A23G 9/04 (2006.01) A23G 9/42 (2006.01)
A23L 1/308 (2006.01) A23G 9/36 (2006.01)

(51) International Patent Classification:
Bedford, Bedfordshire MK44 1LQ (GB).
LITCHFIELD,
Timothy, John [GB/GB]; Unilever R&D Colworth, Sharnbrook, Bedford, Bedfordshire MK44 1LQ (GB).
WIX,
Loyd [GB/GB]; Unilever R&D Colworth, Sharnbrook, Bedford, Bedfordshire MK44 1LQ (GB).

(74) Agent: CLARKE, Christopher, John; Unilever PLC, Unilever Patent Group, Colworth House, Sharnbrook, Bedford, Bedfordshire MK44 1LQ (GB).

(72) Inventors; and
Bedford, Bedfordshire MK44 1LQ (GB).

(54) Title: FROZEN CONFECTIONS COMPRISES CITRUS FIBRE

(75) Inventors/Applicants (for US only): JUDGE, David, John [GB/GB]; Unilever R&D Colworth, Sharnbrook,

(57) Abstract: A frozen confection comprising citrus fibre, characterised in that the citrus fibre has been treated with a glycosidase enzyme is provided. A process for the production of a frozen confection comprising the steps of: a) contacting citrus fibre with a glycosidase enzyme; b) combining the citrus fibre with the other ingredients of the frozen confection to form a mix; c) homogenising the mix at a pressure of from 50 to 500 bar; and d) freezing the mix to form the frozen confection, wherein step a) can take place before, during or after step b) is also provided.

(76) Priority Data:
10193413.1 2 December 2010 (02.12.2010) EP
Description

FROZEN CONFECTIONS COMPRISING CITRUS FIBRE

Technical field

[0001] The present invention relates to frozen confections containing citrus fibre, in particular it relates to frozen confections containing citrus fibre that has enhanced functionality.

Background

[0002] Stabilisers are typically polysaccharides and are used in frozen confections to maintain the viscosity of compositions. Stabilisers are also useful for maintaining the physio-chemical state of compositions and they can contribute to desirable, uniform product characteristics and a smooth feel on consumption. They also improve the handling properties of products during manufacture and dispensing.

[0003] Ingredients that provide such stabilisation effects are therefore indispensable to the manufacture of commercially acceptable frozen confection products and although efficient stabiliser systems do exist, they are often chemically modified ingredients and/or they appear on the ingredients labelling of products as additives or as “E numbers”. Consumers are becoming increasingly concerned about ingredients used in their products and in some cases the perception is that any additives should be avoided and natural ingredients are preferred. Certain natural stabilisation systems do exist and one such stabiliser is citrus fibre which is used in products such as baked goods, confectionary, jams and the like as disclosed in US 2006/01 15564. Citrus fibre is a consumer-acceptable stabiliser ingredient due to its natural origins but it would still be advantageous to improve the performance of this ingredient in order to increase its stabilizing functionality and to allow less of this additive to be used in products.

Summary of invention

[0004] We have now found that the stabilising functionality of citrus fibre in frozen confections can be enhanced by treating the citrus fibre with a particular class of enzymes.

[0005] Accordingly, in a first aspect the invention provides a frozen confection
comprising citrus fibre, characterised in that the citrus fibre has been treated with a glycosidase enzyme.

[0006] Preferably the enzyme is a cellulase, a mannanase or a mixture thereof.
[0007] Preferably the frozen confection comprises from 0.01 to 5 wt% of citrus fibre.
[0008] Preferably the frozen confection contains at most 0.1 wt% of another stabiliser, more preferably at most 0.05 wt%, more preferably still none.
[0009] Preferably the frozen confection is an ice cream, water ice, frozen yoghurt, or sorbet.

[0010] In a second aspect the invention provides a process for the production of a frozen confection comprising the steps of:
 a) contacting citrus fibre with a glycosidase enzyme;
 b) combining the citrus fibre with the other ingredients of the frozen confection to form a mix;
 c) homogenising the mix at a pressure of from 50 to 500 bar; and
 d) freezing the mix to form the frozen confection, wherein step a) can take place before, during or after step b).

[0011] Preferably the citrus fibre is contacted with the enzyme for between 10 seconds and 2 hours.
[0012] Preferably the citrus fibre is contacted with the enzyme at a pH of from 4.0 to 7.0.
[0013] Preferably the citrus fibre is contacted with the enzyme at a temperature of from 10°C to 70°C.
[0014] Preferably the citrus fibre is contacted with the enzyme after step c).
[0015] Preferably the enzyme is deactivated after being contacted with the citrus fibre.
[0016] Preferably the enzyme is a cellulase, a mannanase or a mixture thereof.
[0017] In a third aspect the invention provides the use of citrus fibre that has been treated with a glycosidase enzyme for enhancing the stabilisation of a frozen confection.
[0018] Preferably the enzyme is a cellulase, a mannanase or a mixture thereof.
[0019] Preferably the frozen confection is an ice cream, water ice, frozen yoghurt, or sorbet.
Detailed description of invention

[0020] All percentages, unless otherwise stated, refer to the percentage by weight, with the exception of percentages cited in relation to the overrun.

[0021] Citrus fibre is widely used in food and personal care products for its stabilising properties. One example of a commercially available citrus fibre is Herbacel AQ Plus Citrus N from Herbafood Ingredients, Germany. Typically citrus fibre has a total dietary fibre content of from 60 to 85 wt % (dry weight) and a water binding capacity (i.e. the amount of water that can be taken up by the fibre) of from 7 to 25 (w/w). The citrus fibre typically comprises up to 10% (w/w) proteins. Preferably the citrus fibre has a total dietary fibre content of from 60 to 80 wt % and a water binding capacity of from 7 to 12 (w/w). Citrus fibre may be obtained from citrus fruits such as oranges, tangerines, limes, lemons and grapefruit and in a preferred embodiment the citrus fibre is orange fibre. Citrus fibre can be extracted from citrus vesicles i.e. the cellulosic material contained in the inner, juice-containing portion of citrus fruits. Citrus vesicles are also referred to as coarse pulp, floaters, citrus cells, floating pulp or pulp. Citrus fibre typically has a relatively high total dietary fibre content and a balanced ratio of soluble to insoluble dietary fibre. For example, the total dietary fibre preferably is made up of about 45-50% soluble dietary fibre and from 50-55% insoluble dietary fibre. It is believed that the balanced dietary fibre spectrum of insoluble (structural) and soluble (mainly pectin) fibre is advantageous in providing the stabilisation effects.

[0022] In the typical manufacture of frozen confections, liquid ingredients are dosed into a mixing tank and heated to approximately 65°C with stirring. If stabilisers are used they are typically blended with the other dry ingredients and this blend is then added to the liquid ingredients and the resulting mix is heated back to approximately 65°C to ensure complete dispersion.

[0023] In the manufacture of frozen confections containing citrus fibre, the citrus fibre itself is subjected to physical forces to ensure that it can be dispersed within the frozen confection mixture during processing. This subjection to physical forces is typically carried out by subjecting an aqueous mixture of...
the citrus fibre to high pressure treatment, preferably homogenisation at a pressure of at least 50 bar, preferably at least 100 bar, more preferably at least 140 bar and at most 500 bar, preferably at most 400 bar, more preferably at most 300 bar. The citrus fibre can be subjected to such high pressure treatment at any point in the manufacturing process prior to freezing but in a preferred embodiment this high pressure treatment takes place during the standard homogenisation step of the mix preparation.

[0024] In this standard homogenisation step of the mix preparation of frozen confections high-pressure homogenisation apparatus is typically used at a pressure of at least 100 bar. The homogenised mix is optionally pasteurised, cooled to around 4°C, and aged at 2-4°C. The mix is then frozen and optionally aerated before being dispensed as a frozen confection.

[0025] Enzymatic treatment of citrus fibre has been disclosed previously, for example in US 5,965,177 which discloses a method of producing a clouding agent from citrus membrane and/or peel for use in fruit juices and soft drink beverages. However, this disclosure relates only to fruit juices and soft drink beverages and makes no mention of improving the performance of citrus fibre in frozen confections nor does it discuss stabilising functionality.

[0026] We have now surprisingly discovered that when citrus fibre is treated with specific enzymes, its performance as a stabiliser in frozen confections is enhanced. It is believed that the cellulose material contained in the citrus fibres is partially broken down by the action of the enzymes and the ability of the citrus fibre to bind water and other components of the products to which it is added is enhanced as a result. Cellulose is a straight chain polymer derived from D-glucose units, which condense through P(1-4)-glycosidic bonds. Such glycosidic bonds are known as O-glycosidic bonds, in reference to the glycosidic oxygen that links the glucose units of the cellulose polymer. It is believed that the cellulosic material of citrus fibre is broken down via a hydrolysis reaction in the presence of particular enzymes that cleave the glycosidic bonds of the cellulose polymers. The family of enzymes that cleave these glycosidic linkages are the
glycosidases (also known as glycoside hydrolases) which are classified into Enzyme Commission (EC) number 3.2.1 as enzymes hydrolysing O- or S-glycosyl compounds. Particularly suitable for this invention are the glycosidases that hydrolyse O-glycosyl compounds and most preferable are enzymes selected from the group consisting of cellulase (EC 3.2.1.4), cellulase 1,4-P-cellobiosidase (EC 3.2.1.91) and mannanase (EC 3.2.1.25). In a particularly preferred embodiment the enzyme is a cellulase.

[0027] As used herein, the term “treated with a glycosidase enzyme” means that the citrus fibre has been partially hydrolysed by the glycosidase. Citrus fibre can be readily treated with the glycosidase enzyme using standard techniques and, in fact, it has been found that merely contacting the citrus fibre with a glycosidase for a relatively short period of time is sufficient to treat the citrus fibre and thereby improve the stabilising performance. The citrus fibre is therefore preferably contacted with a glycosidase enzyme for at least 10 seconds, more preferably at least 30 seconds, more preferably still at least 1 minute, yet more preferably still at least 5 minutes.

Preferably the citrus fibre is contacted with a glycosidase for at most 2 hours, more preferably at most 1 hour, more preferably still at most 30 minutes. The amount of contact time necessary will depend on the speed of the reaction which, in turn, depends on the reaction conditions such as temperature and pH. The optimal reaction conditions for glycosidases are well known and in particular it is preferred that the citrus fibre is contacted with a glycosidase at a temperature of at least 10°C, more preferably at least 20°C, more preferably still at least 30°C. Preferably the temperature is at most 60°C, more preferably at most 50°C, more preferably still at most 40°C. Preferably the citrus fibre is contacted with a glycosidase at a pH of at least 4.0, more preferably at least 4.5 and preferably at most 7.0, more preferably at most 6.5, more preferably still at most 5.5. When the citrus fibre is contacted with a glycosidase the ratio of citrus fibre to enzyme is preferably at least 1:0.1, more preferably at least 1:0.01, more preferably still at least 1:0.001 and preferably at most 1:0.00001, more preferably at most 1:0.0001.
The citrus fibre can be treated with the enzyme at various stages during the manufacturing process as described below.

As used herein, the term "frozen confection" means an edible confection made by freezing a mix of ingredients which includes water. Frozen confections typically contain fat, non-fat milk solids and sugars, together with other minor ingredients such as stabilisers, emulsifiers, colours and flavourings. Preferred frozen confections include ice cream, water ice, frozen yoghurt, sorbet and the like.

When used in frozen confections, citrus fibre is typically present in an amount of at least 0.01 wt% of the product, preferably at least 0.1 wt %, more preferably at least 0.5 wt%. Typically such products contain at most 5 wt% citrus fibre, preferably at most 4 wt%, more preferably 2 wt%. If the citrus fibre and enzymes are present together in the product then the ratio of citrus fibre to enzyme is preferably at least 1:0.1, more preferably at least 1:0.01, more preferably still at least 1:0.001 and preferably at most 1:0.00001, more preferably at most 1:0.0001.

In a process for the production of a frozen confection, the citrus fibre is brought into contact with a glycosidase enzyme to bring about partial hydrolysis of the citrus fibre.

The citrus fibre can be treated with the enzyme at various stages of the manufacturing process. For example, the citrus fibre can be treated with the enzyme in an initial and separate processing step before being combined with other ingredients of the product. Alternatively, the reaction between the citrus fibre and enzyme can take place within the product itself, that is to say the citrus fibre and the enzyme are combined with the other ingredients at which point the fibre and enzyme are contacted and the reaction takes place. This reaction can be controlled through the conditions within the product itself. For example, if the temperature is kept low - such as in a chilled product - then the reaction will take place more slowly than in a product at ambient temperatures and, accordingly, a longer reaction time will be required. The enzyme and citrus fibre can be left to react indefinitely but preferably the length of the reaction time is controlled by inactivating the enzyme after a suitable period of time. In one
embodiment the product can be subjected to high temperatures (e.g. as part of a pasteurisation step) which denatures the enzyme and ensures that the reaction is controlled and also provides a product free from active enzymes. In another embodiment, the product can be frozen which will slow the reaction rate of the enzyme down to a negligible level.

[0033] In a further embodiment the citrus fibre and enzyme can be kept separate through the use of encapsulation or microencapsulation allowing the consumer to control the reaction - for example a mix may contain standard ingredients and a sachet containing the enzyme which can be added to the other ingredients during preparation. Alternatively the ingredients could be kept substantially dry whereby the reaction will only take place upon the addition of water - for example a frozen confection mix which is desiccated but upon addition of warm water during the normal preparation steps the enzyme and citrus fibres will be able to react.

[0034] In another embodiment the citrus fibre is contacted with the enzyme after the citrus fibre has been subjected to high pressure treatment as described above. In a further preferred embodiment, the citrus fibre is contacted with the enzyme after the citrus fibre has been combined with the other ingredients of the frozen confection and homogenised.

[0035] Citrus fibres treated with glycosidase enzymes are particularly suitable for use in frozen confections because they have enhanced stabilising functionality and hence the stability of frozen confections is also enhanced. One of the benefits of this invention is that all aspects of the standard manufacturing process may still be employed and so standard processes, ingredients and apparatus may be employed when making products comprising citrus fibres treated with glycosidase enzymes yet the end product still benefits from an improvement in stability.

[0036] The present invention will now be further described with reference to the following non-limiting examples.

Experiments

[0037] Stabilisers are commonly used in the production of frozen confections to provide various product characteristics including viscosity, improved shape retention and resistance to meltdown. In this experiment, five stabilisers
were tested both in their native form and after treatment with glycosidases (cellulose, mannanase and a combination thereof). The stabilisers and their sources were as follows:

Sodium alginate: Grinstead® Alginate IC 313 B from Danisco.
Locust bean gum: Grinstead® LBG 246 from Danisco.
Citrus Fibre: Herbacel AQ Plus Citrus N from Herbafood ingredients, Germany.
Carboxymethylcellulose: FMC CMC 100 E from FMC International, Ireland.
Carrageenan: Carrageenan E407, SATIAGEL™ from Cargill.

The enzymes and their sources were as follows:
Cellulase: 1,4-(1,3:1,4)-p-D-Glucan 4-glucano-hydrolase, C2730 Celluclast® from Sigma-Aldrich.
Mannanase: Mannaway from Novozymes.

| Table 1 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Ingredient (wt%)** | **Formulation** | | | | |
| | A | B | C | D | 1 |
| Sodium alginate | 0.23| | | | |
| Locust bean gum | | 0.3 | | | |
| Carboxymethylcellulose | | 0.4 | | | |
| Carrageenan | | | 0.3 | | |
| Citrus fibre | | | | 0.75| |
| Skim milk powder | 8.22| 8.22| 8.22| 8.22| 8.22|
| C® F017y4 | | | | | |
| Glucose-Fructose | | | | | |
| Syrup (63DE) (from | | | | | |
| Cerestar) | 10 | 10 | 10 | 10 | 10 |
| Sucrose | 11.5| 11.5| 11.5| 11.5| 11.5|
| Water | To | To | To | To | To |
| | 100 | 100 | 100 | 100 | 100 |

[0038] **Table 1** - Formulation of frozen confections for meltdown tests.
[0039] Zero-fat ice creams according to the formulations of Table 1 were
prepared. Formulations A to D were comparative examples containing as
stabilisers, sodium alginate, locust bean gum, carboxymethylcellulose, and
carrageenan respectively. Formulation 1 contained citrus fibre as the
stabiliser. The amount of stabiliser used in each formulation was based on
the standard levels required to manufacture consumer-acceptable zero-fat
ice creams products.

For each formulation, liquid ingredients were dosed into a mixing tank and
heated to 65°C with stirring. The stabilisers were first dry mixed with at
least an equal weight of sugar before adding to the tank. The remaining
dry ingredients were then added to the tank and the mix was heated back
to 65°C to ensure complete dispersion. The mix was then homogenised
using an APV Crepaco homogeniser at a pressure of 140bar. The
homogenised mix exited the homogeniser at a temperature of
approximately 80°C. In the case of formulation 1, this homogenisation step
served to high-pressure treat the citrus fibre. The homogenised mix was
immediately pasteurised at 84°C for 25 seconds, and then cooled to 4°C
using a plate heat exchanger. The mixes were then transferred to plastic
containers and held there at 2-4°C for 6 hours.

In order to assess the effect of enzyme treatment on each of the
formulations, four 20kg samples were dispensed for each formulation after
the homogenisation step. The first of these samples had 0.125wt% Celluclast combined into the mix, to the second was added 0.125wt% Mannaway, to the third was added 0.125wt% Celluclast and 0.125wt% Mannaway. The final sample had no enzymes added and was used as a
control. After addition of the enzymes, the mixes were left to stand for 15
minutes and then passed from their containers into an APV Technohoy
MF75 freezer (via the hopper) and aerated to an overrun of 100% and
frozen before being dispensed at approximately -5°C. The resulting ice
cream was collected in cartons and transferred to a blast freezer where
the products were hardened at -30°C for 2 hours. The ice creams were
then transferred to a -25°C cold room for storage.

The samples were taken from the cold room and duplicate 500ml blocks of
each formulation were cut, weighed and placed on a wire mesh grid in an
enclosed cabinet that was held at 24°C. A funnel was placed underneath the blocks and the blocks were then allowed to melt. The funnel collected the melting ice cream which drained into a beaker placed on a balance. The weight of the melted ice cream was recorded and the % mass loss after 2 hours was calculated. The % mass loss of the samples as measured after 2 hours is given in Table 2. In order to quantify the effect of the enzymatic treatment of the stabilisers on the meltdown of the compositions, the percentage change in mass loss between the controls and enzymatically treated samples was calculated, using the formula below. Any improvements in mass loss relative to the control will result in a positive percentage change whereas any worsening of the mass loss will provide a negative number. These results are also shown in Table 2.

<table>
<thead>
<tr>
<th>Change in mass loss between control and enzymatically treated sample (%)</th>
<th>Mass loss of control after 2hrs (%)</th>
<th>Mass loss of enzymatically treated sample after 2hrs (%)</th>
<th>x 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass loss of control after 2hrs (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 0002

Table 2 - Results of meltdown tests.

The results show that the treatment of the formulations of A (sodium alginate), C (carboxymethylcellulose), and D (carrageenan) with cellulase, mannanase or a combination thereof did not have any appreciable impact...
on the melt down properties of the frozen confections. Sodium alginate performance was slightly improved with all enzymes but the improvement was less than 10%. The performance of carboxymethylcellulose was worse with all treatments and although cellulose caused a slight improvement in the performance of carrageenan, mannanase had the opposite effect.

[0046] It can clearly be seen that the enzymatic treatment of formulation B (locust bean gum) had a dramatic and deleterious effect on the melt down properties. The stabilisation provided by the locust bean gum resulted in very little mass loss after 2 hours in the control sample but the enzymatically treatment samples suffered over 300% more mass loss and had almost completely melted over the same period. However, the enzymatic treatment of citrus fibre (formulation 1) greatly improved the meltdown performance compared to the control. After 2 hours, 40% of the control sample had melted whereas those samples prepared with enzymatically treated citrus fibre suffered from 30 to almost 50% less mass loss.

[0047] Furthermore, the frozen confections of formulation 1 were subjected to informal tasting panels and were found to have organoleptic properties equivalent to conventional products.

[0048] It can therefore be readily appreciated that the performance of citrus fibre as a stabiliser is enhanced by treatment with glycosidase enzymes and that this enhancement is particular to citrus fibre and was not displayed in the other stabilisers tested.
Claims

1. A frozen confection comprising citrus fibre, characterised in that the citrus fibre has been treated with a glycosidase enzyme.
2. A product according to claim 1 wherein the enzyme is a cellulase, a mannanase or a mixture thereof.
3. A product according to claim 1 or claim 2 wherein the enzyme is a cellulase.
4. A product according to any of the preceding claims wherein the product comprises from 0.01 to 5 wt% of citrus fibre.
5. A product according to any of the preceding claims wherein the product comprises no other stabiliser.
6. A product according to any of the preceding claims wherein the product is an ice cream.
7. A process for the production of a frozen confection comprising the steps of:
 a) contacting citrus fibre with a glycosidase enzyme;
 b) combining the citrus fibre with the other ingredients of the frozen confection to form a mix;
 c) homogenising the mix at a pressure of from 50 to 500 bar; and
 d) freezing the mix to form the frozen confection,
 wherein step a) can take place before, during or after step b).
8. A process according to claim 7 wherein the citrus fibre is contacted with the enzyme for between 10 seconds and 2 hours.
9. A process according to claim 7 or claim 8 wherein the citrus fibre is contacted with the enzyme after step c).
10. A process according to any of claims 7 to 9 wherein the enzyme is deactivated after being contacted with the citrus fibre.
11. A process according to any of claims 1 to 10 wherein the enzyme is a cellulase, a mannanase or a mixture thereof.
12. Use of citrus fibre that has been treated with a glycosidase enzyme for enhancing the stabilisation of a frozen confection.
13. A use according to claim 12 wherein the enzyme is a cellulase, a mannanase or a mixture thereof.
14. A use according to claim 12 or claim 13 wherein the frozen confection is an ice cream.
A. CLASSIFICATION OF SUBJECT MATTER

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A23G A23L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 2 025 240 AI (NESTEC SA [CH]) 18 February 2009 (2009-02-18) claims 1-17</td>
<td>1-14</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
14 November 2011

Date of mailing of the international search report
22/11/2011

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax. (+31-70) 340-3016

Authorized officer
Adechy, Miriam
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2004086626 AI</td>
<td>06-05-2004</td>
<td>BR 0315921 A</td>
<td>13-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1560975 A2</td>
<td>10-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2377992 A1</td>
<td>19-10-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004086626 A1</td>
<td>06-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005074542 A1</td>
<td>07-04-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005274469 A1</td>
<td>15-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2004044285 A2</td>
<td>27-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2691433 A1</td>
<td>12-02-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101765374 A</td>
<td>30-06-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2025240 A1</td>
<td>18-02-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2185003 A1</td>
<td>19-05-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010535018 A</td>
<td>18-11-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2010107614 A</td>
<td>10-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200930306 A</td>
<td>16-07-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010203202 A1</td>
<td>12-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2009019088 A1</td>
<td>12-02-2009</td>
</tr>
<tr>
<td>US 2006115564 AI</td>
<td>01-06-2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69716204 DI</td>
<td>14-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69716204 T2</td>
<td>14-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 60089 A1</td>
<td>22-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5958474 A</td>
<td>28-09-1999</td>
</tr>
</tbody>
</table>