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SYSTEMAND METHOD FOR RESTORATION 
OF DYNAMIC RANGE OF IMAGES AND 

VIDEO 

TECHNICAL FIELD 5 

Embodiments of the present disclosure relate to image 
processing, and, more particularly, to the field of restoration 
of dynamic range within video or images without directly 
coupling to an upstream encoding or decoding process. 10 

BACKGROUND 

A common artifact typically present in statistical, predic 
tive, and perceptual image compression systems is a reduc- 15 
tion of color or brightness dynamic range. This is intentional, 
in most cases, since the quantization applied to reduce the 
dynamic range is not meant to be perceivable by most humans 
under normal viewing conditions. However, as channel trans 
mission bandwidths become more and more constrained, and 20 
more and more compression of images and video is 
demanded, typical encoders—and accordingly their matched 
decoders introduce several objectionable artifacts at the 
final viewing end under these constrained conditions. 

In addition to blocking artifacts prevalent with previous 25 
generation encoding standards such as MPEG2, artifacts 
introduced by contemporaneous compression technologies 
such as H.264 or MPEG-4 Part 10, Advanced Video Coding 
(MPEG-4 AVC), and High Efficiency Video Coding (HEVC), 
have traded blocking artifacts for other artifacts such as blur- 30 
ring and color-banding when transmission capacity is under 
provisioned. Color banding is one of the most noticeable of 
these artifacts because of spatial high-frequency color con 
tours that are readily apparent in still images, and more appar 
ent when the banding or contour edges are moving within an 35 
image sequence. In addition, encoding standards that fre 
quently exhibit color banding, such as JPEG, are likely to 
continue to be prevalent because of their early success. These 
artifacts have several names known in the art; less formally, 
called “banding', or “color contouring. These artifacts are 40 
more broadly known as dynamic range reduction, since they 
are a result of digital quantization of a signal under analysis. 

Alleviating such artifacts has many possible solutions, 
Such as increasing the transmission bandwidth or increasing 
color space subsampling from YUV420 subsampling to those 45 
such as YUV444, but come at considerable costs. One solu 
tion would treat color banding artifacts as a post-decoder 
post-processing solution prior to rendering to a display 
device. 

Attempts have been made to address the general problem 50 
of generating high-dynamic range images from low-dynamic 
range images, but they suffer from some critical disadvan 
tages. 

U.S. Patent Application Publication No. 2014/0079335 
discloses a high-dynamic-range imaging system that analy- 55 
ses relative exposure levels by using motion analysis. How 
ever, this approach only works for video and moving imagery, 
and is not suitable for single images. 

U.S. Patent Application Publication No. 2013/0107956 
(hereinafter “the 956 publication') discloses a method to 60 
generate high dynamic range images from low dynamic range 
images. However, the method disclosed in the 956 publica 
tion employs a predictive mapping that is closely coupled to 
the image encoder and decoder, which requires changes to an 
end-user device decoder. This renders the method disclosed 65 
in the 956 publication infeasible to employ for most mobile 
applications. Additionally, the method disclosed in the 956 

2 
publication requires high-dynamic range reference imagery 
such as YUV444, which is usually not available. 

U.S. Patent Application Publication No. 2014/0177706 
(hereinafter “the 706 publication') discloses a method and 
system that provides Super-resolution of quantized images 
and video. While the method disclosed in the 706 publication 
could be altered to restore dynamic range instead of spatial 
resolution, the method disclosed in the 706 publication is 
similarly closely coupled to the encoder and decoder pro 
cesses, rendering the method disclosed in the 706 publica 
tion infeasible for mobile applications. 

Other related art methods specifically attempt to solve the 
problem of banding and contouring of quantized images, such 
as found with aggressively compressed images or video, with 
a decoupled post-processing method or system. Typically 
Such methods operate by selectively blurring parts of a given 
low-dynamic range image, and differ primarily by the method 
that masks which regions are and are not spatially blurred. 
Such filtering is a Subset of the general dynamic range resto 
ration problem. 

U.S. Pat. No. 8,582,913 (hereinafter “the 913 patent”) 
discloses a post-processing controller to generate high-dy 
namic range images from low dynamic range images. While 
the controller as disclosed is amenable to real-time opera 
tions, it uses a brightness enhancement function tied to the 
angular spatial frequency represented by features in animage, 
which requires that the disclosed process have information 
about the display width and height, and the intended distance 
of the viewer from the display, limiting its application to 
professional applications and rendering the method disclosed 
in the 913 patent unsuitable for general consumer applica 
tions. Furthermore, the method disclosed in the 913 patent 
uses simple thresholds in its masking operation, meaning that 
it is prone to false positives such as Smoothing areas with no 
banding but legitimate image detail, and false negatives Such 
as not eliminating contouring artifacts where they should be 
treated. 

International PCT Publication No. WO/2005/101309 
(hereinafter “the 309 publication') also discloses methods 
and systems for converting images from low dynamic range 
to high dynamic range. However, like several others, the 
methods disclosed in the 309 publication uses simple thresh 
olds in its masking operation, meaning that it is not robust, 
and prone to false positives such as Smoothing areas with no 
banding but legitimate image detail, and false negatives Such 
as not eliminating contouring artifacts where they should be 
treated. 

Such banding and contouring artifacts may be treated in the 
frequency domain by selective convolution, however the pro 
cess of converting to and from the frequency domain renders 
selective convolution ineffective for processing full-resolu 
tion imagery on contemporaneous mobile consumer devices. 

In addition, the foregoing methods are generally applied to 
a single purpose, namely the reduction of image banding and 
contouring artifacts due to limited dynamic range of digital 
sensors or compression-related quantization. The foregoing 
methods have no general applicability to other related prob 
lems in the art Such as quantization errors of vertex location of 
3D models, and the restoration of dynamic range of other 
D-dimensional datasets. 

SUMMARY 

The above-described problems are remedied and a techni 
cal solution is achieved in the art by providing a system and 
method for restoration of the dynamic range of images, video, 
and other D-dimensional data sets without coupling to an 
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upstream encoding, decoding, or quantization process. In one 
example, a media content processor of a processing device 
may generate a Gaussian pyramid from input image data or 
Video data. The media content processor may generate a 
structure tensor field comprising a set of structure tensors for 
each pixel of the input image data or video data. The media 
content processor may compute an eigensystem analysis for 
each of the structure tensors of each pixel of the input image 
data or video data, resulting in a plurality of eigenvalue fields. 
The media content processor may generate a Gaussian pyra 
mid from each of the plurality of eigenvalue fields. 
The color channel processor may select one or more of the 

eigenvalues of each element of the lowest resolution level of 
computed Gaussian pyramids from each of the eigenvalue 
fields to assign a linear weight to each pixel of the lowest 
resolution Gaussian pyramid computed from each of the 
eigenvalue fields. The color channel processor may interpo 
late, using a corresponding linear weight, between (1) each 
pixel of the lowest resolution pyramid of the Gaussian pyra 
mid computed from the input image data or video data, and 
(2) a corresponding pixel of the plurality of pixels of the input 
image data or video data using a corresponding computed 
weight to produce a restored dynamic range image or video. 

The color channel processor may display the restored 
dynamic range image data or video data on a display or 
transmit the restored dynamic range image or video to one or 
more downstream devices. In an example, the linear weight 
ing may be scaled according to a region-of-Support used for 
the structure tensor analysis. In an example, the structure 
tensor analysis may be performed with only one channel— 
such as the luminance of each pixel of an input image while 
the weighted interpolation may jointly be performed on all 
channels of a multichannel image—such as all 3 channels 
(luminance and Cb, Cr) of a YCbCr image. In an example, the 
input image Gaussian pyramid and the eigenvalue field Gaus 
sian pyramids may be calculated in parallel. 
The above-described problems are remedied and a techni 

cal solution is achieved in the art by providing a system and 
method for restoration of the dynamic range of images, video, 
and other D-dimensional data sets without coupling to an 
upstream encoding, decoding, or quantization process. In one 
example, a media content processor of a processing device 
may receive, from an upstream device, a D-dimensional vec 
tor data set of media content, wherein D is greater than or 
equal to one. The media content processor may apply a low 
frequency-pass method to the received D-dimensional vector 
data set of media content to generate a low-frequency D-di 
mensional vector data set of media content. The media con 
tent processor may obtain a structure tensor field comprising 
a set of D-dimensional structure tensors corresponding to 
each vector of the received D-dimensional vector data set of 
media content. The media content processor may performan 
eigensystem analysis for each structure tensor in the field of 
structure tensors to generate a plurality of Deigenvalue fields 
comprising D eigenvalues for each vector of the received 
D-dimensional vector data set of media content. The media 
content processor may interpolate between each vector of the 
received D-dimensional vector data set of media content and 
a corresponding vector from the low-frequency D-dimen 
sional vector data set of media content in view of one or more 
of the D eigenvalues for each vector of the plurality of D 
eigenvalue fields to produce a restored-dynamic range D-di 
mensional vector data set of media content. The media con 
tent processor may output the restored-dynamic range D-di 
mensional vector data set of media content to a display or 
downstream device. 
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4 
In an example, the media content may comprises at least 

one of audio, one or more two-dimensional still images, one 
or more three-dimensional still images, two-dimensional 
Video, three-dimensional video, magnetic resonance imaging 
(MRI) data, computed tomography (CT)-scan data, geomet 
ric data, seismic data, holographic data, or meteorological 
data. 

In an example, the low-frequency-pass method may com 
prise the media content processor generating a D-dimen 
sional Gaussian pyramid from the received D-dimensional 
vector data set of media content and selecting D-dimensional 
vector data from the lowest dimension pyramid level of the 
D-dimensional Gaussian pyramid to generate the low-fre 
quency D-dimensional vector data set of media content. 

In an example, the media content processor obtaining a set 
of D-dimensional structure tensors may comprise the media 
content processor computing a set of D-dimensional direc 
tional gradients for each vector of the received D-dimensional 
vector data set of media content. In an example, the media 
content processor obtaining a set of D-dimensional structure 
tensors may comprise the media content processor perform 
ing a structure tensor analysis with one element of each vector 
of the received D-dimensional vector data set of media con 
tent. 

In an example, interpolating may comprise the media con 
tent processor linearly interpolating between each vector of 
the received D-dimensional vector data set of media content 
and the corresponding vector from the low-frequency D-di 
mensional vector data set of media content. In an example, 
interpolating may comprise the media content processor gen 
erating a Gaussian pyramid from each of the plurality of D 
eigenvalue fields. The media content processor may further 
employ one or more of the D eigenvalues to assign linear 
weights to each vector of the lowest resolution plurality of D 
eigenvalue fields. The media content processor may further 
employ the linear weights to interpolate between each vector 
of the received D-dimensional vector data set of media con 
tent and the corresponding vector from the low-frequency 
D-dimensional vector data set of media to produce the 
restored-dynamic range D-dimensional vector data set of 
media content. In an example, the linear weights may be 
assigned in view of a region-of-Support used for obtaining the 
structure tensor field. 

In an example, the media content processor employing one 
or more of the Deigenvalues to assign linear weights to each 
vector of the lowest resolution plurality of Deigenvalue fields 
may comprise the media content processor selecting an 
eigenvalue of the Deigenvalues indicative of a homogenous 
region of support about a vector of the received D-dimen 
sional vector data as the lower bound for assigning the linear 
weights. The media content processor may further select one 
of the remaining eigenvalues of the Deigenvalues indicative 
of an edge or highly textured region of support about a vector 
of the received D-dimensional vector data as the upper bound 
for assigning the linear weights. 

In an example, interpolating may comprise the media con 
tent processor performing an interpolation jointly between all 
element of each vector of the received D-dimensional vector 
data set of media content and the corresponding elements of 
each vector from the low-frequency D-dimensional vector 
data set of media content. 

In an example, the interpolating and applying a low-fre 
quency-pass method may be performed in parallel. 

In an example, each vector of the received D-dimensional 
vector data of media content, the low-frequency D-dimen 
sional vector data set of media content, and the restored 
dynamic range D-dimensional vector data of media content 
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may each comprise N-dimensional Scalar values where N is 
equal to or greater than 1. In an example, the received D-di 
mensional vector data set of media content, the low-fre 
quency D-dimensional vector data set of media content, and 
the restored-dynamic range D-dimensional vector data set of 
media content may each comprise D-dimensional pixel val 
ues. In an example, the pixel values may comprise color 
values or luminance values or both color values and lumi 
nance values. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention may be more readily understood 
from the detailed description of examples presented below 
presented below considered in conjunction with the attached 
drawings and in which like reference numerals refer to similar 
elements. 

FIG. 1 is a block diagram of an example computing system 
that receives and restores the dynamic range of images and 
Video without close coupling to an upstream encoding or 
decoding process in which examples of the present disclosure 
may operate. 

FIG. 2 is a flow diagram illustrating an example of a 
method for restoration of the dynamic range of images or 
Video without close coupling to an upstream encoding, 
decoding, or quantization process using the system of FIG.1. 

FIG. 3 is a block diagram of another example computing 
system that receives and restores the dynamic range of D-di 
mensional vector data set of media content, wherein D is 
greater than or equal to one, without close coupling to an 
upstream encoding or decoding process in which examples of 
the present disclosure may operate. 

FIG. 4 is a flow diagram illustrating one example of a 
method for restoration of the dynamic range of D-dimen 
sional media content without close coupling to an upstream 
encoding, decoding, or quantization process using the system 
of FIG. 3. 

FIG. 5 shows an example input image. 
FIG. 6 shows a schematic of a constructed Gaussian Pyra 

mid. 
FIG. 7 shows an example Gaussian Pyramid computed 

from the example input image of FIG. 6. 
FIG. 8 shows a computed gradient field (dX, dY) from the 

example input image of FIG. 6. 
FIG.9 shows the interpretation of the eigenvalues lambda 

and lambda for a structure tensor for a D-dimensional data 
set where D-2, Such as an image. 

FIG. 10 shows the two eigenvalue fields (lambda and 
lambda) computed from the structure tensors of the example 
input image of FIG. 6, normalized for visualization in the 
figure. 

FIG.11 shows a close up of part of the example input image 
of FIG. 6 with severe degradation of dynamic range, notably 
banding in the shoulder and arm. 

FIG. 12 shows a Gaussian pyramid constructed from the 
lambda eigenvalue field of FIG. 11. 

FIG. 13 shows a related art attempted reconstruction of the 
dynamic range of the image in FIG. 12 having loss of detail in 
the hair and face regions, plus severe contouring is not elimi 
nated. 

FIG. 14 shows reconstruction of the dynamic range of the 
image of FIG. 12 using examples of the present disclosure. 

FIG. 15 illustrates a diagrammatic representation of a 
machine in the example form of a computer system within 
which a set of instructions, for causing the machine to per 
formany one or more of the methodologies discussed herein, 
may be executed. 
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6 
It is to be understood that the attached drawings are for 

purposes of illustrating the concepts of the invention and may 
not be to scale. 

DETAILED DESCRIPTION 

The above-described problems are remedied and a techni 
cal solution is achieved in the art by providing a system and 
method for the restoration of the dynamic range of images, 
video or other D-dimensional data sets without close cou 
pling to an upstream encoding, decoding, or quantization 
process. Examples of the present disclosure permit reduced 
transmission bandwidth of images and video, requiring no 
changes to the image or video encoders, decoders, or stan 
dards thereof, and without introducing visible artifacts. 
Examples of the present disclosure are directed to restoring 
the dynamic range of either luminance, color, or both, within 
in the category of video or images. Those skilled in the art will 
appreciate the application of examples of the present disclo 
Sure in other fields Such as medical imaging, image analysis 
and classification, and general signal dynamic range restora 
tion for Such signal types as audio, 3D datasets, holographic 
datasets, and other media and data types constrained by 
dynamic range, by way of non-limiting examples. Although 
examples of the present disclosure may be described in terms 
of images and video, the restoration of dynamic range for 
other D-dimensional datasets where D is greater than 1 as in 
images and video, Such as 3D scans, meteorological and 
seismic data, can employ concepts disclosed herein to 
improve upon acquisition system limits with respect to 
dynamic range. 

Examples of the present disclosure may be configured to 
restore the dynamic range of images, video and other D-di 
mensional data sets without close coupling to an upstream 
encoding, decoding, or other quantization process. Examples 
of the present disclosure are efficient enough to run on real 
time for HD scale video on end-user devices such as cell 
phones and set top boxes, robustly without degrading image 
detail and high-frequency spatial information Such as fine 
textures, detail, and edge information. 

Eigensystem analysis is known in the art for Such tasks as 
principal component analysis, fluid dynamics calculations, 
and material stress calculations. Eigensystem analysis can 
provide a very robust D-dimensional masking function for a 
post-processing method to restore dynamic range in images 
and other D-dimensional data sets. U.S. Pat. No. 8.355,534 
(hereinafter “the 534 patent') discloses eigensyetem analy 
sis of spatio-temporal structure tensors of input images, but 
the eigensyetem analysis is employed primarily to determine 
the orientation of edge features in a very accurate way so as to 
avoid the well-known aperture problem in motion estimation. 

Another use of eigensystem analysis includes the compu 
tation of the principal component(s) of a color distribution in 
animage, such as taught in US Patent Application Publication 
No. 2014/0098263 (hereinafter “the 263 publication”). 
However, the 534 patent and the 263 do not benefit from the 
use of a structure tensor's eigenvaluefields as a Smooth mask 
ing function for dynamic range enhancement. 

In the following description, numerous details are set forth. 
It will be apparent, however, to one skilled in the art, that the 
present disclosure may be practiced without these specific 
details. In some instances, well-known structures and devices 
are shown in block diagram form, rather than in detail, in 
order to avoid obscuring examples of the present disclosure. 

FIG. 1 is a block diagram of an example computing system 
100 that receives and restores the dynamic range of images 
and video without close coupling to an upstream encoding or 
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decoding process in which examples of the present disclosure 
may operate. By way of non-limiting example, the computing 
system 100 may be configured to receive encoded image data 
or video data from one or more data sources 105. The com 
puting system 100 may also include a computing platform 
115. The computing platform 115 may comprise a host sys 
tem 120, which may comprise, for example, a processing 
device 125. Such as one or more central processing units 
130a-130n. The processing device 125 may be coupled to a 
host memory 135. The host memory 135 may store the 
encoded image data or video data received from the one or 
more data sources 105 in an image data buffer 150. The 
encoded image data or video data may be received by a 
receiver 160, decoded by a decoder 365, and passed to an 
image data buffer 150. The receiver 160 may receive the 
encoded image data or video data either directed from the one 
or more data sources 105 or over a network 110. In one 
example, one or both of the receiver 360 or the decoder 365 
may be external to the processing device 325 or the comput 
ing platform 115. In another example, one or both of the 
receiver 160 or the decoder 165 may be integrated with the 
processing device 125 or the computing platform 115. 
The processing device 125 may further implementagraph 

ics processing unit 140 (GPU). It will be appreciated by those 
skilled in the art that other co-processor architectures may be 
utilized besides GPUs, such as, but not limited to, DSPs, 
FPGAs, or ASICs, or adjunct fixed-function features of the 
processing device 125 itself. It will further be appreciated by 
those skilled in the art that the GPU 140 may be collocated on 
the same physical chip or logical device as the central pro 
cessing units 130a-130n, also known as an “APU”, such as 
found on mobile phones and tablets. Separate GPU and CPU 
functions may be found on computer server systems where 
the GPU is a physical expansion card, and personal computer 
systems and laptops. The GPU 140 may comprise a GPU 
memory 137. It will be appreciated by those skilled in the art 
that the host memory 135 and GPU memory 137 may also be 
collocated on the same physical chip(s) or logical device, 
such as on an APU. It will further be appreciated by those 
skilled in the art that the decoding processing device 125 may 
be partially or wholly integrated with the encoding process 
ing device 125 into the computing system 100 of FIG. 1 to 
provide both encoding and decoding functionality. 
The processing device 125 may be configured to receive 

encoded image data or video data from the data source 105 
through the receiver 160. The processing device 125 may be 
configured to create the image data buffer 150 based on the 
received encoded image data or video data to a decoder 165 to 
decode the image buffer 150. The decoder 165 may be con 
figured to transfer image data or video data stored in the 
image buffer 150 to the GPU memory 137 as image data or 
video data stored in the image buffer 155. 
The processing device 125 may be configured to imple 

ment a color channel processor 145 to receive the image data 
or video data stored in the image buffer 155 and received from 
the decoder 165, a demultiplexer (not shown) or an unwrap 
per (not shown). In one example, the processing device 125 
may implement the color channel processor 145 as a compo 
nent of the GPU 140. 

In one example, the color channel processor 145 may be 
configured to compute a Gaussian pyramid from the image 
data or video data stored in the image buffer 155. The color 
channel processor 145 may be configured to create structure 
tensors for each of the plurality of pixels of image data or 
video data stored in the image buffer 155. The color channel 
processor 145 may be configured to compute an eigensystem 
analysis of structure tensors corresponding each of the plu 
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8 
rality of pixels of image data or video data stored in the image 
buffer 155 to generate eigenvalue fields from the structure 
tensors. The color channel processor 145 may be configured 
to compute Gaussian pyramids from each of the eigenvalue 
fields. 
The color channel processor 145 may be configured to 

select one or more of the eigenvalues of each element of the 
lowest resolution level of computed Gaussian pyramids from 
each of the eigenvalue fields to assign a linear weight to each 
pixel of the lowest resolution Gaussian pyramid computed 
from each of the eigenvalue fields. The color channel proces 
Sor may be configured to interpolate, using a corresponding 
linear weight, between (1) each pixel of the lowest resolution 
pyramid of the Gaussian pyramid computed from the image 
data or video data stored in the image buffer 155, and (2) a 
corresponding pixel of the plurality of pixels of input image 
data or video data stored in the image buffer 155 using a 
corresponding computed weight to produce a restored 
dynamic range image or video. The color channel processor 
145 may be configured to convey the restored dynamic range 
image or video into the image buffer 155, suitable for display 
output on a display 170 or for transmission to one or more 
downstream devices 175. 

FIG. 2 is a flow diagram illustrating an example of a 
method 200 for restoration of the dynamic range of images or 
Video without close coupling to an upstream encoding, 
decoding, or quantization process. The method 200 may be 
performed by a computer system 100 of FIG. 1 and may 
comprise hardware (e.g., circuitry, dedicated logic, program 
mable logic, microcode, etc.), software (e.g., instructions run 
on a processing device), or a combination thereof. In one 
example, the method 100 may be performed primarily by the 
color channel processor 145 of the computing system 100 of 
FIG 1. 
As shown in FIG. 2, to permit the computing system 100 to 

decode image data or video data, at block 205, the receiver 
160 may receive encoded image data or video data from the 
data source 105. At block 210, the decoder 165 may decode 
the encoded image data or video data, and may place the 
decoded image data or video data in an image data buffer 150 
of the processing device 125. The processing device 125 may 
transfer the decoded image data or video data in the image 
data buffer 150 to GPU image buffer 155 of the GPU memory 
137. The color channel processor 145 may receive the 
decoded image data or video data in the image data buffer 155 
from GPU memory 137. 
The decoded image data or video data in the image data 

buffer 155 may comprise a plurality of pixels, wherein each 
pixel comprises one or more color channels. 
At block 215, the color channel processor 145 may com 

pute a Gaussian pyramid from the decoded image data or 
video data in the image data buffer 155. At block 220, color 
channel processor 145 may create structure tensors for each 
of the plurality of pixels in the input image buffer 155. At 
block 225, the color channel processor 145 may compute an 
eigensystem analysis of the structure tensors to generate 
eigenvalue fields from the structure tensors. At block 220, the 
color channel processor 145 may compute Gaussian pyra 
mids from each of the eigenvalue fields. At block 235, the 
color channel processor 145 may select one or more of the 
eigenvalues of each element of the lowest resolution level of 
computed Gaussian pyramids from each of the eigenvalue 
fields to assign a linear weight to each pixel of the lowest 
resolution Gaussian pyramid computed from each of the 
eigenvalue fields. At block 240, the color channel processor 
interpolates, using a corresponding linear weight, between 
(1) each pixel of the lowest resolution pyramid of the Gaus 
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sian pyramid computed from the image data or video data 
stored in the image buffer 155, and (2) a corresponding pixel 
of the plurality of pixels of input image data or video data 
stored in the image buffer 155 using a corresponding com 
puted weight to produce a restored dynamic range image or 
video. 
The color channel processor 145 may convey the restored 

dynamic range image or video into the image buffer 155, 
suitable, at block 245, for the color channel processor 145 to 
display as output on a display 170 or to transmit to one or 
more downstream devices 175. 

FIG. 3 is a block diagram of another example computing 
system 300 that receives and restores the dynamic range of 
D-dimensional vector data set of media content (collectively 
“D-dimensional media content”), wherein D is greater than or 
equal to one, without close coupling to an upstream encoding 
or decoding process in which examples of the present disclo 
Sure may operate. 

In an example, the D-dimensional media content may com 
prise at least one of audio, one or more two-dimensional still 
images, one or more three-dimensional still images, two 
dimensional video, three-dimensional video, magnetic reso 
nance imaging (MRI) data, computed tomography (CT)-scan 
data, geometric data, seismic data, holographic data, or 
meteorological data. 
By way of non-limiting example, the computing system 

300 may be configured to receive encoded D-dimensional 
media content from one or more media content sources 305. 
The computing system 300 may also include a computing 
platform 315. The computing platform 315 may comprise a 
host system 320. The host system 120 may comprise, for 
example, a processing device 325. Such as the one or more 
central processing units 330a-330m. The processing device 
325 may be coupled to the host memory 335. The host 
memory 335 may store the encoded D-dimensional media 
content received from the one or more media content sources 
305 in a media content buffer 350. The encoded D-dimen 
sional media content may be received by a receiver 360, 
decoded by a decoder 365, and passed to the media content 
buffer 350. The receiver 360 may receive the encoded D-di 
mensional media content either directly from the one or more 
media content sources 305 or over a network 310. In one 
example, one or both of the receiver 360 or the decoder 365 
may be external to the processing device 325 or the comput 
ing platform 315. In another example, one or both of the 
receiver 360 or the decoder 365 may be integrated with the 
processing device 325 or the computing platform 315. 
The processing device 325 may further implementagraph 

ics processing unit 340 (GPU). It will be appreciated by those 
skilled in the art that other co-processor architectures may be 
utilized besides GPUs, such as, but not limited to, DSPs, 
FPGAs, or ASICs, or adjunct fixed-function features of the 
processing device 325 itself. It will further be appreciated by 
those skilled in the art that the GPU 340 may be collocated on 
the same physical chip or logical device as the central pro 
cessing units 330a-330n, also known as an “APU”, such as 
found on mobile phones and tablets. Separate GPU and CPU 
functions may be found on computer server systems where 
the GPU 340 may be a physical expansion card, and personal 
computer systems and laptops. The GPU 340 may comprise a 
GPU memory 337. It will be appreciated by those skilled in 
the art that the host memory 335 and GPU memory 337 may 
also be collocated on the same physical chip(s) or logical 
device, such as on an APU. It will further be appreciated by 
those skilled in the art that the decoding processing device 
325 may be partially or wholly integrated with the encoding 
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10 
processing device 325 into the computing system 300 of FIG. 
3 to provide both encoding and decoding functionality. 
The processing device 325 may be configured to receive 

the encoded D-dimensional media content from the media 
content source 305 through the receiver 360. The processing 
device 325 may be configured to create the media content 
buffer 350 from the encoded D-dimensional media content 
and transmit the encoded D-dimensional media content to a 
decoder 365 to decode the D-dimensional media content 
stored in the media content buffer 350. The decoder 365 may 
be configured to transfer the D-dimensional media content 
stored in the media content buffer 350 to the GPU memory 
337 as input D-dimensional media content stored in the media 
content buffer 355. 
The processing device 325 may be configured to imple 

ment a media content processor 345 to receive the input 
D-dimensional media content stored in the media content 
buffer 355 from the decoder 365, demultiplexer (not shown) 
or unwrapper (not shown). In one example, the processing 
device 325 may implement the media content processor 345 
as a component of the GPU 340. 

In one example, the media content processor 345 may be 
configured to apply a low-frequency-pass method to the D-di 
mensional media content stored in the media content buffer 
155 to generate a low-frequency D-dimensional vector data 
set of media content (hereinafter “low frequency D-dimen 
sional media content). In an example, the low-frequency 
pass method may comprise the media content processor 345 
generating a D-dimensional Gaussian pyramid from the 
received D-dimensional media content stored in the media 
content buffer 355 and selecting a D-dimensional vector data 
from the lowest dimension pyramid level of the D-dimen 
sional Gaussian pyramid to generate the low-frequency D-di 
mensional media content. 

In one example, the media content processor 345 may be 
configured to obtain a structure tensor field comprising a set 
of D-dimensional structure tensors corresponding to each 
vector of the input D-dimensional media content stored in the 
media content buffer 355. In an example, the media content 
processor 345 obtaining a set of D-dimensional structure 
tensors may comprise the media content processor 345 com 
puting a set of D-dimensional directional gradients for each 
vector of the received D-dimensional media content. In an 
example, the media content processor 345 obtaining a set of 
D-dimensional structure tensors may comprise the media 
content processor 345 performing a structure tensor analysis 
with one element of each vector of the received D-dimen 
sional media content. 
The media content processor 345 may be configured to 

perform an eigensystem analysis for each structure tensor in 
the field of structure tensors to generate a plurality of D 
eigenvalue fields comprising Deigenvalues for each vector of 
the received D-dimensional media content. 
The media content processor 345 may be configured to 

interpolate between each vector of the received D-dimen 
sional media content stored in the media content buffer 355 
and a corresponding vector from the low-frequency D-dimen 
sional media content in view of one or more of the Deigen 
values for each vector of the plurality of Deigenvalue fields to 
produce a restored-dynamic range D-dimensional vector data 
set of media content (hereinafter “restored-dynamic range 
D-dimensional media content). 

In an example, interpolating may comprise the media con 
tent processor 345 linearly interpolating between each vector 
of the received D-dimensional media content and the corre 
sponding vector from the low-frequency D-dimensional 
media content. In an example, interpolating may comprise the 
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media content processor 345 generating a Gaussian pyramid 
from each of the plurality of Deigenvalue fields. The media 
content processor 345 may further employ one or more of the 
D eigenvalues to assign linear weights to each vector of the 
lowest resolution plurality of Deigenvalue fields. The media 5 
content processor 345 may further employ the linear weights 
to interpolate between each vector of the received D-dimen 
sional media content and the corresponding vector from the 
low-frequency D-dimensional media content to produce the 
restored-dynamic range D-dimensional media content. In an 10 
example, the linear weights may be assigned in view of a 
region-of-Support used for obtaining the structure tensor 
field. 

In an example, the media content processor 345 employing 
one or more of the Deigenvalues to assign linear weights to 15 
each vector of the lowest resolution plurality of Deigenvalue 
fields may comprise the media content processor selecting an 
eigenvalue of the Deigenvalues indicative of a homogenous 
region of support about a vector of the received D-dimen 
sional media content as the lower bound for assigning the 20 
linear weights. The media content processor may further 
select one of the remaining eigenvalues of the Deigenvalues 
indicative of an edge or highly textured region of Support 
about a vector of the received D-dimensional media content 
as the upper bound for assigning the linear weights. 25 

In an example, interpolating may comprise the media con 
tent processor 345 performing an interpolation jointly 
between all element of each vector of the received D-dimen 
sional media content and the corresponding elements of each 
vector from the low-frequency D-dimensional media content. 30 
The media content processor 345 may be configured to 

convey the restored-dynamic range D-dimensional media 
content into the media content buffer 355, suitable for display 
output on a display 370 or for transmission to one or more 
downstream devices 375. 35 

In an example, each vector of the received D-dimensional 
vector data set of media content, the low-frequency D-dimen 
sional vector data set of media content, and the restored 
dynamic range D-dimensional vector data set of media con 
tent may each comprise N-dimensional scalar values where N 40 
is equal to or greater than 1. In an example, the received 
D-dimensional vector data set of media content, the low 
frequency D-dimensional vector data set of media content, 
and the restored-dynamic range D-dimensional vector data of 
media content may each comprise D-dimensional pixel val- 45 
ues. In an example, the pixel values may comprise color 
values or luminance values or both color values and lumi 
nance values. 

FIG. 4 is a flow diagram illustrating one example of a 
method 400 for restoration of the dynamic range of D-dimen- 50 
sional media content without close coupling to an upstream 
encoding, decoding, or quantization process. The method 400 
may be performed by a computer system 300 of FIG. 3 and 
may comprise hardware (e.g., circuitry, dedicated logic, pro 
grammable logic, microcode, etc.), software (e.g., instruc- 55 
tions run on a processing device), or a combination thereof. In 
one example, the method 400 may be performed primarily by 
the media content processor 345 of the computing system 300 
of FIG. 3. 
As shown in FIG.4, to permit the computing system 300 to 60 

decode D-dimensional media content, at block 405, the 
receiver 360 may receive encoded D-dimensional media con 
tent from the data source 305. In an example, the D-dimen 
sional media content may comprise at least one of audio, one 
or more two-dimensional still images, one or more three- 65 
dimensional still images, two-dimensional video, three-di 
mensional video, magnetic resonance imaging (MRI) data, 

12 
computed tomography (CT)-scan data, geometric data, Seis 
mic data, holographic data, or meteorological data. 
At block 410, the decoder 365 may decode the encoded 

D-dimensional media content, and may place the decoded 
D-dimensional media content in the media content buffer 350 
of the processing device 325. The processing device 325 may 
transfer the decoded D-dimensional media content in the 
media content buffer 350 to GPU media content buffer 355 of 
the GPU memory 337. The media content processor 345 may 
receive the decoded D-dimensional media content in the 
media content buffer 355 from GPU memory 337. 
At block 415, the media content processor 345 may apply 

a low-frequency-pass method to the D-dimensional media 
content stored in the media content buffer 355 to generate low 
frequency D-dimensional media content. In an example, the 
low-frequency-pass method may comprise the media content 
processor 345 generating a D-dimensional Gaussian pyramid 
from the received D-dimensional media content stored in the 
media content buffer 355 and selecting a D-dimensional vec 
tor data from the lowest dimension pyramid level of the 
D-dimensional Gaussian pyramid to generate the low-fre 
quency D-dimensional media content. 
At block 420, the media content processor 345 may obtain 

a structure tensor field comprising a set of D-dimensional 
structure tensors corresponding to each vector of the decoded 
D-dimensional media content stored in the media content 
buffer 355. In an example, the media content processor 345 
obtaining a set of D-dimensional structure tensors may com 
prise the media content processor 345 computing a set of 
D-dimensional directional gradients for each vector of the 
received D-dimensional media content. In an example, the 
media content processor 345 obtaining a set of D-dimen 
sional structure tensors may comprise the media content pro 
cessor 345 performing a structure tensor analysis with one 
element of each vector of the received D-dimensional media 
COntent. 

At block 425, the media content processor 345 may per 
form an eigensystem analysis for each structure tensor in the 
field of structure tensors to generate a plurality of Deigen 
value fields comprising Deigenvalues for each vector of the 
decoded D-dimensional media content. 
At block 430, the media content processor 345 may inter 

polate between each vector of the received D-dimensional 
media content stored in the media content buffer 355 and a 
corresponding vector from the low-frequency D-dimensional 
media content in view of one or more of the Deigenvalues for 
each vector of the plurality of Deigenvalue fields to produce 
restored-dynamic range D-dimensional media content. 

In an example, interpolating may comprise the media con 
tent processor 345 linearly interpolating between each vector 
of the received D-dimensional media content and the corre 
sponding vector from the low-frequency D-dimensional 
media content. In an example, interpolating may comprise the 
media content processor 345 generating a Gaussian pyramid 
from each of the plurality of Deigenvalue fields. The media 
content processor 345 may further employ one or more of the 
Deigenvalues to assign linear weights to each vector of the 
lowest resolution plurality of Deigenvalue fields. The media 
content processor 345 may further employ the linear weights 
to interpolate between each vector of the received D-dimen 
sional media content and the corresponding vector from the 
low-frequency D-dimensional media content to produce the 
restored-dynamic range D-dimensional media content. In an 
example, the linear weights may be assigned in view of a 
region-of-Support used for obtaining the structure tensor 
field. 
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In an example, the media content processor 345 employing 
one or more of the Deigenvalues to assign linear weights to 
each vector of the lowest resolution plurality of Deigenvalue 
fields may comprise the media content processor selecting an 
eigenvalue of the Deigenvalues indicative of a homogenous 
region of support about a vector of the received D-dimen 
sional media content as the lower bound for assigning the 
linear weights. The media content processor may further 
select one of the remaining eigenvalues of the Deigenvalues 
indicative of an edge or highly textured region of Support 
about a vector of the received D-dimensional media content 
as the upper bound for assigning the linear weights. 

In an example, interpolating may comprise the media con 
tent processor 345 performing an interpolation jointly 
between all element of each vector of the received D-dimen 
sional media content and the corresponding elements of each 
vector from the low-frequency D-dimensional media content. 
The media content processor 345 may convey the restored 

dynamic range D-dimensional media content into the media 
content buffer 355, suitable, at block 435, for the media 
content processor 345 to display output on a display 370 or to 
transmit to one or more downstream devices 375. 

In an example, the interpolating and applying a low-fre 
quency-pass method may be performed in parallel. 

In an example, each vector of the received D-dimensional 
vector data set of media content, the low-frequency D-dimen 
sional vector data set of media content, and the restored 
dynamic range D-dimensional vector data set of media con 
tent may each comprise N-dimensional scalar values where N 
is equal to or greater than 1. In an example, the received 
D-dimensional vector data set of media content, the low 
frequency D-dimensional vector data set of media content, 
and the restored-dynamic range D-dimensional vector data of 
media content may each comprise D-dimensional pixel val 
ues. In an example, the pixel values may comprise color 
values or luminance values or both color values and lumi 
nance values. 

FIG. 5 shows an example of input D-dimensional media 
content (e.g., an image). 

FIG. 6 shows a schematic of a constructed Gaussian Pyra 
mid. As is well-known in the art, an input image may be 
Subjected to Gaussian filtering, and Subsequent octave-by 
octave decimation. Each Successive stage of the Gaussian 
pyramid is a low pass, resolution-decimated version of the 
original image with Successively smaller image sizes. The 
advantage of this approach is that it generates an approxima 
tion of an expensive, low-pass filtered image without using a 
single pass of a Gaussian filter with an extraordinarily large 
region of support size. Additionally, Gaussian Pyramids oper 
ate in the pixel domain, which permits very low frequency 
low-pass filtration operations without resorting to convolu 
tion in the frequency domain an expensive process. 

FIG. 7 shows an example Gaussian Pyramid computed 
from the example input image of FIG. 5, according to 
examples of the present disclosure. 

FIG. 8 shows a computed gradient field from the example 
input image of FIG. 5. Examples of the present disclosure are 
intended to increase the dynamic range of images or data sets. 
A naive way to accomplish this is by spatial interpolation, 
Such as by blurring the images. This increases the sampling 
dynamic range, but at the cost of high-frequency detail Such 
as texture and edges. In many cases, the reduced dynamic 
range is not visible or mathematically important around high 
frequencies; however, it is most noticeable in Smooth gradi 
ents over large, nearly homogenous regions. Distinguishing 
what type of region exists within a given part of an image is a 
difficult problem. 
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14 
Certain related art approaches may employ edge-directed 

Smoothing which may not be robust in regions of fine tex 
ture without strong edges. Other approaches may employ 
bilateral filtering or sigma filtering, which is an improvement, 
but suffer from needing an arbitrary threshold setting the 
threshold too low results in over-smoothing in textured 
regions, and setting the threshold too high results in no 
increase of dynamic range in the areas of an image that need 
it. Examples of the present disclosure employ the properties 
of the structure tensor in order to distinguish textured, edge, 
detail, and homogenous regions, with the intent that only 
homogenous regions will be treated, while other regions are 
left in their original state. The first step is to compute gradi 
ents along each dimension of the data set. In the case of 
images, the gradients dX and dY are computed with a discrete 
approximation of the gradient function. 
One of many possible discrete approximations of the gra 

dient is shown in Eq. 1: 

ÖI I(0, 0, 0) - I (1, 0, 0) I(0, 1, 0) - I (1, 1, 0) 
-- 8x 2 -- 2 

I(0, 0, 1) - (1, 0, 1) (0, 1, 1) - (1, 1, 1) 
-- 

8 8 

0 1 1(0,0,0)- 1(0,1,0) , I (1,0,0)- (1,1,0) 
dy 2 -- 2 -- 

I(0,0,1) - (0, 1, 1) (1,0, 1) - (1,1,1) 
8 8 

It will be appreciated by those skilled in the art that the 
example given in Eq. 1 is one of many appropriate discrete 
approximations of the gradient of each pixel. The 2-dimen 
sional structure tensor for each pixel created using the gradi 
ents is shown in Eq. 2: 

O Oy 
2D tensor = 

Oay Oyy 

where O, O, and O, for a 3x3 region-of-support are 
defined by Eq. 3: 

d (n, m) ÖI (n, n) 
O 2. 2, a a weight(n, n) 

= 1 = d (n, m) Ö (n, n) 
Ory = 2. 2, a dy weight(n, n) 

=l i=1 d (n, m) d (n, n) 
Oy = 2. 2, dy dy weight(n, n) 

where a possible weighting function weight (nm) for a 
region-of-Support of 3x3 is given by Eq. 4: 

weight(n,n)=0.125,0.75,0.125 x 0.125,0.75,0.125 

It will be appreciated by those skilled in the art that other 
weighting functions and regions-of-Support are possible. 
The eigenvalue fields (two, in the case of a 2D data set such 

as an image) may be calculated for each tensor of each gra 
dient of each pixel as in Eq. 5: 
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FIG.9 shows the interpretation of the eigenvalues lambda 
and lambda for a structure tensor for a D-dimensional data 
set where D-2, Such as an image. For each tensor, and there 
fore, each pixel, the two eigenvalues give structural informa- 15 
tion about the region-of-Support Surrounding the associated 
pixel. In the case of D-2, as applied to image structure, two 
very low eigenvalues indicate very little structure, or a 
homogenous region. One high and one low eigenvalue indi 
cate tendency to a strong edge. Two high or medium eigen- 20 
values imply highly or moderately textured regions, respec 
tively. 

FIG. 10 shows the two eigenvalue fields (lambda and 
lambda) computed from the structure tensors of the example 
input image in FIG. 5, normalized for visualization in the 25 
figure. However, as sensitive as eigensystem analysis of the 
structure tensor is, and as Superior as it may be compared to 
simple edge-detection and thresholding techniques, the lim 
ited region of Support means that any dynamic range expan 
sion utilizing this analysis will be limited to loss of dynamic 30 
range covering a very small area. 

FIG. 11 shows a close up of part of the original image of 
FIG. 5 with severe degradation of dynamic range. Note band 
ing in the shoulder and arm. The banding in this case involves 
a random distribution of dots of two different quantized val- 35 
ues. The region of transition spans much more than a 3x3 
region. To permits the analysis to be sensitive to texture and 
edge features further away than a 3x3 region, a Gaussian 
pyramid of the eigenvalue fields is constructed. 

FIG. 12 shows the Gaussian pyramid constructed from the 40 
lambda eigenvalue field of FIG. 11. With the Gaussian pyra 
mids of all D eigenvalue fields, and given floating point pre 
cision, one has a coarse but otherwise accurate approximation 
of the overall structure of the region of the image or dataset 
Surrounding a given corresponding pixel, or data element. In 45 
an example, the 4" pyramid level of both eigenvalue fields 
gives an indication of the overall structure of not just the 3x3 
Surrounding a given pixel of the input image, but the Sur 
rounding 16x16 region. 
The overall strategy behind examples of the disclosure is to 50 

select, for each of the plurality of pixels of the input image or 
data set of media content, between two possible pixel or data 
set values. The first choice is a very accurately blurred, or 
multi-octave low-pass image, which effectively has increased 
the dynamic range of the quantized image provided by 55 
block 215, by way of the image Gaussian pyramid. For most 
dynamic range reconstruction tasks for images and video, the 
4" pyramid level suffices generated by block 215 for a suffi 
cient approximation of a very low pass filter. While this low 
pass image has increased dynamic range, it is provided at the 60 
expense of other high frequency detail Such as edges and 
textures. The other choice is to select from the original image 
or dataset, which has other high frequency information, but at 
a lower dynamic range, including low-energy edges due to 
quantization. 65 

It is desirable to select the low-pass image pixel value in 
regions of the image or data set where banding is evident, 
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namely homogenous regions, when evaluated at a large scale. 
In areas of an image with significant structure, it is desired to 
select the original image pixel value from block 210. The 
prior eigensystem analysis from block 225 performs the 
structure analysis, while the Subsequent Gaussian pyramid 
computation from block 230 ensures that the information is 
integrated overa large enough D-dimensional scale to prevent 
artifacts and over-Smoothing in areas of the image with real 
image detail not due to quantization. 
To prevent apparent and visible region boundaries in the 

restored dynamic range image or data set, the choice for each 
of the plurality of pixels between the input image from block 
210 and the low-pass pyramid image from block 215 should 
not be a binary one. To ensure Smooth transitions between 
these regions, a linear weighting factor is used. 
The linear weighting factor is used to Smoothly interpolate 

between the input and low-pass choices in regions of the 
image or data set where the structure is transitioning from 
homogenous to structured. 
An example weighting function is given in Eq. 6: 

Linear Weight(n,m)=min(Iinput(n,m).Ilowpass(n,m))* 
(1.0-max(min(lambda(n,m), 1.0).min (lambda 
(m,m)*5.0.1.0))) 

Each output pixel value has a corresponding weight that is 
used to linearly interpolate between the input image and the 
low-pass image. 

FIG. 13 shows an attempted reconstruction in the related 
art of the dynamic range of the image in FIG. 12-note the 
loss of detail in the hair and face regions, plus the severe 
contouring is not eliminated. Edge-directed, bilateral, and 
frequency-domain dynamic range reconstruction techniques 
are prone to false positives Such as Smoothing areas that 
should not be Smoothed, and false negatives such as missing 
banding and dynamic range quantization artifacts altogether. 

FIG. 14 shows reconstruction of the dynamic range of the 
image of FIG. 12 using the examples of the present disclo 
SUC. 

The dynamic range restoration process of examples of the 
present disclosure is efficient enough to perform in greater 
than-real-time for 4K video resolution video at 30 fps on 
contemporaneous, commercial, mass-marketed computer 
hardware, and multiple images and video at a variety of 
resolutions in real-time and near-real-time. Additionally, the 
dynamic range restoration process of embodiments of the 
present disclosure is efficient enough to perform on any end 
user device with a GPU, CPU, or APU at full HD resolutions 
for single instances of video and images, such as feature 
phones, Smart phones, tablets, laptops, PCs, set-top boxes, 
and televisions. 

This combination of efficiencies at the decoder proximity 
employing examples of the present disclosure opens up new 
applications. These applications include, but are not limited 
to, real-time improved video coder efficiency for over-the-top 
video delivery, cost-effective real-time reduction of public 
radio-access-network congestion when both uploading and 
downloading video and image data from mobile devices, 
increased real-time pass-band television delivery capacity, 
increase of satellite transpondercapacity, reduction of storage 
costs for content management systems and network DVR 
architectures, and high-throughput treatment of images and 
video at the distribution network core, all by means of per 
mitting existing encoding processes to transmit and store 
images, video, and other datasets with less dynamic range 
than has been previously possible. 

FIG. 15 illustrates a diagrammatic representation of a 
machine in the example form of a computer system 1500 
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within which a set of instructions, for causing the machine to 
perform any one or more of the methodologies discussed 
herein, may be executed. In some examples, the machine may 
be connected (e.g., networked) to other machines in a LAN, 
an intranet, an extranet, or the Internet. The machine may 
operate in the capacity of a server machine in client-server 
network environment. The machine may be a personal com 
puter (PC), a set-top box (STB), a server, a network router, 
Switch or bridge, or any machine capable of executing a set of 
instructions (sequential or otherwise) that specify actions to 
be taken by that machine. Further, while only a single 
machine is illustrated, the term “machine' shall also be taken 
to include any collection of machines that individually or 
jointly execute a set (or multiple sets) of instructions to per 
formany one or more of the methodologies discussed herein. 
The example computer system 1500 includes a processing 

device (processor) 1502, a main memory 1504 (e.g., read 
only memory (ROM), flash memory, dynamic random access 
memory (DRAM) such as synchronous DRAM (SDRAM)), 
a static memory 1506 (e.g., flash memory, static random 
access memory (SRAM)), and a data storage device 1516, 
which communicate with each other via a bus 1508. 

Processor 1502 represents one or more general-purpose 
processing devices such as a microprocessor, central process 
ing unit, or the like. More particularly, the processor 1502 
may be a complex instruction set computing (CISC) micro 
processor, reduced instruction set computing (RISC) micro 
processor, very long instruction word (VLIW) microproces 
Sor, or a processor implementing other instruction sets or 
processors implementing a combination of instruction sets. 
The processor 1502 may also be one or more special-purpose 
processing devices such as an application specific integrated 
circuit (ASIC), a field programmable gate array (FPGA), a 
digital signal processor (DSP), network processor, or the like. 
The color channel processor 145 and the media content pro 
cessor 345, shown in FIGS. 1 and 3, respectively, may be 
executed by processor 1502 configured to perform the opera 
tions and steps discussed herein. 

The computer system 1500 may further include a network 
interface device 1522. The computer system 1500 also may 
include a video display unit 1510 (e.g., a liquid crystal display 
(LCD) or a cathode ray tube (CRT)), an alphanumeric input 
device 1512 (e.g., a keyboard), a cursor control device 1514 
(e.g., a mouse), and a signal generation device 1520 (e.g., a 
speaker). 
A drive unit 1516 may include a computer-readable 

medium 1524 on which is stored one or more sets of instruc 
tions (e.g., instructions of the color channel processor 145 and 
the media content processor 345) embodying any one or more 
of the methodologies or functions described herein. The 
instructions of the media content processor 145 may also 
reside, completely or at least partially, within the main 
memory 1504 and/or within the processor 1502 during execu 
tion thereof by the computer system 1500, the main memory 
1504 and the processor 1502 also constituting computer 
readable media. The instructions of the color channel proces 
sor 145 and the media content processor 345 may further be 
transmitted or received over a network via the network inter 
face device 1522. 

While the computer-readable storage medium 1524 is 
shown in an example to be a single medium, the term "com 
puter-readable storage medium’ should be taken to include a 
single non-transitory medium or multiple non-transitory 
media (e.g., a centralized or distributed database, and/or asso 
ciated caches and servers) that store the one or more sets of 
instructions. The term “computer-readable storage medium’ 
shall also be taken to include any medium that is capable of 
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storing, encoding or carrying a set of instructions for execu 
tion by the machine and that cause the machine to perform 
any one or more of the methodologies of the present disclo 
sure. The term “computer-readable storage medium’ shall 
accordingly be taken to include, but not be limited to, solid 
state memories, optical media, and magnetic media. 

In the above description, numerous details are set forth. It 
is apparent, however, to one of ordinary skill in the art having 
the benefit of this disclosure, that examples of the disclosure 
may be practiced without these specific details. In some 
instances, well-known structures and devices are shown in 
block diagram form, rather than in detail, in order to avoid 
obscuring the description. 
Some portions of the detailed description are presented in 

terms of algorithms and symbolic representations of opera 
tions on data bits within a computer memory. These algorith 
mic descriptions and representations are the means used by 
those skilled in the data processing arts to most effectively 
convey the substance of their work to others skilled in the art. 
An algorithm is here, and generally, conceived to be a self 
consistent sequence of steps leading to a desired result. The 
steps are those requiring physical manipulations of physical 
quantities. Usually, though not necessarily, these quantities 
take the form of electrical or magnetic signals capable of 
being stored, transferred, combined, compared, and other 
wise manipulated. It has proven convenient at times, princi 
pally for reasons of common usage, to refer to these signals as 
bits, values, elements, symbols, characters, terms, numbers, 
or the like. 

It should be borne in mind, however, that all of these and 
similar terms are to be associated with the appropriate physi 
cal quantities and are merely convenient labels applied to 
these quantities. Unless specifically stated otherwise as 
apparent from the above discussion, it is appreciated that 
throughout the description, discussions utilizing terms such 
as “receiving”, “writing, “maintaining, or the like, refer to 
the actions and processes of a computer system, or similar 
electronic computing device, that manipulates and translates 
to a new coordinate system the data represented as physical 
(e.g., electronic) quantities within the computer system's reg 
isters and memories into other data similarly represented as 
physical quantities within the computer system memories or 
registers or other Such information storage, transmission or 
display devices. 

Examples of the disclosure also relate to an apparatus for 
performing the operations herein. This apparatus may be 
specially constructed for the required purposes, or it may 
comprise a general purpose computer selectively activated or 
reconfigured by a computer program stored in the computer. 
The system and method as disclosed herein restoration of the 
dynamic range of images, video and other D-dimensional 
data sets without close coupling to an upstream encoding, 
decoding, or other quantization process, improves the percep 
tual quality and/or the transmission or storage efficiency of 
existing image and video compression or transmission sys 
tems and methods solves problems in many fields, such as 
real-time efficiency for over-the-top video delivery, cost-ef 
fective real-time reduction of public radio-access-network 
congestion when both uploading and downloading video and 
image data from mobile devices, increased real-time pass 
band television delivery capacity, increase of satellite tran 
sponder capacity, reduction of storage costs for content man 
agement systems and network DVR architectures, and high 
throughput treatment of images and video at the distribution 
network core as but a few examples. 

Such a computer program may be stored in a computer 
readable storage medium, Such as, but not limited to, any type 
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of disk including floppy disks, optical disks, CD-ROMs, and 
magnetic-optical disks, read-only memories (ROMs), ran 
dom access memories (RAMs), EPROMs, EEPROMs, mag 
netic or optical cards, or any type of media Suitable for storing 
electronic instructions. 
The algorithms and displays presented hereinare not inher 

ently related to any particular computer or other apparatus. 
Various general purpose systems may be used with programs 
in accordance with the teachings herein, or it may prove 
convenient to construct a more specialized apparatus to per 
form the required method steps. Example structure for a 
variety of these systems appears from the description herein. 
In addition, the present disclosure is not described with ref 
erence to any particular programming language. It will be 
appreciated that a variety of programming languages may be 
used to implement the teachings of the disclosure as 
described herein. 

It is to be understood that the above description is intended 
to be illustrative, and not restrictive. Many other examples 
will be apparent to those of skill in the art upon reading and 
understanding the above description. The Scope of the disclo 
sure should, therefore, be determined with reference to the 
appended claims, along with the full scope of equivalents to 
which such claims are entitled. 
What is claimed is: 
1. A method, comprising: 
receiving, by a processor from an upstream device, a D-di 

mensional vector data set of media content, wherein Dis 
greater than or equal to one; 

applying, by a processor, a low-frequency-pass method to 
the received D-dimensional vector data set of media 
content to generate a low-frequency D-dimensional vec 
tor data set of media content; 

obtaining, by the processor, a structure tensor field com 
prising a set of D-dimensional structure tensors corre 
sponding to each vector of the received D-dimensional 
vector data set of media content; 

performing, by the processor, an eigensystem analysis for 
each structure tensor in the field of structure tensors to 
generate a plurality of Deigenvalue fields comprising D 
eigenvalues for each vector of the received D-dimen 
sional vector data set of media content; 

interpolating, by the processor, between each vector of the 
received D-dimensional vector data set of media content 
and a corresponding vector from the low-frequency 
D-dimensional vector data set of media content in view 
of one or more of the Deigenvalues for each vector of the 
plurality of D eigenvalue fields to produce a restored 
dynamic range D-dimensional vector data set of media 
content; and 

outputting, by the processor, the restored-dynamic range 
D-dimensional vector data set of media content to a 
display or downstream device. 

2. The method of claim 1, wherein applying a low-fre 
quency-pass method to the received D-dimensional vector 
data set of media content comprises: 

generating a D-dimensional Gaussian pyramid from the 
received D-dimensional vector data set of media con 
tent; and 

selecting D-dimensional vector data from the lowest 
dimension pyramid level of the D-dimensional Gaussian 
pyramid to generate the low-frequency D-dimensional 
vector data set of media content. 

3. The method of claim 1, wherein obtaining a set of D-di 
mensional structure tensors comprises computing a set of 
D-dimensional directional gradients for each vector of the 
received D-dimensional vector data set of media content. 
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4. The method of claim 1, wherein obtaining a set of D-di 

mensional structure tensors comprises performing a structure 
tensor analysis with one element of each vector of the 
received D-dimensional vector data set of media content. 

5. The method of claim 1, wherein interpolating comprises 
linearly interpolating between each vector of the received 
D-dimensional vector data set of media content and the cor 
responding vector from the low-frequency D-dimensional 
vector data set of media content. 

6. The method of claim 1, wherein interpolating comprises: 
generating a Gaussian pyramid from each of the plurality 

of Deigenvalue fields: 
employing one or more of the D eigenvalues to assign 

linear weights to each vector of the lowest resolution 
plurality of Deigenvalue fields; and 

employing the linear weights to interpolate between each 
vector of the received D-dimensional vector data set of 
media content and the corresponding vector from the 
low-frequency D-dimensional vector data set of media 
to produce the restored-dynamic range D-dimensional 
vector data set of media content. 

7. The method of claim 6, wherein the linear weights are 
assigned in view of a region-of-Support used for obtaining the 
structure tensor field. 

8. The method of claim 6, wherein employing one or more 
of the Deigenvalues to assign linear weights to each vector of 
the lowest resolution plurality of D eigenvalue fields com 
prises: 

selecting an eigenvalue of the Deigenvalues indicative of a 
homogenous region of Support about a vector of the 
received D-dimensional vector data as the lower bound 
for assigning the linear weights; and 

selecting one of the remaining eigenvalues of the Deigen 
values indicative of an edge or highly textured region of 
support about a vector of the received D-dimensional 
vector data as the upper bound for assigning the linear 
weights. 

9. The method of claim 1, wherein interpolating comprises 
performing an interpolation jointly between all element of 
each vector of the received D-dimensional vector data set and 
the corresponding elements of each vector from the low 
frequency D-dimensional vector data set. 

10. The method of claim 1, wherein said applying a low 
frequency-pass method and said interpolating are performed 
in parallel. 

11. The method of claim 1, wherein the media content 
comprises at least one of audio, one or more two-dimensional 
still images, one or more three-dimensional still images, two 
dimensional video, three-dimensional video, magnetic reso 
nance imaging (MRI) data, computed tomography (CT)-scan 
data, geometric data, seismic data, holographic data, or 
meteorological data. 

12. The method of claim 1, wherein each vector of the 
received D-dimensional vector data set of media content, the 
low-frequency D-dimensional vector data set of media con 
tent, and the restored-dynamic range D-dimensional vector 
data set of media content comprises N-dimensional scalar 
values where N is equal to or greater than 1. 

13. The method of claim 1, wherein the received D-dimen 
sional vector data set of media content, the low-frequency 
D-dimensional vector data set of media content, and the 
restored-dynamic range D-dimensional vector data set of 
media content each comprise D-dimensional pixel values. 

14. The method of claim 13, wherein the pixel values 
comprise color values or luminance values or both color 
values and luminance values. 
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15. A system, comprising: 
a memory; 
a processing device coupled to and having use of the 
memory, the processing device to: 
receive, from an upstream device, a D-dimensional vec 

tor data set of media content, wherein D is greater than 
or equal to one; 

apply a low-frequency-pass method to the received 
D-dimensional vector data set of media content to 
generate a low-frequency D-dimensional vector data 
set of media content; 

obtain a structure tensor field comprising a set of D-di 
mensional structure tensors corresponding to each 
vector of the received D-dimensional vector data set 
of media content; 

perform an eigensystem analysis for each structure ten 
sor in the field of structure tensors to generate a plu 
rality of Deigenvalue fields comprising Deigenval 
ues for each vector of the received D-dimensional 
vector data set of media content; 

interpolate between each vector of the received D-di 
mensional vector data set of media content and a 
corresponding vector from the low-frequency D-di 
mensional vector data set of media content in view of 
one or more of the Deigenvalues for each vector of the 
plurality of Deigenvalue fields to produce a restored 
dynamic range D-dimensional vector data set of 
media content; and 

output the restored-dynamic range D-dimensional vec 
tor data set of media content to a display or down 
stream device. 

16. The system of claim 15, wherein applying a low-fre 
quency-pass method to the received D-dimensional vector 
data set of media content comprises: 

generating a D-dimensional Gaussian pyramid from the 
received D-dimensional vector data set of media con 
tent; and 

selecting D-dimensional vector data from the lowest 
dimension pyramid level of the D-dimensional Gaussian 
pyramid to generate the low-frequency D-dimensional 
vector data set of media content. 

17. The system of claim 15, wherein obtaining a set of 
D-dimensional structure tensors comprises computing a set 
of D-dimensional directional gradients for each vector of the 
received D-dimensional vector data set of media content. 

18. The system of claim 15, wherein obtaining a set of 
D-dimensional structure tensors comprises performing a 
structure tensor analysis with one element of each vector of 
the received D-dimensional vector data set of media content. 

19. The system of claim 15, wherein interpolating com 
prises: 

generating a Gaussian pyramid from each of the plurality 
of Deigenvalue fields: 

employing one or more of the D eigenvalues to assign 
linear weights to each vector of the lowest resolution 
plurality of Deigenvalue fields; and 

employing the linear weights to interpolate between each 
vector of the received D-dimensional vector data set of 
media content and the corresponding vector from the 
low-frequency D-dimensional vector data set of media 
to produce the restored-dynamic range D-dimensional 
vector data set of media content. 

20. A non-transitory computer-readable storage medium 
including instructions that, when accessed by a processing 
device, cause the processing device to perform operations 
comprising: 
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receiving, by the processing device from an upstream 

device, a D-dimensional vector data set of media con 
tent, wherein D is greater than or equal to one; 

applying, by the processing device, a low-frequency-pass 
method to the received D-dimensional vector data set of 
media content to generate a low-frequency D-dimen 
sional vector data set of media content; 

obtaining, by the processing device, a structure tensor field 
comprising a set of D-dimensional structure tensors cor 
responding to each vector of the received D-dimensional 
vector data set of media content; 

performing, by the processing device, an eigensystem 
analysis for each structure tensor in the field of structure 
tensors to generate a plurality of D eigenvalue fields 
comprising Deigenvalues for each vector of the received 
D-dimensional vector data set of media content; 

interpolating, by the processing device, between each vec 
tor of the received D-dimensional vector data set of 
media content and a corresponding vector from the low 
frequency D-dimensional vector data set of media con 
tent in view of one or more of the Deigenvalues for each 
vector of the plurality of Deigenvalue fields to produce 
a restored-dynamic range D-dimensional vector data set 
of media content; and 

outputting, by the processing device, the restored-dynamic 
range D-dimensional vector data set of media content to 
a display or downstream device. 

21. The non-transitory computer-readable storage medium 
of claim 20, wherein applying a low-frequency-pass method 
to the received D-dimensional vector data set of media con 
tent comprises: 

generating a D-dimensional Gaussian pyramid from the 
received D-dimensional vector data set of media con 
tent; and 

selecting D-dimensional vector data from the lowest 
dimension pyramid level of the D-dimensional Gaussian 
pyramid to generate the low-frequency D-dimensional 
vector data set of media content. 

22. The non-transitory computer-readable storage medium 
of claim 20, wherein obtaining a set of D-dimensional struc 
ture tensors comprises computing a set of D-dimensional 
directional gradients for each vector of the received D-dimen 
sional vector data set of media content. 

23. The non-transitory computer-readable storage medium 
of claim 20, wherein obtaining a set of D-dimensional struc 
ture tensors comprises performing a structure tensor analysis 
with one element of each vector of the received D-dimen 
sional vector data set of media content. 

24. The non-transitory computer-readable storage medium 
of claim 20, wherein interpolating comprises: 

generating a Gaussian pyramid from each of the plurality 
of Deigenvalue fields: 

employing one or more of the D eigenvalues to assign 
linear weights to each vector of the lowest resolution 
plurality of Deigenvalue fields; and 

employing the linear weights to interpolate between each 
vector of the received D-dimensional vector data set of 
media content and the corresponding vector from the 
low-frequency D-dimensional vector data set of media 
to produce the restored-dynamic range D-dimensional 
vector data set of media content. 
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