Office de la Propriete Canadian CA 2563450 A1 2006/02/09

Intellectuelle Intellectual Property
du Canada Office (21) 2 563 450
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2005/07/08 (71) Demandeur/Applicant:
(87) Date publication PCT/PCT Publication Date: 2006/02/09 ASOLS LID., 1L
: : : . (72) Inventeurs/Inventors:
(85) Entree phase nationale/National Entry: 2006/10/13 SOLOMON. DORON. IL:
(86) N demande PCT/PCT Application No.: US 2005/024063 GARON, GILAD, IL

(87) N° publication PCT/PCT Publication No.: 2006/014528 (74) Agent: G. RONALD BELL & ASSOCIATES

(30) Priontes/Priorities: 2004/07/08 (US60/586,353);
2004/0/7/08 (US60/586,389); 2004/07/08 (US60/586,391);
2004/0/7/08 (US60/586,390); 2004/08/25 (US60/604,258);
2005/03/03 (US11/071,340)

(54) Titre : PROCEDE ET APPAREIL POUR LA MISE EN OEUVRE DE TRANSFORMEES ORTHOGONALES RAPIDES
DE TAILLE VARIABLE

54) Title: A METHOD OF AND APPARATUS FOR IMPLEMENTING FAST ORTHOGONAL TRANSFORMS OF
VARIABLE SIZE

Reconfigurable RAM cluster and Reconfigurable BUS Multiplexer /1 80

Reconfigure BUS Mullipicxer

Reconfigurable
Multipliers

One or several Radix 2;/x O
Transforms Units O
Detector 182 O
188 |
L Control and Storage J
* 186
(57) Abréegée/Abstract:

A reconfigurable architecture for and method of performing a fast orthogonal transform of vectors in multiple stages, the size of a
vector being N, wherein N can vary and the number of stages Is a function of N, the architecture including: a computational unit

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2563450 A1 2006/02/09

(21) 2 563 450
(13) A1

(57) Abrege(suite)/Abstract(continued):
(182) configured and arranged so as to include one or more butterfly units; a block including one or more multipliers (184) coupled

to the output of the computational unit, configured and arranged so as to perform all of the butterfly computations for at least one
stage of the transform; a storage unit (180) configured and arranged so as to store the intermediate results of the butterfly
computations and predetermined coefficients for use by the computational unit for performing each butterfly computation, the

storage unit including memory and multiplexing architecture (130).

CA 02563450 2006-10-13

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2006/014528 Al

(51) International Patent Classification : GO6F 17/14 (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(19) World Intellectual Property Organization f~
International Bureau :

(43) International Publication Date
9 February 2006 (09.02.2006)

(21) International Application Number: AT, AU. AZ. BA. BB. BG. BR. BW. BY. BZ. CA. CH, CN,
PCT/US2005/024063 CO. CR. CU. CZ. DE, DK, DM. DZ. EC, EE. EG. ES, FL

(22) International Filing Date: 8 July 2005 (08.07.2005) GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ. LC, LK, LR, LS. IT. LU, LV. MA,

(25) Filing Language: English MD., MG, MK, MN, MW, MX, MZ., NA, NG, NI, NO, NZ,

OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,

(26) Publication Language: English SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,

(30) Priority Data: VN, YU, ZA, ZM, ZW.
60/586,390 8 July 2004 (08.07.2004) US (84) Designated States (unless otherwise indicated, for every
60/586,391 8 July 2004 (03.07.2004) US kind of regional protection available): ARIPO (BW, GH,
60/586,389 8 July 2004 (08.07.2004) US GM. KE. LS. MW, MZ. NA. SD. SL. SZ. TZ. UG. ZM.
60/586,353 3 July 2004 (03.07.2004) US 7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
60/604,258 25 August 2004 (25.08.2004) US European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FT,
11/071,340 3 March 2005 (03.03.2005) US FR. GB. GR, HU, IE. IS, IT, LT, LU, LV, MC. NL. PL.. PT,

RO, SE, SI, SK, TR), OAPI (BEF, BJ, CF, CG, CI, CM, GA,

(71) Applicant (for all designated States except US): ASOCS GN, GQ, GW, ML, MR, NE, SN, TD, TG).

LTD. [IL/IL]; Room 220, Kiryat Hatiksoret, Neve-Illan,

Haray-Yehuda (IL). Published:
— with international search report
(72) Inventors; and — before the expiration of the time limit for amending the
(75) Inventors/Applicants (for US only): SOLOMON, claims and to be republished in the event of receipt of
Doron [II/IL]; 4 Hatavs Street, Holon (IL). GARON, amendments

Gilad [US/IL]; 97 Herzl Street, Jerusalem (IL).
For two-letter codes and other abbreviations, refer to the "Guid-

(74) Agents: KUSMER, Toby, H. et al.; McDermott Will & ance Notes on Codes and Abbreviations” appearing at the begin-
Emery LLP, 28 State Street, Boston, MA 02109-1775 (US). ning of each regular issue of the PCT Gazette.

(54) Title: AMETHOD OF AND APPARATUS FOR IMPLEMENTING FAST ORTHOGONAL TRANSFORMS OF VARIABLE

Reconfigurable RAM cluster and Reconfigurable BUS Multiplexer /,1 80
Reconligere BUS Mulliplexer >
A * F Y
| Reconfigurable
Multipliers
® o
X 17184

One or several Radix 2i/x O

Transforms Units ,
N O

Detector
— 182 O
188
1 !
Control and Storage

T~

— 186

/014528 A1 UV 0 A 010 0 O A0 0 0 0

\& (57) Abstract: A reconfigurable architecture for and method of performing a fast orthogonal transform of vectors in multiple stages,
& the size of a vector being N, wherein N can vary and the number of stages is a function of N, the architecture including: a compu-
& tational unit (182) configured and arranged so as to include one or more butterfly units; a block including one or more multipliers
(184) coupled to the output of the computational unit, configured and arranged so as to perform all of the butterfly computations
for at least one stage of the transform; a storage unit (180) configured and arranged so as to store the intermediate results of the
butterfly computations and predetermined coefficients for use by the computational unit for performing each butterfly computation,
3 the storage unit including memory and multiplexing architecture (180).

02

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

A METHOD OF AND APPARATUS FOR IMPLEMENTING
FAST ORTHOGONAL TRANSFORMS OF VARIABLE SIZE

Related Applications

[0001] The present application claims priority from US Provisional
Applications, Serial Nos.:

[0002] 60/586,390, filed July 8, 2004 and entitled Low-Power Reconfigurable
Architecture for Sitmultaneous Implementation of Distinct Communication

Standards (Attorney’s Docket 66940-016);

[0003] 60/586,391, filed July 8, 2004 and entitled Method and Architecture
for Implementation of Reconfigurable Matrix-Vector Computations (Attorney’s

Docket 66940-017);

[0004] 60/586,389, filed July 8, 2004 and entitled Method and Architecture
for Implementation of Reconfigurable Orthogonal Transformations (Attorney’s
Docket No. 66940-018); and

[0005] 60/586,353, filed July 8, 2004 and entitled Method and Architecture
for Implementation of Reconfigurable Trellis-Type Coding (Attorney’s Docket
66940-019);

10006] 60/604,258, filed August 25, 2004 and entitled A Method And Device
For On-line Reconfigurable Vitter Decoding Of Recursive And Non-recursive
Systematic Convolution Codes With Varying Parameters (Attorney’s Docket

66940-020); and
[0007] the following non-provisional U.S. Application Serial No.

[0008] 11/071,340, filed March 3, 2005 and entitled Low-Power

Reconfigurable Architecture For Simultaneous Implementation Of Distinct

Communication Standards (Attorney’s Docket 66940-021).

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

Field of the Disclosure

[0009] The disclosure relates to a system for and method of providing on-line
recdnﬂgurability of hardware so as to allow implementation of orthogonal
transforms of vectors of varying size, such as FFT/IFFT (Inverse FFT)
transforms, Walsh-Hadamard transforms, etc. including combinations of more
than one type of such transform. The system and method are particularly useful

in communication devices using such transforms.

Background of the Disclosure

~ [0010] Common orthogonal transforms provide a powerful tool in encoding
information transmitted in wireless communication systems, and various ones of
such transforms are used depending on the protocol used to transmit information.
The FFT (Fast Fourier Transform)/IFFT (Inverse FFT), for example, is a critical
computational block e.g. in OFDM systems and filter banks. See, for example,
N. West, and D. J. Skellern, "VLSI for OFDM," IEEE Communications
Magazine, pp.127-31, vol.36, (no.10), Oct. 1998, and R.van Nee and R. Prasad,
OFDM for Wireless Multimedia Communications, Artech House
Publishers,2000.

[0011] An attractive feature of FFT/IFFT 1s that IFFT can be performed using
a FFT block, by conjugating the input and output of the FFT and dividing the
output by the size of the processed vectors. Hence the same hardware can be used
for both FFT and IFFT. Several standard implementations of performing
FFT/IFFT are known, some of which provide reconfigurability. One standard
FFT/IFFT implementation is using FFT kernel arithmetic.

[0012] FFT kernel arithmetic:

[0013] The digital computation of the N-point DFT (discrete Fourier
transform) (see, for example, A. V. Oppenheim and R. W. Schafer, Discrete-
Time Signal Processing, Prentice Hill, New Jersey, 1989) is:

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

(1) X[k]= Y X[nW k< [O,N)

n=0

.) -J2r—
where the complex exponential coefficients are: W, =e 2.

[0014] Direct computation of DFT (for all k) requires NxN multiplications and
Nx(N-1) additions. FFT algorithms are more efficient implementations that

reduce the number of multiplications to Nlog,N. The basic idea is to divide the
FFT of length N into two FFT components of length N/2, each of which is then
further divided into two FFT comi)onents of length N/2, etc. This process
continues until the length of each FFT component is reduced to 2, which can be
computed directly by a so-called “butterfly” unit. The trellis of such a butterfly

unit is 1llustrated in Figure 1.

[0015] Two other commonly used FFT algorithms are decimation-in-
frequency (DIF) and decimation-in-time (DIT) algorithm, which are similar in
nature. The DIF algorithm 1s used to illustrate the architectural implementations

where the FFT intermediate results are divided into even and odd parts with:

...............

T i N e e LR
X[2r] = Z:»[n]WZ"' x[n]W
1 e 'i_f-;J'/}Ol el t;r—/N/'Z L L s e R
~ 21 B
= Zx[n]W 2y N2 x[n + N / Z]W 20 /2) r e [0; %{—-—-1)
n=0 '- :—-0] "'5- P , L &
N/2-1 AN £
== Z(.x[n]+x[n+N/2]). N12
(2) | | | '_‘"zo Burrelﬂyzyperbrqnck | |

and similarly,

N/2-1 -
X[2r+1]=). (;[n] x[n +N[2WaWy,, .

(3) =0 - A -gq‘t(fz_rﬂy loveer branch

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

[0016] Standard implementation:

[0017] In the standard prior art approach, to provide function-specific re-
configurability 1t 1s first necessary to analyze the computational structure. The
FFT can be viewed as a shuffle-exchange interconnecting network of butterfly
blocks, which varies with the size of the FFT, thus making it difficult to support
flexibility of the most energy-efficient fully-parallel implementation. In the fully
parallel implementation the signal flow graph can be directly mapped onto
hardware. For 1nstance, for a 16-point FFT there are total of 32 butterfly units and

they are interconnected in the manner as shown by the trellis in Figure 2. In

general, the N-point FFT requires —]Y—LogzN butterfly units. This maximally

2
parallel architecture has the potential for high performance and low power
consumption, however 1t bears a high cost of large silicon area especially for

large FFT sizes.

[0018] The outputs generated by DIF FFT are bit-reversed. For example,
X[10]=X[1010,]=Y[0101,]=Y[5].

[0019] When the implementation 1s done in fixed-point arithmetic the scaling
and overflow handling are crucial for the correct behavior of the transformer.
The butterfly operation at each stage of the FFT involves both complex addition
and complex multiplication. Each complex addition is composed of two real
additions, which expand the input word-length by 1 bit. Each complex
multiplication 1s composed of four real multiplications and two real additions. A
real multiplication doubles the input word-length. Thus to énsure the correct
behavior, the output word-length is either increased to (M+1)bits, or the output
needs to be truncated or rounded to M bits. If truncation is performed, the most
significant bit of the output 1s simply discarded, by truncating the values to the
maximum values that can be described by M bits. If rounding is performed, a "1"
1s added to the positive outputs first before the output is shifted to the right by 1
bit, and the least significant bit is discarded. Rounding will not cause adder

overflow since the biggest and smallest numbers (a+5b) have their least significant

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

bit, after the addition, to be zero (even numbers). After rounding, the output will

be 1n the same range as that of @ and b, e.g., M bits.

[0020] Column based approach:

10021] In a column-based FFT architecture, the computations are rearranged
such that the interconnections are kept identical in every stage as shown by the
trellis in Figure 3. Since the inputs to a butterfly are no longer needed once the
outputs are computed, the outputs can be routed to the inputs of the same
butterflies, with the same butterflies thus being reused for the next and successive
stages 1n iterative way (in-place computation). As a result, only a single column
of butterflies 1s needed, the column being reused (time-multiplexed) by the
different stages of computation. The FFT coefficients, however, need to be
changed from stage to stage. In general, an N-point FFT needs N/2 butterfly
units, e.g. 8 butterflies are needed for a 16-point FFT. Its power consumption is
very close to the a fully parallel architecture, but it requires less area. Still to
convert 1t to a reconfigurable design is a complicated task, since the simple
iterative structure 1s optimized for a specific size. The transition from a parallel
to a column based implementation requires more clocks for processing an FFT
frame. Indeed the parallel approach allows processing of a full FFT frame in one
clock cycle, while the column approach needs log, N (when using a radix-2 based

butterfly architecture) clock cycles due to the iterative time-multiplexed structure.

[0022] Reconfigurable design:

[0023] By choosing a regular pipelined architecture to run an FFT algorithm,
it 1s possible to implement a reconfigurable design with very low energy
overhead even compared with the one provided by the standard lower boundary

of the complexity of a FFT transform.

[0024] Pipelined approach:

[0025] In the regular pipelined architecture, only one butterfly unit 1s used for
each stage, yielding the total complexity log,N, compared to N/2xlogoN in the

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

fully-parallel approach and N/2 in the column-based approach. An example of
the pipeline approach 1s 1llustrated 1in Figure 4 for the length of a 16-point FFT.
The multiplier 40 of each stage 42a, 42b and 42c is distinguished from the
butterfly unit 44a, 44b and 44c to distinguish between hardware requirements.
Each of the butterfly units 44a, 44b, 44c and 44d is time-multiplexed among the
N/2 butterfly computations for each stage. For the stage including the butterfly
unit 44c¢, the multiplier 40c 1s “4”. No multiplier is necessary for the out of the
final butterfly unit 44d. The pipelined-based implementation needs more clock
cycles per FFT frame than the column-based approach since the pipelined-based
approach can implement a full FFT frame in N (when using radix-2 based
butterfly architecture) clock cycles, while the column approach needs log,N
(when using radix-2 based butterfly architecture) clock cycles due to the iterative
time-multiplexed structure. In hardware implementation of all stages the clock
number for processing an FFT frame is not an obstacle since the data is inserted

In a serial manner, frame by frame, and the number of clock cycles per frame is

transformed 1nto a constant imtial delay, while the throughput remains high.

[0026] The single-path delay feedback (SDF) implementation, see, for
example, E. H. Wold and A. M. Despain, "Pipelined and parallel-pipeline FFT
processors for VLSI implementation,”" /JEEE Trans. Comput., p. 414-426, May
1984, uses memory more efficiently by storing the butterfly outputs in feedback
shift registers or FIFO’s 46 (their sizes are given in Figure 4, in the example the
lengths of the registers are 8, 4, 2, and 1, correspondingly). A single data stream

passes the multiplier at every stage.

[0027] Hybrid approach

[0028] The hybnd approach combines benefits of the column and feedback
approaches. It uses elements of the feedback approtach to save memory, and the
column stages are used for better hardware utilization. Use of the column stage
butterfly units of 4 bits' width can be combined with employing a greater BUS

width and proper reconfigurable multipliers. The architecture can also be

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

converted to one with an exact BUS width necessary for high space utilization

and algorithmic efficiency.

[0029] A popular architecture for running an iterative process is shown in
Figure 5. This FFT implementation utilizes a single butterfly unit 50. The single
butterfly unit design is mainly focused on optimizing a scheduling and memory
access scheme, i.e., providing a pipeline approach when implementing each of
the stages by reusing the same butterfly unit, time-multiplexed in an iterative
way. The Spiftee processor, see for example, B. M. Baas, "A Low-power, high-
performance, 1024-point FFT processor," IEEE Journal of Solid-State Circuits,
March 1999, 1s an example of using cached memory architecture, including
RAM 52 and multiplier 56, to exploit the regular memory access pattern of a FFT
algorithm 1n order to achieve low power consumption. The processor, shown as
controller 54, can be programmed to perform any length of FFT, but certain
features, such as cache sizes provided by RAM 52, are optimized only for a
certain FFT size, and this approach operates at very low speeds because the N
clock cycles needed for the computation of a FFT frame through the full
implementation of the pipeline algorithm, yielding a constant initial delay. This
means that due to the iterative time-multiplexing of the stages by the reused
butterfly unmit 50, the full frame needs to be computed (needs N clock cycles when
using a radix-2 based butterfly unit) before it can begin to handle the next FFT

frame.

[0030] One can make a more efficient FFT processor by using a larger radix-
based butterfly unit, e.g. the Radix-4 based architecture. This reduces the
computation clock cycle that is needed for processing a full FFT frame to N/2.
Most of the FFT accelerators that are implemented in advanced DSPs and chips
are based on the Radix-2 or Radix-4 FFT processors. They have a limited usage
(only for FFTs transforms), very low speed utilization and suffer from the need of

high clock rate design.

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

[0031] Filter implementation based on Multiplex Pipelined approach:

[0032] Using reconfigurable iterative schemes, such as the one shown in
Figure 6, one can implement any kind of filter or correlation function with high
efﬁciency. It 1s achieved by using the multiplier of the last stage of a FFT
transform for multiplication by a filter coefficient (time domain multiplication)
followed by an IFFT as best seen in Figure 6 at 60. It is also efficient in
implementing any sub-product of a FFT / IFFT, e.g. Discrete Cosine / Sine
Transforms (DCT and DST), and any algorithms which are a combination of the
above-mentioned algorithms, like filtering using cascaded FFT and ' IFFT
algorithms (which can be used also for equalization, prediction, interpolation and

computing correlations).
[0033] FFT with different radixes:

[0034] The radix-2; algorithm is of particular interest. It has the same
multiplicative complexity as radix-4 and split-radix algorithms respectively,
while retaining a regular radix-2 butterfly structure. This spatial regularity
provides a great structural advantage over other algorithms for VLSI
implementation. The basic idea behind the radix-2; algorithm is in taking two
stages of the regular DIF FFT algorithm and maximizing the number of trivial

multiplications by }}/ ¢ = —j, which involves only real-imaginary swapping and

sign inversion. In other words, the FFT coefficients are rearranged and non-
trivial multiplications are lumped into one stage so that only one complex
multiplier 1s needed in every two stages (reduces the overall logic area). Figure 7

1llustrates a trellis representing such a coefficient rearrangement (in parallel

form): for any two butterfly coefficients W'N and W;% : W'N 1s factored out

and forwarded to the next stage, which leaves the coefficients 1 and -/ in the
corresponding posttions. After performing this coefficient rearrangement over all

the coetficient pairs, one stage is left without non-trivial multiplication.

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

[0035] Hybrid pipeline / Multiplex approach:

[0036] A number of pipelined FFT architectures have been proposed over the
last decade. Since the spatial regularity of the signal flow graph is preserved in
pipelined architectures, they are highly modular and scalable. The shuffle
network 80 1s implemented through a single-path delay feedback depicted in
Figure 8A, where the data 1s processed between stages 82 in a single path and
feedback FIFO registers 84 are used to store new inputs and intermediate results.
The basic 1dea behind this scheme is to store the data and scramble it so that the
next stage can receive data in the correct order. When the FIFO registers 84 are
filled with the first half of the inputs, the last half of the previous results are
shifted out to the next stage. During this time, the operational elements are
bypassed. When the first half of the inputs are shifted out of the FIFO registers,
‘they are fed into the processing elements along with the arriving second half of
inputs. During this time, the operational elements are working and generating
two outputs, one directly fed to the next stage 82 and the other shifted into the
corresponding FIFO registers. Multipliers (not shown) are inserted between
stages when necessary according to either the radix-2; or the radix-2 algorithm.
A trellis and data packets for use in such an implementation is illustrated in

Figures 8B and 8C, respectively.
[0037] Bnef Description of the Drawings

[0038] Reference 1s made to the attached drawings, wherein elements having
the same reterence character designations represent like elements throughout, and

wherein:

[0039] Figure 1 1s an 1llustration of a FFT butterfly computation trellis;

[0040] Figure 2 1s an 1llustration of a decimation-in-frequency 16-point FFT
trellis;

(0041} Figure 3 1s an 1llustration of a Column-based 16-point FFT trellis;

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

[0042] Figure 4 is an illustration of a block diagram of an architecture for
implementing a pipeline-based Radix-2 (N = 16) 16-point FFT;

[0043] Figure 5 is an illustration of a block diagram of an architecture for

implementing a simple Radix-2 FFT processor;

[0044] Figure 6 1s an illustration of a block diagram of an architecture of a
pipeline-based Radix-2 (N=16) 16-point filter;

[0045] Figure 7 1s an illustration of a trellis of a multiplication elimination

technique through coefficient rearrangement;

[0046] Figure 8 1s an 1llustration of a trellis, block diagram and packet
diagram of a pipelined implementation of a shuffle-exchange interconnect

transformer;

[0047] Figure 9 1s an illustration of a matrix operation for use in a radix-4
butterfly architecture in accordance with one aspect of the method and system of

the present disclosure;

[0048] Figure 10 is an 1llustration of a radix-2, stage trellis in accordance with

one aspect of the method and system of the present disclosure;

[0049] Figure 11 is an 1llustration of a block diagram of an architecture of a
reconfigurable Radix-2, stage butterfly arrangement in accordance with one

aspect of the method and system of the present disclosure;

[0050] Figure 12 1s an 1llustration of a pipeline-based Radix-2 (N=16) 16-
point filter in accordance with one aspect of the method and system of the present

disclosure;

[0051] Figure 13 1s an illustration of a semi pipeline/iterative Radix-2, (N=16)
based implementation of 16-point FFT in accordance with one aspect of the

method and system of the present disclosure;

10

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

[0052] Figure 14 is an illustration of a pipelined Radix-2, (N=16) based
implementation of a 16 point filter in accordance with one aspect of the method

and system of the present disclosure;

[0053] Fagure 15 1s an 1llustration of a trellis of a parallel Radix-2, (N=16)
based implementation of a 16 point Walsh spreading/dispreading function in

accordance with one aspect of the method and system of the present disclosure;

[0054] Figure 16 1s an 1llustration of a trellis of a parallel Radix-2 (N=16)
based implementation of a 16 point Walsh spreading/dispreading function in

accordance with one aspect of the method and system of the present disclosure;

[0055] Figure 17 1s an 1llustration of a block diagram of an architecture of
providing a reconfigurable MF-I core processor in accordance with one aspect of

the method and system of the present disclosure; and

[0056] Figure 18 1s an illustration of a block diégram of an architecture of
providing a reconfigurable MF-I core processor in accordance with one aspect of

the method and system of the present disclosure;

[0057] Figure 19 1s a block diagram of a communication system configured to

comprise a transformer of any of the type described herein.
Detailed Description of the Drawings

[0058] The following disclosure describes a method of and system for
implementing orthogonal transforms, such as Fast Fourier Transforms (FFTs) of
vectors having varying size (real and complex vectors). Adaptive algorithms are
implemented where the size of the transform can be determined on line and is
dependent on the input to the algorithm. Examples of such adaptive algorithms
are (1) FFTs, (2) inverse FFT (IFFTs), (3) any sub-products of FFTs and IFFTs,
e.g. Discrete Cosine/Sine Transforms (DCT and DST), (4) Walsh-Hadamard
transforms and any 1ts' sub-products, e.g. CDMA, DSSS, Spreading/De-spreading
core algonthms, and any combination of the algorithms mentioned above. The

method and system can also be used for filtering and other functions, such as

11

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

achieved when cascading FFT and IFFT algorithms (which in turn can be used
also for equalization, Hilbert transforms, predictions and interpolations and
correlations). The method and system allows implementation of FFT/IFFT and
all the above-mentioned algorithms with high efficiency and in a wide range of
parameters by fast on-line reconfiguration of hardware. It provides a significant
decrease 1n the amount of hardware in devices which are intended for parallel or
serial implementation of several FFT transforms or algorithms mentioned above

of different sizes.

[0059] The disclosed approach is to modify an orthogonal transform processor
so as to provide a simplified interconnection structure that makes it easy to
achieve flexibility by adapting to the length of the FFT vectors and sizing the
memory accordingly, e.g., changing the length of the shift registers (or FIFO’s),
modifying the interconnecting buses as needed, and providing simple
multiplexing of I/O blocks. With a clock frequency at the input sample rate the
entire range of FFT’s can be accommodated by either direct mapping to hardware
and disabling unnecessary blocks for the shorter length FFT’s or by folding the
processing stages and time-sharing the hardware for the longer (but lower symbol
rate) cases. This architecture does not need buffering or serial-to-parallel

conversion.

[0060] The architecture can be implemented using according to Radix2,
Radix2,, Radix2;, Radix4, Radix 8, or similar format. The radix-4 (without the
Twiddle coefficients’ multipliers) can be represented also as a matrix operation as

shown 1n Figure 9, and implemented as shown by the trellis in Figure 10 .

[0061] An embodiment of a reconfigurable radix 2, stage implementation,
lllustrated m Figure 11, comprises in input multiplexer 111, two stages of
butterfly units 110a and 110b, two feedback memories 112a and 112b with only
one general multiplier 114 and one cross junction (with sign inversion capability)
block 116, and a controller 118. The block 116 is used to switch between IFFT
and FFT processing, thus eliminating the need for a multiplier at the output of

the butterfly unit 110a . In implementation, the size of the usable memory of

12

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

memories 112a and 112b can be modified by the controller 118 to accommodate
the length of the FFT being processed. The length of the trzinsform vectors can
be detected by detector 117 and determined by controller 118. In addition
memory 119 is provided for storing coefficients for use by the multiplier 114 for

each stage of calculation.. |

[0062] Figure 12 illustrates an embodiment of a pipelined Radix-2, (N = 16)
based implementation of a 16 point FFT. In this embodiment, the controller 128
provides an 1nput to set the size of each of the memories, in this case shift
registers 124 for each stage. The multiplexer 121 is also set to provide the
desired sequential mputs to the input the butterfly unit 122a of the first stage.
The multipliers 126a, 126b and 126c are separately positioned at the output of
each of the first three stages, with the final stage not requiring one. As seen the
multipliers 126a and 126c¢ convert the output of the stages to which the are
coupled to an imaginary complex “}”, by multiplying by “j”.

[0063] An alternative embodiment 1s shown in Figure 13 which incorporates
an architecture for carrying out an iterative process. Specifically, Figure 13
shows an example of a semi-pipeline/iterative Radix-2, (N = 16) based
implementation of processing a 16 point FFT. In this embodiment, only two
butterfly stages 130a and 130b are required with the output of the multiplier 130b
providing feedback, as well as the output of the transformation processor.
Specifically, the output of the multiplexer 131 is provided to the input of the
butterfly unit 132a. The latter provides feedback to the memory (e.g. shift
register 134a, and an output to the “;” multiplier 136a. The output of the ”
multiplier 136a is applied to the input of the butterfly unit 132b. The latter
provides feedback to the memory (e.g., shift register 134b), and an output to the
multiplier 136b. The output 136b is connected through a feedback path to the
iput of the butterfly umt 132a. In operation, controller 138 controls the size of
the memories 134 depending to the stage of the processing. In the first instance
when the signal vectors are first received, the registers 134a and 134b are set at

“8” and “4” respectively, and the signals processed through the two stages. The
output of the processor 1s disabled and the output of the second stage butterfly

13

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

unit 132b 1s applied through the feedback path to the input of the butterfly unit
132a. Dunng the next iteration, the memories are set by the controller to “2” and
“1”. The signals are then serially processed through to the output of the second
butterfly unit 132b. The output of the processor i1s then enabled, and the feedback

path disabled so that the output of the processor is provided at 139.

[0064] Figure 14 illlustrates an embodiment of an example of a Pipeline
Radix-2; (N = 16) based implementation of a 16 point filter. Again the sizes of
memories are set for each stage by the controller 148. The filter coefficients are
applied to the multiplier 140. The architecture can be iterative or a mixture of

pipeline / iterative or parallel.

[0065] Again the architecture of Figure 14 can be modiefied to be interative or

a mixture of pipeline/iterative or parallel architecture.
[0066] Walsh — Hadamard transformations enabling:

[0067] From the previous discussion regarding a radix-4 transform as a matrix
operation, 1t 1s easy to see that the architecture can be easily changed to process
other orthogonal signaling, such as Walsh Spreading/Despreading functions The
latter can be easily implemented with the existing architecture by simply
substituting multiplier .coefﬁcients by trivial ones of £1. Further examination
shows that only the non-trivial coefficients and the coefficients which are
multiphed with -j, need to be changed. Moreover, the non-trivial multiplier
coefficients have already all that 1s necessary for implementation of the trivial
multipliers needed for the Walsh Spreading/De-spreading function, the ability to
change between FFT—IFFT and multiplication by -j. The only extra requirement

for the hardware 1s i1n managing the controller 148..

[0068] As an example, the "Radix 4" Walsh Spreading/De-spreading butterfly

unit can be represented as a matrix operation as follows:

14

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

Yo (11 1 1) (xXQ
Y@|_|1 -1 1 -1 | X(@)

Y®!| (1 1 -1 -1 |x0
@) (1 -1 -1 1) (X

(4)

One can see the relation between the two transforms by comparing the two matrix

presentations:
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -5 -1 3
(5) Walsh = FFT
1 1 -1 -1 1 -1 1 -1
1 -1 -1 1 1 53 -1 -3

[0069] Since the radix-4 transform 1s a complex operation, one obtains two
independent Walsh spreading/de-spreading processes for the real vectors since
the trivial multipliers by =1 do not interchange between the I and the Q signals.
Therefore, this feature can be used for implementing, for example, a two fingers’
RAKE receiver or a complex Walsh spreading/de-spreading function as in the
new WCDMA standards. One can also use the second independent Walsh
Spreading/De-spreading function as an extra stage, or alternatively, use them for
greater Walsh Spreading / De-spreading by conjured I and Q at the proper place
(this possibility i1s already implemented in the reconfigurable Radix 2,

architecture shown in Figures 9-14).

[0070] The implementation presented in Figure 14, for example, requires a
FFT algorithm which 1s carmied out with only NLog(N) operations, and, thus is
very efficient for such operations as CDMA modulation/demodulation of several

codes together, 1.e., for a heavy data load.

[0071] The complex multipliers now can be used in implementation of filters
in the frequency domain for randomizing/de-randomizing the Walsh sequence
with quasi-random sequences with very high efficiency (when dealing with

CDMA modulation /demodulation of several codes together, 1.e. for a heavy data

load (as can be seen in CDMA / WCDMA standards). The etficiency 1s achieved

13

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

due to the fact that one needs to multiply the modulated data only once (for all

the codes) and not every code 1s multiplied separately.\

[0072] Figure 15 illustrates a trellis of an example of an embodiment of the
transformation of a radix-4 stage to Walsh spreading/de-spreading function when
Twiddle multipliers for randommzing Walsh codes are used in the beginning and
the end of a parallel architecture. Figure 15 specifically shows an example of a
parallel Radix-2; (N=16) based implementation of a 16 point Walsh
spreading/dispreading function.

[0073] Implementing a radix-2 base FFT using Twiddles multipliers, the
multipliers can be changed to "1"s only. Figure 16 shows an example of a trellis
of parallel Radix-2 (N = 16) based implementation of 16 points, Walsh
spreading/de-spreading sequence, i.€., an example of a sequence of 16 chips of a

Walsh Spreading / De-spreading sequence during modulation/demodulation.

[0074] Again, complex multipliers can be used as explained above, e.g. for
implementation of filters in the frequency domain, or for randomization/de-
randomization of the Walsh sequences with quasi-random sequences. Efficiency
is achieved due to the fact that one needs to multiply the modulated data only

once (for all the codes), and thus each code need not be multiplied separately.
[0075] Reconfigurable Hybrid pipeline column Multiplex approach:

[0076] As shown in Figure 17, A "bank" of small radix2; butterfly units of 4
bits' width can be combined to form wider BUS radix2 ,, with each of the small
Radixes connected to a reconfigurable controlled "Bank" of RAMs that can be
combined /split. Reconfigurable multipliers for BUS splitting can also be
implemented based on the above methodology using a reconfigurable
"processing” core with very high utilization and low power consumption of any
length of IFFT/FFT/ filter / correlator and Walsh —Hadamard transformations or
any sub product of it e.g., a CDMA DSSS core or even a DDS frequency filter,
with any BUS width necessary when several algorithms can run in any

configuration, including a varniety of parallel/pipeline/iterative algonthmic

16

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

architecture schemes. Since the implementation of the core in silicon has a
maximum clock rate, reconfiguration according to the needs can result in any
number of parallel/pipeline/iterative algorithmic architecture schemes, each
optimized for the algorithms and the silicon implementation resources at any
time, and for any standard of modem implementation, thus resulting in a very
compact reconfiguration architecture with high utilization performance. Figure
17 shows an example of a reconfigurable MF-I core for processing FFT/IFFT

vectors.

[0077] Summarizing the disclosure, the current approach includes
modification of the basic FFT processor by using a simplified interconnection
structure. This allows flexibility in adjusting for the size of the FFT simply by
changing the length of the shift registers (or FIFO's) of the memory, changing the
bus sizes as needed, and simple multiplexing of the I/O blocks. With a clock
frequency at the input sample rate, the entire range of the FFT's can be
accommodated by either direct mapping to hardware and disabling unnecessary
blocks for the shorter length FFT's, or by folding the processing stages and time-
sharing the hardware for the longer (but slower symbol rate) cases. This

architecture does not require buffering or senal-to- parallel conversion.

[0078] Using a Radix2; architecture as an example, the radix-4 (without the
twiddle coefficients’ multipliers) can be represented also as a matrix operation as
seen in Figure 9. The corresponding butterfly structure 1s presented in Figure 10.
Thus, as shown 1n the above example, a radix 2, stage implementation will need
two stages of butterfly units with only one general multiplier and one cross
junction (also needed for IFFT/FFT changing) with sign multiplication, and thus
eliminating the need for a multiplier. The corresponding structure 1s presented 1n
Figure 11. The corresponding multistage implementation (cf. with Figure 4) of
Radix2; implementation of the a 16 point FFT 1s given in Figure 12. The same
transform, but implemented using iterative reconfigurable switch mechanism 1s

presented in Figure 13 (one stage) and Figure 14 (multistage).

17

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

[0079] Walsh — Hadamard transformations enabling: The processor and
method thus described in connection with FFT/IFFT can also be used to
implement a processor and method for other transforms. From the above
presentation of a radix-4 transform as a matrix operation, in order to change the
operation to Walsh spreading/despreading function, all that is required is to
substitute the multipliers used for the FFTs by trivial multipliers of £1. Further
examination shows that only the non-trivial and the ones which are multiply with
-}, need to be changed. Moreover, the non-trivial multipliers are all that is
necessary for implementation of the trivial multipliers needed for Walsh
spreading/despreading, with the ability to change between FFT«IFFT and
multiply with -j. The only extra requirement for the hardware is in a controller

for managing and controlling the operation of the processor.

[0080] The "Radix 4" Walsh spreading/despreading butterfly can be also

represented as a matrix operation as shown below:

Yo (1 1 1 1) (X
Y@|_|1 -1 1 1] [X2

Y| (1 1 -1 -1 X0
Y4), (1 -1 -1 1) {x@)

(6)

One can see the relation between the two transforms by comparing the two matrix

presentations:
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -7 -1
(7) Walsh Y) FFT
1 1 -1 -1 1 -1 1 -1
1 -1 -1 1 1 53 -1 -

Since the radix-4 transform is a complex operation, one gets two independent
Walsh spreading/despreading processes for real vectors spreading/despreading
(since the trivial multipliers by +1 do not interchange between the I and the Q

signals). This aspect 1s useful in implementing a two fingers” RAKE receiver or a

18

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

complex Walsh Spreading/De-spreading processor as is provided for in the new
WCDMA standards. One can also use the second independent Walsh
spreading/despreading processor as extra stages and use them for greater Walsh
spreading/despreading by conjured I and Q at the proper place (this possibility

can easily be implemented in the reconfigurable Radix 2; architecture).

[0081] The implementation presented in Figure 17 requires only NLog(N)
operations, and 1s very efficient for CDMA modulation/demodulation of several

codes together, 1.e., for a heavy data load.

[0082] The complex multipliers now can be used for implementing such
configurations as filters in the frequency domain for randomizing/de-randomizing
the Walsh sequence with quasi-random sequences with very high efficiency
(when dealing with CDMA modulation /demodulation of several codes together,
1.e. for a heavy data load (as can be seen in CDMA / WCDMA standards). The
efficiency is achieved due to the fact that one needs to multiply the modulated

data only once (for all the codes), and not every code 1s multiplied separately.

[0083] Figure 15 presents a transformation of radix-4 stage to a Walsh
spreading/de-spreading function when Twiddle multiphiers for randomizing the
Walsh codes are needed (beginning/end) in a parallel architecture. For the
example of a Radix-2 based FFT, the twiddle multipliers need to be changed to
"1"s only. The example of 16 chips’ Walsh spreading/despreading sequences for
modulation/demodulation processing 1s shown i1n Figure 16. The complex
multipliers can be used as explained above, e.g. for implementing filters in the
frequency domain, or for randomization/de-randomization of the Walsh
sequences with quasi-random sequences. The efficiency i1s achieved due to the
fact that one needs to multiply the modulated data only once (for all the codes).

Each code is not required to be multiplied separately.
[0084] Reconfigurable hybrid pipeline column multiplex approach:

[0085] Finally, the general architecture of the reconfigurable device for

implementing the general orthogonal transforms 1s summarily shown in Figure 18

19

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

for the case of Radix2;/x butterfly transforms. The computation unit can be
implemented by use of Radix2, Radix2,, Radix2;, Radix 4, Radix 8, etc, butterfly
units. The device preferably comprises a reconfigurable RAM cluster and a
reconfigurable BUS multiplexer block 180, computation unit 182 comprising one
or more butterfly units, reconfigurable multipliers block 184, controlling and
storage unit 186 and detector 188. At each stage of the transform the unit 186
modifies the coefficients of the multipliers in the butterfly units of 2 according to
the transform (the corresponding coefficients may take on the values {-1,1,j,-}).
The result of the operation by unit 182 is stored in the registers of the unit 180
(which 1s also controlled by unit 186). The size of the registers is changed from
stage to stage. A part of the stored data is inserted into the reconfigurable
multipliers block 184, data is multiplied by coefficients established by the
controlling and storage unit 186, according to the stage and the algorithm. The
result of the multiplication is stored in block 180. A multiplexer of block 180 is
used for multiplexing the stored data. It will be evident that as few as one
butterfly unit and one multiplexer can be used for each stage, and that the one
butterfly unit and multiplier can be reused for each stage by simply reconfiguring

the hardware.

[0086] A specific application of the foregoing is described in our co-pending
application, 11/071,340, filed March 3, 2005 and entitled Low-Power
Reconfigurable Architecture For Simultaneous Implementation Of Distinct
Communication Standards (Attorney’s Docket 66940-021), which is incorporated
by reference. Figure 18 shows a block diagram of a system described and

claimed in this co-pending application.

[0087] Accordingly, as illustrated in Figure 19, an embodiment of an
integrated chip made to comply with the foregoing chip architecture requirements

will comprise the following basic functional components:

[0088] CPU 190 1s preferably a relatively small computer processing unit
needed for (a) controlling the configware part of the device i.e., net bus192, I/O
block 194, RAM block 196, megafunction block(s) 198, interconnect block 200,

20

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

flash memory block 202 and clock 204; and (b) fixing the configuration of the
megafunctions block(s) 198, as well as the bus 192, I/O block 194, RAM block
196, interconnect block 200, flash memory block 202 and clock 204, depending
upon the protocol of the signals be processed by the chip. CPU 190 can also help
by computing minor and simple assignments or tasks, and configuring the bus

that 1s used to interconnect the megafunctions and the I/O block.

[0089] The net bus 192 1s reconfigurable depending on the protocol. I/0
block 194 1s preferably a configurable I/0 block that connects the chip with the
outside world. Its tasks include receiving the “compiled software” of the
application algorithm, and receiving input data and delivering output-processed
data. RAM 196 1s a random access memory preferably configured to store the
“compiled software instructions”, and to cache and buffer data. Megafunctions
block 198 1s preferably configured to include the major application functions of
two or more applications, 1.€., protocols, which are processed by computing each
domain of the application functions as one function with extraordinary efficiency.
In the present case, the megafunction block 198 1s configured to include one or
more of the orthogonal transforms, or any combination thereof, described herein.
Interconnect block 200 preferably includes the reconfigurable net bus, which
connects all the components of the chip including the CPU 190, I/O block 194,
RAM 196, Megafunctions block 198, and Flash Memory 202 and Clock block
204. The interconnect block can also be configured to perform minor and simple
assignments or tasks, preferably in extra memory. Finally, flash memory 200
preferably serves to store data as the chip runs through its programs. Flash
memory 1s preferably in the form of EEPROM that allows multiple memory
locations to be erased or written 1n one programming operation, so that it can
operate at higher effective speeds when the systems using it read and write to
different locations at the same time. It should be appreciated that for less
complex operations, other types of memory could be used. Information is
preferably stored in the flash memory by storing the information on a silicon chip
In a way that does not need power to maintain the information in the chip.

Consequently, power to the chip can be withdrawn and the information retained

21

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

in flash memory without consuming any power. In addition, flash memory offers
fast read access times and solid-state shock resistance, making flash memory
particularly desirable in applications such as data storage on battery-powered

devices like cellular phones and PDAs.

[0090] The architecture thus described, thus can be implemented as an
integrated circuit. The architecture 1s believed adaptable for any type of
orthogonal signaling, in which the vectors can vary 1n size (both real and
compiex vectors). Such orthogonal signaling can contain, but not restricted to
FFT transforms, inverse FFT transforms (IFFT) or any its sub-product like
Discrete Cosine/Sine Transforms (DCT and DST), Walsh-Hadamard transforms
or any its sub-product like CDMA DSSS Spreading / De-spreading, and any
algorithm which 1s a combination of two or more of these algonthms, and such
other functionality, for example, filtering by using concatenation of FFT and
IFFT transforms, which can be used also for equalization, Hilbert transforms,

predictions, interpolations, correlations, etc.

[0091] The architecture of the present disclosure as disclosed herein, and all
elements thereof, are contained within the scope of at least one of the following
claims. No elements of the presently disclosed chip architecture are meant to be
disclaimed, nor are they intended to necessarily restrict the interpretation of the

claims.

22

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

What is claimed is:

1. A reconfigurable architecture for performing a fast orthogonal transform
of vectors 1n multiple stages, the size of a vector being N, wherein N can vary
and the number of stages 1s a function of N, the architecture comprising:

a computational unit configured and arranged so as to include one or more
butterfly units;

a block including one or more multipliers coupled to the output of the
computational unit, configured and arranged so as to perform all of the butterfly
computations for at least one stage of the transform;

a storage unit configured and arranged so as to store the intermediate
results of the butterfly computations and predetermined coefficients for use by
the computational unit for performing each butterfly computation, the storage
unit including memory and multiplexing architecture; a multiplexer unit
configured and arranged so as to time multiplex all of the butterfly computations
of the transform using said computation unit for the one stage so that only one
computation unit 1s required for the stage; and

a controller configured and arranged so as to provide coefficients to the
computational unit, and control the sizes of memory and multiplexing
architecture 1n the storage unit;

wherein the multipliers' coefficients, the coefficients of the computational
unit, the sizes of memories, and multiplexing architecture, for each stage are

modified as a function of the value of N.

2. A reconfigurable architecture according to claim 1, wherein the butterfly

units are configured in one of the following architectures: Radix2, Radix2,,

Radix23, Radix 4, or Radix 8.

3. A reconfigurable architecture according to claim 1, wherein the memory

registers are FIFO shift registers.

23

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

4. A reconfigurable architecture according to claim 1, wherein the length of

the memory registers are a function of the stage of the transform.

3. A reconfigurable architecture according to claim 1, wherein the length of

the memory registers decreases with each successive stage.

6. A reconfigurable architecture according to claim 5, wherein the length of

the memory registers 1s adjusted for each stage as a function of the value of N.

7. A reconfigurable architecture according to claim 6, wherein the

multiplexer unit includes an input/output block to the computational unait.

8. A reconfigurable architecture according to claim 1, wherein N varies
within a predefined range, further including a clock unit configured and arranged
so as to provide a clocking frequency at the input sample rate for the entire

predefined range.

0. A reconfigurable architecture according to claim 8, wherein the
architecture includes multiple computational units arranged as hardware so that
the entire predefined range M 1s accommodated by mapping the transform of
predefined range on the hardware, and disabling those computational units that

are unnecessary when the transform is less than M.

10. A reconfigurable architecture according to claim 8, wherein the
architecture includes multiple computational units arranged as hardware so that
less “m” than the entire predefined range M 1s accommodated, and the stages are

at least partially shared hardware for transtorms greater that “m”.

11. A reconfigurable architecture according to claim 1, wherein each stage

requires N/2 computations.

24

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

12. A reconfigurable architecture according to claim 1, further including a
plurality of computational units, one for each of said stages, and said

computational units are implemented so as to provide a pipelined architecture.

13. A reconfigurable architecture according to claim 1, further including a
plurality of computational units, one for each of said stages, and said
computational units are implemented so as to provide an architecture configured

in one or more of the following types: pipelined, iterative and parallel.

14. A reconfigurable architecture according to claim 1, wherein a full frame

of said transform 1s implemented in N clock cycles.

15. A reconfigurable architecture according to claim 1, wherein the buttertly

unit includes a Radix 2 architecture.

16. A reconfigurable architecture according to claim 1, wherein the butterfly

unit includes a Radix 4 architecture.

17. A reconfigurable architecture according to claim 16, wherein a full frame

of said transform 1s implemented 1in N/2 clock cycles.

18. A reconfigurable architecture according to claim 1, further including a
transform accelerator, wherein the accelerator includes the computational unit,
storage unit, and multiplexer unit, wherein the accelerator 1s configured and
arranged to perform each butterfly computation for all of the stages in an 1terative

process.

19. A reconfigurable architecture according to claim 1, wherein the storage
unit is configured and arranged to include filter coefficients, and the multiplier of
the computational unit of the last stage of the transform 1s adapted to multiply the

output of the last stage by one or more of the filter coefficients so as to produce a

filtered output.

23

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

20. A reconfigurable architecture according to claim 19, wherein the filtered
output 1s applied to the input of multiple stages of a transform that is the inverse
of the orthogonal transform, wherein each of the stages includes a computation

unit and said units form a pipelined architecture.

21. A reconfigurable architecture according to claim 1, wherein the transform

1s a fast Fourier transform.

22. A reconfigurable architecture according to claim 21, wherein the fast

Fourier transform includes different radixes.

23. A reconfigurable architecture according to claim 1, wherein the vectors

include both real and complex vectors.

24. A reconfigurable architecture according to claim 1, wherein the

transformation includes a Walsh orthogonal transformation.

25. An integrated chip comprising a reconfigurable architecture for
performing a fast orthogonal transform of vectors in multiple stages, the size of a
vector being N, wherein N can vary and the number of stages 1s a function of N,
the architecture comprising;:

a computational unit configured and arranged so as to include one or more
butterfly units;

a block including one or more multipliers coupled to the output of the
computational unit, configured and arranged so as to perform all of the butterfly
computations for at least one stage of the transform;

a storage unit configured and arranged so as to store the intermediate
results of the butterfly computations and predetermined coefficients for use by
the computational unit for performing each butterfly computation, the storage
unit including memory and multiplexing architecture;

A
the storage unit including memory and multiplexing architecture;

26

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

a multiplexer unit configured and arranged so as to time multiplex all of
the buttertly computations of the transform using said computation unit for the
one stage so that only one computation unit 1s required for the stage; and

a controller configured and arranged so as to provide coefficients to the
computational unit, and control the sizes of memory and multiplexing
architecture 1n the storage unit;

wherein the multipliers' coetficients, the coefficients of the computational
unit, the si1zes of memories, and multiplexing architecture, for each stage are

modified as a function of the value of N.

26. A communication system including the integrated chip of claim 25.
27. A communication system according to claim 26, further comprising a

detector for determining the size of the vector.

28. A method of performing a fast orthogonal transform of vectors in
multiple stages, the size of a vector being N, wherein N can vary and the number
of stages 1s a function of N, the method comprising:

configuring and arranging a computational unit so as to include one or
more butterfly units; a block so as to include one or more multipliers coupled to
the output of the computational unit, configuring and arranging the one or more
butterfly units and one or more multipliers so as to perform all of the butterfly
computations for at least one stage of the transform;

storing the intermediate results of the butterfly computations and
predetermined coefficients 1n a storage unit for use by the computational unit for
performing each butterfly computation, the storage unit including memory and
multiplexing architecture;

time multiplexing all of the butterfly computations of the transform using
the computation unit for the one stage so that only one computation unit 1s
required for the stage; and

providing coefficients to the computational unit, and controlling the sizes

of memory and multiplexing architecture in the storage unit;

27

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

wherein the multipliers' coefficients, the coefficients of the computational
unit, the sizes of memories, and multiplexing architecture, for each stage are

modified as a function of the value of N.

29. A method of performing a fast orthogonal transform of vectors 1n
multiple stages, the size of a vector being N, wherein N can vary and the number
of stages 1s a function of N, the method comprising:

utilizing a reconfigurable group of butterfly units and a reconfigurable set
of multipliers configured and arranged so that at least one computational unit can
be configured and arranged to include at least one butterfly unit and a multiplier
coupled to the output of the butterfly unmit so that the computational unit can
perform all of the butterfly computations for at least one stage of the transform,
and reconfigurable memory coupled to the computational unit so as to store the
intermediate results of the butterfly computations and predetermined coefficients
for use in performing each butterfly computation;.

wherein coefficients and sizes of memories, for each stage are modified as

a function of the value of N.

30. A system of performing a fast orthogonal transform of vectors in
multiple stages, the size of a vector being N, wheremn N can vary and the number
of stages 1s a function of N, the method comprising;:

a reconfigurable group of butterfly units and a reconfigurable set of
multipliers configured and arranged so that at least one computational unit can be
configured and arranged to include at least one butterfly unit and a multiplier
coupled to the output of the butterfly unit so that the computational unit can
perform all of the butterfly computations for at least one stage of the transform,
and reconfigurable memory coupled to the computational unit so as to store the
intermediate results of the butterfly computations and predetermined coefficients
for use i performing each butterfly computation;.

wherein coetficients and sizes of memories, for each stage are modified as

a function of the value of N.

28

CA 02563450 2006-10-13

PCT/US2005/024063

WO 2006/014528

Hy Jold
g W.HO _5 ”< a “ A ”
e i SOSTINNN o A/
e o0 I N\ XX I\ ///
o P - 04\ QAQVQE”N\\\
Ay o0 e nir~. _—~ /XX g’«d«o\«\\ ,_
(A% o TSSOV ANNY /4:0\4\ .”
> 4 : m.- : m. : om » > A,
e T ——"Tn NN
DIIX o——e- . pn > > I ,’i\b&:qf@
= SRR
et o b In XXX ////A\NN\
iy o 0% ?‘” ’4i\.ff |

¢ Old

_w_wvl, ’!’!’t

. Ol
Uy Jolid
[d}F oy o % ° [b]™x
[d]*x .‘, » [d]Mx
M (01" x-[d]"x) = [B]""x
th_z..klmlﬁm“—:xk — —”QH—.::LM\

o [gilx

[F1)x
[e1)x
z1)x
[11]=
[01]%

[6]x

[g]x

n3

[o]x
{c]x
[p1x
[¢]x
[clx
[1)=

[o]x

1/12

CA 02563450 2006-10-13

PCT/US2005/024063

WO 2006/014528

y 'Ol
Y Jold

€ 'Ol
Uy Jold

...........

[S1]X «
[b1]X «
[€1]X «
[21]X «
[11]X «
[01]X @
[6]X ©
[8)X <
(X «
[0]X «
[clX <
)X e
€)X «
[ZIX «
[1lX «
[0}X <

- -
..

: q,............i..:..............w.mmu..._
QV/ ” ’....H. \ Tuaun "
~ : dw... » [e1lx
0" c . » [cilx?
N W 77
m..? .,‘ . ¢“"/o \ s :_.7“
X 0 é&.no/\ > [oilx!
LRSESAK 000\./0\/9“03\/ > [)x,
oM\ ‘I\‘/\ "\Q/.\ - 3’~l~\Q. o [olx !
XY QRN BN _
—— . >— Q\/ : ,.-~'§\/, > [clx
oA (0 !
a : : ; > > ¢-.~\ / o [p]x |
— o : . . . - / (¢l "
Qp# 9 - + o v 4 o N

2/12

CA 02563450 2006-10-13

WO 2006/014528 PCT/US2005/024063
T o©
s O
-
0 LL
-
e
T
T = 3 .:‘
< Te i O
G- .
o 0O
N L

52

RAM

-
QL
[e
-

C

O
O

3/12

CA 02563450 2006-10-13

PCT/US2005/024063

WO 2006/014528

g 'Ol
Uy Joud

L Ol
Uy Joud

I

HIOM T.m&g‘ MIOM | ssedAq EEE ssedAg| lgg
%Hﬂa

O A

- e S
°Jd

— - O<—>C oy
e A[R >N XX
Y0414 "Codid 7804 - .\{’N&’f“

I i~]- I~ -
T TR 7 TR NS/
T TFRS 7/ TN NS/
N N

{39\ A 1 i . e] P DA 120 B)
ARSI Hlurfr«omﬁ\g — X 0&..!?/ XX/
T %wmmwnu G o XXX
"I " R TN 7. /XXXXXXN
BINSTT NIRRT R

Moy - X ,. S N .. .‘ |
BN "0 ORI/ ANNN I XX RK /AN
MNNN - “\!ﬂ \. ,\MﬂiE-
A N AR e A

SN N
OO O

4/12

CA 02563450 2006-10-13
WO 2006/014528 PCT/US2005/024063

FIG. 9
FIG. 10

Y[1]
Y[2]
Y[3]

(1)
X(2)
X(3)
X(4)

Y(1)
Y(2)
Y(3)
Y {(4)

5/12

CA 02563450 2006-10-13

PCT/US2005/024063

WO 2006/014528

POCI 002} 20¢l nowr q0¢1 mmwr e0Cl

D X
gy X &
a9 19
c L K - -
ﬁ z
pYEl orel” | mvmr 12

0JO3]3(

6CL 871
Alowa 3}]0JJU0

aoLl 91 %05 Anpiqedes

S HOISIOAUI N L fe
X ug1s 7 uonoun(
XNA
4% $s017) O/ C
414
Ll Ol4
AV
Ll
10}9918(]

oLl 8Ll
AJOWB|N 19]j0J3uo

6/12

CA 02563450 2006-10-13

PCT/US2005/024063

WO 2006/014528

€l Old

8t

A9||0JJUOD
_

LE]
10308)e(

7/12

CA 02563450 2006-10-13

PCT/US2005/024063

WO 2006/014528

X
Ovl

#2900
19)14

6C1
AowaN

Pl Old

8yl

J8jjo)uo)

8/12

CA 02563450 2006-10-13

PCT/US2005/024063

WO 2006/014528

91 Old

1L Old

ﬁlgﬁ e
u n%? Al-r?(\\\.
o XX SN/ /7
u lgﬂfﬂﬁ?‘.
NI DZERN KR VY6000

I-l i !ob.%.ﬁﬁr

LRI\,

a XN
o / SOSENII) AN
XXX ST
V- NE/7ARN\N
o A/iif

Y, 4 :,n
.2:4 _.M_,,

gﬁﬁ o

77

_ / /\ }i\a ﬁ” _1_“

XXX SN, s
XX LI N\ s

mﬂﬁor‘{‘{‘ + -r///!\\

XK TANNKX///

E 2 E&w&\\

.e _% h// ”ri“\\»””
o fmmlm\.d!

AN/

iz
o o

& ?«~ m

ﬁﬁﬂ H

9/12

CA 02563450 2006-10-13

PCT/US2005/024063

WO 2006/014528

LI Ol

9de10}S pue [onu0))

L Al L P R LR L LT 1.

T AR Ssgunwlh 44 h oo

EE AP A SRRy ey dwww hpredd ad S0t bk -pd P M RESSOAR 4L L0

[NN L d £ o T Y N
o wwrd o Pt GEb b wOird F BB -4 § A0 & P99 09 n DL SN ADOFALI0 et CPUna g b o

SEH{LI A
a[qeIngIJuosay]

Jaxadninin SN g 24nduooy

Iaxo[duny SN G 9[qeInS U003y pue 19)sn[0 JATVY 9[qeindyyuosay]

8.1
10109)a(]

10/12

CA 02563450 2006-10-13

PCT/US2005/024063

WO 2006/014528

981

O
O

o.
E:/m X 28

s1ayduny

8l Ol

08810]S pUB [O[UO))

881
c8l 10)099}8(3

S]] suLojsuel I,
X/'7 X1peY [BI9A3S .10 auU()

21q8InIU0Y |

-
081

%N SAIE 23njH0ddY

1axo[dnNIA SN 21qeIn31Iu0day pue I31sn[d AV 2[qeInd1juodsy]

11/12

CA 02563450 2006-10-13

PCT/US2005/024063

WO 2006/014528

T

do'tin e

‘Yol - .

L WL 3
~7

.
cim,

A o
s
v wmn

" -
» >

. N2 Y ES

DU I I Y
4 P9 YN v r
.

v

S$)00|]
uoloun

- . - a4 « 0
, v’rq«.."‘

't-’§ v e

Py pe by

.'.V.N" A BN wfay 5 0w
Fes T o,

»
.
.
<.
*a
.
’
e

a P Pet R AN e e Fo0e o v e e AP AL S ah

Vo S aqeved S oo ey Yo .rllo..'(-..ﬁl\-
PR LI _.u M +
v .\ﬂ.\.:l\uc‘\J.Opp .o\’..\ w

v.-.o [TN L . -
[ul re ’ L] 4
. DG'.’# vv -~ '#\. va « . a0 'Y]

»JQ:\.Q:I o2 *y .'wqo w ud

L H‘

\-ﬂ.vo;.«st‘#ﬂwn-\d.s-n-..\ BT S (ﬂ(\‘pﬂoco /!v it ;-
\\ll“l\ -, l- ‘\‘.\ ‘F‘ LTS .‘0.“ -fo\!IQQ.Q\-II! !O.ql llfd! 0.'.”".\! ..l.l..

..,u.....“\“?h }...)>. o b..m.,m...f.o.u":h..\.‘.s R Pd I T

ey b ey v ey e

Ho“ 0\’.\“?)?.‘\ LI 2 L L -.\‘f-'va" vscﬁfoo 0000- -0- 24" of.«
U . ll(!h (l"‘l.‘\.‘.\‘.‘qCQ‘ 0'\ “\ -

af-:
e
‘ -

'\

1 4
\'l

L) Q’s
’.C.\'
Xry-
36
FJ
r
.\
L
4
e
3
]
“
L 4
i
”,
g
«\oa
’
.‘
L 3¢
4

.- " &
gy lq.o “DOFL -:’0‘0- llllil O.%Q a..ﬁ.a‘

L Ct.‘

-

’
e
)

145}

\
b:'
»

»pr
f.vl M) .— 9‘0\' ‘b‘to ’0.“ .‘0“

u‘~
e

%

\..
any,

L
.,

-‘\O -

S R
p' thﬁt (‘ol.‘u’) -\Q a.\”\' ,
. » o.cl .- a - Qol-

. "
\IC\,‘ f Bl s-f N AT S

At :.I-)..u..

iy

R RO M LT T

[
P v.# ‘l‘t\llﬁ,-\ - ™y ¢ v
Lt ’ b ' -\\ ‘s v \.\lc . .
T LARA e LI AU T YR AT
\0 .‘PN \.‘0’ o’ !ot_“ cﬂl d L W Y Y \ol ll.!“’ F] .‘Q o *en
v [PR AST R - A AL by p .
- PR 2N Fy l.\blﬁ\f" - l(-n" o [V ,0\¢gwo & g
- “‘011.0‘.:- . Hl"n.‘ M CQIQDI ‘ﬂ'\l. « b a“..
L) . ar i LT B 0.!10.0\0... \ooa agn
v

6l 9Ol

v - . - o ran . . . 4 . .
fa‘-ﬁl}ﬂ V. “‘\ 7-0‘\ e g \u\ - Y.NO/' e ‘ RS L0 ‘ﬂb.olﬁf ool 0.. \.- . NIX 4 -rh - 3w gt .)q . R "y o 4

AR .¢ Ry ,,.3%,..,.“.“ i O Y Y

.o.....‘mm\.mv..?.f\ .X.\.c.._\ Anty” .«.«t\v LA ThELM 14 MR _mm..\.&. \ X0 rau.t N 1.&)....);3.&..@ L X N’ lt\p\tutn%«. uq.uw.b_wwr.tnd.

’..'.f.f [§ -k« y W.a\‘- ‘\.Q. Wl\dn

O? ’\M ’ ol A . .‘sn: M‘u\\’l

Seynyy, oy L neyy g 'y ot} I R,
irday, yere. iy S A el

W aGived & w. o N

- an -—c v P b4 - . il ‘i il : s 0-

Loty vl £ w Qﬁnﬁ 3T .“ iy ~.~. % LA ’. S ,wa. .» .. n.\nwnu.m IR

R AGD J\ P AT mm. 1 %) .”; ni.. \.n. ! ..2...5& r.c s, .:31 :.. o NS R

pyed \c,\x, «n:%«...a.."} ..,....n.u?.i ,.,:.......u..s 2 «2}; ...tuw.c N : .‘.!,... T4 A, o N s ke L

T L .‘I \. - » 7’ ’ ‘ - N a

m& ‘unu.‘\!m nthH.l.-u\ v ,lo . ’1\- vlvthq _‘ 1 ‘- b “M\’Q‘Nﬂxt ‘V’Nﬂmm(o; Wo“vq(rol .!‘.vd\\

\!-N\\.-‘”P”. Ly¥ 0 -

v'«\.‘-‘g hwbo ov~ “ ou .v

.,.a?,ﬁﬁdq_ AL 5

- ’..’0‘(\1 M-\\a W .J

v v Y vy, .o - .l. 1 V\ \0
. ..I.t Ccc..oo. s.v.. n.. — .o
2r .{:“u\w.. ..a O A e
' ql'*n ..n.\.n\).ﬁo..’o \hﬂ”.ﬂﬂsl .7“ ..\m IJR- d?\)‘.s\ arl’-I\M.h

A\O H ‘
AN el VD A P S Y oy re 2t 5 A ad SO e
‘(\‘ u.o..snn‘ntc &2 ordo l.w‘% W\.t-_* -G..A.vo .r%” \ ‘.-o .I- \MM.“{?MW\\-M

N Ay ’

A

*3. ¥ s
e * -v.“ hco‘nm
- !

vrv ‘e r-’ «*

wG":AA..« £

.ﬂ..,,_ﬁu”u.&..,ww? ﬁ
«bm,h.nw AN T ALY

. V\.ixy\l“-lﬂlv-\ w_‘fmv!-iln" }"mva
» . o-.‘-’.l\a' .Wn...h-an n-.” Q ".

it - 950

.A«?

- v..“

.l .7. .c.b. JJGM(m .v_\ N s Y el ad LA
alc vs.wpt\-.-fo‘ﬂ.““"\)%.P“Hfﬂ” ‘“0“! ﬂﬁ“‘vﬁﬂﬂ“ﬂ.\ﬂ!ﬂ- ' viu lo“q‘l%ﬁﬁnsuhswu'o)\h 0“..001#
f.ci.udﬂ..n 75 N L)(..)a aes? PR Y R Y TN A Bl
a2 I AR IL sa? oYX \\:...%n.u&a YN rnie ¥ dﬁ.eiﬁynqa .C.....v
....,.r,s,. RS v :...,,bd./,. I A0SR & L P S SART I Tout (P
R Ry ..}_ Gumx W. e e P A L SO T W S{ﬂ#.ﬁ:«.
D Uhamu.,.k.: «f,»;,.Q. C ..7: tu..:,.»&.....«.wa(f =) -..:cxv...m...&:f .w\.sm..:
-ﬂ A ? > - .Sr.v\i.l As) .N.' " T X ol o i
Ku u.?ww.. SR ,_r.“z w& %A SNGTEA SRR ,Qmm«.\w&.\z.kmm,w... AR .:x.
e m AR a?m.:\ : hw..«.. N5 s..;nwx RN
Ak e N AR, my.:‘ s..m q:.?&h.:u p., oY L LA
ERARE SO R i .wv 2.?% .mwm
o b ' o\\’-- .t -.fl \ v ; . g) . ~y, ‘- R
e s ,::.:a?r..ﬁ.m R
&7 M/. Iy As) so.& ..Wb(_0‘ »;m\ /_. 4“ ’n .s. > Ath % h.-od

}\)\.\ v ..max..w\fhﬁ i

st v "
s._ .s /..t ..A\n*n.-s.: ﬂf‘ a, ﬁ.b i e .f} . % v
p...r r TN Y,

..o?.s. -
A e e A,

.J.....rp*-.o«l.

Mﬂ. 4

s

\\‘.i-.ﬁwﬁ*' n(

EYSIUYEERIL
AL e ..“w bk g
m{ iyt % .m.,..,.‘}md.m.&?n » A\
m.:r."... AR N Lo O g o
- AT it N RN a0 A
R AR D A Y (L Bt BT DL
..a. f&f&iirr R R AN i i
?... :.::wwé.,u.fua o3 14 A3 O e die M T ,....w,.w:»riw%.er
£ R AR N A AT, A
YWﬁMHWM’Yﬂ“““\"“M“%&‘a.M\ MV&Q.A‘ - u. o.WN‘ J.I‘.. .”\Q.{Nf
1..«. I e L B G A) :
2 .,.,.ﬂ,.@.‘w RS AN R LA e .m.w A
<4 » . (‘awda At qm, P Y g o 7 e Al Y.s A YR AP .k
vWU.u.} «.*&Mdtw\\smmuwm.ww d.h\nnmu g 9\0 L0 L 54 2R
..‘o..‘ ’\»ahf\’m-. T ok
...D\.r‘« ..\“..uw.o.ﬁr&..mch.m.v.\..&\?wo
..,. xu”ﬂgﬁ‘w..\,...(...?ks?«.r .b..euy
»3 A M- . - ot VL
MN.. Ryt ,.:....:M.v“ ".n&wi“.em AN
;-.\ s . w-.t&k

3" éo\.i l o\.ﬂ-

"Nl“w. v'lha‘.\b.o\ “. .ow ’

«AR 7Y R A L
3\.1 .ﬂ,m.n aﬁg,,m. .L?w

.._,n. 7

‘ PRy ..,‘\n ’ .4.—!“.‘\#\‘1.\’.

v .~ s oo ~ Ii. f e, he
u J% IWWMJ Hﬂ.u'\avul..n\c. 0.’\\.““ ...!N\lv d‘.c ...*. "
i«\t...:... .m 3N l.@wrj. fe u. .uw
.:! - M.o)u.. \ .ﬂ“.ﬂ)\ g »W?d.w..“.\ﬂf u.wf.\%é“..o.m YR 3
O e

\vtll !I

n 2 ...?s
Nc.b\.m. ah#r
w.. u, ntv

[ETLERS

053‘“\0-,\ g

e o p oA

4

PR St o M s b RS P N T) AT AL BT B St SN s B R Sy VT WP ety Ty

WP AP A B 4R e o v e o s - S—— - —

« 14 e A L] . wesas

. vy B The &

HSV 14

R N2 &M ST QPR PR ASSEIN WV PO o T4 D 2 WK 7NN F T N TP N

2 v L d DL FE R TR, ¢ e K VRIS (e S oa ¢

et ———————— e b d RIS AP LS TN

e mdagn W

v

61l

AT D AWAR VI E T YW B H LS P

e FXPDY LI B o SV SO L LD S i) o AV AP P i s s, St o B WA AP Wy o S ph S 42T g § N

14014
A90[D

12/12

Detector
188

Reconfigurable RAM cluster and Reconfigurable BUS Multiplexer

Reconfligure BUS Mulliplexer

One or several Radix 2i/x
Transforms Units

It

Control and Storage

180

L

{

iieiiiediaas o amana . M

182

Reconfigurable
Multipliers

O ®
O
O
O

— 186

. ®g

‘

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - abstract drawing

