Title
Heater unit and electric cooker equipped therewith

International Patent Classification(s)
F24C 7/06 (2006.01) 20060101AL120068070
F24C 7/04 (2006.01) SHH J H05B
H05B 6/12 (2006.01) 6/12
H05B 6/80 (2006.01) 20060101AL120068070
F24C 7/06 SHH J H05B
20060101AL120068070 6/80
SHH J F24C 20060101AL120068070
7/04 SHH J

Application No: 2006202773
Application Date: 2006.06.30

Priority Data
Number Date Country

Publication Date: 2007.06.21
Publication Journal Date: 2007.06.21

Applicant(s)
LG Electronics Inc

Inventor(s)
Ryu, Jong Gwan, Park, Byewong Wook, Oh, Doo Yong, Ryu, Seunghee, Kim, Eui Sang

Agent/Attorney
Watermark Patent & Trademark Attorneys, Level 2 302 Burwood Road, Hawthorn, VIC, 3122

Related Art
US 2005/0115959
JP 2004247166
US 4468548
EP 1497239
DE 19580448
GB 2223093
ABSTRACT

A heater unit comprises: a hot wire heating unit; an induction heating unit provided adjacent to the hot wire heating unit and operated by induction heating; and connectors each for connecting the hot wire heating unit to the induction heating unit. A cooker comprises: a casing; a heating plate provided on an upper surface of the casing; a hot wire heating unit provided on a bottom surface of the heating plate for generating heat according to application of an electric power; an induction heating unit provided on the bottom surface of the heating plate for being adjacent to the hot wire heating unit and operated by induction heating; connectors each for connecting the hot wire heating unit to the induction heating unit; and support members each provided on the bottom surface of the hot wire heating unit and for supporting the hot wire heating unit.
COMPLETE SPECIFICATION
STANDARD PATENT

Application Number:
Lodged:

Invention Title: Heater unit and electric cooker equipped therewith

The following statement is a full description of this invention, including the best method of performing it known to us:
HEATER UNIT AND ELECTRIC COOKER EQUIPPED THEREWITH

CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to application filed in the Korean Industrial Property Office on December 2, 2005, and assigned serial No.10-2005-0116818, the contents of which are incorporated herein by reference.

BACKGROUND

This description relates to a heater unit and an electric cooker equipped therewith, and more particularly to a heater unit and an electric cooker equipped therewith configured for improving a heating efficiency and capable of selectively adopting a heat source as well.

The typical cooker is designed to easily cook food using gas or electricity, and an electric cooker heated by
application of electric source has gained in popularity and use.

Particularly, researches are well under way for induction heating used as a major heating source of an electric cooker such as a cooker hob or a cook-top. An electric cooker of induction heating method is such that a high frequency flux is generated if a high frequency current is made to flow in an induction heating coil disposed at a bottom surface of a heating plate, and eddy currents are generated in a cooking vessel disposed on the heating plate by electromagnetic induction of high frequency flux. The cooking vessel is thus heated by generation of Joule heat with regard to resistance components thereof.

The electric cooker thus explained has an advantage of an excellent heating efficiency while it has a disadvantage in that only the cooking vessel of magnetic attribute is heated.
Researches are being vigorously conducted recently to overcome the disadvantage of the cooking vessel, and as a result, induction heated electric cookers have been developed for heating cooking vessels of magnetic attribute and cooking vessels of non-magnetic attribute as well. However, it is necessary to increase an operation frequency of the non-magnetic electric cooker, or to increase the current and the number of turns of induction heating coils for the non-magnetic cooking vessel, for achievement of the same heating effect as that of the magnetic cooking vessels, because of less magnetic permeability than that of the magnetic cooker.

There is a disadvantage in the electric cooker thus mentioned in that configuration tends to be relatively complicated due to involvement with a heater and an inverter for heating the non-magnetic cooking vessel, entailing more economic burden resulting therefrom. This results in decrease in assembling efficiency of electric cookers and increase in unit price of the product.
There is further disadvantage in that non-magnetic cooking vessels made of such material, for example, ceramic or glass, are hard to be applied with aforementioned techniques although the improvement can be applied to magnetic/non-magnetic metal cooking vessels.

SUMMARY

The present invention is disclosed to mitigate the aforementioned disadvantages or problems, and it is an object of the present invention to provide a heater unit and an electric cooker equipped therewith configured for use both in magnetic and non-magnetic cooking vessels with improvement in heating efficiency.

In one general aspect, the heater unit includes: a hot wire heating unit; an induction heating unit provided adjacent to the hot wire heating unit and operated by induction heating; and connectors each for connecting the hot wire heating unit to the induction heating unit, such that the hot wire heating unit wraps an external side of the induction heating unit and is spaced a predetermined distance apart from the induction heating unit.

Preferably, the hot wire heating unit includes: a reflection plate formed with a hollow part in which the induction heating unit can be disposed; and a hot wire heater provided on the reflection plate. Preferably, the reflection plate is formed with heater through holes through which terminals can pass and be coupled thereto. Preferably, the hot wire heater is a carbon heater.

In another general aspect, the electric cooker equipped with the heater unit includes: a casing; a heating plate provided on an upper surface of the casing; a hot wire heating unit provided on a bottom surface of the heating plate for generating heat according to application of an electric power; an induction heating unit provided on the bottom surface of the heating plate for being adjacent to the hot wire heating unit and operated by induction heating; connectors each for connecting the hot wire heating unit to the induction heating unit such that the hot wire heating unit wraps an external side of the induction heating unit and is spaced a predetermined distance apart from the induction heating unit; and support members each provided on the bottom surface of the hot wire heating unit and for supporting the hot wire heating unit.
Preferably, the hot wire heating unit includes: a reflection plate formed with a hollow part in which the induction heating unit can be disposed; and a hot wire heater provided on the reflection plate. Preferably, the reflection plate is formed with heater through holes through which terminals can pass and be coupled thereto.

Preferably, the hot wire heater is a carbon heater.

Preferably, the support members are composed of elastic material and elastically support the reflection plate.

Preferably, the support members are springs.

In still another general aspect, the electric cooker equipped with the heater unit includes: a casing; a heating plate provided on an upper surface of the casing; a hot wire heating unit provided on a bottom surface of the heating plate for generating heat according to application of an electric power; an induction heating unit provided on the bottom surface of the heating plate for being adjacent to the hot wire heating unit and operated by induction heating; a first support member provided on the bottom surface of the hot wire heating unit and for supporting the hot wire heating unit such that the hot wire heating unit wraps an external side of the induction heating unit and is spaced a predetermined distance apart from the induction heating unit; and a second support member provided on the bottom surface of the induction heating unit and supporting the induction heating unit.

Preferably, the hot wire heating unit includes: a reflection plate formed with a hollow part in which the induction heating unit can be disposed; and a hot wire heater provided on the reflection plate. Preferably, the reflection plate is formed with heater through holes through which terminals can pass and be coupled thereto.

Preferably, the hot wire heater is a carbon heater.

Preferably, the induction heating unit includes: a base plate; a first insulation tape attached to an upper surface of the base plate; a ferrite core provided on an upper surface of the first insulation tape; a second ferrite core provided on an upper surface of the ferrite core; and an induction heating coil attached on an upper surface of the second insulation tape.
Preferably, the first and second support members are made of elastic material, and the first support member elastically supports the reflection plate, and the second support member elastically supports the base plate.

Preferably, the first and second support members are springs.

"Comprises/comprising" when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an exploded perspective view of a heater unit according to the present invention.

FIG. 2 is a coupled perspective view of FIG. 1.

FIG. 3 is a cross-sectional view of a heater unit according to the present invention.

FIG. 4 is a schematic cross-sectional view of an electric cooker equipped with a heater unit according to a first embodiment of the present invention.

FIG. 5 is a schematic cross-sectional view of an electric cooker equipped with a heater unit according to a second
embodiment of the present invention.

FIG.6 is a perspective view of the heater unit of FIG.5.

FIG.7 is a cross-sectional view of the heater unit of FIG.5.

DETAILED DESCRIPTION

Referring to FIGS.1 to 3, a heater unit according to the present invention comprises: a hot wire heating unit 20; an induction heating unit 30 provided adjacent to the hot wire heating unit 20 and operated by induction heating; and connectors 40 each for connecting the hot wire heating unit 20 to the induction heating unit 30.

The hot wire heating unit 20 wraps an external side of the induction heating unit 30 and is spaced a predetermined distance apart from the induction heating unit 30, and each connector is disposed at a space formed by the hot wire heating unit 20 and the induction heating unit 30.

As a result, the hot wire heating unit 20 and the induction
heating unit 30 are interconnected. In other words, the hot wire heating unit 20 and the induction heating unit 30 are integrally connected.

5 The hot wire heating unit 20 comprises: a disc-shaped reflection plate 22 formed with a hollow part 23; and a hot wire heater 24 provided on the reflection plate 22 and formed with terminals 25 at both ends thereof.

10 The reflection plate 22 designed for improving heat efficiency of the hot wire heater 24 is formed with heater through holes 21a and 21b through which terminals 25 of the hot wire heater 24 passes and are coupled thereto. The hollow part 23 is disposed with the induction heating unit 30. The reflection plate 22 may come in various structures and materials.

The hot wire heater 24 of ring-shape is heated by application of a power source from the terminals 25, and although it is preferred that the hot wire heater 24 be a
carbon heater having an excellent heat generation, it should be apparent that other various kinds of heaters including a radiant heater may be selectively used if necessary.

The induction heating unit 30 is operated by induction heating, where the term “induction heating” generally describes a process in which an alternating current is passed through a coil to generate an alternating magnetic flux. When the coil is placed in close proximity to or wrapped around a metallic object that is to be heated, the alternating magnetic flux inductively couples the load to the coil and generates eddy currents within the metallic object causing it to become heated. Because of its function, the coil, which is the induction heating unit 30 in the present invention having a round plate shape, is typically referred to as a “work coil” or “working coil”.

A total of three connectors 40, each of a bar shape, are disposed for stably maintaining a connected state between the hot wire heating unit 20 and the induction heating unit.
30, each connector spaced a predetermined distance apart. The connectors may be appropriately adjustable in shapes, sizes, numbers and positions, and various known materials may be selectively used based on high durability and strength for the connectors.

Arrangement of the hot wire heating unit 20 and the induction heating unit 30 may be changed as needed. For example, although it is described that the hot wire heating unit 20 wraps an external side of the induction heating unit 30 and is spaced a predetermined distance apart from the induction heating unit 30, it should be apparent that conversely, the induction heating unit 30 wraps an external side of the hot wire heating unit 20 and is spaced a predetermined distance apart from the hot wire heating unit 20.

The hot wire heating unit 20 can heat both the magnetic body and non-magnetic body, while the induction heating unit 30 can heat the magnetic body only. Consequently, the
hot wire heating unit 20 and the induction heating unit 30 may be selectively used with respect to the material of a cooking vessel. Meanwhile, in heating a magnetic body, it is preferred that the induction heating unit 30 be used over the hot wire heating unit 20.

FIG.4 is a schematic cross-sectional view of an electric cooker equipped with a heater unit according to a first embodiment of the present invention, where the heater unit is the same as that of FIGS.1 to 3, such that description will be made by way of the heater unit thereof.

An electric cooker equipped with a heater unit according to the present invention comprises: a casing 50; a heating plate 60 provided on an upper surface of the casing 50; a hot wire heating unit 20 provided on a bottom surface of the heating plate 60 for generating heat according to application of an electric power; an induction heating unit 30 provided on the bottom surface of the heating plate 60 for being adjacent to the hot wire heating unit 20 and
operated by induction heating; connectors 40 each for connecting the hot wire heating unit 20 to the induction heating unit 30; and support members 70 each provided on the bottom surface of the hot wire heating unit 20 and for supporting the hot wire heating unit 20.

The casing 50 is disposed therein with an inverter unit 80 and a cooling fan 90 for cooling the induction heating unit 30. It is preferred that the induction heating unit 30 in the casing 50 be cooled by the cooling fan 90 to a predetermined temperature in order to appropriately maintain an inner temperature of the casing 50 because the induction heating unit 30 has a limit in its capacity of heat-resistance.

The heating plate 60, which is heated by the hot wire heating unit 20 and/or the induction heating unit 30, serves to support and heat a cooking vessel 99.

Particularly, the induction heating unit 30 is operated in
such a manner that high frequency current is made to flow in the heating plate 60 to generate high frequency magnetic flux, and the high frequency magnetic flux causes to generate eddy currents within the heating plate 60 by way of electromagnetic induction of high frequency flux. The cooking vessel 99 is thus heated by generation of Joule's heat with regard to resistance components thereof.

The hot wire heating unit 20 wraps an external side of the induction heating unit 30 and is spaced a predetermined distance apart from the induction heating unit 30, and each connector is disposed at a space formed by the hot wire heating unit 20 and the induction heating unit 30.

As a result, the hot wire heating unit 20 and the induction heating unit 30 are interconnected. In other words, the hot wire heating unit 20 and the induction heating unit 30 are integrally connected.

The hot wire heating unit 20 comprises: a disc-shaped
reflection plate 22 formed with a hollow part 23; and a hot wire heater 24 provided on the reflection plate 22 and formed with terminals 25 at both ends thereof.

The reflection plate 22 designed for improving heat efficiency of the hot wire heater 24 is formed with heater through holes 21a and 21b through which terminals 25 of the hot wire heater 24 passes and are coupled thereto. The hollow part 23 is disposed with the induction heating unit 30. The reflection plate 22 may come in various structures and materials.

The hot wire heater 24 of ring-shape is heated by application of a power source from the terminals 25, and although it is preferred that the hot wire heater 24 be a carbon heater having an excellent heat generation, it should be apparent that other various kinds of heaters including a radiant heater may be selectively used if necessary.
The induction heating unit 30 is operated by induction heating, where the term induction heating generally describes a process in which temperature of a metallic object is heated by electric energy converted from an induction heating coil. Because of its function, the coil, which is the induction heating unit 30 in the present invention, having a round plate shape, is typically referred to as a "work coil" or "working coil".

A total of three connectors 40, each of a bar shape, are disposed for stably maintaining a connected state between the hot wire heating unit 20 and the induction heating unit 30, each connector spaced a predetermined distance apart. The connectors may be appropriately adjustable in shapes, sizes, numbers and positions, and various known materials may be selectively used based on high durability and strength for the connectors.

Arrangement of the hot wire heating unit 20 and the induction heating unit 30 may be changed as needed. For
example, although it is described that the hot wire heating unit 20 wraps an external side of the induction heating unit 30 and is spaced a predetermined distance apart from the induction heating unit 30, it should be apparent that conversely, the induction heating unit 30 wraps an external side of the hot wire heating unit 20 and is spaced a predetermined distance apart from the hot wire heating unit 20.

The hot wire heating unit 20 can heat both the magnetic body and non-magnetic body, while the induction heating unit 30 can heat the magnetic body only. Consequently, the hot wire heating unit 20 and the induction heating unit 30 may be selectively used with respect to the material of a cooking vessel. Meanwhile, in heating a magnetic body, it is preferred that the induction heating unit 30 be used over the hot wire heating unit 20.

The support members 70 are composed of elastic material and elastically support the reflection plate 22. The support
members 70 may include various kinds of known elastic materials such as springs and the like, as long as the support members 70 stably support the reflection plate 22.

The electric cooker is operated in such a fashion that a resonant current flowing in the induction heating unit 30 is detected to discriminate whether the cooking vessel 99 on the heating plate 60 is a magnetic body or a non-magnetic body, and to appropriately turn on/off the hot wire heating unit 20 and the induction heating unit 30 with respect to the kind of the cooking vessel 99.

For example, if the cooking vessel 99 is a magnetic body, the hot wire heating unit 20 and the induction heating unit 30 are simultaneously driven, and if the cooking vessel 99 is a non-magnetic body, only the hot wire heating unit 20 is independently driven.

Now, referring to FIGS.5 to 7, an electric cooker equipped with a heater unit comprises: a casing 50; a heating plate
60 provided on an upper surface of the casing 50; a hot wire heating unit 20 provided on a bottom surface of the heating plate 60 for generating heat according to application of an electric power; an induction heating unit 30 provided on the bottom surface of the heating plate 60 for being adjacent to the hot wire heating unit 20 and operated by induction heating; a first support member 72 provided on the bottom surface of the hot wire heating unit 20 and for supporting the hot wire heating unit 20; and a second support member 74 provided on the bottom surface of the induction heating unit 30 and supporting the induction heating unit 30.

The casing 50 is disposed therein with an inverter unit 80 and a cooling fan 90 for cooling the induction heating unit 30. It is preferred that the induction heating unit 30 in the casing 50 be cooled by the cooling fan 90 to a predetermined temperature in order to appropriately maintain an inner temperature of the casing 50 because the induction heating unit 30 has a limit in its capacity of
heat-resistance.

The heating plate 60, which is heated by the hot wire heating unit 20 and/or the induction heating unit 30, serves to support and heat a cooking vessel 99.

Particularly, the induction heating unit 30 is operated in such a manner that high frequency current is made to flow in the heating plate 60 to generate high frequency magnetic flux, and the high frequency magnetic flux causes to generate eddy currents within the heating plate 60 by way of electromagnetic induction of high frequency flux. The cooking vessel 99 is thus heated by generation of Joule heat with regard to resistance components thereof.

The hot wire heating unit 20 wraps an external side of the induction heating unit 30 and is spaced a predetermined distance apart from the induction heating unit 30, and each connector is disposed at a space formed by the hot wire heating unit 20 and the induction heating unit 30.
As a result, the hot wire heating unit 20 and the induction heating unit 30 are interconnected. In other words, the hot wire heating unit 20 and the induction heating unit 30 are integrally connected.

The hot wire heating unit 20 comprises: a disc-shaped reflection plate 22 formed with a hollow part 23; and a hot wire heater 24 provided on the reflection plate 22 and formed with terminals 25 at both ends thereof.

The reflection plate 22 designed for improving heat efficiency of the hot wire heater 24 is formed with heater through holes 21a and 21b through which terminals 25 of the hot wire heater 24 passes and are coupled thereto. The hollow part 23 is disposed with the induction heating unit 30. The reflection plate 22 may come in various structures and materials.

The hot wire heater 24 of ring-shape is heated by
application of a power source from the terminals 25, and although it is preferred that the hot wire heater 24 be a carbon heater having an excellent heat generation, it should be apparent that other various kinds of heaters including a radiant heater may be selectively used if necessary.

The induction heating unit 30 is operated by induction heating, where the induction heating generally describes a process in which temperature of a metallic object is heated by electric energy converted from induction heating coils.

The induction heating unit comprises: a base plate 32; a first insulation tape 33 attached to an upper surface of the base plate 32; a ferrite core 34 provided on an upper surface of the first insulation tape 33; a second ferrite core 35 provided on an upper surface of the ferrite core 34; and an induction heating coil 36 attached on an upper surface of the second insulation tape 35.
The base plate 32, which is made of aluminum material, prevents the magnetic force transmitted from the induction heating coil 36 from moving downwards to thereby enhance a pass efficiency of the magnetic flux. The induction heating coil 36 is typically called a work coil or a working coil.

The first and second insulation tapes 33 and 35 function to support the ferrite core 34.

Arrangement of the hot wire heating unit 20 and the induction heating unit 30 may be changed as needed. For example, although it is described that the hot wire heating unit 20 wraps an external side of the induction heating unit 30 and is spaced a predetermined distance apart from the induction heating unit 30, it should be apparent that conversely, the induction heating unit 30 wraps an external side of the hot wire heating unit 20 and is spaced a predetermined distance apart from the hot wire heating unit 20.
The hot wire heating unit 20 can heat both the magnetic body and non-magnetic body, while the induction heating unit 30 can heat the magnetic body only. Consequently, the hot wire heating unit 20 and the induction heating unit 30 may be selectively used with respect to the material of a cooking vessel. Meanwhile, in heating a magnetic body, it is preferred that the induction heating unit 30 be used over the hot wire heating unit 20.

The first and second support members 72 and 74 are composed of elastic material, and the first support member 72 elastically supports the reflection plate 22. The second support member 74 elastically supports the base plate 32. The first and second support members 72 and 74 may include various kinds of known elastic materials such as springs and the like, as long as the first and second support members 72 and 74 stably support the reflection plate 22 and the base plate 32.

As apparent from the foregoing, there are advantages in the
heater unit and the electric cooker equipped therewith thus
described in that a hot wire heating unit and an induction
heating unit can be selectively used in respect of material
of a cooking vessel to enable to improve heating efficiency
of the heater unit, and to easily cook food free from the
kind of the cooking vessel. As a result, functionality and
usability of the electric cooker can be further improved.
Furthermore, the heater unit can be structurally integrated
to thereby enable to improve productivity and assemblage.

Although the embodiments of the present invention have been
shown and described, the present invention is not limited
to the described embodiments. Instead, it would be
appreciated by those skilled in the art that various
changes may be made to the embodiments without departing
from the principles and spirit of the invention, the scope
of which is defined by the claims and their equivalents.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A heater unit including:
 a hot wire heating unit;
 an induction heating unit provided adjacent to the hot wire heating unit and
 operated by induction heating; and
 connectors each for connecting the hot wire heating unit to the induction
 heating unit such that the hot wire heating unit wraps an external side of the
 induction heating unit and is spaced a predetermined distance apart from the
 induction heating unit.

2. The unit as defined in claim 1, wherein the hot wire heating unit includes:
 a reflection plate formed with a hollow part in which the induction heating unit can
 be disposed; and a hot wire heater provided on the reflection plate.

3. The unit as defined in claim 1, wherein the reflection plate is formed with
 heater through holes through which terminals can pass and be coupled thereto.

4. The unit as defined in claim 2, wherein the hot wire heater is a carbon
 heater.

5. An electric cooker equipped with a heater unit including:
 a casing;
 a heating plate provided on an upper surface of the casing;
 a hot wire heating unit provided on a bottom surface of the heating plate
 for generating heat according to application of an electric power;
 an induction heating unit provided on the bottom surface of the heating
 plate for being adjacent to the hot wire heating unit and operated by induction
 heating;
 connectors each for connecting the hot wire heating unit to the induction
 heating unit such that the hot wire heating unit wraps an external side of the
 induction heating unit and is spaced a predetermined distance apart from the
 induction heating unit; and
support members each provided on the bottom surface of the hot wire heating unit and for supporting the hot wire heating unit.

6. The cooker as defined in claim 5, wherein the hot wire heating unit includes; a reflection plate formed with a hollow part in which the induction heating unit can be disposed; and a hot wire heater provided on the reflection plate.

7. The cooker as defined in claim 6, wherein the reflection plate is formed with heater through holes through which terminals can pass and be coupled thereto.

8. The cooker as defined in claim 6, wherein the hot wire heater is a carbon heater.

9. The cooker as defined in claim 5, wherein the support members are composed of elastic material and elastically support the reflection plate.

10. The cooker as defined in claim 9, wherein the support members are springs.

11. An electric cooker equipped with a heater unit including:
 a casing;
 a heating plate provided on an upper surface of the casing;
 a hot wire heating unit provided on a bottom surface of the heating plate for generating heat according to application of an electric power;
 an induction heating unit provided on the bottom surface of the heating plate for being adjacent to the hot wire heating unit and operated by induction heating;
 a first support member provided on the bottom surface of the hot wire heating unit and for supporting the hot wire heating unit such that the hot wire heating unit wraps an external side of the induction heating unit and is spaced a predetermined distance apart from the induction heating unit; and
30. a second support member provided on the bottom surface of the induction heating unit and supporting the induction heating unit.

12. The cooker as defined in claim 11, wherein the hot wire heating unit includes: a reflection plate formed with a hollow part in which the induction heating unit can be disposed; and a hot wire heater provided on the reflection plate.

13. The cooker as defined in claim 12, wherein the reflection plate is formed with heater through holes through which terminals can pass and be coupled thereto.

14. The cooker as defined in claim 12, wherein the hot wire heater is a carbon heater.

15. The cooker as defined in claim 11, wherein the induction heating unit includes:
 a base plate;
 a first insulation tape attached to an upper surface of the base plate;
 a ferrite core provided on an upper surface of the first insulation tape;
 a second ferrite core provided on an upper surface of the ferrite core; and
 an induction heating coil attached on an upper surface of the second insulation tape.

16. The cooker as defined in claim 11, wherein the first and second support members are made of elastic material, and wherein the first support member elastically supports the reflection plate, and the second support member elastically supports the base plate.

17. The cooker as defined in claim 16, wherein the first and second support members are springs.

18. A heater unit substantially as herein described with reference to the accompanying drawings.
19. An electric cooker equipped with a heater unit substantially as herein described with reference to the accompanying drawings.

LG ELECTRONICS INC

WATERMARK PLATENT & TRADE MARK ATTORNEYS

P27329AU00