Abstract: A method including retrieving a multi-dimensional map (30) from a navigation system memory (27); determining an aerial route (64) between two locations (60, 62) based at least partially upon the multi-dimensional map (30); and storing the aerial route (64) in the navigation system memory (27). The multi-dimensional map (30) includes terrain information (32) and object information (34). The object information (34) includes information regarding location (42) and size (44) of objects (68, 70, 72) extending above ground level. The objects (68, 70, 72) are in uncontrolled airspace, and the object information (34) includes height information (46) regarding a height above ground level of at least some of the objects (68, 70, 72). The aerial route (64) is limited to the uncontrolled airspace, where the aerial route is over and around at least some of the objects (68, 70, 72), and where the aerial route (64) is determined, at least partially, based upon the height information (46) of the objects (68, 70, 72).
MULTI-DIMENSIONAL MAP FOR AERIAL VEHICLE ROUTING

BACKGROUND

Technical Field

The exemplary and non-limiting embodiments relate generally to a map and, more particularly, to a multi-dimensional map.

Brief Description of Prior Developments

Maps are used in navigation systems to allow a user to navigate to a location. Navigation system maps are known which include road information and can be updated with traffic conditions for example.

SUMMARY

The following summary is merely intended to be exemplary. The summary is not intended to limit the scope of the claims.

In accordance with one aspect, an example method comprises retrieving a multi-dimensional map from a navigation system memory, where the multi-dimensional map comprises terrain information and object information, where the object information comprises information regarding location and size of objects extending above ground level, where the objects are in uncontrolled airspace, and where the object information includes height information regarding a height above ground level of at least some of the objects; determining an aerial route between two locations based at least partially upon the multi-dimensional map, where the aerial route is limited to the uncontrolled airspace, where the aerial route is over and around at least some of the objects, and where the aerial route is determined, at least partially, based upon the height information of the objects; and storing the aerial route in the navigation system memory.

In accordance with another aspect, an example embodiment is provided in an apparatus comprising at least one processor; and at least one non-transitory memory.
including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus to: retrieve a multi-dimensional map from a navigation system memory, where the multi-dimensional map comprises terrain information and object information, where the object information comprises information regarding location and size of objects extending above ground level, where the objects are in uncontrolled airspace, and where the object information includes height information regarding a height above ground level of at least some of the objects; determine an aerial route between two locations based at least partially upon the multi-dimensional map, where the aerial route is limited to the uncontrolled airspace, where the aerial route is over and around at least some of the objects, and where the aerial route is determined, at least partially, based upon the height information of the objects; and store the aerial route in the navigation system memory.

In accordance with another aspect, an example embodiment is provided in a non-transitory program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine for performing operations, the operations comprising: retrieving a multi-dimensional map from a navigation system memory, where the multi-dimensional map comprises terrain information and object information, where the object information comprises information regarding location and size of objects extending above ground level, where the objects are in uncontrolled airspace, and where the object information includes height information regarding height above ground level of at least some of the objects; determining an aerial route between two locations based at least partially upon the multi-dimensional map, where the aerial route is limited to the uncontrolled airspace, where the aerial route is over and around at least some of the objects, and where the aerial route is determined, at least partially, based upon the height information of the objects; and storing the aerial route in the navigation system memory.

In accordance with another aspect, an example embodiment is provided in an apparatus comprising means for retrieving a multi-dimensional map from a navigation system memory, where the multi-dimensional map comprises terrain information and object information, where the object information comprises information regarding location and size of objects extending above ground level, where the objects are in uncontrolled airspace, and where the object information includes height information regarding a height above ground level of at least some of the objects; means for determining an aerial route between two locations based at least partially upon the multi-dimensional map, where the aerial route is limited to the uncontrolled airspace, where the aerial route is over and around at least some of the objects, and where the aerial route is determined, at least
partially, based upon the height information of the objects; and means for storing the aerial route in the navigation system memory.

In accordance with another aspect, an example method comprises obtaining object information regarding location and size of objects extending upward above ground level, where the objects are in uncontrolled airspace, and where the object information includes height information regarding height of the objects above ground level; combining the object information with a map, including terrain information, to form a multi-dimensional map which includes the terrain information and the object information; and storing the multi-dimensional map in a navigation system for aerial navigation of a device in the only uncontrolled airspace over and around the objects in the uncontrolled airspace.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and other features are explained in the following description, taken in connection with the accompanying drawings, wherein:

Fig. 1 is a diagram illustrating an aerial vehicle comprising features as described herein;

Fig. 2 is a block diagram illustrating one example of a multi-dimensional map;

Fig. 3 is a diagram illustrating some examples of areas which might have restricted airspace for uncontrolled airspace travel;

Fig. 4 is a diagram illustrating an example of a route generated with features as described herein;

Fig. 5 is a diagram illustrating an example method; and

Fig. 6 is a diagram illustrating an example method.

DETAILED DESCRIPTION OF EMBODIMENTS

Referring to Fig. 1, there is shown a diagram illustrating an aerial vehicle incorporating features of an example embodiment. Although the features will be described with reference to the example embodiments shown in the drawings, it should be understood that features can be embodied in many alternate forms of embodiments. In addition, any suitable size, shape or type of elements or materials could be used.
In one example embodiment the aerial vehicle is an unmanned aerial vehicle (UAV) such as an autonomous or semi-autonomous UAV for example. The vehicle 10 includes at least one controller 12, a navigation system 14 and at least one communications system 16. The vehicle 10 also comprises other components (not shown) such as at least one motor for example. The controller 12 includes at least one processor 18 and at least one memory 20 which includes software 22. The communications system 16 may comprise a transmitter and a receiver for radio frequency communications for example. The navigation system 14 may include at least one location system 24 and at least one map system 26. The location system may include, for example, a Global Positioning System (GPS) receiver and an altimeter. The navigation system may also comprise a proximity detector, perhaps as part of the location system(s) 24 for sensing location of the vehicle 10 relative to other items.

The map system(s) 26 generally comprises at least one map which may be used to allow the vehicle 10 to navigate in airspace to a destination. The at least one map includes conventional two-dimensional map information, but also includes other information to form a multi-dimensional map (a non-two-dimensional map).

New technology is emerging that allows for vehicles to travel above the ground, but below the altitudes where safe travel without concern for obstructions or other impediments may occur. Features as described herein provide an approach for creating multi-dimensional mapping algorithms to define and allow for safe navigation above the ground, but below controlled airspace such as defined by the United States Federal Aviation Authority, the European Joint Aviation Authority, or similar national authority protected airspace for commercial airline traffic. More specifically, in airspace where objects extend upward from the ground, such as houses, buildings, radio towers, etc., perhaps lower than 100-200 feet for example.

One type of transport method is by manned airplane where direct or almost direct travel may occur at relatively high altitudes above the earth where there are no obstructions to flight except for other aircraft. The safety of travel via airplane is governed by strict air traffic control protocols in controlled airspace. Controlled airspace is airspace of defined dimensions within which Air Traffic Control (ATC) services are provided. The level of control varies with different classes of airspace. Uncontrolled airspace is the opposite of controlled airspace. The International Civil Aviation Organization (ICAO) classifies airspace in seven classes from classes A to G. Controlled airspace is in classes A to E, in order of decreasing ATC regulation of flights. Uncontrolled airspace is the opposite of controlled airspace and includes airspace in classes F and G. Outside of
emergency situations the only time ground obstructions may be a factor are the times when an airplane is departing or arriving at an airport. Obstructions near such locations are strictly regulated and any obstructions, even temporary ones, which may impact safe travel are charted to notify the pilots of their locations and potential issues.

Features as described herein are in regard to unmanned aircraft system (UAS) uncontrolled airspace. As used herein, UAS uncontrolled airspace is intended to mean airspace in classes F or G, and in an area where ground obstructions are normally present, such as relatively close to the ground below 100-200 feet above the ground for example. This UAS uncontrolled airspace is airspace in which manned commercial aircraft do not normally fly, such as between buildings or a few feet above treetops for example. Manned aerial vehicles (such as fixed-wing and variable wing) do not ordinarily travel in this type of UAS uncontrolled airspace, except during takeoff or landing, or perhaps military aircraft during war and helicopters during police or medical emergencies. Military autonomous and semi-autonomous UAVs do not ordinarily travel in this type of UAS uncontrolled airspace, except when controlled by an operator within line of sight of the vehicle.

This disclosure provides an approach for creating multi-dimensional mapping algorithms to allow for safe navigation above the ground, but below the United States Federal Aviation Authority, the European Joint Aviation Authority, or similar national authority protected airspace for commercial airline traffic. Features as described herein may be used to provide a multi-dimensional mapping model approach. This approach may comprise, for example:

1. Create a 3-dimensional map for routing drones through permissible areas.

2. Create aerial traffic lanes (such as lanes that meet government criteria for safety and privacy for example)

3. Create allowable areas for movement, provide areas of restriction. Include climb and descent buffers and safety landing areas.

4. Create metadata to allow aerial traffic lanes being dynamically managed (one direction or bi-direction, aerial road closure, etc. ...)

5. Create geo-location codes to define routes and intersections of these routes.

With features as described herein, aerial road works, similar to automotive roads, may be created. This may be added to, or updated with, information regarding for example:
obstructions based on altitude, such as electrical wires, bridge overpasses, tunnels with limited heights;

the ability to designate prohibited zones above and around areas to be protected. Examples of possible structures that may require prohibited zones may include, for example, hospitals or police stations where aircraft even flying at a higher altitude would normally be prohibited;

minimum heights for traversal of a predetermined area;

corridors below the heights of safe traversal that allow navigable paths between/around structures;

geolocation codes for each area.

In planning of the aerial routes, the mapping used for the navigation may take into consideration other near-earth practical considerations, such as future tree growth and buffer zones around certain areas which may be intruded upon due to human activity (accidental or otherwise). For example, an aerial lane might have a buffer zone around a golf course or a baseball field. In planning of the aerial roads or lanes, the mapping may take into consideration how the lanes may impact humans, such as providing time zone limitations or prohibit aerial roads or lanes such as to not disturb people sleeping or national parks for example.

Today's vehicle traffic is predominantly on road networks on the surface of the earth. These land road networks are well defined and the placement of the roads is well mapped. Navigation routing on the land road network is well understood with algorithms developed to provide travel optimizations such as the shortest travel time or the lowest costs to get from one location to another. In one type of example, aerial lanes may be at least partially defined based upon the road networks on the surface of the earth. In other words, the aerial lanes may be defined along, but aerially spaced over, the land roads. Thus, the locations of the land roads from a 2-dimensional map may be used as an initial basis for establishing the aerial road map to be used for a route of a UAV. Travel directly over a land road for a majority of the flight time might take longer than a direct route between a starting location and the destination, but this may provide less likelihood of collision of the UAV with another object (especially if the majority of the vehicle's aerial travel is over the land road). The communication system(s) 16 may include an ability of multiple UAVs to communicate with one another to avoid direct contact during flight.
Features as described herein may be used with a new technology that allows for vehicles to travel above the ground, but below the altitudes where safe travel without concern for obstructions or other impediments may occur. The features described herein include a method for safe travel when a vehicle is above the ground, but below the altitude where no obstructions are present. It is at these altitudes that unmanned aircraft system (UAS) vehicles are expected to travel.

Referring also to Fig. 2, a multi-dimensional (more than just two-dimensional) map 30 in the navigation system 14, such as stored in a memory 27 of the navigation system or stored in the memory 20, comprises terrain information 32 and object information 34. In one type of example, part of the memory 20 may form the navigation system memory. The terrain information 32 includes information such as terrain elevation 36, land road information 38, and perhaps other information 40. The terrain information 32 may be information obtained from at least one two dimensional land road map and a two-dimensional topographic map. The other terrain information 40 may include, for example, road overpass and underpass information, bridge information, road tunnel information, other road height restrictions, etc.

The object information 34 may include information regarding specific objects which extend above ground level. Examples of such objects include, but are not limited to, trees, buildings, billboards, radio towers, etc. Information regarding these specific objects may include location information 42 (relative to the terrain information 32 for example), size information 44 (such as length and width on the ground), height above ground level information 46, and perhaps other information 48 relating to the objects which might have an impact on planning an aerial route above or around that object. The multi-dimensional map 30 may also include other information 50 which may be important to aerial navigation, such as restricted airspace for example. Fig. 3 illustrates some examples of objects which might have restricted airspace for close earth UAVs, such as an airport 52, a train station 54, a gas station 56 and a national park 58.

Referring also to Fig. 4, an example of use of the map 30 is shown. In this example the vehicle 10 has a start location 60 on the ground and an end location or destination 62 on the ground. The path or route of the vehicle 10 is shown by the dotted line 64 between 60 and 62. The navigation system 14 uses the map 30 to plot the route 64 based upon the input destination 62 and knowledge of the starting location 60. The destination 62 may be received by the communications system 16 for example. During flight, information from the navigation system 14 may be used to select the altitude or flight height setting of the vehicle 10 above ground, and adjust the height/altitude of the
vehicle 10 above ground based upon the terrain information 32 and the object information
34. In this example, after takeoff the vehicle 10 travels along a first segment 66 at a first
altitude above the house 68 and tree 70. The altitude of the vehicle 10 along the
segment 66 is set based at least partially upon the elevation of the ground at the start
location 60 and the height of the house 68 and tree 70 as indicated by the multi-
dimensional map 30. Thus, the controller 12 is able to control the flight of the vehicle 10
based upon the navigation system's plotted route including altitude for the vehicle to
avoid interference with the height of the objects 68, 70 extending above ground level.

The vehicle 10 increases altitude to traverse over the building 72 at second
segment 74. Again, the altitude of the vehicle 10 along the segment 74 is set based at
least partially upon the elevation of the ground below the segment 74 and the height of
the building 72 as indicated in the multi-dimensional map 30. Thus, the controller 12 is
able to control the flight of the vehicle 10 based upon the navigation system's plotted
route including altitude for the vehicle 10 to avoid interference with the height of the object
72 extending above ground level.

After passing over the building 72, the vehicle 10 is able to reduce altitude to
travel along third segment 76, changes direction to travel over road 78 along the fourth
segment 80, and then lands at the destination 62 (such as at a house of a person who
ordered goods to be delivered by the vehicle 10 for example). Please note that this is
merely one example and should not be considered as limiting.

The height information 46 may be actual height information taken by a height
 estimator in the field (such as by a land vehicle traveling along a road for example), or
downloaded from a database which comprises the height information, and/or estimated
based upon photographic information currently present in 3-D mapping systems. These
are merely some examples and should not be considered as limiting.

Referring also to Fig. 5, an example method may comprise retrieving a multi-
dimensional map from a navigation system memory as indicated by block 70, where the
multi-dimensional map comprises terrain information and object information, where the
object information comprises information regarding location and size of objects extending
above ground level, where the objects are in uncontrolled airspace, and where the object
information includes height information regarding a height above ground level of at least
some of the objects; determining an aerial route between two locations based at least
partially upon the multi-dimensional map as indicated by block 72, where the aerial route
is limited to the uncontrolled airspace, where the aerial route is over and around at least
some of the objects, and where the aerial route is determined, at least partially, based
upon the height information of the objects; and storing the aerial route in the navigation
system memory as indicated by block 74. The method may comprise selecting a
destination for an unmanned aerial vehicle; performing the method noted above, where
the destination is one of the two locations; and the unmanned aerial vehicle flying
autonomously from a first one of the locations to the destination with use of the aerial
route stored in the navigation system memory and with use of position information
retrieved by the unmanned aerial vehicle during flight.

The method may further comprise dynamically changing the aerial route during
flight of the unmanned aerial vehicle based upon input received during flight. The method
may further comprise dynamically changing speed and altitude of an unmanned aerial
vehicle during flight based upon input received during flight for collision avoidance with
other unmanned aerial vehicles in case of an intersection of the aerial route with another
aerial route. Determining the aerial route may comprise avoiding an aircraft flight
restricted area. Determining the aerial route may comprise limiting the aerial route to
predetermined flight areas in the uncontrolled airspace. Determining the aerial route may
comprise determining ascent and descent safety takeoff and landing areas at the two
locations. Determining the aerial route may comprise aerial traffic lanes for safety and
privacy. Determining the aerial route may comprise limiting at least one area of possible
aircraft flight based upon time of day.

An example apparatus may comprise at least one processor; and at least one
non-transitory memory including computer program code, the at least one memory and
the computer program code configured to, with the at least one processor, cause the
apparatus to: retrieve a multi-dimensional map from a navigation system memory, where
the multi-dimensional map comprises terrain information and object information, where
the object information comprises information regarding location and size of objects
extending above ground level, where the objects are in uncontrolled airspace, and where
the object information includes height information regarding a height above ground level
of at least some of the objects; determine an aerial route between two locations based at
least partially upon the multi-dimensional map, where the aerial route is limited to the
uncontrolled airspace, where the aerial route is over and around at least some of the
objects, and where the aerial route is determined, at least partially, based upon the height
information of the objects; and store the aerial route in the navigation system memory.

The at least one memory and the computer program code may be configured to,
with the at least one processor, cause the apparatus to: select a destination for an
unmanned aerial vehicle, where the destination is one of the two locations; and the unmanned aerial vehicle flying autonomously from a first one of the locations to the destination with use of the aerial route stored in the navigation system memory and with use of position information retrieved by the unmanned aerial vehicle during flight. The at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to dynamically change the aerial route during flight of the unmanned aerial vehicle based upon input received during flight. The at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to determine the aerial route comprising avoiding an aircraft flight restricted area. The at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to determine the aerial route comprising limiting the aerial route to predetermined flight areas in the uncontrolled airspace. The at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to determine the aerial route comprising determining ascent and descent safety takeoff and landing areas at the two locations. The at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to determine the aerial route comprising aerial traffic lanes for safety and privacy. The at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to determine the aerial route comprising limiting at least one area of possible aircraft flight based upon time of day.

An example embodiment may be provided in a non-transitory program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine for performing operations, the operations comprising: retrieving a multi-dimensional map from a navigation system memory, where the multi-dimensional map comprises terrain information and object information, where the object information comprises information regarding location and size of objects extending above ground level, where the objects are in uncontrolled airspace, and where the object information includes height information regarding height above ground level of at least some of the objects; determining an aerial route between two locations based at least partially upon the multi-dimensional map, where the aerial route is limited to the uncontrolled airspace, where the aerial route is over and around at least some of the objects, and where the aerial route is determined, at least partially, based upon the height information of the objects; and storing the aerial route in the navigation system memory.
Any combination of one or more computer readable medium(s) may be utilized as the memory. The computer readable medium may be a computer readable signal medium or a non-transitory computer readable storage medium. A non-transitory computer readable storage medium does not include propagating signals and may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

An example apparatus may comprise means for retrieving a multi-dimensional map from a navigation system memory, where the multi-dimensional map comprises terrain information and object information, where the object information comprises information regarding location and size of objects extending above ground level, where the objects are in uncontrolled airspace, and where the object information includes height information regarding a height above ground level of at least some of the objects; means for determining an aerial route between two locations based at least partially upon the multi-dimensional map, where the aerial route is limited to the uncontrolled airspace, where the aerial route is over and around at least some of the objects, and where the aerial route is determined, at least partially, based upon the height information of the objects; and means for storing the aerial route in the navigation system memory. The apparatus may further comprise means for selecting a destination for an unmanned aerial vehicle, where the destination is one of the two locations; and means for flying the unmanned aerial vehicle autonomously from a first one of the locations to the destination with use of the aerial route stored in the navigation system memory and with use of position information retrieved by the unmanned aerial vehicle during flight. The apparatus may further comprise means for changing the aerial route during flight of the unmanned aerial vehicle based upon input received during flight. The apparatus may further comprise means for avoiding an aircraft flight restricted area. The apparatus may further comprise means for limiting the aerial route to predetermined flight areas in the uncontrolled airspace. The apparatus may further comprise means for determining ascent and descent safety takeoff and landing areas at the two locations. The apparatus may further comprise means for determining aerial traffic lanes for safety and privacy.
The apparatus may further comprise means for limiting at least one area of possible aircraft flight based upon time of day.

Referring also to Fig. 6, an example method may comprise obtaining object information regarding location and size of objects extending upward above ground level, where the objects are in uncontrolled airspace as indicated by block 80, and where the object information includes height information regarding height of the objects above ground level; combining the object information with a map as indicated by block 82, including terrain information, to form a multi-dimensional map which includes the terrain information and the object information; and storing the multi-dimensional map in a navigation system for aerial navigation of a device in the only uncontrolled airspace over and around the objects in the uncontrolled airspace as indicated by block 84. The method may further comprise updating the object information based upon changes in the height over time of at least some of the objects.

Although features have been described herein in regard to an unmanned autonomous aerial vehicle, features may be used in a manned vehicle or an unmanned vehicle which may be at least partially controlled non-autonomously.

It should be understood that the foregoing description is only illustrative. Various alternatives and modifications can be devised by those skilled in the art. For example, features recited in the various dependent claims could be combined with each other in any suitable combination(s). In addition, features from different embodiments described above could be selectively combined into a new embodiment. Accordingly, the description is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.
What is claimed is:

1. A method comprising:
 retrieving a multi-dimensional map from a navigation system memory, where the multi-dimensional map comprises terrain information and object information, where the object information comprises information regarding location and size of objects extending above ground level, where the objects are in uncontrolled airspace, and where the object information includes height information regarding a height above ground level of at least some of the objects;
 determining an aerial route between two locations based at least partially upon the multi-dimensional map, where the aerial route is limited to the uncontrolled airspace, where the aerial route is over and around at least some of the objects, and where the aerial route is determined, at least partially, based upon the height information of the objects; and
 storing the aerial route in the navigation system memory.

2. The method according to claim 1, further comprising:
 selecting a destination for an unmanned aerial vehicle, where the destination is one of the two locations; and
 flying the unmanned aerial vehicle autonomously from a first one of the locations to the destination with use of the aerial route stored in the navigation system memory and with use of position information retrieved by the unmanned aerial vehicle during flight.

3. The method according to claim 1 or 2, further comprising:
 dynamically changing the aerial route during flight of the unmanned aerial vehicle based upon input received during flight.

4. The method according to claim 2 or 3, further comprising:
 dynamically changing speed and altitude of an unmanned aerial vehicle during flight in response to input received during flight for collision avoidance with other unmanned aerial vehicles in case of an intersection of the aerial route with another aerial route.

5. The method according to any of claims 1 through 4, where determining an aerial route comprises avoiding an aircraft flight restricted area.
6. The method according to any of claims 1 through 5, where determining an aerial route comprises limiting the aerial route to predetermined flight areas in the uncontrolled airspace.

7. The method according to any of claims 1 through 6, where determining an aerial route comprises determining ascent and descent safety takeoff and landing areas at the two locations.

8. The method according to any of claims 1 through 7, where determining an aerial route comprises determining ascent and descent safety takeoff and landing areas at the two locations.

9. The method according to any of claims 1 through 8, where determining an aerial route comprises limiting at least one area of possible aircraft flight based upon time of day.

10. An apparatus comprising: at least one processor; and at least one non-transitory memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus to:

 retrieve a multi-dimensional map from a navigation system memory, where the multi-dimensional map comprises terrain information and object information, where the object information comprises information regarding location and size of objects extending above ground level, where the objects are in uncontrolled airspace, and where the object information includes height information regarding a height above ground level of at least some of the objects;

 determine an aerial route between two locations based at least partially upon the multi-dimensional map, where the aerial route is limited to the uncontrolled airspace, where the aerial route is over and around at least some of the objects, and where the aerial route is determined, at least partially, based upon the height information of the objects; and

 store the aerial route in the navigation system memory.

11. The apparatus according to claim 10, where the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to:

 select a destination for an unmanned aerial vehicle, where the destination is one of the two locations; and
the unmanned aerial vehicle flying autonomously from a first one of the locations to the destination with use of the aerial route stored in the navigation system memory and with use of position information retrieved by the unmanned aerial vehicle during flight.

5 12. The apparatus according to claim 11, where the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to dynamically change the aerial route during flight of the unmanned aerial vehicle based upon input received during flight.

10 13. The apparatus according to any of claims 10, 11, or 12, where the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to determine the aerial route comprising avoiding an aircraft flight restricted area.

15 14. A non-transitory program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine for performing the method according to any of claims 1 through 9.

15. A method of generating a multi-dimensional map comprising:

obtaining object information regarding location and size of objects extending upward above ground level, where the objects are in uncontrolled airspace, and where the object information includes height information regarding height of the objects above ground level;

combining the object information with a map, including terrain information, to form a multi-dimensional map which includes the terrain information and the object information; and

storing the multi-dimensional map in a navigation system for aerial navigation of a device in the only uncontrolled airspace over and around the objects in the uncontrolled airspace.
Fig. 1

Aerial Vehicle

Controller

Processor

Memory

Software

Communications System(s)

Navigation System

Location system(s)

Map System(s)

Memory

Fig. 2

Multi-Dimensional Map

Object Information

Location

Size

Height Above Ground Level

Terrain Information

Elevation

Roads

Other

Other

Other

Fig. 2
Retrieving A Multi-Dimensional Map From A Navigation System Memory

Determining An Aerial Route Between Two Locations Based At Least Partially Upon The Multi-Dimensional Map

Storing The Aerial Route In The Navigation System Memory

Fig. 5

Obtaining Object Information Regarding Location And Size Of Objects Extending Upward Above Ground Level, Where The Objects Are In Uncontrolled Airspace

Combining The Object Information With A Map As Indicated By Block 82, Including Terrain Information, To Form A Multi-Dimensional Map Which Includes The Terrain Information And The Object Information

Storing The Multi-Dimensional Map In A Navigation System For Aerial Navigation Of A Device In The Only Uncontrolled Airspace Over And Around The Objects In The Uncontrolled Airspace

Fig. 6
INTERNATIONAL SEARCH REPORT

PCT/IB2016/054760

A. CLASSIFICATION OF SUBJECT MATTER

INV. G01C21/00 B64C39/02 G05D1/10 G08G5/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G01C G08G B64C G05D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2012/158280 AI (RAVENSCROFT DONALD L [US]) 21 June 2012 (2012-06-21) abstract figures 1-7 paragraphs [0002] - [0005], [0014] - [0024], [0035], [0041], [0042], [0043], [0045], [0084] claims 1-20</td>
<td>1-15</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.

[X] See patent family annex.

Date of the actual completion of the international search

8 November 2016

Date of mailing of the international search report

16/11/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3016

Toth, Remy

Form PCT/ISA/210 (second sheet) (April 2006)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FRANZ ANDERT ET AL: "Online world modeling and path planning for an unmanned helicopter", AUTONOMOUS ROBOTS, KLUWER ACADEMIC PUBLISHERS, BO, vol. 27, no. 3, 19 August 2009 (2009-08-19), pages 147-164, XP019746134, ISSN: 1573-7527, DOI: 10.1007/S10514-009-9134-Y abstract figures 1-16 1. Introduction 2.1 Context and basic idea 2.2 Representing the environment 3.4 Ground planes 4.3.2 Initial path search</td>
<td>1-15</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2012158280 A1</td>
<td>21-06-2012</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2014303884 A1</td>
<td>09-10-2014</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014040231 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014018979 A1</td>
</tr>
</tbody>
</table>