按照专利合作条约所公布的国际申请

世界知识产权组织

国际公布日
2015年12月3日 (03.12.2015)

国际公布号
WO 2015/180655 A1

according to the Patent Cooperation Treaty

国际专利局

国名

(10) 国际公布号
WO 2015/180655 A1

(21) 国际申请号
PCT/CN2015/080559

(22) 国际申请日
2015年5月27日 (07.05.2015)

(25) 申请人
苏州大学张家港港港口技术研究院 (ZHANGJIAGANG INSTITUTE OF INDUSTRIAL TECHNOLOGIES SOOCHOW UNIVERSITY) [CN/CN]; 中国江苏省苏州市张家港市张港镇路10号, Jianguo 215600 (CN)

(26) 公布语言
中文

(30) 优先权
2014年10月23日 1697.3 2014年5月28日 (28.05.2014) CN

(71) 发明人
孟凤华 (MENG, Fenghua); 中国江苏省苏州市工业园区仁爱路199号, Jiangsu 215123 (CN)

邹艳 (ZOU, Yan); 中国江苏省苏州市工业园区仁爱路199号, Jiangsu 215123 (CN); 钟志远 (ZHONG, Zhiyuan); 中国江苏省苏州市工业园区仁爱路199号, Jiangsu 215123 (CN)

(51) 国际专利分类号
C07D 495/10 (2006.01); C08G 64/30 (2006.01); C08G 65/48 (2006.01); C08J 3/24 (2006.01)

(54) 发明名称
含双硫五元环功能基团的环状碳酸酯单体及其制备方法

(57) 抽象
Disclosed are a cyclic carbonate monomer containing a double-sulfur five-membered ring functional group, and preparation method thereof. The cyclic carbonate monomer can be simply and efficiently synthesized without protection and deprotection processes. The cyclic carbonate monomer of the present invention can be utilized to obtain polycarbonate having a controllable molecular weight and molecular weight distribution via ring opening polymerization, and has biodurability and reduction-sensitive reversible crosslinking properties. The present invention can be used in a carrier having control-lably released drug, a biological tissue scaffold or a biochip.

(57) 摘要
本发明公开了一种含双硫五元环功能基团的环状碳酸酯单体及其制备方法。所述环状碳酸酯单体能够简单高效的合成, 无需保护和脱保护过程; 本发明所述的环状碳酸酯单体可开环聚合得到分子量和分子量分布可控的聚碳酸酯, 其具有生物可降解性及还原敏感可逆交联的性质。可应用于药物控制释放的载体、生物组织支架或者生物芯片。
本国际公布：
- 包括国际检索报告（条约第21条（3））
含双硫五元环功能基团的环状碳酸酯单体及其制备方法

技术领域

[0001] 本发明涉及一种环状碳酸酯单体，涉及一种含双硫五元环功能基团的环状碳酸酯单体的制备及应用。

背景技术

[0002] 环状碳酸酯单体具有非常独特的性能，例如它们可以简单地合成得到高产率高纯度的产物，并且可以通过小分子或大分子引发得到生物可降解的聚碳酸酯。其聚合物具有非常优异的性能，例如它们通常具有良好的生物相容性，能在体内降解，降解产物可被人体吸收或通过人体正常生理途径排出体外，和脂肪族聚酯一样被广泛应用于生物医学的各个领域，如手术缝合线、骨固定器械、生物组织工程支架材料、和药物控制释放载体等。其中，合成的生物可降解聚合物由于其免疫原性较低、其性能含如降解性能和机械性能等均可方便得到控制等而尤其受到关注。常用的生物可降解聚合物是通过环状碳酸酯单体如三亚甲基环碳酸酯（TMC），或环酯单体如乙交酯（GA）、丙交酯（LA）、己内酯（CL）等开环聚合制备得到，已获得美国食品药品管理部门（FDA）的许可。

技术问题

[0003] 但是，现有的环碳酸酯或环酯单体如TMC、GA、LA和CL等结构比较单一，缺乏可用于修饰的官能团，故制备的聚合物往往难以修饰、难以满足医学需求，例如，基于这些传统碳酸酯单体的聚合物的药物载体或是表面修饰涂层存在稳定性差的致命弱点。如何提高其体内稳定性是亟待解决的问题。

[0004] 另外，现有技术中，在制备环状碳酸酯单体、和/或开环聚合过程中，其结构中存在易于反应的基团，多数情况都需要通过保护和脱保护步骤，这导致制备过程繁琐。

问题的解决方案

技术解决方案

[0005] 本发明的目的是，提供一种含双硫五元环功能基团的环状碳酸酯单体。
为达到上述目的，本发明具体的技术方案为：一种含双硫五元环功能基团的环状碳酸酯单体，其化学结构式如下：

![化学结构式]

上述环状碳酸酯单体的制备方法包括以下步骤：将二溴新戊二醇与一水合硫氢化钠在极性溶剂中反应得到化合物A；然后将化合物A在空气中氧化得到化合物B；最后在氮气气氛中，在环醚类溶剂中，将化合物B与氯甲酸乙酯反应得到所述的含双硫五元环功能基团的环状碳酸酯单体。

上述技术方案中，所述二溴新戊二醇与一水合硫氢化钠的摩尔比为 (2.5~10) :1；化合物B与氯甲酸乙酯的摩尔比为 1:(2~4)。

优选的技术方案中，上述含双硫五元环功能基团的环状碳酸酯单体的制备方法为：

(1) 将一水合硫氢化钠溶解在极性溶剂中，将二溴新戊二醇用恒压滴液漏斗缓慢滴加，50℃条件下反应48小时，得到化合物A；

(2) 化合物A在空气中氧化，得到化合物B，所述化合物B的化学结构式如下：

![化学结构式]

(3) 氮气气氛中，将化合物B与氯甲酸乙酯溶解在环醚类溶剂中，然后用恒压滴液漏斗缓慢滴加三乙胺，在冰水浴中反应4小时，得到含双硫五元环功能基团的环状碳酸酯单体，所述环状碳酸酯单体的化学结构式如下：

![化学结构式]
优选的技术方案中，所述极性溶剂为N,N-二甲基甲酰胺（DMF）；所述醚类溶剂为四氢呋喃。

优选的技术方案中，化合物A先溶于醚类溶剂，再在空气中氧化得到化合物B；增加...

上述含双硫五元环功能基团的环状碳酸酯单体的制备过程可如下表示：

上述含双硫五元环功能基团的环状碳酸酯单体的制备过程可如下表示：
程。例如，上述环碳酸酯单体在二氯甲烷中可以以聚乙二醇为引发剂、双（双三甲基硅基）胺锌为催化剂开环聚合，形成嵌段聚合物，其反应式如下：

上述环碳酸酯单体还可以和其他环酯、环碳酸酯单体进行开环共聚反应，制备无规和嵌段共聚物；所述其他环碳酸酯包括三亚基环碳酸酯(TMC)，所述其他环酯单体包括己内酯(e-CL)、丙交酯(LA)或乙交酯(GA)。

该侧链含双硫五元环的功能性聚碳酸酯可以在催化量的还原剂如二硫代苏糖醇或谷胱甘肽催化下形成稳定的化学交联，但在细胞内还原环境下会快速解交联。因此该侧链含双硫五元环的功能性聚碳酸酯具有优良的实用价值，例如可以用于制备循环稳定的药物载体，在靶细胞内可以快速释放药物。

发明的有益效果

有益效果

由于上述方案的实施，本发明与现有技术相比，具有以下优点：

1. 本发明首次公开了一种含双硫五元环功能基团的环状碳酸酯单体，只需两锅（三步）即可便捷高效制备，无需现有技术中的保护和脱保护过程。

2. 本发明公开的含双硫五元环功能基团的环状碳酸酯单体，由于双硫五元环基

团不影响环碳酸酯单体的开环聚合，因此无需现有技术中的保护和脱保护过程，

即可开环聚合得到侧链含双硫五元环的功能性聚碳酸酯；

3. 本发明公开的环碳酸酯单体制备简单，由其可以方便的开环聚合得到具有还原敏感可逆交联特性的碳酸酯聚合物；该聚合物可进一步进行自组装用于控制

药物释放体系、组织工程和生物芯片，在生物材料方面，具有良好的应用价值。

对附图的简要说明

附图说明
图1为实施例一中含双硫五元环功能基团的环状碳酸酯单体的核磁谱图；
图2为实施例一中含双硫五元环功能基团的环状碳酸酯单体的质谱图；
图3为实施例一中含双硫五元环功能基团的环状碳酸酯单体的紫外吸收图谱；
图4为实施例三中嵌段聚合物PEG5k-b-PCDC2.8k的核磁谱图；
图5为实施例四中嵌段聚合物PEG5k-P(CDC2.5k-O-CL3.9k)的核磁谱图；
图6是实施例六中聚合物PEG5k-b-PCDC2.8k交联纳米粒子对Raw264.7和MCF-7细胞的毒性结果图；
图7为实施例七中载有阿霉素的聚合物PEG5k-b-PCDC2.8k交联纳米粒子的体外释放结果图；
图8是实施例七中载有阿霉素的聚合物PEG5k-b-PCDC2.8k交联纳米粒子对Raw264.7细胞的毒性结果图；
图9为实施例八中载有阿霉素的聚合物PEG5k-b-PCDC2.8k交联纳米粒子在小鼠体内的血液循环结果图；
图10为实施例九中载有阿霉素的聚合物PEG5k-b-PCDC2.8k交联纳米粒子对荷黑色素肿瘤小鼠的生物分布结果图；
图11为实施例十一中载有阿霉素的聚合物PEG5k-b-PCDC2.8k交联纳米粒子对荷黑色素肿瘤小鼠的抑制肿瘤生长曲线图；
图12为实施例十中小鼠体重变化曲线图；
图13为实施例十中小鼠生存曲线图。

发明实施例

本发明的实施方式

下面结合实施例和附图对本发明作进一步描述：

实施例一含双硫五元环功能基团的环状碳酸酯单体(CDC)的合成：
1. 一水合硫氢化钠（28.25 g, 381.7 mmol）溶在400 mL N,N-二甲基甲酰胺(DMF)中，50℃加热至完全溶解，逐滴加入二溴新戊二醇（20 g, 76.4 mmol），反应48小时。反应物减压蒸馏除去溶剂DMF，然后用200mL蒸馏水稀释，用250mL乙醇乙酯萃取四次，最后有机相旋蒸得到黄色粘稠状化合物A，产率70%；

2. 溶解在400 mL的四氢呋喃(THF)中的化合物A在空气中放置24小时，分子间硫基氧化成硫硫键，得到化合物B，产率>98%；

3. 在氮气保护下，化合物B（11.7 g, 70.5 mmol）溶于干燥过的THF（150 mL）中，搅拌至完全溶解。接着冷却到0℃，加入氯甲酸乙酯（15.65 mmol），然后逐滴加入Et₃N（22.83 mL, 120.0 mmol）。待醇加完毕后，该体系在冰水浴条件下继续反应4 h。反应结束后，过滤掉产生的Et₃N·HCl，滤液经旋转浓缩，最后用乙醚进行多次重结晶，得到黄色晶体，即含双硫五元环功能基团的环状碳酸酯单体（CDC），产率64%。

附图1为上述产物CDC的核磁图谱，H NMR (400 MHz, CDC₁₃): δ 3.14 (s, 4H), 4.51 (s, 4H)。元素分析为：C: 41.8 %, H: 4.20 %, O: 24.3 % (理论：C: 41.67 %, H: 4.17 %, O: 25 %, S: 33.3%)。CDC单体的质谱分析：MS: 192.5 (理论分子量: 192)，见图2。附图3为不同浓度上述产物单体CDC四氢呋喃溶液的紫外图谱，单体中硫硫五元环在330 nm处有吸收，且吸收强度随着单体浓度的增大而增强。

实施例二 含双硫五元环功能基团的环状碳酸酯单体（CDC）的合成：

1. 一水合硫氢化钠（28.25 g, 381.7 mmol）溶在400 mL二甲亚砜（DMSO）中，40℃加热至完全溶解，逐滴加入二溴新戊二醇（20 g, 76.4 mmol），反应48小时。反应物减压蒸馏除去溶剂DMSO，然后用200mL蒸馏水稀释，用250mL乙酸乙酯萃取四次，最后有机相旋蒸得到黄色粘稠状化合物A，产率42%；

2. 溶解在400 mL的1,4-二氧六环中的化合物A在空气中放置，分子间硫基氧化成硫硫键，得到化合物B，产率>98%；

3. 在氮气保护下，化合物B（11.7 g, 70.5 mmol）溶于干燥过的1,4-二氧六环（150 mL）中，搅拌至完全溶解。接着冷却到0℃，加入氯甲酸乙酯（15.65
mL, 119.8 mmol)，然后逐滴加入 Et₃N (22.83 mL, 120.0 mmol)。待加完毕后，该体系在冰水浴条件下继续反应4 h。反应结束后，过滤掉产生的 Et₃N·HCl。滤液经旋转浓缩，最后用乙醚进行多次重结晶，得到黄色晶体，即含双硫五元环功能基团的环状碳酸酯单体（CDC），产率32%。

实施例三 两嵌段聚合物 PEG5k- b-PCDC2.8k 的合成

\[
\text{O} \quad \begin{array}{c} \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \end{array} \rightarrow \text{O} \quad \begin{array}{c} \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \end{array}
\]

式中，m=114，n=14.6。

在氮气环境下，将0.3 g (1.56 mmol) 含双硫五元环功能基团的环状碳酸酯单体（CDC）、2 mL 二氯甲烷加入密封反应器里，然后加入分子量为5000 的聚乙二醇 0.5 g (0.1 mmol) 和 1 mL 的催化剂双（三甲基硅基）胺的二氯甲烷溶液 (0.1 mol/L)，接着把反应器密封好，转移出手套箱，放入40℃油浴中反应1天后，用冰乙酸终止反应，在冰乙醚中沉淀，最终经过过滤、真空干燥得到产物环碳酸酯聚合物 PEG5k- b-PCDC2.8k。

附图4为上述环碳酸酯聚合物的核磁图谱：

\[
\text{H NMR (400 MHz, CDC1 }_3\text{)}: 3.08 (s, -CCH}_2); 3.30 (m, -OCH}_3); 4.05 (s, -CH}_2OCOCCH}_2); 4.07 (s, -OCH}_2CCH}_2); 4.31 (m, -CCH}_2).
\]

实施例四 两嵌段聚合物 PEG5k-P(CDC2.5k-co-CL3.9k) 的合成

\[
\text{O} \quad \begin{array}{c} \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \end{array} \rightarrow \text{O} \quad \begin{array}{c} \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \end{array}
\]

式中，m=114，x=21.9，y=13.0，n=34.9。

在氮气环境下，0.28 g (1.46 mmol) CDC 单体和 0.4 g (3.51 mmol) 的已内酯 (ɛ-CL) 溶在 3 mL 二氯甲烷中，加入密封反应器里，然后加入分子量 5000 的聚乙
二醇 0.5 g (0.1 mmol) 和 l m 的催化剂双（双三甲基硅基）胺锌的二氯甲烷溶液 (O.1 mol/L) 接着把反应器密封好，转移出手套箱，放入40℃油浴中反应 1天后，用冰乙酸终止反应，在冰乙酰中沉淀，最终经过过滤、真空干燥得到产物环碳酸酯聚合物 PEG5k-P(CDC2.5k- co-CL3.9k)。

附图 5为上述聚合物的核磁图谱：'H NMR (400 MHz/CDCl3): 1.40(m,-COCH 2CH 2CH 2CH 2CH 2H 2H), 1.65 (m,-COCH 2CH 2CH 2CH 2CH 2H 2H), 2.30 (t,-COCH 2CH 2CH 2CH 2CH 2H 2H), 3.08 (s,-CH 2), 3.30 (m,-OCH 3), 4.03 (t,-COCH 2CH 2CH 2CH 2H 2H), 4.05 (s,-OCH 2COCHCH 2), 4.07 (s,-OCH 2COCHCH 2), 4.31 (m,-CCH 2); GPC 测的分子量：14.0 kDa，分子量分布：1.56。

实施例五聚合物胶束纳米粒 PEG5k-b-PCDC2.8k 的制备

采用透析法制备聚合物胶束纳米粒。聚合物 PEG5k-b-PCDC2.8k 溶解在 N,N-二甲基甲酰胺 (2 mg/mL) 中，取 200 μL 滴加到 800 μL 磷酸盐缓冲溶液 (10 mM，pH 7.4，PB) 中，装入透析袋（MWCO 3500）中透析过夜，换五次水，透析介质为 PB (10 mM，pH 7.4)。最终得到的聚合物纳米粒的浓度为 0.2 mg/mL。

实施例六聚合物纳米粒 PEG5k-b-PCDC2.8k 的交联，解交联，细胞毒性

纳米粒的交联按加催化量的二硫代苏糖醇 (DTT) 进行。将聚合物纳米粒水溶液通氮气 10 分钟，尽量将空气赶净。然后向密闭反应器中的纳米粒溶液 (1 mL, 0.25 mg/mL, 3.21x10^-5 mmol) 中加入 10 μL 溶解在次水中的二硫代苏糖醇 (DTT) (0.007 mg, 4.67x10^-3 mmol, 硫辛酸官能团摩尔数 10 %)，密闭室温搅拌反应 1天。测定粒子的尺寸为 150 纳米，和没有交联的粒径相差变化少约 15%。交联后的纳米粒在浓度稀释 100 倍以后其粒径和粒径分布几乎没有变化；在生理条件下稳定，由此可以看出，双硫交联可以很大程度上提高纳米粒的稳定性。

二硫键可以很容易在还原剂如谷胱甘肽 (GSH) 作用下断裂。在氮气保护和 37℃条件下，将交联纳米粒溶液通氮气 10 分钟后，加入 GSH 使其在聚合物纳米粒子溶液中的最终浓度为 10 mM。交联纳米粒子粒径随着时间的推移逐步被破坏，说明聚合物中双硫键在大量还原物质存在下会断裂。在细胞质中也存在高浓度的还原物质 GSH，因此制备的纳米药物载体循环稳定，但被细胞内吞后能快速解
采用MTT法对交联胶束纳米粒的细胞毒性进行测试。使用到的细胞为MCF-7（人乳腺癌细胞）细胞和Raw 264.7（小鼠巨噬细胞）细胞。以1x 10^4个/mL将MCF-7细胞或Raw 264.7细胞接种于96孔板，每孔100μL，培养至细胞贴壁后，实验组加入含有不同浓度的聚合物纳米粒的培养液，另设细胞空白对照孔和培养基为空白孔，平行4个复孔。培养箱中培养24小时后取出96孔板，加入MTT（5.0 mg/mL）10μL，继续培养4小时后每孔加入150μL DMSO溶解生成的结晶紫，用酶标仪于492 nm处测其吸光度值（A），以培养基为空白孔调零，计算细胞存活率。

细胞毒性率

\[
\text{细胞毒性率} = \frac{A_T}{A_C} \times 100\%
\]

式中A_T为试验组490 nm处的吸光度，A_C为空白对照组492 nm处的吸光度。聚合物浓度分别为0.1, 0.2, 0.3, 0.4, 0.5 mg/mL。附图6为纳米粒的细胞毒性结果，从图6中可以看出，当聚合物纳米粒的浓度从0.1 mg/mL增大到0.5 mg/mL时，Raw264.7细胞和MCF-7细胞的存活率仍高于85%<\%，说明PEG5k-b-PCDC2.8k聚合物纳米粒具有良好的生物相容性。

实施例七 交联胶束纳米粒PEG5k-b-PCDC2.8k的载药、体外释放及细胞毒性

以阿霉素作为药物。由于抗癌药物阿霉素是荧光敏感物质，整个操作在避光条件下进行。首先除去阿霉素的盐酸盐，其操作为1.2 mg（0.002 mmol）阿霉素溶解在225 μL的DMSO中，加三乙胺0.58 mL（m = 0.419 mg, 0.004 mmol）搅拌12小时，吸走上层清液。阿霉素的DMSO溶液浓度为5.0 mg/mL。将纳米聚合物纳米粒PEG5k-b-PCDC2.8k溶解在N,N-二甲基甲酰胺（DMF）中。将阿霉素的二甲亚砜溶液与聚合物纳米粒子PEG5k-b-PCDC2.8k的DMF溶液按预定的药物与聚合物质量比混合均匀，搅拌下缓慢向其中加入4倍于其体积的二次水（15 s/d），滴完后对一次水透析。

载药胶束纳米粒的交联也按实施例五的交联方法进行。将100 μL交联载阿霉素的聚合物纳米粒子溶液冷冻干燥，然后溶解于3.0 mL DMSO中，利用荧光分光光度计测试，结合阿霉素的标准曲线计算包封率。
载药量（DLC）和包封率（DLE）根据以下公式计算：

\[\text{载药量（wt.%）} = \left(\frac{\text{药物重量}}{\text{聚合物重量}} \right) \times 100 \%
\]

\[\text{包封率（<¾）} = \left(\frac{\text{装载药物重量}}{\text{药物总投入量}} \right) \times 100 \%
\]

表1为上述计算结果，可以看出，聚合物PEG5k-b-PCDC2.8k纳米粒子对小分子抗癌药物阿霉素具有高效的包埋作用。

表1：载阿霉素交联胶束纳米粒中载药量、包封率的结果

<table>
<thead>
<tr>
<th>聚合物</th>
<th>进料比（wt.%）</th>
<th>载药量（wt.%）</th>
<th>包封率（%）</th>
<th>尺寸（μm）</th>
<th>粒径分布</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG5k-b-PCDC2.8k</td>
<td>5</td>
<td>4.0</td>
<td>83.3</td>
<td>150.3</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7.4</td>
<td>80.0</td>
<td>162.1</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9.1</td>
<td>68.2</td>
<td>173.2</td>
<td>0.19</td>
</tr>
</tbody>
</table>

阿霉素的释放实验是在37 ℃恒温摇床中震荡（600 rpm）进行。药物释放是用二组平行样进行对比的，每组各有二个平行样：第一组，交联载阿霉素的聚合物纳米粒子在加入10 mM谷胱甘肽（GSH）模拟细胞内还原环境PB（10 mM, pH 7.4）中的释放；第二组，交联载阿霉素的聚合物纳米粒子在PB（10 mM, pH 7.4）中的释放；载药聚合物纳米粒子浓度为25 mg/L，取0.5 mL放入释放用透析袋（MWCO: 12,000-14,000）中，每个试管中加入相应的透析溶液25 mL，在预定的时间间隔，取出5.0 mL透析袋外部介质用作测试，同时向试管中补加5.0 mL相应介质。使用EDINBURGH FLS920荧光仪测定溶液中药物浓度。附图7为阿霉素累积释放量与时间的关系。从图中可以看出，加入模拟肿瘤细胞的还原性物质谷胱甘肽（GSH）后，其释放明显要快于没有加GSH组分，说明载药的交联纳米粒子具有10 mM还原物质GSH的存在下，能有效的释放药物。

载DOX的PEG5k-b-PCDC2.8k交联纳米粒子用MTT法测试其对Raw264.7细胞、MCF-7细胞等的毒性，载药未交联纳米粒及游离药物作为对照。以Raw264.7细胞为例，将Raw264.7细胞以1x 10^4个/mL接种于96孔板，每孔100 μL，培养至细胞贴壁后，实验组分别加入含有0.01、0.1、1.5、10、50和100 μg/mL的阿霉素交联纳米粒子溶液
，载阿霉素未交联纳米粒子溶液及游离阿霉素的新鲜培养液，另设细胞空白对照孔和培养基空白孔，每孔设4个复孔。培养箱中培养48小时后取出96孔板，加入MTT (5.0 mg/mL) 10 μL。继续培养4 h后每孔加入150 μL DMSO 溶解生成的结晶子，用酶标仪于492 nm处测其吸光度值 (A)，以培养基空白孔调零，计算细胞存活率。见附图8，从结果可以看出，载阿霉素的交联纳米粒子对RAW264.7细胞的半致死浓度为4.89 μg/mL，所以载DOX的PEG5k-b-PCDC2.8k交联纳米粒子能有效的在细胞内释放药物并杀死癌细胞。

实施例八 载药PEG5k-b-PCDC2.8k 交联纳米粒在小鼠体内的血液循环测定

实验选用体重为18~20克左右，4~6周龄的C57BL/6小鼠（中科院上海生命科学院实验动物中心），称重后，按体重均匀分组，将载药纳米粒和自由药物通过尾静脉注射小鼠体内，其中DOX药量为10 mg/kg，在 0，0.25，0.5，1，2，4，8，12和24小时定点取血10 μL，通过差量法准确称取血液重量，血液加100 μL浓度为1%的曲拉通和500 μL DMF（其中含有20 mM的DTT，1 M的HCl）萃取；离心（20000转/分钟，20分钟）后，取上层清液，通过荧光测得每个时间点DOX的量。

图8为载阿霉素的聚合物PEG5k-b-PCDC2.8k 交联纳米粒子在小鼠体内的血液循环结果图，横坐标为时间点，纵坐标为每克血液中的DOX量占总的DOX注射量（%ID/g）。由图可知，自由DOX的循环时间很短2小时已很难检测到DOX，而载药交联纳米粒24小时后仍有4%ID。其在小鼠体内的消除半衰期可计算为4.67小时，而自由DOX仅为0.21小时，所以载药交联纳米粒在小鼠体内稳定，有较长的循环时间。

实施例二十一 载药PEG5k-b-PCDC2.8k 交联纳米粒对荷黑色素肿瘤小鼠的生物分布

实验选用体重为18~20克左右，4~6周龄的C57BL/6小鼠，在皮下注射1x10^6个B16黑色素肿瘤细胞，大约两周后，肿瘤大小为100~200 mm³时，将载药纳米粒和自由DOX通过尾静脉注射小鼠体内（DOX药量为10 mg/kg），在6、12和24小时后处死老鼠，将肿瘤及心，肝，脾，肺和肾脏取出，清洗称重后加入500 μL 1%的曲拉通、通过匀浆机磨碎，再加入900 μL DMF萃取（其中含有20
mM的DTT,1M的HCl)。离心(20000转/分钟,20分钟)后,取上层清液,通过荧光测得每个时间点DOX的量。

图10为载阿霉素的聚合物PEG5k-b-PCDC2.8k交联纳米粒子对荷黑色素肿瘤小鼠的生物分布结果图,横坐标为组织器官,纵坐标为每克肿瘤或组织中的DOX量占总的DOX注射量(%)。载药纳米粒在6、12和24小时的肿瘤积累量分别为3.12、2.93、2.52ID%/g。相对于自由DOX的1.05、0.52和0.29ID%/g来说增加了3~12倍,说明载药交联纳米粒通过EPR效应在肿瘤部位积累较多且能持续时间较长。

实施例二十二载药PEG5k-b-PCDC2.8k交联纳米粒对荷黑色素肿瘤小鼠的治疗实验

实验选用体重为18~20克左右,4~6周龄的C57BL/6小黑鼠,体重后,按体重均匀分组,在皮下注射1×10^6个B16黑色素肿瘤细胞,大约一周后,肿瘤大小为30~50mm。3时,将载药纳米粒和自由DOX在0、2、4、6和8天通过尾静脉注射小鼠体内,其中载药纳米粒子中DOX的量为10、20、30mg/kg。自由DOX药量为10mg/kg,从0~15天,每天称量各组小鼠的体重,通过测标尺准确量取肿瘤体积,其中肿瘤体积计算方法为:V=(L×W×H)/2。(其中L为肿瘤的长度,W为肿瘤的宽度,H为肿瘤的厚度)。持续观察小鼠的生存,直到46天。

图11为载阿霉素的聚合物PEG5k-b-PCDC2.8k交联纳米粒子对荷黑色素肿瘤小鼠的抑制肿瘤生长曲线图;图12为小鼠体重变化曲线图;图13为小鼠生存曲线图。由图可知,在DOX浓度为30mg/kg,载DOX的纳米粒治疗16天后,肿瘤得到明显抑制,而DOX虽然也能抑制肿瘤增长,但对小鼠的毒副作用很大。即使当载药纳米粒中DOX的浓度为30mg/kg时,小鼠的体重几乎没有发生改变,说明载药纳米粒对小鼠没有毒副作用,而DOX组的小鼠体重在7天时降低了23%,说明DOX对小鼠副作用很大。同样是在DOX浓度为30mg/kg,载DOX的纳米粒治疗46天后的这组小鼠全部存活,而DOX治疗10天时全部死亡,而作为对照的PBS组的老鼠在35天时也全部死亡。因此,该载药纳米粒可有效抑制肿瘤增长,并对小鼠没有毒副作用,还可延长荷瘤小鼠的生存时间。
以上结果表明本发明的单体制备得到的聚合物具有良好的生物相容性，作为药物载体应用时，可以增加抗肿瘤药物在体内的循环时间，增加药物在肿瘤部位的富集率，避免药物对正常组织的损伤，可以有效杀死肿瘤细胞，同时对正常细胞影响小。
一种含双硫五元环基团的环状碳酸酯单体，其特征在于：所述含双硫五元环基团的环状碳酸酯单体的化学结构式如下：

![化学结构式](image)

一种权利要求1所述含双硫五元环基团的环状碳酸酯单体的制备方法，其特征在于，包括以下步骤：将二溴新戊二醇与下合硫化钠在极性溶剂中反应得到化合物A；然后将化合物A在空气中氧化得到化合物B；最后在氮气氛围中，在环醚类溶剂中，将化合物B与氯甲酸乙酯反应得到所述的含双硫五元环基团的环状碳酸酯单体。

根据权利要求2所述含双硫五元环基团的环状碳酸酯单体的制备方法，其特征在于：所述二溴新戊二醇与下合硫化钠的摩尔比为(2.5~10):1；化合物B与氯甲酸乙酯的摩尔比为1:(2~4)。

根据权利要求2所述含双硫五元环基团的环状碳酸酯单体的制备方法，其特征在于：制备化合物A时的反应温度为50°C，反应时间为48小时；制备化合物B时化合物A的氧化时间为24小时；制备环碳酸酯单体时的反应温度为冰水浴，反应时间为4小时。

根据权利要求2所述含双硫五元环基团的环状碳酸酯单体的制备方法，其特征在于：所述极性溶剂为N，N-二甲基甲酰胺；环醚类溶剂为四氢呋喃或者1，4-二氧六环。

根据权利要求2所述含双硫五元环基团的环状碳酸酯单体的制备方法，其特征在于：化合物A先溶于醚类溶剂，再在空气中氧化得到化合物B。

根据权利要求2所述含双硫五元环基团的环状碳酸酯单体的制备方法，其特征在于：所述醚类溶剂为四氢呋喃或者1，4-二氧六环。

根据权利要求2所述含双硫五元环基团的环状碳酸酯单体的制备方法，其特征在于：所
方法，其特征在于，还包括提纯处理，具体为：

(1) 化合物A的提纯：反应结束后，反应物减压蒸馏除去溶剂，然后用蒸馏水稀释，再用乙酸乙酯萃取，最后旋蒸有机相得到黄色粘稠状化合物A；

(2) 含双硫五元环功能基团的环状碳酸酯单体的提纯：反应结束后，过滤，滤液经旋转浓缩，再用乙醚重结晶，得到黄色晶体，即含双硫五元环功能基团的环状碳酸酯单体。
图 1

图 2

图 3
A. CLASSIFICATION OF SUBJECT MATTER

C07D 49S/10 (2006.01) i; A61K 47/34 (2006.01) n; C08G 65/48 (2006.01) n; C08G 64/30 (2006.01) n; C08G 63/64 (2006.01) n; C08J 3/24 (2006.01) n

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D; A61K; C08G; C08J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DWPI; VEN; CNABS; CNTXT; CJFD; STN: carbonic ester, double sulphur, five-member ed ring, carbonic, acid, ester, monomer, sulfur, sulphur, five-membered, ring

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>CN 104004001 A (SOOCHOW UNIVERSITY), 27 August 2014 (27.08.2014), the whole document, particularly claims 1-8</td>
<td>1-8</td>
</tr>
<tr>
<td>PX</td>
<td>CN 104031248 A (SOOCHOW UNIVERSITY), 10 September 2014 (10.09.2014), description, particularly claim 1, and embodiments 1-2</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>WO 2013004296 A 1 (SENS B.V.), 10 January 2013 (10.01.2013), the whole document, particularly claim 1, and embodiments 1-2</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>CN 102557873 A (SOOCHOW UNIVERSITY), 12 September 2012 (12.09.2012), the whole document</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>CN 101633564 A (SOOCHOW UNIVERSITY), 27 January 2010 (27.01.2010), the whole document</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>JP 20011131170 A (JAPAN CHEMICAL INNOVATION INST.), 15 May 2001 (15.05.2001), the whole document</td>
<td>1-8</td>
</tr>
</tbody>
</table>

II Further documents are listed in the continuation of Box C. § See patent family annex.

* Special categories of cited documents:
A document defining the general state of the art which is not considered to be of particular relevance
E earlier application or patent but published on or after the international filing date
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
G document referring to an oral disclosure, use, exhibition or other means
P document published prior to the international filing date but later than the priority date claimed
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
F document member of the same patent family

Date of the actual completion of the international search
18 August 2015 (18.08.2015)

Date of mailing of the international search report
08 September 2015 (08.09.2015)

Name and mailing address of the ISA/CN:
State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jimenqiao
Haidian District, Beijing 100088, China
Facsimile No.: (86-10) 62019451

Authorized officer
MENG, Chao
Telephone No.: (86-10) 62084582
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 104004001 A</td>
<td>27 August 2014</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 104031248 A</td>
<td>10 September 2014</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103930412 A</td>
<td>16 July 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U S 2014249266 A I</td>
<td>04 September 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014524950 A</td>
<td>25 September 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U S 9006337 B</td>
<td>14 April 2015</td>
</tr>
<tr>
<td>CN 102657873 A</td>
<td>12 September 2012</td>
<td>CN 102657873 B</td>
<td>14 May 2014</td>
</tr>
<tr>
<td>CN 101633654 A</td>
<td>27 January 2010</td>
<td>CN 101633654 B</td>
<td>09 October 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102712616 A</td>
<td>03 October 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W O 2011009478 A I</td>
<td>27 January 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U S 2012294845 A I</td>
<td>22 November 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5671024 B 2</td>
<td>18 February 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012533660 A</td>
<td>27 December 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2456764 A I</td>
<td>30 May 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U S 8927196 B 2</td>
<td>06 January 2015</td>
</tr>
<tr>
<td>JP 2001131170 A</td>
<td>15 May 2001</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/IS A/210 (patent family annex) (July 2009)

A. 主题的分类

C07D 495/10 (2006. 01) A; A61 47/34 (2006. 01) n; C08G 65/48 (2006. 01) n; C08G 63/64 (2006. 01) n; C08J 3/24 (2006. 01)

B. 检索领域

检索的最低限度文献（标明分类系统和分类号）

C07D : A61; C08G : C08J

包含在检索领域中的除最低限度文献以外的检索文献

在国际检索时查阅的电子数据库（数据库的名称，和使用的检索词（如使用））

DIPPI : VEN : CNABS : CTXT ; CJFD : STN : 醛酸酯，单体，双环，五元环，monomer, sulfur, sulphur, five-membered, ring

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>CN 104004001 A (苏州大学) 2014 年 8 月 27 日 (2014 - 08 - 27)</td>
<td>1-8</td>
</tr>
<tr>
<td>PX</td>
<td>CN 104031248 A (苏州大学) 2014 年 9 月 10 日 (2014 - 09 - 10)</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>V0 20130413651 Al (SSENS B. V.) 2013 年 1 月 10 日 (2013 - 01 - 10)</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>CN 102453783 A (苏州大学) 2012 年 9 月 12 日 (2012 - 09 - 12)</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>CN 101633654 A (苏州大学) 2010 年 1 月 27 日 (2010 - 01 - 27)</td>
<td>1-8</td>
</tr>
</tbody>
</table>

* 引用文件的具体类型：
 - A 表示特别相关的表示了现有技术一般状态的文件
 - B 表示在国际申请日的当天或之后公开的在先申请或专利
 - C 表示对与查新权要求构成怀疑的文件，或表示对某一篇引用文件的公布日和引用的或者因其他特殊情况而引用的文件（包括具体说明的）
 - D 表示公开日早于国际申请日而早于所要求的优先权日的文件

* 在国际申请日或在优先权日后公开，与申请不相比较，但为了理解发明之公开或解释而引用的文件

国际检索实际完成的日期

2015 年 8 月 18 日

国际检索报告邮寄日期

2015 年 9 月 8 日

ISA/CN 的名称和邮寄地址

中华人民共和国国家知识产权局（ISA/CN）
北京市海淀区蓟门桥西土城路 6 号
100088 中国

孟超

传真号 (86-10) 62019451

电话号码 (86-10) 62084582
表 PCT/ISA210（同族专利附件）（2009年7月）

<table>
<thead>
<tr>
<th>检索报告引用的专利文件</th>
<th>公布日 (年/月/日)</th>
<th>同族专利</th>
<th>公布日 (年/月/日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 104004001 A</td>
<td>2014年8月27日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 104031248 A</td>
<td>2014年9月10日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>WO 2013004296 A1</td>
<td>2013年1月10日</td>
<td>EP 2729457 A</td>
<td>2014年5月14日</td>
</tr>
<tr>
<td>CN 103930412 A</td>
<td>2014年7月16日</td>
<td>JP 2014524950 A</td>
<td>2014年9月25日</td>
</tr>
<tr>
<td>CN 102657873 A</td>
<td>2012年9月12日</td>
<td>CN 102657873 B</td>
<td>2014年5月14日</td>
</tr>
<tr>
<td>CN 101633654 A</td>
<td>2010年1月27日</td>
<td>US 8927196 B2</td>
<td>2015年1月6日</td>
</tr>
<tr>
<td>CN 102712616 A</td>
<td>2012年10月3日</td>
<td>JP 2012533660 A</td>
<td>2012年12月20日</td>
</tr>
<tr>
<td>WO 201 1003478 A1</td>
<td>201 1年1月27日</td>
<td>EP 2456764 A1</td>
<td>2012年5月30日</td>
</tr>
</tbody>
</table>

关于同族专利的信息

国际检索报告

PCT/CN2015/079998

公布日

国际申请号

国际检索报告

关于同族专利的信息