn off all access to raw tables and require that a
stored procedure be used to access it. It is preferred to use a stored procedure,
since the stored procedure, utilizing the directed acyclic graph, has the ability to
check to determine whether the user has permission to access the raw tables via the
stored procedure.

It is preferred that individual users be grouped according to business unit,
level of responsibility or authority, etc. Users are preferably grouped to simplify the

task of managing permissions. It is preferred that a user belong to only one group.

WO 97/24676 PCT/US96/20133

10

15

20

25

10

An example will help illustrate the structure and application of the Directed
Acyclic Graph. Assume nodes 1, 2 and 3 provide permissions to low level stored
procedures that relate to reading customer data, e.g., node 1 provides the
permission to access a stored procedure which accesses a customer's name and
address; node 2 provides the permission to access a stored procedure which
accesses the customer's billing information; and node 3 provides the permission to
access a stored procedure which accesses a list of products or services the customer
uses. Assume nodes 3, 4 and 5 provide permissions to low level stored procedures
which relate to writing customer data. Assume node 7 provides permissions related
to the task of reading customer data and that node 8 provides permissions related
to the task of writing the customer data, e.g., billing customers. Thus, clerks in the
accounting department may be granted permissions via nodes 7 and 8 which would
allow them to access stored procedures relating to nodes 1 through 5. Thus,
TUMS would provide a group, such as accounting clerks the permission via nodes
7 and 8 to access the desired stored procedures as noted above.

It would be desired that an accountant would have the capability to access
more stored procedures than the accounting clerks. Thus, an accountant may be
granted permissions via nodes 10 and 11 to access specific applications relating
thereto. This also allows the accountant to access the task granted permissions via
node 9 and the stored procedure granted permissions via node 6, in addition to the
tasks granted permissions via nodes 7 and 8 and the stored procedures granted
permissions via nodes 1-5 which the accounting clerks are granted permissions to.
Thus, the accountant would be granted access to the required applications, tasks
and stored procedures to develop the accounts receivable, forecast, etc. This is in
comparison to the accounting clerks who have a very limited access to applications
and stored procedures.

The directed acyclic graph method may be used in a variety of circumstances
as illustrated by another example. For a cable system subscriber management

system, assume that the customer service and sales representatives (CSSR) are

WO 97/24676

10

15

20

25

PCT/US96/20133

11

divided into beginner, intermediate, and expert groups. The beginner group would
be allowed to and be provided with permissions to access the stored procedures
which allow them to order a movie for a customer or answer general questions. An
intermediate group would be granted access to additional stored procedures to
support a higher level of authority and additional work responsibilities, e.g., to sign-
up a new user. An expert group would be granted the permissive right to access
even more stored procedures consistent with a high level of authority, e.g., to zero
out an account balance.

Also, it may be advantageous to permit a user or group access to an
application or stored procedure which reads and presents data, while not permitting
access to an application or stored procedure which would update or otherwise
change the data.

For example, for an application which utilizes a graphical user interface
(GUI), the application accessing a window(s) would be represented by a layer down
from the application, i.e., to the right as shown in FIGURE 2. If that window
accesses other windows, then that represents another layer down. These windows
would then access stored procedures, representing another layer down. Thus, in
this example there would be at least four layers.

As can be seen, the permissions trickle down, i.e., if a user has permissions
as granted by node 10, he is also granted permissions as to nodes 1-5, 7 and 8.

FIGURE 2 is a very simplified directed acyclic graph. A large user system,
such as a cable operations system, may have thousands of the nodes representing
the lowest level of detail, generally individual stored procedures.

Preferably, a group table is formed which includes all groups and is designed
to interact with the directed acyclic graph. The group table is designed to lay
permissions, i.e., apply yes or no values or grant or deny permission, to the DAG
structure by group.

In use, the directed acyclic graph structure is contained in a DAG table.

Each time a stored procedure is run, the stored procedure, using login information,

WO 97/24676 PCT/US96/20133

10

15

20

25

12

determines what group the user belongs to. The stored procedure calls the group
table and causes the group table to be meshed with the DAG table. With this
interaction of the group table and the DAG table, the stored procedure determines
if the specific group is permitted to retain access to the stored procedure. If the
specific group is not permitted to retain access to the stored procedure, the stored
procedure does not continue to run.

Thus, the group table interacting with the DAG table provides grant or
denial of permission to retain access to each application, task, or stored procedure,
as discussed above, on a group by group basis. This may be done by specifying a
"Yes" (grant of permission) or "No" for each node or by specifying a "Yes" with
a default No. Also, as discussed above, the grant of permission flows to lower level
nodes connected or related by the edges.

The DAG structure and the group information is preferably included in
tables, i.e., the DAG table and the group table, as discussed above. However, the
DAG structure and the group information may be incorporated and interacted in any
suitable way.

FIGURE 3 shows the steps which occur with TUMS when a user tries to
execute an application. First, that person's LoginName is verified against a
database. The person's ID and the application's ID are verified to see whether that
person is authorized to execute the particular version of the application. If the
person is not authorized to run the application, then he/she is not allowed to
continue the session. Then, the person's LoginName and Password are used to get
a connection to the desired database server. If that fails, the person is not allowed
to query the database. Once the person gets proper connection to the database, that
person's database group gets identified and verified. Whenever a query to the
database is invoked through a stored procedure call, the application gets the
database permission for the stored procedure using the person's database group.
If the permission for that stored procedure is already granted to the group through

TUMS, then the query is passed to the database. This is repeated for each stored

WO 97/24676

10

15

20

25

PCT/US96/20133

13

procedure. If the permission for that stored procedure is denied or revoked for the
group, then the query will not get passed to the database and this information is
returned to the caller. Ifit is a Graphical User Interface (GUI) application, then,
perhaps, an icon may set the look and feel accordingly (for example, the icon might
get disabled if the permission is not granted). Once the query is completed, the
results are returned to the user.

A separate application, identified herein as "SecurityClient", whose
purpose is to ensure that the security information is consistent, updated and
distributed throughout the system is preferably used. SecurityClient works closely
with TUMS and other password change windows. This application loops through
all the servers and all the databases to replicate the changes made in the personnel
or user_protects table. For example, when a user's password gets changed in
TUMS, that change gets updated in the personnel table. The trigger will add a row
in another table, security_update. The database's systems tables are preferably not
updated at this time. Then, the SecurityClient application takes each entry in the
security_update table and updates the database's systems tables for all servers and
databases. If for some reason, a server is down, then this application will make an
entry in the security_update table with the server information for future processing.
This tool can be executed in the background and will run in a continuous mode.

Version Control Management (VCM) |

Version Control Management (VCM) provides database security and is a
means of ensuring data integrity. VCM provides a means for distributing
applications over a network, controlling which version of an application a user is
using, and ensuring that the user receives the correct version of the application.
Also, VCM provides a technique which ensures that the set of files for an
application are present and correct. While preferably VCM includes all of these
aspects, each may exist independently of the others. VCM preferably includes two

applications, identified herein as "Launch” and "VCMadmin™" .

WO 97/24676 PCT/US96/20133

10

15

20

25

14

Generally, Launch is an application which ensures that a user is using a
desired version of an application. The Launch application involves the VCM system
from the standpoint of a user starting an application. Generally, "Launch" is an
application which a user accesses during the login procedure. Launch uses the
user's name and password to connect to a server and, if it can't connect, first it
presumes that the user has mistyped his name or password. With the correct name
and password, Launch connects to the server and asks the server what set of
applications the user is allowed to use. Launch receives a list of applications that the
user is allowed to access. The user picks an application and Launch asks the server
what version of the application is the correct version for that user. These two steps
may be combined into one query or may be two separate queries. Launch then
provides an absolute path name to the application and executes that application as
a parallel process.

Also, while a user is using an application, Launch checks to ensure that the
user is using the correct version, i.e., that a new version has not been released while
the user is using the application. Launch asks the server if there are any new
versions that are pending, i.e., if a new version has an effective date that is prior to
the current date. If Launch determines that a new version exists, it downloads the
application in the background.

Additionally, Launch makes sure that all the files necessary for a particular
application to run are present, the correct size, and the correct permissions. For
example, if a file, necessary for an application, is accidentally deleted, Launch would
detect that this file was missing and re-download the missing file before it launches
the application, i.e., before the user has access to the application.

Referring to FIGURE 4, a user begins the application by typing "launch".
This then brings up a logon screen and the user enters his logon information. The
launch application then connects with the EXEC server which queries for the set of
applications the user is registered to use and presents this set of applications to the

user. Generally this is accomplished by using the user's ID and running a stored

PCT/US96/20133

WO 97/24676

10

15

20

25

15

procedure which joins two tables, one which involves information about all
applications and the other which includes information specific to the users. The
user then chooses an application from the presented list. The launch application
queries the server for application information and the server returns the set of files
for the version which the user is registered to use.

One of the files is provided with a means for executing that file while the
others will not be executed. For example, execute (EXEC) flags can be used to
execute this file, while not executing the other files. In this embodiment, to execute
this file, the EXEC flag is set to 'Y". Typically, the file with the EXEC flag set to
"Y' sets up the environment (so that the desired application can find its support
files) and then begins the execution of the desired application. Here, because the
desired application is made up of many files, the Launch application needs to know
which file to tell the operating system to execute. The other files are generally
support files, used by the desired application for various purposes. Only the one file
with the EXEC flag set to 'Y is the “the file" to execute.

The launch application then checks all of the received files in the set for
correct size and permissions. If a file(s) is of an incorrect size, incorrect permission
or otherwise unacceptable, the launch application downloads from the server a new
file(s) with the correct size and permissions. Each application that may be launched
(by launch) is a separate, stand-alone application. It is preferred that each
application have the ability to be executed independent of Launch, such that if
Launch were to have a fatal bug, the required applications could still be run by
directly executing the required applications.

It is preferred that each application must have the user's name and password
in order to log into a database. Rather than requiring the user to log in multiple
times (once each for Launch, the desired application, and any other application the
user wishes to use), Launch writes the user's name and password in a file, here

identified as the <application>.prf file. An application reads this file and uses it to

WO 97/24676 PCT/US96/20133

10

15

20

25

16

log into the database. Thus, with Launch, the user is only required to log in once
and does not have to keep logging in.

The launch application then writes file <application>.prf which preferably
contains encoded user password and timestamp information. Preferably, this file is
encoded to prevent other users from directly reading a user's password and contains
a timestamp to prevent other users from using another user's -prffile to gain access
to the database.

The launch application then starts the file with the 'Y" flag in parallel, i.e.,
this file runs in a non-blocking manner, i.e., the operating system will start the
running of this file and return to the launch application without waiting for the
completion of the running of the file. ‘

The file with the 'Y' flag looks for, reads, decodes, and checks the
<application>.prf file. If the <application>.prf file is not found, or if the timestamp
1s expired or corrupted, then it requires the user to login and provide the login
information. If the <application>.prf file is okay, the file with the 'Y" flag begins
execution of the desired application, the desired application is fully accessed, and
the desired application queries the EXEC server for the application version that this
user is supposed to be using and checks against the version currently being run. If
the versions match, the running of the desired application continues. If the versions
do not match, an error message is displayed and the desired4 application exits.

This provides that if a user, e.g., a sophisticated user, is able to access and
use an application without using the launch application, that the user would be
allowed to use the application only until a system administration personnel
determines that the user should be using a new version and takes the steps necessary
to assign the new version to the user. If a user were able to bypass launch, this
would otherwise avoid the automatic download and update part of the system. This
provides that even if a user is able to bypass launch, eventually they will be
converted to the desired version of the application. Thus, a user cannot execute an

out of date version which might possibly detrimentally effect the related databases.

WO 97/24676

10

15

20

25

PCT/US96/20133

17

Concerning the parallel running launch application, the launch application
queries for a pending version. If a pending version exists, the launch application
downloads the new version into the background of the user system. The new
version is downloaded into the background because the downloading generally
involves significant megabytes of data which could otherwise overload the system,
particularly, if it is an application which many users are using, and because the
downloading could take a significant amount of time which would hurt the
productivity of the user.

The downloaded application preferably remains in the background until a
system administration person decides that the applicable group should be using the
new version. There are generally two reasons why it preferably takes user action
to replace the old version with the new version and why this is not done
automatically. First, the system may be used in a franchise arrangement. Usually,
the franchisee likes to retain control of what version of an application is being used.
Frequently, the franchisee will wait until he knows that another franchisee has tested
the new version of the application and that it has worked satisfactorily. It is
desirable that the franchisee retain the flexibility to operate either the old version or
the new version.

Secondly, often there is a "cut over date", i.e., a specific date, when a new
version of a database is to be released. Typically, it is desired to cut over related
applications and databases at the same time. The applications can't precede the
database or vice versa. Both the applications and the databases need to be released
almost simultaneously. In this case, even though the new version of the application
is available, its desired that the system personnel administrator would set the
effective date for the user for the date when the new version is to be cut over.

VCMadmin is an application that inserts newly developed applications or
versions into the system. The VCMadmin application provides a mechanism for
presenting applications or new versions that are developed by developers to the

users in an official way which maintains the ability to troubleshoot the application

WO 97/24676 PCT/US96/20133

10

15

20

25

30

35

18

after its release. VCM provides a framework that the application developer takes
advantage of to automate the process of building a control version and distributing
it to the users. Generally, VCMadmin will only be used by Control Management
(CM) personnel or by the individual developers.

FIGURE § shows a flow diagram of the version control management from
the standpoint of a developer developing a new version of an application. To
initiate this, the developer types "make install", a utility program with the target
install. The install target allows:

1. The building of the application.

2. The creating of a file that contains the entire release (a 'tar’ file).

3. The mailing to a configuration management (CM) person informing
him that a new release is available.

The 'tar' file (abbreviation of "tape archive--a UNIX utility) contains all of the
source code, header, resource, stored procedure definitions, a makefile, README
file, and any other files necessary for the application to build and execute. A tar file
provides a file format whereby many files are concatenated together to form a single
file. It is used to make moving a set of files around simpler and less error prone,
since one needs to move only the tar file and "untar" it in order to get all of the files
in the set.

The CM executes a "pull" script which:

I copies the 'tar' file to a known area, and
2. uncompresses, "untars" the 'tar' file into a format which documents
the file and which includes a human readable format.
The CM then executes "cm.sh", a script, which sets up the environment for the CM.

The CM executes "make cm", a utility with a target "cm". The cm target:

1. Builds the executable, setting VCM flag.
2 Builds support files.
3. Executes VCMadmin -iregister.src.

Each application has an executable (sometimes called the program). In
order for the application to behave as desired, it must be built in such a manner that
the queries to ensure that the user is using the correct version of the application are

enabled. This is done using a build flag (sometimes called a define), here called

PCT/US96/20133

WO 97/24676

10

15

20

25

19

"VCM". Building of the application involves using the compiler to compile the
header/source files into object files and the linker to link object files and library
archives into an executable.

The support files include resource files, run files, and possibly other files
depending upon the application. The creation of these files may involve third-party
software or may be scripts that a developer has written.

The execution of VCMadmin -iregister.src leads into the next process step,
insertion of the executable and its support files into the server. VCMadmin is an
application and register.src is an argument to the application. The "-i" is a flag to
indicate initialization.

The application then shows a login screen and the CM enters his
login information to signal the application to continue. The application reads,
parses register.src and inserts the application and support files into the EXEC
server. Here, the CM will provide an effective date of the developed application far
into the future to avoid any indication that this is a pending version.

Next, the CM informs quality assurance (QA) of this new version. The QA
modifies the "apps.users" table using ISQL to allow a tester to test the new
application. The tester gains access to the new version using the launch application
as discussed above. The tester determines whether the new version is suitable for
release to the field. If it is not, the developer may modify the program as discussed
above. Ifit is suitable for release to the field, the CM changes the effective date to
"today", then, through TUMS and the launch application, the new version is
distributed to users pursuant to the launch application as discussed above. Here,
a system personnel administrator uses TUMS to register users to use the new
version. Then, when the users next launch, the new version is started.

As part of the new version installation, old versions should eventually be
purged. However, early in the new version installation process, care should be

taken to ensure that two versions, i.e., the new version and the just replaced

WO 97/24676 PCT/US96/20133

10

15

20

version, are always available in the event that a catastrophic failure in the new
version requires a "roll back" to the just replaced version.

The present invention, with TUMS (which utilizes a directed acyclic graph)
and VCM, solves the problems mentioned above by providing a higher level of
security, flexibility to allow permissions to users as desired, and a structure which
allows the user to only see those application or stored procedures which the user
1s expected to use. The present invention also solves the problems mentioned above
relating to users not using the correct version of an application by providing the
launch application which ensures that users are using the desired version of an
application. Further, the present invention overcomes shortcomings relating to
developing new versions by providing a means to install a new version on the
system and test it on the system prior to releasing it to the users.

Although the present invention has been described in detail, it should be
understood that various changes, alterations, and substitutions may be made to the
teachings herein without departing from the spirit and scope of the present invention

as defined by the appended claims.

WO 97/24676

10

15

20

25

PCT/US96/20133

21
WHAT IS CLAIMED IS:
1. A method of limiting access to applications in a system having at least one

application on at least one data server wherein a user enters user identification,
comprising the steps of:

(a) accessing a desired application on the data server;

(b) accessing a file having data comprising a directed acyclic graph
structure, said directed acyclic graph structure having at least two levels of nodes,
each node providing for indicating the grant or denial of permission to maintain
access to a specific application; and

(©) using user identification, determining whether the user is authorized
to maintain access to the desired application.

2. The method of claim 1,

wherein there is at least two users and the users are grouped into at least
two groups; and

step (c) comprises:

interacting group information with directed acyclic graph structure
information to set the grant or denial of permission for the at least two groups to
maintain access to the at least one application.

3. The method of claim 2,
wherein the group information is included in a group table and the directed

acyclic graph structure information is included in a directed acyclic graph table.

4 The method of claim 2, wherein each user is not grouped into more than one
group.
5. The method of claim 1,

wherein the levels include at least a higher level of nodes and a lower level
of nodes and wherein the grant of permission at a node in the higher level causes the

grant of permission to at least one node in the lower level.

WO 97/24676 PCT/US96/20133

10

15

20

25

22

6. The method of claim 5,

wherein the grant of permission to a node in the lower level may not cause
the grant of permission to a node in the higher level.
7. The method of claim 5,

wherein the grant of permission at a node in the higher level causes the grant
of permission to at least two nodes in the lower level.
8. The method of claim 1,

wherein the desired application has an application identification: and

step (a) comprises:

using the user identification and the application identification to determine
if the user is allowed access to the desired application.
9. A method of providing that a user is using a desired version of a desired
application in a system having at least one data server, comprising the steps of:

(a) selecting the desired application on the data server;

(b) obtaining a set of files for the desired version of the desired
application that the user is registered to use;

(c) using the obtained files, initiating the desired application; and

(d) using an application running in parallel with the initiated desired
application, checking the initiated desired application for pending versions.
10. The method of claim 9, further comprising the step of’

using the application running in parallel with the initiated desired application,
downloading a new desired version of the desired application.
11. The method of claim 10, wherein the new version of the desired application
is downloaded in the background.
12. The method of claim 9, further comprising the steps of:

using the initiated desired application, querying the server for the desired
version of the desired application that the user is desired to be using; and

using the initiated desired application, checking the desired version against

the version currently being used.

WO 97/24676 PCT/US96/20133

10

15

20

25

23

13. The method of claim 12, further comprising the step of:

preventing maintaining access to the desired application if the desired
version does not match the version currently being used.
14. A method of developing a new version of an application on a system for at
least one user while an old version of the application is running on the system,
wherein the system has at least one data server, comprising the steps of*

(a) opening a make utility application on the data server;

(b) building a new version of the application in the utility application;

(c) creating a tar file which contains the new version of the application;

(d) copying the tar file to a predetermined area and into a predetermined
format; and

(e) testing the new version of the application in the copied tar file.
15. The method of claim 14, further comprising the step of:

releasing the tested new version of the application to at least one user.
16. The method of claim 14, wherein the tar file includes a source code and a
set of files as required to build and execute the new version of the application.
17. A method of developing a new version of an application and providing that a
user uses the new version of the application when desired in a system having at least
one data server, comprising the steps of:

(a) creating a tar file which contains the new version of the application
on at least one data server;

(b) copying the tar file to a predetermined area and into a predetermined
format,;

(c) testing the new version of the application in the copied tar file;

(d) obtaining a set of files for the new version of the application when
the user is registered to use the new version;

(e) using the obtained files, initiating the desired application; and

D using an application running in parallel with the initiated application,

checking the initiated application for pending versions.

WO 97/24676 PCT/US96/20133

10

15

24

18. A method of providing for the security and integrity of at least one application
and at least one database in a system having at least one server wherein a user
enters user identification, comprising the steps of :

(a) accessing a desired application on the data server;

(b) accessing a file having data comprising a directed acyclic graph
structure, said directed acyclic graph structure having at least two levels of nodes,
each node providing for indicating the grant or denial of permission to maintain
access to a specific application,;

(c) using user identification, determining whether the user is authorized
to maintain access to the desired application;

(d) using user identification, obtaining a set of files for a desired version
of the desired application that the user is registered to use;

(e) using the obtained files, initiating the desired application; and

() using an application running in parallel with the initiated desired

application, checking the initiated desired application for pending versions.

PCT/US96/20133

WO 97/24676
1/75
120
4/ A
o 163 | Dota ’/; 8
ransaction Server
Generator ‘(1 05 N 135
1 ')
\ Data 150 / \{ A
Directory
‘/120 Server A/ 160
105 1 16
Transaction 150 é Data / B,
Generator Data / Server }
2 glrectory o 135
erver O
2 \{ B
‘/1 20 o
Data 150 | 18
105 Directory ‘/ j = O
Transaction Sewﬁ r / C
Generator | <— Data }
3 Server | 115
DDS FUNCTIONALITY C
O Co
@) - 1 o)
O 1307 | (&S0 S ion o
120
Transaction 175 | Data 160
Generator Server
N X—REF M 4/
Seqver ~_170
@)
@)
100 @]
X—REF
Se;\'lver _170

FIG. |

SUBSTITUTE SHEET (RULE 26)

WO 97/24676 PCT/US96/20133

2/5

[B
| 1
[l
T b 3
| 10 |
| | | 3
B8 ’il
11 < 4

y d

A
A 9 ﬁﬁ 5
HIGHER :

GROUPING T \\
6

1ST GROUPING

I |
LOWEST LEVEL
|__OF DETAIL N

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 97/24676

3/5

PCT/US96/20133

doesn’t exist

Quit

exists

Verif

persono¥ ID doesn't exist

and

Quit

application

ID

Using user's
login name and
password, connect to

connection fails

L

No database
query aliowed

database server

v

Access
application

YES

REVOKE permission
or

Application

_— NO permission
checks permission P

—

of the stored

User informed
no access

procedure

GRANTpermission

Run stored
procedure

Does
application

use other
stored

to user

Return resuits

Exit
Application

procedures?

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 97/24676

User types
" Launch”

4L/5

user ID and
password

Accepted

Connect
to server

'

Y

PCT/US96/20133

Try
again

Launch writes file<application>.prf;
lounch starts file with 'Y’ flag in paraliel

!

Query for
"pending” version

Retrieve and present
Set of applications

Download into
background

File with
"Y' flag

l

User picks
application

l

Query for
application
information

Server returns
set of files;

one file has exec
flag set to 'Y’

Entered

Access
application

QuIT

version

User action required
to replace existing
version with pending

'

Query server
for version

Error message
"User is not registered
0] . ”
for this version

Download files
with corrgct
size_an
permissions

'

Y

QuIT Run

application

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 97/24676 PCT/US96/20133

5/5

Developer w
types
"make install” CM changes
effective date
to "today”
CM executes ‘
"pull” script
TUMS used
¢ to register
users
Execute ‘
"make CM” .
Distributed to
users as
‘ users launch
Shows login
screen; CM
enters login
information

v

Read, parses
"register. src”;
insert application
and files

into server

'

QA modifies
apps. users
to allow tester

YES FIG. 5

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US96/20133

A. CLASSIFICATION OF SUBJECT MATTER
1IFC(6) :GO6F 13/00, 12/14, 9/44
US CL :Pleasc See Extra Shect.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 1395/182.16, 703, 674, 619, 186, 603, 609, 200.09, 712, 218; 370/432

Documentation searched other than minimum documentation to the extent that such documents are included in the ficids scarched

Electronic dats base consulted during the international search (name of data base and, where practicable, scarch terms used)
APS, MAYA, EIC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Reievant to claim No.

Y,P US 5,495,610 A (SHING ET AL) 27 February 1996| 9-18
(27/02/96), see entire document.

Y US 4,558,413 A (SCHMIDT ET AL) 10 December 1985] 1-18
(10/12/85), see col. 3, lines 1-55, col. 4, lines 3-56, col. 10,
lines 4-21, col. 11, lines 1-42, col. 17, lines 34-60, col. 20,
lines 59-68, col. 21, lines 1-9, 54-68, col. 39, lines 56-68,
col. 40, lines 1-68.

Y US 5,163,147 A (ORITA) 10 November 1992 (10/11/92),] 1-18
see col. 1, lines 10-68, col. 2, lines 1-19, cols. 3-4.

@ Further documents are listed in the continuation of Box C D Sce patent family annex.

. Special catageries of cited documens: T iater document published afier the avarnational filing date or priority

. i X daie and ot i coaflict with the appilication but cited %0 understand the
*A° documnent the generni of the an which considered - P i i
Soane defming the ¢ ale an ® ot primcipls or theory underlying the iavention
E cartier document published 0n or after the intoraational filing date % docum _f_‘c;dwl' o e e e e
L document which may throw doubss om priovity claim(s) or which is when the documant is uken alons
:.d*r.-.(.:gm ! dote of of othes Y Mofmm&chndm_mh
] sep whea the document
0 MMEnaﬂdm use, exhibition or other Mvﬂﬂﬂmﬂh-ﬂm such combimation
being obvious 10 & person akiiled i the art
P docuament published prior 1o the istorsational filing date but later thae 4 document sseamber of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the intcrnational search report
05 FEBRUARY 1997 0 l APR 1997
A
Name and mailing address of the ISA/US ‘ rized officer
Commofmw'l'm w
CHARLES RONES (XN

\Vm b.C. 2023t
Facsimile No. (703) 305-3230 No. _ (703) 308-9600

Bavewe DITNICAMN (snrnnrd ehret Iniv 1007V

INTERNATIONAL SEARCH REPORT International application No.

PCT/US96/20133

C (Coatinuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriaie, of the rcicvant passages

Relevant to claim No.

Y

> > > >

col. 7, lines 41-64, col. 18, lines 37-68, col. 32, lines 19-68, and
col. 35, lines 11-22,

(13/10/92), see Abstract, col. 1, lines 1-68, col. 2, lines 1-68, col.
3, lines 40-68, col. 4, lines 36-68, col. 5, lines 1-36, 49-68, col.
6, lines 43-66, col. 7, lines 39-46.

(06/10/87), see col. 1, lines 29-42, col. 2, lines 44-61, col. 7,

lines 1-41.
US 5,442,791 A (WRABETZ ET AL) 15 August 1995 (15/08/95).

(31/05/94).

US 5,432,934 A (LEVIN ET AL) 11 July 1995 (11/07/93), see 37

US 4,651,279 A (SUZUKI) 17 March 1987 (17/03/87). 5-7
US 5,155,847 A (KIROUAC ET AL) 13 October 1992 1-18

US 4,698,752 A (GOLDSTEIN ET AL) 06 October 1987 1-8, 18

14-16

US 5,493,682 A (TYRA ET AL) 20 February 1996 (20/02/96). 14-16
US 5,261,102 A (HOFFMAN) 09 November 1993 (09/11/93). 1-8

US 5,317,729 A (MUKHERIJEE ET AL) 31 May 1994 9-17

US 5,440,730 A (ELMASRI ET AL) 08 August 1995 (08/08/95) {9-18

Form PCT/ISA/210 (continuation of second sheet)(july 1992)w

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/20133

A. CLASSIFICATION OF SUBJECT MATTER:
USCL :

395/182.16, 703, 674, 619, 186, 603, 609, 200.09, 712, 218; 370/432

Form PCT/ISA/210 (extra sheet)(july 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

