

(86) Date de dépôt PCT/PCT Filing Date: 2014/08/08
(87) Date publication PCT/PCT Publication Date: 2015/02/26
(45) Date de délivrance/Issue Date: 2021/04/06
(85) Entrée phase nationale/National Entry: 2016/02/17
(86) N° demande PCT/PCT Application No.: FI 2014/050614
(87) N° publication PCT/PCT Publication No.: 2015/025076
(30) Priorité/Priority: 2013/08/19 (FI20135842)

(51) Cl.Int./Int.Cl. C07G 1/00(2011.01),
D21C 11/00(2006.01)
(72) Inventeur/Inventor:
HILJANEN, SEPPO, FI
(73) Propriétaire/Owner:
VALMET TECHNOLOGIES OY, FI
(74) Agent: GOWLING WLG (CANADA) LLP

(54) Titre : PROCEDE ET SYSTEME POUR TRAITER LA LIGNINE
(54) Title: METHOD AND SYSTEM FOR TREATING LIGNIN

(57) Abrégé/Abstract:

The invention provides a method and a system for separating lignin from a lignin containing liquid medium, such as pulp mill black liquor, and treating the separated lignin. The method comprises at least the following steps: a) a precipitation stage (1), wherein a pH lowering agent (A) is added to the lignin containing slurry for precipitating lignin, b) followed by a first separation stage (2), wherein the precipitated lignin is separated as a lignin cake from the remaining liquid phase of the lignin containing slurry, c) a suspending stage (3), wherein the lignin cake is suspended for obtaining a lignin suspension, d) a hydrothermal carbonization stage (4), wherein the lignin suspension is treated for obtaining a slurry of carbon containing material, and e) a second separation stage (5), wherein the carbon containing material is separated from the slurry. Fig.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2015/025076 A1

(43) International Publication Date
26 February 2015 (26.02.2015)

(51) International Patent Classification:
C07G 1/00 (2011.01) *D21C 11/00* (2006.01)

(21) International Application Number:
PCT/FI2014/050614

(22) International Filing Date:
8 August 2014 (08.08.2014)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
20135842 19 August 2013 (19.08.2013) FI

(71) Applicant: VALMET TECHNOLOGIES OY [FI/FI];
Keilasatama 5, FI-02150 Espoo (FI).

(72) Inventor: HILJANEN, Seppo; Hallituskatu 7 C 11, FI-28100 Pori (FI).

(74) Agent: TAMPEREEN PATENTTITOIMISTO OY;
Hermiakatu 1 B, FI-33720 Tampere (FI).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: METHOD AND SYSTEM FOR TREATING LIGNIN

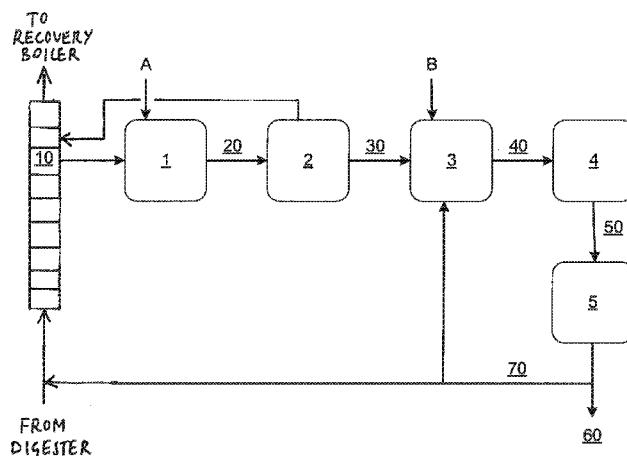


Fig. 1

(57) Abstract: The invention provides a method and a system for separating lignin from a lignin containing liquid medium, such as pulp mill black liquor, and treating the separated lignin. The method comprises at least the following steps: a) a precipitation stage (1), wherein a pH lowering agent (A) is added to the lignin containing slurry for precipitating lignin, b) followed by a first separation stage (2), wherein the precipitated lignin is separated as a lignin cake from the remaining liquid phase of the lignin containing slurry, c) a suspending stage (3), wherein the lignin cake is suspended for obtaining a lignin suspension, d) a hydrothermal carbonization stage (4), wherein the lignin suspension is treated for obtaining a slurry of carbon containing material, and e) a second separation stage (5), wherein the carbon containing material is separated from the slurry. Fig.

METHOD AND SYSTEM FOR TREATING LIGNIN

Field of the invention

5 The present invention relates to a system and a method for separating lignin from a lignin containing liquid medium, such as pulp mill black liquor, and treating the separated lignin according to the independent claims presented below. The invention also relates to a carbon containing product obtainable by the method of the invention and a use of the carbon containing product.

10

Background of the invention

It is previously known to extract lignin, a component of wood, from pulp mill black liquor. Lignin can be used as a fuel. However, a benefit of the 15 separated lignin as a fuel is low in comparison to the black liquor used direct as a fuel in the soda recovery boiler. Thus, the value of the separated lignin correlates to its fuel value, and so the profitability of the lignin separation process or other down streaming process is usually not sufficient for investments.

20

The known process for separating lignin from pulp mill black liquor comprises the following stages in sequence:

- precipitation of lignin by a first precipitation stage of the pulp mill black liquor where the pH of the black liquor is lowered by adding a pH 25 lowering agent, preferably CO₂
- followed by a first dewatering stage while forming a first filter cake,
- suspending the first filter cake in a second precipitation stage using a second acid or mixture of acids, wherein a lignin suspension is obtained,
- dewatering the lignin suspension by a second dewatering stage for 30 forming a second filter cake,
- washing the second filter cake by adding a wash liquid to this washing stage, and
- dewatering the washed second filter cake obtaining a lignin product, 35 said dewatering is typically made in the last stage of the wash apparatus.

Typically, the above described process is connected to the recovery operations receiving black liquor from a digester of the pulp mill.

The method is known for example from European patent EP 1797236 B1 and
5 US Patent Application US 2010/0325947 A1.

At the time of filing this application, the above described process for separating lignin is sold under the trademark LignoBoost™. The LignoBoost process produces a lignin product which can be used as a fuel.

10

Summary of the Invention

It is an aim of the present invention to present a novel process using the lignin obtained from plant material for converting it to more refined products.

15

The aim of the invention is to provide a method and a system for separating lignin from a lignin containing liquid medium, especially spent liquors resulting from biomass fractionation, such as pulp mill black liquor, and further processing the separated lignin in connection with the pulp mill so that
20 the process is cost-effective.

It is especially an aim of the present invention to provide a method and a system which increases the value of the lignin and so the lignin can be utilized also in other solutions as a fuel.

25

One further aim is to recover carbon from lignin-containing liquid mediums by a method that has high carbon-efficiency.

30

One further aim is to provide a method that can be integrated in the kraft (sulphate) pulping process in a chemical pulp mill.

35

2a

In order to achieve among others the aims presented above, a method for separating lignin from a lignin containing liquid medium, such as liquid from a biomass conversion process, for example pulp mill black liquor, and treating the separated lignin, wherein the method comprises precipitating lignin from

5 the lignin containing liquid medium, thereafter subjecting the lignin to a hydrothermal carbonization process in a wet state, and recovering carbon containing material derived from the lignin as the result of the carbonization after the hydrothermal carbonization process, the method further comprising controlling particle size of the carbon containing material by adjusting the pH

10 value of the lignin in a wet state before the hydrothermal carbonization process to a value above 7.

The embodiments and advantages mentioned in this text relate, where applicable, both to the system and to the method according to the invention, even though it is not always specifically mentioned.

- 5 In the method, lignin is precipitated from a lignin containing liquid medium and thereafter subjected to a hydrothermal carbonization process in a wet state, whereafter carbon containing material (carbon-rich material) derived from the lignin as the result of the carbonization is recovered.
- 10 The carbonized material (carbon containing material) is the result of hydrothermal carbonization (HTC) process, which can be performed for lignin which exists in suspension in the HTC process. This carbon containing material, to which the lignin is converted in this process, can be described as "HTC-carbon". During the HTC process the carbon content of the material
- 15 increases compared with the original lignin raw material. The method is characterized by high carbon efficiency. No drying of the lignin is required to make the carbon containing product, because the HTC process is carried out when the raw material is in suspension, and the result is a slurry of carbon containing material.

20 The precipitated lignin may contain also other organic components originating from the biomass. These components are also converted to the HTC carbon in the HTC process along with the lignin.

- 25 The composition of the lignin liquid medium and the form of lignin therein is dependent on the preceding process and its conditions where lignin has entered this liquid medium. The liquid medium is preferably an aqueous medium, where lignin can exist as solution, colloidal dispersion or slurry. For example it is known that the lignin is either dissolved or dispersed in black
- 30 liquor in the colloidal form, depending on the pH of the black liquor and lignin molecular weight. The colloidal dispersion is stabilized by charged phenolic and carboxylic acid groups on the lignin (Marton, J., On the structure of kraft lignin, Tappi, 47(11), 713-719 (1964). In the precipitation of the lignin from the liquid medium, lignin of such an increased particle size is created which
- 35 can be separated from the liquid medium by physical methods, especially by filtration.

The method is suitable especially for converting the lignin of spent liquor from a biomass fractionation method to carbon-rich product. The biomass fractionation method is a method where lignin is separated from the rest of biomass and which produces lignin-containing spent liquor. The fractionation

5 method is especially a process where lignin is separated from cellulose in a process which can be called delignification, and it can be sulphite, soda, or kraft (sulphate) delignification process. Thus, the spent liquor can be for example black liquor from kraft cooking.

10 The separated lignin in a wet state, which can be for example an aqueous suspension of lignin, is fed to the HTC process. The lignin for the HTC process is obtained in the separation process of lignin from a lignin containing liquid medium. This separation process comprises precipitation of lignin. The precipitated lignin in an aqueous suspension is carbonized in the

15 HTC process to an aqueous slurry of carbon containing material.

20 Any suitable separation method for separating the lignin from the spent liquor can be used. If the spent liquor is alkaline, the lignin can be separated through precipitation by lowering the pH.

25 A typical method according to the invention for separating lignin from a lignin containing alkaline liquid medium, such as pulp mill black liquor, and treating the separated lignin comprises at least the following steps:

- 25 a precipitation stage, wherein pH lowering agent is added to the lignin containing alkaline liquid medium for precipitating lignin,
- followed by a first separation stage, wherein the precipitated lignin is separated as from the remaining liquid phase of the lignin containing slurry,
- a suspending stage, wherein the precipitated and separated lignin is suspended or dissolved for obtaining a lignin suspension,
- a hydro thermal carbonization stage, wherein the lignin suspension is treated for obtaining a slurry of carbon containing material (HTC carbon) as a product, and
- a second separation stage, wherein the carbon containing material (HTC carbon) is separated from the slurry.

30 A typical system according to the invention comprises

35

- a precipitating unit for precipitating lignin of the lignin containing liquid medium,
- a first separating unit, especially a filtration unit, for separating the precipitated lignin from the remaining liquid phase of the lignin containing liquid medium,
- a suspending unit for suspending the precipitated and separated lignin
- a hydro thermal carbonization reactor (HTC reactor), and
- a second separating unit for separating carbon containing material (HTC carbon) from slurry of the carbon containing material obtained in the hydro thermal carbonization.

15 The present invention also provides a carbon containing product obtainable by the method according to the invention, and a use of the carbon containing product for replacing a fossil carbon as a raw material, e.g. in the production of the tyres or the steel or as raw material in activated carbon production.

20 It is intended throughout the present description that the expression "lignin containing liquid medium" is any liquid, which contains lignin in dissolved or dispersed form, especially any spent liquor from a biomass fractionating process. This liquid may be a process liquor containing lignin as a result of biomass fractionation in a chemical pulp mill. The origin of the lignin is wood or other biomass such as straw that has been digested in the pulp mill in a process called cooking to prepare chemical pulp. The composition of the spent cooking liquor depends on the cooking method. The spent liquor from 25 kraft (sulphate) cooking which is obtained after the separation of the pulp is called black liquor and it contains dissolved and dispersed organic wood material and residual alkali compounds. In the following description, the method is described mainly with reference to black liquor. The method can be applied to all above-mentioned liquids containing lignin.

30 The present invention is based on the increasing of the value of the lignin by combining a lignin separation process and a hydrothermal carbonization (HTC) process.

35 For example in initial separation of lignin, the lignin is separated from a lignin containing liquid medium, such as pulp mill black liquor, by lowering the pH of the liquid medium to a point where the lignin precipitates. The hydrothermal

carbonization in turn is based on the carbonization of organic matter at a high temperature and at a high pressure in an aqueous phase. So, the aim of the method of the invention is to produce a carbon containing product, technical carbon, which can replace conventional carbon products from fossile sources, from the lignin separated from lignin containing liquid medium.

5 Thus, a method according to the invention comprises a precipitation stage, wherein pH lowering agent is added to the lignin containing liquid medium for precipitating lignin. The pH lowering agent is preferably carbon dioxide, which 10 is usually well available at low cost. The precipitation can be carried out in any suitable precipitation reactor.

15 Any other agent that lowers the pH of the lignin containing slurry can be used instead of carbon dioxide. The pH can be lowered for example by adding acid or a mixture of acids.

20 The pH of the lignin containing liquid medium is lowered by the pH lowering agent to a range which is still alkaline but low enough for precipitation of lignin, usually 9.5 – 10.5.

25 The pH to which the pH of the liquid medium is lowered can be used for controlling the particle size of the precipitated lignin, which in turn can be used to influence the particle size of the product after the HTC process (HTC carbon).

30 After the precipitation stage, the precipitated lignin is separated from the remaining liquid phase of the lignin containing liquid medium in a first separation stage, while forming a lignin cake with high content of lignin. The separation can be carried out by any means for dewatering. Preferably the separation is performed by using centrifugation, a filter press apparatus, a band filter, a rotary filter, such as drum filter, or a sedimentation tank, or similar equipment. According to a preferred embodiment of the invention the first separation stage is performed in a filter press apparatus.

35 According to an embodiment of the invention, the lignin containing liquid medium is black liquor taken from the recovery system of pulp mill black liquor, and the filtrate of the first separation stage is re-circulated to the

recovery system of pulp mill black liquor. The black liquor for the lignin precipitation can be taken at any point between the digester and the recovery boiler. It is taken preferably from the evaporation stage of the black liquor, from a point where it has not yet reached the final concentration suitable for burning

5 in the recovery boiler, and after separation of the lignin the remaining liquid is returned to the evaporation stage.

According to an embodiment of the invention the lignin obtained in the first separation stage, especially in the form of lignin cake, is suspended in water

10 or circulation water in a dissolving/ suspending stage, wherein a lignin suspension is obtained. The suspension can be made in any suitable tank.

Acid can be added to water which is used in the suspending stage, to adjust the pH. Also other substances such as catalysts or substances that modify

15 the properties of the carbon containing material can be added.

In a preferred embodiment, circulation water is used in the suspending stage of the lignin. The circulation water is preferably water remaining after the HTC stage, after the separation of the carbon containing material (HTC

20 carbon) from the slurry of the carbon containing material.

In a preferred embodiment of the invention, the hydro thermal carbonization is arranged after the first separation and suspending stage of the lignin separation process, because in the suspending stage, the concentration of

25 the lignin in the lignin suspension can be set high enough for the subsequent hydro thermal carbonization. According to an embodiment of the invention the lignin suspension is heated to a temperature of about 150 to 250 °C at a pressure of about 20 to 40 bar in the hydro thermal carbonization stage for obtaining slurry of carbon containing material. Typically, the HTC stage

30 comprises at least a HCT reactor, in which the HTC reaction is carried out, and in which reactor the temperature and the pressure can be controlled and adjusted. In a typical embodiment of the invention the lignin suspension is kept in the HTC reactor for at least one hour in order that a major part of lignin and other organic matter present in the suspension is converted into

35 carbon containing material of uniform quality. The reaction time in the HTC reactor may thus be for example about 10 hours. An optimum reaction time is 2 to 4 hours. The HTC reaction is exothermic. About 2 tons of lignin is

needed to produce about 1.5 ton of the carbon containing material where the carbon content is enriched as an end product. The material released from lignin during this conversion is mainly water. Catalysts can be used in the HTC reaction.

5

A composition of the carbon containing material product (HTC carbon) obtained as the product by the method according to the invention is dependent on the process conditions of the HTC stage.

10 Still according to one embodiment, the pH of the separated lignin in a wet state fed to the HTC process is adjusted to control the particle size of the HTC carbon. The pH of the lignin in a wet state, for example a lignin suspension, is adjusted to above 7, preferably above 8 before the HTC stage.

15

In an embodiment of the invention, the HTC stage also comprises at least one preheating unit before the HTC reactor and/or a cooling unit after the HTC reactor. The lignin suspension can be preheated near to the process temperature before conveying the lignin suspension to the hydro thermal 20 carbonization reactor. The preheating can be carried out by using at least one heat exchanger or a steam heater or a combination of them.

After the HTC reaction, the overpressure is relieved and the slurry of carbon containing material is discharged from the HTC reactor.

25

After the hydro thermal carbonization stage, the method according to the invention comprises a second separation stage, wherein the carbon containing material is separated from the slurry of the carbon containing material formed in the HTC reaction. The separation can be carried out by 30 any means for dewatering. According to a preferred embodiment of the invention the second separation stage is performed in a filter press apparatus. The hot slurry from the HTC reactor is preferably led through a heat exchanger, which is used for preheating the lignin suspension before the reactor and at the same time for cooling the hot slurry, and it is finally led 35 through a cooler.

The second separation stage produces carbon containing material as a final product and a filtrate. In a typical embodiment of the invention the filtrate of the second separation stage is circulated back to the suspending stage and/or to a flow of the lignin containing medium in the pulp mill, preferably

5 before the evaporator stage. The sodium is released during the HTC reaction from the lignin and it will return to the lignin containing medium.

The system according to the invention also comprises required connection pipes, pumps, valves, control and adjustment means, which are needed to

10 the operation of the system.

In a preferred embodiment of the invention the system of the invention is integrated in a part of the lignin separation system of the pulp mill. In an embodiment of the invention part of the spent liquor flow, especially black

15 liquor flow, that is supplied to the recovery boiler is taken to the precipitation of lignin. At least part or all of the precipitated lignin is fed to the HTC reactor for obtaining a carbon containing product. Thus, the HTC plant producing the carbon containing product can be integrated in a chemical pulp mill to produce carbon containing material as a by-product of the chemical pulping

20 process.

A carbon product obtained by the method according to the invention can be used e.g. for replacing a carbon originated in fossil source. A carbon product obtained by the method according to the invention can be used for example

25 as a raw material for the production of the tyres. The carbon product obtained by the method according to the invention can also be used as a raw material of the steel production, and for producing electrode carbon. The product can also be used as raw material in activated carbon production.

30 **Description of the drawings**

The invention will be described in more detail with reference to the appended drawings, in which

35 Fig. 1 shows a process flow chart according to an embodiment of the invention, and

Fig. 2 shows a detailed process flow chart of a hydro thermal carbonization stage according to an embodiment of the invention.

5 **Detailed description of the invention**

Although the following example concerns mainly the processing of black liquor that is a part of the chemical cycle of a kraft pulp mill, the details of the example can be applied in processing of other spent liquors of chemical 10 pulping as well.

Figure 1 shows a process flow chart, wherein lignin containing liquid medium 10 is fed to a lignin separation and treating process according to the invention for obtaining a carbon containing material 60 as an end product 15 (carbon containing product). The lignin containing liquid medium is preferably concentrated black liquor, spent liquor from a cooking process that has already gone through several evaporation stages in its course to a recovery boiler where it will be burnt. The vertical arrow from bottom to top on the left side of the figure represents the flow of black liquor from a digester to the 20 recovery boiler and the successive evaporation stages where the dry solids content of the black liquor increases are represented by squares. The evaporation stages can be a series of evaporators that are normally used for concentrating black liquor before the recovery boiler.

25 The black liquor is taken from the flow to the precipitation when it has not yet reached the final dry solids content where it is burnt in the boiler. The black liquor is taken to the precipitation at a dry solids content of about 30 – 45 %.

30 However, it is understood that the black liquor, which contains lignin, can be taken at any point between the digester and the recovery boiler.

The process comprises a precipitation stage 1, wherein lignin is precipitated from the lignin containing liquid medium 10 by adding pH lowering agent A, followed by a first separation stage 2, wherein the precipitated lignin is 35 separated as a lignin cake 30 from the remaining liquid phase of the lignin containing liquid medium 20 with lowered pH. The lignin cake 30 is suspended in a suspending stage 3 using water, wherein a lignin suspension

40 is obtained. Additional substances B, such as acid for adjusting the pH for the HTC stage can be added. For example sulphuric acid can be added. The lignin suspension 40 is treated in a hydrothermal carbonization (HTC) stage 4, wherein slurry 50 of carbon containing material is obtained, and the carbon 5 containing product 60 (HTC carbon) is separated from the slurry in a second separation stage 5. A filtrate 70 of the second separation stage is circulated to the suspending stage 3 to be used as the suspending water and/or to a flow of the lignin containing liquid medium 10 coming from the digester. The filtrate is preferably circulated to the flow of lean black liquor before the 10 evaporation stages. It is possible to use part of the filtrate for the suspending stage 3 and circulate part of the filtrate to the black liquor flow, as shown by Fig. 1. Sodium is separated from the lignin in the HTC process, and it is returned back to the black liquor with the filtrate.

15 The carbon containing product 60 can be washed after the separation of the filtrate 70 and dried.

The hydrothermal carbonization works in a wide variety of liquid/solid ratios of the lignin suspension.

20 Fig. 1 also shows the circulation of black liquor from the first separation stage 2 back to the flow of the black liquor in the evaporation stages.

25 Before the HTC stage 4, the pH of the lignin suspension is preferably adjusted to control the particle size of the carbon containing product 60. It is of particular importance to adjust the pH value of the lignin suspension to suppress the formation of too coarse particles, which is due to the polymerization of lignin during the HTC by the effect of H^+ ions. Thus, the pH of the suspension is preferably adjusted to be above 7, more preferably 30 above 8. Further, it is advantageous that the pH during the HTC process is between 7 and 11, preferably between 8 and 10. The pH of the lignin suspension 40 is preferably adjusted so that it will be within these ranges during the HTC stage 4.

35 The particle size of the carbon containing product can be influenced by adjusting the H^+ ion concentration in the lignin suspension that is subjected to the HTC. By reducing the H^+ ion concentration of the lignin suspension the particle size of the product can be reduced. Thus, the choice of the pH for the

HTC is dependent on the desired particle size. The particle size can be expressed for example by D90 value of the particle size distribution.

5 The pH can be adjusted to a suitable range for the HTC with acid (additional substance B) added in the suspending stage. However, either acids or bases can be used for the pH adjustment, depending on the initial pH of the suspension and the target pH value.

10 Figure 2 is a detailed process flow chart of a hydro thermal carbonization stage 4 according to an embodiment of the invention. The HTC stage may comprise a first heat exchanger 6 and a steam heater 7, through which a lignin suspension from the suspending stage 3 is conveyed before feeding it to a HTC reactor 8. Thus, the lignin suspension 40 can be preheated to the required temperature before the hydrothermal carbonization. At least one 15 cooler 9 can be arranged after the HTC reactor 8 for cooling the slurry 50 of carbon containing material. The slurry 50 from the HTC reactor 8 is conveyed through the heat exchanger 6 before the cooler 9, wherein the heat of the slurry of carbon containing material can be utilized in the preheating of the lignin suspension.

20 The carbon containing product can be dried to remove the remaining liquid, for example by evaporating the remaining liquid.

25 As can be seen in the preceding disclosure, the process of producing carbon containing material can be well integrated in the treatment of black liquor in a chemical pulp mill.

Many variations of the present invention will suggest themselves to those skilled in the art in light of the above detailed description.

Claims

1. A method for separating lignin from a lignin containing liquid medium and treating the separated lignin, wherein the method comprises
 - 5 - precipitating lignin from the lignin containing liquid medium,
 - a first separation stage, wherein the precipitated lignin is separated from the lignin containing liquid medium,
 - a suspending stage, wherein the precipitated and separated lignin is suspended or dissolved for obtaining lignin suspension,
- 10 - thereafter subjecting the lignin suspension to a hydrothermal carbonization process for obtaining a slurry of HTC carbon, and
 - in a second separation stage, separating HTC carbon from the slurry, the HTC carbon being derived from the lignin as the result of the carbonization in the hydrothermal carbonization process, the method further comprising:
- 15 - controlling particle size of the HTC carbon by adjusting the pH value of the lignin suspension before the hydrothermal carbonization process to a value above 7.
- 20 2. A method according to claim 1, wherein the pH value is adjusted to a value above 8.
- 25 3. The method according to claim 2, wherein the lignin suspension is subjected to the hydrothermal carbonization at a pH value between 8 and 10.
4. The method according to any one of claims 1 to 3, wherein
 - 25 - in the step of precipitating, a pH lowering agent is added to the lignin containing liquid medium, wherein the lignin containing liquid medium is alkaline.
- 30 5. The method according to any one of claims 1 to 4, wherein
 - in the suspending stage, the precipitated and separated lignin is suspended in liquid obtained in the second separation stage.

6. The method according to any one of claims 1 to 5, wherein
- the hydrothermal carbonization process comprises heating the lignin suspension
to a temperature of 150 to 250 °C.

5 7. The method according to claim 6, wherein in the hydrothermal carbonization
process, the lignin is heated at a pressure of 20 to 40 bar.

8. The method according to any one of claims 1 to 7, wherein the lignin
suspension is preheated before conveying the lignin suspension to the
10 hydrothermal carbonization process.

9. The method according to any one of claims 1 to 8, wherein liquid obtained in
the second separation stage is circulated to the lignin containing liquid medium.

15 10. The method according to any one of claims 4 to 9, wherein the pH lowering
agent is carbon dioxide.

11. The method of any one of claims 1 to 10, wherein the lignin containing liquid
medium is a liquid from a biomass conversion process.

20 12. The method according to any one of claims 1 to 11, wherein the lignin
containing liquid medium is black liquor.

25 13. A system for separating lignin from a lignin containing liquid medium and
treating the separated lignin, the system comprising
- a precipitating unit for precipitating lignin of the lignin containing liquid
medium,
- a first separating unit for separating the precipitated lignin from the remaining
liquid phase of the precipitated lignin containing liquid medium,
30 - a suspending and pH adjustment unit for suspending the precipitated and
separated lignin and for adjusting its pH above 7,
- a hydrothermal carbonization reactor, and
- a second separating unit for separating HTC carbon from a slurry of HTC
carbon obtained in the hydrothermal carbonization stage.

35

14. The system according to claim 13, wherein the system comprises at least one preheating unit before the hydro thermal carbonization reactor.
- 5 15. The system according to claim 13 or 14, wherein the system comprises at least one cooling unit after the hydro thermal carbonization reactor.
16. HTC carbon obtained by a method according to any one of claims 1 to 12.
- 10 17. Use of HTC carbon according to claim 16 as a raw material for the production of tyres, steel, electrode carbon or activated carbon.

1/1

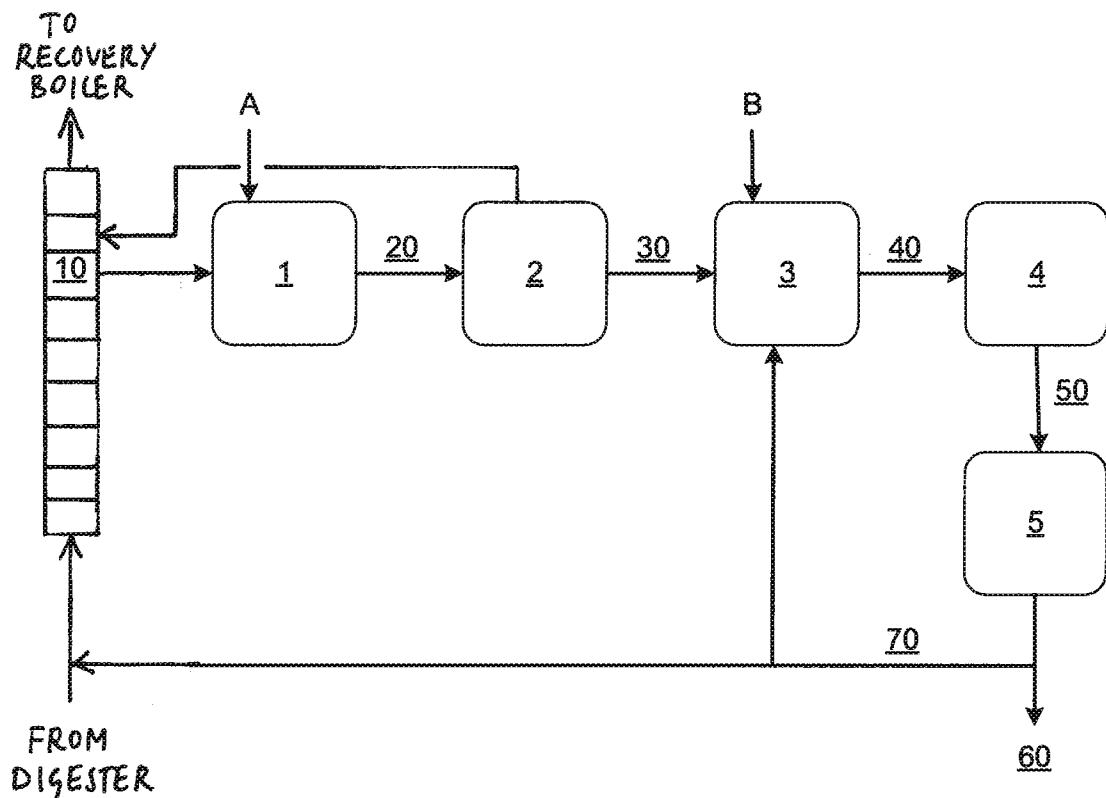


Fig. 1

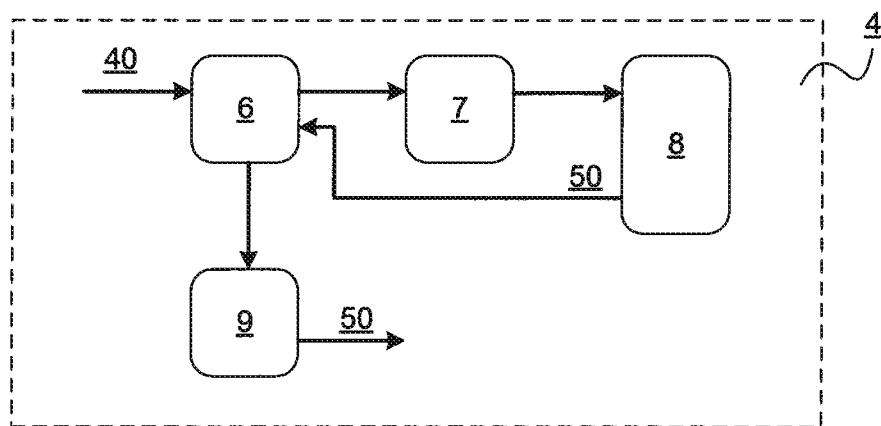
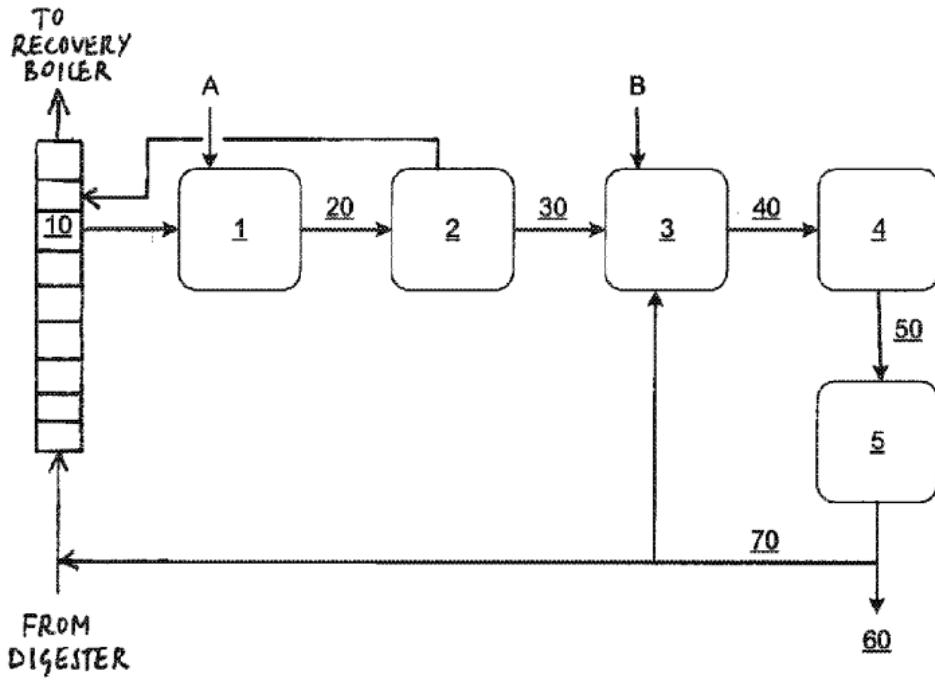



Fig. 2

