Cu-Si-Co alloy for electronic materials, and method for producing same

Abstract: disclosed is a Cu-Co-Si alloy which has improved balance between electrical conductivity and strength. Specifically disclosed is a copper alloy for electronic materials, which contains 0.5-4.0% of Co and 0.1-1.2% by mass of Si with the balance made up of Cu and unavoidable impurities. The copper alloy for electronic materials has a mass ratio of Co to Si (Co/Si) of 3.5 ≤ Co/Si ≤ 5.5, an area ratio of discontinuous precipitation (DP) cells of 5% or less and an average maximum width of discontinuous precipitation (DP) cells of 2 µm or less.

Claims:

2. The Cu-Co-Si alloy according to Claim 1, wherein the mass ratio of Co to Si in the alloy is 3.5 ≤ Co/Si ≤ 5.5, and the area ratio of discontinuous precipitation (DP) cells of 5% or less and an average maximum width of discontinuous precipitation (DP) cells of 2 µm or less.

3. The Cu-Co-Si alloy according to Claim 1, wherein the alloy contains 0.5-4.0% of Co and 0.1-1.2% by mass of Si with the balance made up of Cu and unavoidable impurities.

4. The Cu-Co-Si alloy according to Claim 1, wherein the alloy has improved balance between electrical conductivity and strength.

5. A method for producing the Cu-Co-Si alloy according to Claim 1, comprising:

 a) melting a mixture of Cu, Co, and Si in a molten state;
 b) homogenizing the molten mixture to obtain a uniform melt;
 c) casting the uniform melt to obtain a cast material;
 d) annealing the cast material to improve its mechanical properties; and
 e) forming the cast material into a desired shape.
明 細 書

発明の名称:
電子材料用Cu—Si—Co系合金及びその製造方法

技術分野

[0001] 本発明は析出硬化型銅合金に関し、とりわけ各種電子部品に用いるのに好適なCu—Si—Co系合金に関する。

背景技術

[0002] コネクタ、スイッチ、リレー、ピン、端子、リードフレーム等の各種電子部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性（又は熱伝導性）を両立させることが要求される。近年、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに対応して電子機器部品に使用される銅合金に対する要求レベルはますます高度化している。

[0003] 高強度及び高導電性の観点から、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に代わり、析出硬化型の銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、鋼中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。

[0004] 析出硬化型銅合金のうち、コルソン系銅合金と一般に呼ばれるCu—Ni—Si系合金は比較的高い導電性、強度、及び曲げ加工性を兼備する代表的な銅合金であり、業界において現在活発に開発が行われている合金の一つである。この銅合金では、鋼マトリックス中に微細なNi—Si系金属間化合物粒子を析出させることによって強度と導電率の向上が図られる。

[0005] 高い導電性、強度、及び、曲げ加工性を兼備し、近年の電子材料用銅合金へのニーズを満たすコルソン系銅合金を得るためには、適切な組成および製造工程により粗大な第二相粒子の数を低減し、且つ、結晶粒を均一で適切な
粒径に制御することが重要である。

このようなコルソン系銅合金に対し、近年、Co を添加することによって特性の更なる向上を図ろうとする試みがなされている。

特許文献1 には、Co は Ni と同様に Si と化合物を形成し、機械的強度を向上させ、Cu_Co_Si 系合金は時効処理させた場合に Cu_Ni_Si 系合金より機械的強度、導電性共に良くなり、コスト的に許されるのであれば、Cu_Co_Si 系合金を選択してもよいことが記載されている。そして、特性を好適に実現するためには、結晶粒度が 1 μm を越え 2.5 μm 以下とすることが必要であることが記載されている。特許文献1 に記載の銅合金は、冷却加工後に、再結晶と溶体化させる目的で熱処理を行い、直ちに焼き入れを行い、また必要に応じて時効処理を行うことで製造される。冷間加工後に再結晶処理を 700 〜 920 °C で行うこと、冷却速度は出来るだけ素早く、10 °C/s 以上の速度で冷却することが望ましいこと、時効処理温度は 420 〜 550 °C とすることが記載されている。

特許文献2 には、高強度、高導電性、及び、高曲げ加工性の実現を目的として開発された Cu_Co_Si 系合金が記載されており、該銅合金は母相中に Co と Si の化合物および Co と P の化合物が存在し、かつ母相の平均結晶粒度が 20 μm 以下で、圧延方向に対する板厚方向のアスペクト比が 1 〜 3 であることを特徴としている。特許文献2 に記載の銅合金の製造方法として、熱間圧延後、85% 以上の冷間圧延を施し、450 〜 480 °C で 5 〜 30 分間焼純後、30% 以下の冷間圧延を施し、更に 450 〜 500 °C で 30 〜 120 分間時効処理を行う方法が記載されている。

先行技術文献

特許文献

特許文献1 :特開平11 - 222641 号公報
特許文献2 :特開平9 - 20943 号公報

発明の概要
発明が解決しようとする課題

このような、Co添加は銅合金の特性向上に寄与することが知られている。
これまでコルソン合金ではCu_Ni_Si系合金が主に検討されてきたため、Cu_Co_Si系合金の特性改良は充分に検討されていない。

そこで、本発明は、導電性及び強度のバランスが改良され、好ましくは曲げ加工性も改良されたCu_Co_Si系合金を提供することを課題の一つとする。また、本発明は、そのようなCu_Co_Si系合金を製造するための方法を提供することを別の課題の一つとする。

課題を解決するための手段

本発明者は上記課題を解決すべく鋭意研究したところ、Cu_Co_Si系合金ではCu_Ni_Si系合金に比べて固溶限が低いため、第二相粒子が析出しやすい。しかも、Cu_Co_Si系合金では第二相粒子が不連続型析出物（粒界反応型析出物とも呼ばれる）として生成しやすく、これが合金特性に悪影響を与えていないことに気付いた。これはCuとCoの方がCuとNiよりも原子半径の差が大きいことが原因の一つと考えられる。

そこで、第二相粒子、とりわけ不連続型析出物の制御について検討したところ、熱間圧延後の冷却時に再結晶温度領域を緩やかに通過させることで結晶粒を比較的大にして、溶体化処理の前までは結晶粒を粗大にしておくこと、冷間圧延を低加工又は高加工条件で行うこと、時効処理は比較的高温で実施することといった製造条件を採用することが重要であることを見出した。

上記知見を基礎として完成した本発明は、一側面において、Coを0.5～4.0質量％、及び、Siを0.1～1.2質量％含有し、残部が〇り及び不可避的不純物からなり、Co及びSiの質量％比（Co／Si）が3～5。5≤Co／Si≤5.5で、不連続析出（DP）セルの面積率が5％以下であり、不連続析出（DP）セルの最大幅の平均値が2μm以下である電子材料用銅合金である。

本発明に係る電子材料用銅合金は、一実施形態において、粒径が1μm以上
上である連続型析出物が、圧延方向に平行な断面において1000Pa²あたり25個以下である。

[0015]本発明に係る電子材料用鋼合金は、別の一実施形態において、材料温度500°Cとして30分加熱した後の0.2％耐力の低下率が10％以下である。

[0016]本発明に係る電子材料用鋼合金は、更に別の一実施形態において、BアッシュのW曲げ試験を板厚と曲げ半径の比が1となる条件で90°C曲げ加工を行ったときの曲げ部の表面粗さRaが1μm以下である。

[0017]本発明に係る電子材料用鋼合金は、更に別の一実施形態において、圧延方向に対し平行な断面における平均結晶粒径が10〜30μmである。

[0018]本発明に係る電子材料用鋼合金は、更に別の一実施形態において、ピーク0.2％耐力（ピークYS）、過時効0.2％耐力（過時効YS）、及びピークYSと過時効YSの差（AYS）が、ピークYS／ピークYS比が5.0％の関係を満たす。ここで、ピーク0.2％耐力（ピークYS）とは時効処理時間を30時間とし、時効処理温度を25°Cずつ変化させて時効処理を行った際の最も多い0.2％耐力であり、過時効0.2％耐力（過時効YS）とはピークYSが得られた時効処理温度よりも25°C高い時効処理温度としたときの0.2％耐力である。

[0019]本発明に係る電子材料用鋼合金は、更に別の一実施形態において、Cr、Sn、P、Mg、Mn、Ag、As、Sb、Be、B、Bi、Zr、Al及びFeよりなる群から選ばれる少なくとも1種の合金元素を更に含有し、且つ、合金元素の総量が2.0質量％以下である。

[0020]また、本発明は、別の一側面において、

- 所定の組成を有するインゴットを溶解鍛造する工程1と、
- 次いで、材料温度を950°C〜1070°Cとして1時間以上加熱した後に熱間圧延をする工程2と、ただし、材料温度が850°Cかから600°Cまで低下する際の平均冷却速度を0.4°C/s以上15°C/s以下とし、600°C以下の平均冷却速度を15°C/s以上とし、
次いで、冷間圧延及び焼鈍を随意に繰り返す工程3と、ただし焼鈍として時効処理を行う場合は材料温度を450〜600℃として3〜24時間実施し、時効処理直前に冷間圧延を行う場合は加工度を40％以下又は70％以上とし、
次いで、溶体化処理をする工程4と、ただし、溶体化処理における材料の最高到達温度を900℃〜1070℃とし、材料温度が最高到達温度に保持されている時間を480秒以下とし、材料温度が最高到達温度から400℃に低下するときの平均冷却速度を15℃/秒以上とし、
次いで、時効処理を行う工程5と、ただし、時効処理直前に冷間圧延を行う場合は加工度を40％以下又は70％以上とし、
を含む本発明に係る電子材料用銅合金の製造方法である。
発明の効果

本発明によれば、強度及び導電性のバランスが向上し、好ましくは曲げ加工性も向上した Cu_Co_Si 系合金が得られる。

また、本発明の好ましい形態によれば、耐熱性が改良され、時効処理における過時効軟化が抑制され、時効処理における材料コイル内温度差による強度のバラツキが低減された Cu_Co_Si 系合金が得られる。

図面の簡単な説明

[図1] 不連続析出 (D P) セルと連続析出物の違いを説明するために、Cu_Co_Si 系鋼合金を電子顕微鏡で観察した写真である (倍率 : 3000 倍)。

[図2] 図1の不連続析出 (D P) セルを拡大観察した写真である (倍率 : 15000 倍)。

発明を実施するための形態

（組成）
本発明に係る電子材料用鋼合金は、O を0.5〜4.0質量％、及び、Si を0.1〜1.2質量％含有し、残部が Cu 及び不可避的不純物からなり、Co 及び Si の質量比 (Co/Si) が 3.5 ≤ Co/Si ≤ 5.5 である組成を有する。

Co は添加量が少なすぎるとコネクタなどの電子部品材料として必要とされる強度が得られない一方で、多すぎると導電に拡散を生成して導電割れの原因となる。また、熱間加工性の低下を引き起こし、熱間圧延割れの原因となる。そこで0.5〜4.0 質量％とした。好ましい Co の添加量は 1.0〜3.5 質量％である。

Si は添加量が少なすぎるとコネクタなどの電子部品材料として必要とされる強度が得られない一方で、多すぎると導電率の低下が著しい。そこで0.1〜1.2 質量％とした。好ましい Si の添加量は 0.2〜1.0 質量％である。

Co 及び Si の質量比 (Co/Si) において、強度の向上につながる第
二相粒子であるコバルトツリサイドの組成は、Co₂Siであり、質量比では4.2が最も効率よく特性を向上し得る。Co及びSiの質量比がこの値から遠くなり過ぎると何れかの元素が過剰に存在することになるが、過剰元素は強度向上に結びつかない他、導電率の低下につながるため、不適切である。そこで、本発明ではCo及びSiの質量9比を3.5 ≤ Co/Si ≤ 5.5としており、好ましくは4 ≤ Co/Si ≤ 5である。

その他の添加元素として、Cr、Sn、P、Mg、Mn、Ag、As、Sb、Be、B、Ti、Zr、Al及びFeよりなる群から選ばれる少なくとも1種の元素を所定量添加することで、強度、導電率、曲げ加工性、さらにはめつき性や錬塊組織の微細化による熱間加工性等を改善する効果がある。

この場合の合金元素の総量は、過剰になると導電率の低下や製造性の劣化が顕著になるため、最大で2.0質量％、好ましくは最大で1.5質量％である。一方、所望の効果を充分に得るためには、上記合金元素の総量を0.01質量％以上とするのが好ましく、0.01質量％以上とするのがより好ましい。

また、上記合金元素の含有量は各合金元素につき最大0.5質量％とするのが好ましい。各合金元素の添加量が0.5質量％を超えると、上記効果がそれ以上推進されないだけでなく、導電率の低下や製造性の劣化が顕著になるためである。

（不連続析出（DP）セル）

本発明においては、粒界反応によって粒界に沿ってコバルトツリサイドの第二相粒子が層状に析出している領域を不連続析出（DP）セルという。本発明においては、コバルトツリサイドとはCoが35質量％以上、Siが8質量％以上含まれる第二相粒子のことを指し、EDS（エネルギー分散型X線分析）で計測可能である。

図1及び図2を参照すると、粒界に沿って層状の模様を有するセルを形成している領域－つ一つがそれぞれの不連続析出（DP）セル11である。一般には、不連続析出（DP）セル内ではコバルトツリサイド相とCu母相が
層状になっている場合が多い。層間隔は様々であるが、おおよそ0.01パ-
m〜0.5μmである。

[0031] 不連続析出（D P）セルは強度及び導電性のバランスや耐熱性に悪影響を与える、過時効軟化を促進することから極力存在しない方が望ましい。そこで、本発明では不連続析出（D P）セルの面積率を5％以下、且つ、不連続析出（D P）セルの最大幅の平均値を2μm以下に抑制している。不連続析出（D P）セルの面積率は4％以下であることが好ましく、3％以下であることがより好ましい。ただし、不連続析出（D P）セルを完全になくそうすると、溶体化処理温度を高くする必要があり、その場合は結晶粒が大きくなりやすいため、不連続析出（D P）セルの面積率は1％以上が好ましく、2％以上がより好ましい。不連続析出（D P）セルの最大幅の平均値は1.5μm以下であることが好ましく、1.0μm以下であることがより好ましい。一方で、不連続析出（D P）セルの最大幅の平均値を小さくしようとすると、結晶粒が大きくなりやすいため、0.5μm以上であることが好ましく、0.8μm以上であることがより好ましい。良好な強度及び導電性のバランスを得る上では、面積率及び最大幅の平均値のどれをも制御することが必要であり、何れか一方のみを制御しても効果は限定的となってしまう。

[0032] 本発明においては、不連続析出（D P）セルの面積率及び最大幅の平均値は以下の方法で測定する。

材料の圧延方向に平行な断面を、直径1μmのダイヤモンド砥粒を用いて機械研磨により鏡面に仕上げた後、20℃の5％リン酸水溶液中で1.5Vの電圧にて30秒間電解研磨する。この電解研磨によりCuの母地が溶解し、第2相粒子が溶け残って現出す。この断面をF E－S E M（電界放射型走査電子顕微鏡）を用いて倍率30000倍（観察視野30μm×40μm）で任意の10箇所を観察する。

面積率は、上記の定義に従って不連続析出（D P）セルと、そうでない部分を画像ソフトを用いて白と黒の2色に塗り分け、観察視野のうち不連続析出（D P）セルが占める面積を画像解析ソフトにより算出する。その値の
10箇所での平均値を観察視野の面積の値（1200μm²）で割った値を面積率とする。

最大幅の平均値は、観察される不連続析出（D P）セルのうち、粒界に直角な方向の長さの最も大きなものの長さを各観察視野で求め、それらの10箇所での平均値を最大幅の平均値とする。

（連続型出物）

連続型析出物とは粒内に析出した第二相粒子のことを指す。連続型析出物のうち、粒径が1μm以上の連続型析出物は、強度向上に寄与しないばかりでなく、曲げ加工性の劣化につながる。そこで、粒径が1パラム以上である連続型析出物は、圧延方向に平行な断面において1000μm²あたり25個以下であるのが好ましく、15個以下であるのがより好ましく、10個以下であるのが更により好ましい。本発明において、連続型析出物の粒径とは個々の連続型析出物を取り囲む最小円の直径を指す。

（結晶粒径）

結晶粒は、強度に影響を与え、強度が結晶粒の1/2乗に比例するというホールベツチ則が一般的に成り立つため、結晶粒は小さい方が好ましい。しかしながら、析出強化型の合金においては、第二相粒子の析出状態に留意する必要がある。時効処理においては結晶粒内に析出した微細な第二相粒子（連続型析出物）は、強度向上に寄与するが、結晶粒界に析出した第二相粒子（不連続型析出物）はほとんど強度向上に寄与しない。したがって、結晶粒が小さいほど、析出反応における粒界反応の割合が高くなるため、強度向上に寄与しない粒界析出が支配的となり、結晶粒径が10μm未満の場合、所望の強度を得ることができない。一方、粗大な結晶粒は、曲げ加工性を低下させる。

そこで、所望の強度および曲げ加工性を得る観点から、平均結晶粒径が10〜30μmとするのが好ましい。さらに、平均結晶粒径は、高強度および良好な曲げ加工性の両立という観点から、10〜20μmに制御することがより好ましい。
（強度、導電性および曲げ加工性）

本発明に係るCu—Co—Si系合金は強度及び導電性及び曲げ加工性を高次元で達成するものであり、実施形態において、0.2％耐力（YS）を800MPa以上、曲げ表面粗さ平均0.8μm以下、且つ、導電率を40％IACS以上、好ましくは45％IACS以上、より好ましくは50％IACS以上とすることができ、別の実施形態において、0.2％耐力（YS）を830MPa以上、曲げ表面粗さ平均0.8μm以下、且つ、導電率を45％IACS以上、好ましくは50％IACS以上とすることができる。

（時効軟化のしにくさ）

本発明に係るCu—Co—Si系合金は、不連続析出（DP）セルの形成を抑制することにより、過時効軟化しにくいく特長を有する。本特長により、時効処理の際の温度条件のパラつきによる強度のパラつきを低減することができる。また、材料をコイル状として処理を行うパッチ式での時効処理の場合には、コイルの外周部と中心部での温度差が10〜25℃程度生じる。本発明に係るCu—Co—Si系合金はコイルの外周部と中心部での温度差によって生じる強度のパラつきを小さくすることができる。言い換えれば、時効処理における製造安定性に優れるともいえる。

本発明に係る鋼合金は好ましい実施形態において、過時効軟化しにくいくいう特徴を有する。これは不連続型析出物が抑制されたことに起因すると考えられる。過時効軟化のしにくさは、歪取焼き又は冷間圧延上がりの製品については製品に対して時効処理を行うことで評価できる。一方、（低温）時効処理上がりの製品については製品に対しての時効処理では評価できないが、当該（低温）時効処理を行うときに合わせて評価できる。

本発明では過時効軟化のしにくさの評価指標としてASYS／ピークYSの値を用いる。YSは0.2％耐力を表す。また、ピークYSは時効処理時間
を30hとし、時効処理温度を25℃ずつ変化させて時効処理を行った際の最も多いYSの値である。また、ピークYSが得られた時効処理温度よりも25℃高い時効処理温度としたときの0.2%耐力を過時効YSとする。

AYSは以下の様に定義される。
△YS = (ピークYS) - (過時効YS)
また、AYS/ピークYS比を以下の様に定義した。
△YS/ピークYS = △YS/ピークYS × 100 (%)
すなわち、AYS/ピークYSの値が小さい場合、過時効軟化を起こしにくいことを意味する。実施形態においてはAYS/ピークYSの値は5.0%以下であり、好ましくは4.0%以下であり、更に好ましくは3.0%以下であり、最も好ましくは2.5%以下とすることができる。

[0038] 好ましい実施形態においては、本発明に係るCu-Co-Si系合金は曲げ加工性にも優れており、BadwayのW曲げ試験を、板厚と曲げ半径の比が1となる条件で90°曲げ加工を行った場合、JIS B0601に従って測定して曲げ部の表面粗さRaが1μm以下とすることができ、更には0.7μm以下とすることもできる。

[0039] 好ましい実施形態においては、本発明に係る電子材料用銅合金は、不連続析出物の成長によって引き起こされる軟化を抑制できるので耐熱性にも優れており、材料温度500℃として30分加熱後の0.2%耐力の低下率が10%以下とすることが可能、好ましくは8%以下、更に好ましくは7%以下とすることもできる。

[0040] 好ましい実施形態においては、本発明に係る電子材料用銅合金は、不連続析出物の成長によって引き起こされる軟化を抑制できるので、時効処理における過時効軟化が抑制され、時効処理における材料コイル内温度差による強度のバラツキが低減され得る。具体的にはピーク時効処理温度よりも25℃高い温度で30hr時効処理された場合の0.2%耐力の低下率が5%以下とることができ、好ましくは4.0%以下、更に好ましくは3%以下、最も好ましくは2.5%以下とすることもできる。
（製造方法）

本発明に係るCu-Co-Si系合金を製造するための基本工程は、所定の組成を有するインゴットを溶解錠造し、熱間圧延した後、冷間圧延及び焼鋼（時効処理及び再結晶焼鈍を含む）を適宜繰り返す。その後、溶体化処理及び時効処理を所定の条件で行うことである。時効処理の後、歪取焼鈍を更に行ても良い。熱処理の前後には適宜冷間圧延を挟むこともできる。不連続型析出は、結晶粒が粗大である方が、時効処理は高温の方が、冷間圧延時の加工度は高加工度又は高加工度の方が抑制されることに留意しながら各工程の条件を設定すべきである。以下の各工程の好適な条件について説明する。

錠造時の凝固過程では粗大な晶出物が、その冷却過程では粗大な析出物が不可避的に生成するため、その後の工程においてこれらの粗大晶出物・析出物を母相中に固溶する必要がある。そのため、熱間圧延では材料温度を950°C〜1070°Cとして1時間以上、より均質に固溶するために好ましくは3〜10時間加熱した後に行うことが好ましい。950°C以上という温度条件は他のコルソン系合金の場合に比較して高い温度設定である。熱間圧延前の保持温度が950°C未満では固溶が不十分であり、1070°Cを超えると材料が溶解する可能性がある。

熱間圧延時は、材料温度が600°C未満では固溶した元素の析出が顕著にならないため、高い強度を得ることが困難となる。また、均質な再結晶化を行うためには、熱間圧延終了時の温度を850°C以上とすることが好ましい。よって、熱間圧延時の材料温度は600°C〜1070°Cの範囲とするのが好ましく、850°C〜1070°Cの範囲とするのがより好ましい。

熱間圧延においては、圧延途中であるか圧延後の冷却中であるかに関わらず、不連続型析出を抑制するために緩やかに冷却させて粗大に再結晶させる目的で、材料温度が850°Cから600°Cまで低下する際の平均冷却速度を15°C/s以下とするのが好ましく、10°C/s以下とするのがより好ましい。ただし、冷却速度が遅すぎるとき度は連続型及び不連続型を含む粗大化
した第二相粒子が析出すので、0.4°C/s以上とするのが好ましく、1°C/s以上するのがより好ましく、3°C/s以上とするのが更に好ましい。850°C〜600°Cまでの温度における平均冷却速度に着目したのは、再結晶がこれの温度領域で顕著に起こるためである。この温度範囲での冷却速度は、大気中で冷却を行う場合、空気等の冷却ガスを吹付けること、そして冷却ガスの温度および流量を変化させることによって制御することができる。また、炉内で冷却を行う場合、炉内温度や炉内ガス流量・温度の調節で制御することができる。

での平均冷却速度は以下のように定義される。

平均冷却速度 (C/s) = (850 - 600 (°C)) / (850°Cから600°Cまで低下するに要した時間 (s))

600°Cまで冷却した後は、第二相粒子の析出を抑制するために急冷するのが好ましい。具体的には、600°C以下の平均冷却速度を15°C/s以上とするのが好ましく、50°C/s以上とするのがより好ましい。

での冷却は一般に水冷で行い、水量や水温の調節によって冷却速度を制御することができる。

での平均冷却速度は以下のように定義される。

平均冷却速度 (CZ/s) = (600 - 100 (°C)) / (600°Cから100°Cまで低下するに要した時間 (s))

熟間圧延の後、溶体化処理までは焼鈍（時効処理及び再結晶焼鈍を含む）及び冷間圧延を適宜繰り返せばよい。ただし、時効処理直前の冷間圧延では不連続型析出を抑制するために高加工度又は低加工度で行うことが望ましい。具体的には加工度を40%以下又は70%以上とするのが好ましく、加工度を30%以下又は80%以上とするのがより好ましい。加工度は低すぎると焼鈍および冷間圧延の回数が増え製造に要する時間が長くなり、高すぎると加工硬化により冷間圧延に時間を要し、圧延機に付加される荷重が高くなり圧延機が故障しやすくなるため、典型的には5〜30%又は70〜95%である。加工度は、次の式で定義される。
加工度 (%) = (圧延前の板厚－圧延後の板厚) / 圧延前の板厚 × 100

そして、時効処理を行う場合には、比較的高めの温度に加熱して実施することで不連続型析出を抑制することが望ましい。ただし、あまり高すぎると過時効となり析出物が大きく成長し、溶体化が困難となってしまうため不都合である。そこで、焼結は材料温度を 450 ～ 600 ℃として 3 ～ 24 時間実施することが好ましく、材料温度 750 ℃以上として 6 ～ 20 時間実施することがより好ましい。

なお、時効処理ではなく再結晶焼結を行う場合は次工程の冷間圧延加工度について特に留意する必要はない。再結晶焼結は通常 750 ℃以上の高温で行うので、不連続析出はさほど問題にならないからである。

溶体化処理では、十分な固溶により連続型及び不連続型を含む粗大な第二相粒子の数を低減し、且つ、結晶粒粗大化を防止することが重要となる。そこで、溶体化処理における材料の最高到達温度を 900 ℃～ 1070 ℃に設定する。最高到達温度が 900 ℃未満では十分な固溶がなされず、粗大な第二相粒子が残存するため、所望の強度及び曲げ加工性を得られないので、高強度を得る観点からは、最高到達温度は高い方が好ましく、具体的には 1020 ℃以上とすることが好ましく、1040 ℃以上とすることがより好ましい。しかしながら、1070 ℃超では結晶粒の粗大化が著しくなり強度向上が望めない他、当該温度は鋼の融点に近いため、製造上のネックとなる。

また、材料温度が最高到達温度に保持されている適切な時間は C および Si 濃度、および最高到達温度によって異なるが、再結晶およびその後の結晶粒の成長による結晶粒の粗大化を防ぐため、典型的には材料温度が最高到達温度に保持されている時間を 480 秒以下、好ましくは 240 秒以下、更に好ましくは 120 秒以下に制御する。ただし、材料温度が最高到達温度に保持されている時間が短すぎると粗大な第二相粒子の数を低減することができない場合があるため、10 秒以上とするのが好ましく、20 秒以上とするのがより好ましい。

また、第二相粒子の析出や再結晶粒の粗大化を防止する観点から、溶体化
処理後の冷却速度はできるだけ高い方が好ましい。具体的には、材料温度が最高到達温度から400℃に低下するときの平均冷却速度を15℃/s以上とするのが好ましく、50℃/s以上とするのがより好ましい。恐れの冷却は一般に冷却ガスを吹付けることによる冷却や水冷で行う。冷却ガスを吹付けることによる冷却では、炉内温度、冷却ガスの温度や流量を調整することによって冷却速度を制御することができる。水冷による冷却では、水流量や水温を調節によって冷却速度を制御することができる。最高到達温度から400℃までの平均冷却速度に着目したのは第二相粒子の析出や再結晶粒の粗大化を防止するためである。

ここで平均冷却速度は以下のよう定義される。

平均冷却速度 \((\degree C/s) = \frac{\text{最高到達温度} - 400 \degree C}{\text{材料取出し時 (材料温度が最高到達温度から低下を開始した時)から400℃まで低下するのに要した時間 (s)}} \)

[0051] 溶体化処理工程後は、時効処理を行う。時効処理の前又は後又は前後に冷間圧延を行うこともでき、冷間圧延の後に更に時効処理を行うこともできる。時効処理直前に冷間圧延する場合には、不連続型析出を抑制するために先に述べた条件で実施することが望ましい。時効処理の条件は、コバルトジルコイドを含む連続型析出物が微細に均一析出するとして知られている公知の温度及び時間を採用すればよい。時効処理の条件の一例を挙げると、350℃〜600℃の温度範囲で1〜30時間であり、より好ましくは425〜600℃の温度範囲で1〜3時間である。

[0052] 時効処理後は必要に応じて冷間圧延及び歪取焼純又は低温時効処理を実施する。冷間圧延を行う場合には、不連続型析出を抑制するために先に述べた条件で実施することが望ましい。冷間圧延工程後に歪取焼純又は低温時効処理を実施する場合、加熱条件は慣用的な条件で足り、圧延で導入された歪を取ることが目的である歪取焼純の場合には、例えば、300℃〜600℃の温度範囲で10s〜10minの時間行うことができる。また、時効析出による強度と導電率の向上を目的とする低温時効処理の場合は、例えば、300℃〜600℃の温度範囲で1〜3時間行うことができる。
\(°C \sim 500°C\)の温度範囲で1〜30hの時間行うことができる。

[0053] 従って、例えば溶体化処理の後は以下の工程を行うことができる。
(1) 冷間圧延→時効処理→冷間圧延（必要に応じて低温時効処理又は歪取焼錠）
(2) 冷間圧延→時効処理→（必要に応じて低温時効処理又は歪取焼錠）
(3) 時効処理→冷間圧延→（必要に応じて低温時効処理又は歪取焼錠）
(4) 時効処理→冷間圧延→時効処理→（必要に応じて低温時効処理又は歪取焼錠）

[0054] 本発明のCu-Si-Co系合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、本発明によるCu-Si-Co系銅合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に使用することができる。

実施例

[0055] 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。

[0056] 表1に、実施例及び比較例で用いた銅合金の成分組成を示す。
<table>
<thead>
<tr>
<th>発明例No.</th>
<th>工程</th>
<th>Co</th>
<th>Si</th>
<th>Co/Si</th>
<th>その他添加物</th>
<th>Cu及び不可避的不純物</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>A1</td>
<td>1.5</td>
<td>0.35</td>
<td>4.3</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-2</td>
<td>A8</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-3</td>
<td>A3</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.1 Mg</td>
<td>残部</td>
</tr>
<tr>
<td>1-4</td>
<td>A2</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-5</td>
<td>A9</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-6</td>
<td>A10</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-7</td>
<td>A5</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-8</td>
<td>A4</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-9</td>
<td>A6</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-10</td>
<td>A7</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-11</td>
<td>A11</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-12</td>
<td>A12</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-13</td>
<td>A13</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-14</td>
<td>A14</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-15</td>
<td>A15</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-16</td>
<td>A16</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-17</td>
<td>A17</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-18</td>
<td>A18</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-19</td>
<td>A19</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-20</td>
<td>A20</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
</tbody>
</table>

[表1-1]
[0057] [表1-2]

<table>
<thead>
<tr>
<th>発明例No.</th>
<th>工程</th>
<th>Co</th>
<th>Si</th>
<th>Co/Si</th>
<th>その他添加元素</th>
<th>Cu及び不可避的不純物</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1 A1</td>
<td></td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.1 Cr</td>
<td>残部</td>
</tr>
<tr>
<td>4-2 A8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-3 A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-4 A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5 A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-6 A10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-7 A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-8 A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-9 A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-10 A7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-11 A11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-12 A12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-13 A13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-14 A14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-1 A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-2 A8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-3 A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-4 A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-5 A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6 A10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-7 A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>残部</td>
</tr>
<tr>
<td>5-8 A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-9 A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-10 A7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-11 A11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-12 A12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-13 A13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-14 A14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-1 A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-2 A8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-3 A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-4 A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-5 A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-6 A10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7 A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>残部</td>
</tr>
<tr>
<td>6-8 A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-9 A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10 A7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-11 A11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-12 A12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-13 A13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-14 A14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>発明例No.</td>
<td>工程</td>
<td>Co</td>
<td>Si</td>
<td>Co/Si</td>
<td>添加元素</td>
<td>Cu及び不可避不純物</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>7-1</td>
<td>A 1</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.1 Mn</td>
<td>残部</td>
</tr>
<tr>
<td>7-2</td>
<td>A 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-3</td>
<td>A 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-4</td>
<td>A 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-5</td>
<td>A 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-6</td>
<td>A 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-7</td>
<td>A 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td>A 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-9</td>
<td>A 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-1 1</td>
<td>A 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-1 2</td>
<td>A 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-1 3</td>
<td>A 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-1 4</td>
<td>A 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-1</td>
<td>A 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-2</td>
<td>A 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-3</td>
<td>A 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-4</td>
<td>A 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-5</td>
<td>A 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-6</td>
<td>A 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-7</td>
<td>A 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-8</td>
<td>A 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td>A 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-1 0</td>
<td>A 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-1 1</td>
<td>A 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-1 2</td>
<td>A 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-1 3</td>
<td>A 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-1 4</td>
<td>A 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1</td>
<td>A 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-2</td>
<td>A 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-3</td>
<td>A 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-4</td>
<td>A 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-5</td>
<td>A 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-6</td>
<td>A 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-7</td>
<td>A 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-8</td>
<td>A 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-9</td>
<td>A 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1 0</td>
<td>A 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1 1</td>
<td>A 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1 2</td>
<td>A 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1 3</td>
<td>A 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1 4</td>
<td>A 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>発明例No.</td>
<td>工程</td>
<td>Co</td>
<td>Si</td>
<td>Co/Si</td>
<td>その他添加元素</td>
<td>Cu及び不純物</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>10-1</td>
<td>A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-2</td>
<td>A8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-3</td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-4</td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-5</td>
<td>A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-6</td>
<td>A10</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.1 Sb</td>
<td>残部</td>
</tr>
<tr>
<td>10-7</td>
<td>A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-8</td>
<td>A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-9</td>
<td>A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-1</td>
<td>A7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-2</td>
<td>A8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-3</td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-4</td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-5</td>
<td>A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-6</td>
<td>A10</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.1 Be</td>
<td>残部</td>
</tr>
<tr>
<td>11-7</td>
<td>A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-8</td>
<td>A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-9</td>
<td>A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-10</td>
<td>A7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-11</td>
<td>A11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td>A12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-13</td>
<td>A13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-14</td>
<td>A14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td>A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2</td>
<td>A8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-3</td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-4</td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-5</td>
<td>A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-6</td>
<td>A10</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.1 B</td>
<td>残部</td>
</tr>
<tr>
<td>12-7</td>
<td>A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-8</td>
<td>A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-9</td>
<td>A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-10</td>
<td>A7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-11</td>
<td>A11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-12</td>
<td>A12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-13</td>
<td>A13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-14</td>
<td>A14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>発明例No.</td>
<td>工程</td>
<td>Co</td>
<td>Si</td>
<td>Co/Si</td>
<td>その他添加元素</td>
<td>Cu及び不可避の不純物</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>13-1</td>
<td>A1</td>
<td>3.0</td>
<td>0.71</td>
<td>4.2</td>
<td>0.1Ti</td>
<td>残部</td>
</tr>
<tr>
<td>13-2</td>
<td>A8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-3</td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-4</td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-5</td>
<td>A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-6</td>
<td>A10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-7</td>
<td>A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-1</td>
<td>A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-2</td>
<td>A8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-3</td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-4</td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-5</td>
<td>A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-6</td>
<td>A10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-7</td>
<td>A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-8</td>
<td>A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-9</td>
<td>A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-1</td>
<td>A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-2</td>
<td>A8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-3</td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-4</td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-5</td>
<td>A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-6</td>
<td>A10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-7</td>
<td>A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-8</td>
<td>A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-9</td>
<td>A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0060] [表1-5]
<table>
<thead>
<tr>
<th>発明例No.</th>
<th>工程</th>
<th>Co</th>
<th>Si</th>
<th>Co/Si</th>
<th>その他添加元素</th>
<th>Cu及び不可避的不純物</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-1</td>
<td>A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>残部</td>
</tr>
<tr>
<td>16-2</td>
<td>A8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-3</td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-4</td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-5</td>
<td>A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-6</td>
<td>A10</td>
<td>1.0</td>
<td>0.24</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>16-7</td>
<td>A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-8</td>
<td>A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-9</td>
<td>A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-10</td>
<td>A7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-11</td>
<td>A11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-12</td>
<td>A12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-13</td>
<td>A13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-14</td>
<td>A14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-15</td>
<td>A15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-16</td>
<td>A16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-17</td>
<td>A17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-18</td>
<td>A18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-19</td>
<td>A19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-20</td>
<td>A20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-1</td>
<td>A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-2</td>
<td>A8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-3</td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-4</td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-5</td>
<td>A9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-6</td>
<td>A10</td>
<td>4.0</td>
<td>0.95</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>17-7</td>
<td>A5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-8</td>
<td>A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-9</td>
<td>A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-10</td>
<td>A7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-11</td>
<td>A11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-12</td>
<td>A12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-13</td>
<td>A13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-14</td>
<td>A14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-15</td>
<td>A15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-16</td>
<td>A16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-17</td>
<td>A17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>A18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-19</td>
<td>A19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-20</td>
<td>A20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比較例 No.</td>
<td>工程</td>
<td>Co</td>
<td>Si</td>
<td>Co/Si</td>
<td>その他</td>
<td>Cu及び不可避的不純物</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>1-21</td>
<td>F</td>
<td>1.5</td>
<td>0.35</td>
<td>4.3</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>1-22</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-23</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-24</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-25</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-26</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-27</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-28</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-29</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-21</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-22</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-23</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-24</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-25</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-26</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-27</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-28</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-29</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-15</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-16</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-17</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-18</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-19</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-20</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-21</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-15</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-16</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-17</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-18</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-19</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-20</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-21</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-15</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-16</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-17</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-18</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-19</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-21</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0063]
Table 1-8

<table>
<thead>
<tr>
<th>比較例No.</th>
<th>工程</th>
<th>Co</th>
<th>Si</th>
<th>Co/Si</th>
<th>その他</th>
<th>Cu及び不純物</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>質量%</td>
<td>質量%</td>
<td>比</td>
<td>質量%</td>
<td></td>
</tr>
<tr>
<td>16-21</td>
<td>F</td>
<td>1.0</td>
<td>0.24</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>16-22</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-23</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-24</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-25</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-26</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-27</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-28</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-29</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-21</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-22</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-23</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-24</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-25</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-26</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-27</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-28</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-29</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-1</td>
<td>A1</td>
<td>0.2</td>
<td>0.05</td>
<td>4.2</td>
<td>0.0</td>
<td>残部</td>
</tr>
<tr>
<td>19-1</td>
<td>A1</td>
<td>4.5</td>
<td>1.07</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-1</td>
<td>A1</td>
<td>1.5</td>
<td>0.23</td>
<td>6.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-1</td>
<td>A1</td>
<td>1.5</td>
<td>0.60</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0064] 上記成分組成を有するCu-Co-Si系銅合金を表2に記載のA1〜A20（発明例）と、B〜J（比較例）の製造条件で製造した。何れの銅合金についても、以下の基本的製造工程に従って製造した。

所定の成分組成を有する銅合金を、高周波溶解炉を用いて1300℃で溶製し、厚さ3.0mmのインゴットに錬造した。

次いで、このインゴットを1000℃に加熱して3時間保持後、板厚10 mmまで熱間圧延した。熱間圧延終了時の材料温度は850℃であった。熱間圧延終了後の冷却条件は表2に記載の通りである。冷却は炉内で行い、600℃までの平均冷却速度の制御は炉内温度や冷却ガス流量および冷却ガス温度の調節により行った。
次いで、第一冷間圧延を表2に記載の加工度で実施した。
次いで、第一時効処理を表2に記載の材料温度及び加熱時間の条件で実施した。
次いで、第二冷間圧延を表2に記載の加工度で実施した。
次いで、溶体化処理を表2に記載の材料温度及び加熱時間の条件で実施した。冷却は炉内で行い、400℃までの平均冷却速度の制御は炉内温度や冷却ガス流量および冷却ガス温度の調節により行った。
次いで、第三冷間圧延を表2に記載の加工度で実施した。
次いで、第二時効処理を表2に記載の材料温度及び加熱時間の条件で実施した。
次いで、第四冷間圧延を表2に記載の条件で実施した。
最後に、歪取焼鈍又は低温時効処理を表2に記載の条件で実施して、各試験片とした。
なお、各工程の合間には適宜面削、酸洗、脱脂を行った。
<table>
<thead>
<tr>
<th>表2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>章名</td>
</tr>
<tr>
<td>満面積</td>
</tr>
<tr>
<td>満面積</td>
</tr>
<tr>
<td>満面積</td>
</tr>
<tr>
<td>第1冷間圧延</td>
</tr>
<tr>
<td>第3冷間圧延</td>
</tr>
<tr>
<td>工程</td>
</tr>
<tr>
<td>------</td>
</tr>
</tbody>
</table>

[0067]
表 2-3
各製造条件の特徴を簡単に説明する

<table>
<thead>
<tr>
<th>工程</th>
<th>比較例</th>
</tr>
</thead>
<tbody>
<tr>
<td>溶解</td>
<td>B</td>
</tr>
<tr>
<td>熱間圧延</td>
<td>A1と同</td>
</tr>
<tr>
<td>第1冷間圧延</td>
<td>A1と同</td>
</tr>
<tr>
<td>第2冷間圧延</td>
<td>A1と同</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>溶体化処理</td>
<td>A1と同</td>
</tr>
<tr>
<td>第3冷間圧延</td>
<td>A1と同</td>
</tr>
<tr>
<td>第2冷間圧延</td>
<td>A1と同</td>
</tr>
<tr>
<td>第4冷間圧延</td>
<td>A1と同</td>
</tr>
</tbody>
</table>

[0068] 各製造条件の特徴を簡単に説明する。
A 1 は最適な製造条件である。
A 2 はA 1 に対して第4 冷間圧延における加工度を小さくした例である。
A 3 はA 1 に対して第3 冷間圧延における加工度を小さくした例である。
A 4 はA 1 に対して溶体化処理における最高到達温度を高くした例である。
A 5 はA 1 に対して溶体化処理における最高到達温度を低くした例である。
A 6 はA 1 に対して第一時効処理を省略した例である。
A 7 はA 1 に対して第一時効処理の温度を高くした例である。
A 8 はA 1 に対して第1 冷間圧延を省略し、代わりに第2 冷間圧延の加工度を大きくした例である。
A 9 はA 1 に対して熱間圧延終了後の冷却速度を高くした例である。
A 10 はA 1 に対して熱間圧延終了後の冷却速度を低くした例である。
A 11 はA 1 に対して第1 冷間圧延における加工度を小さくした例である。
A 12 はA 1 に対して溶体化処理における冷却速度を遅くした例である。
A 13 はA 1 に対して溶体化処理における最高到達温度を更に高くなった例である。
A 14 はA 1 に対して最終の低温時効処理を歪取焼鈍にした例である。
A 15 はA 1 に対して第3 冷間圧延を省略した例である。
A 16 はA 1 に対して第3 冷間圧延を省略し、最終の低温時効処理を歪取焼鈍にした例である。
A 17 はA 1 に対して第4 冷間圧延及び低温時効処理を省略した例である。
A 18 はA 1 に対して第3 冷間圧延及び低温時効処理を省略した例である。
A 19 はA 1 に対して低温時効処理を省略した例である。
A 20 はA 1 に対して第3 冷間圧延の加工度を大きくした例である。
B は第 4 冷間圧延における加工度が不適切な例である。
C は第 3 冷間圧延における加工度が不適切な例である。
D は溶体化処理における溶体化での最高到達温度が不適切な例である。
E は第一時効処理を必要以上に高温で実施した不適切な例である。
F は第 1 冷間圧延における加工度が不適切な例である。
G は熱間圧延終了後の冷却速度が高すぎたために不適切な例である。
H は熱間圧延終了後の冷却速度が低すぎたために不適切な例である。
I は第 4 冷間圧延における加工度が不適切な例である。
J は第 1 冷間圧延における加工度が不適切な例である。

このようにして得られた各試験片について各種の特性評価を以下のような行った。

(1) 平均結晶粒径 (G S)
試験片を観察面が圧延方向に対し平行な厚み方向の断面となるように樹脂
埋めし、観察面を機械研磨にて鏡面仕上げを行い、続いて水 100 原部に
に対して濃度 36% の塩酸 10 原部の割合で混合した溶液に、その溶液の重
量に対して 5% の重量の塩化第二鉄を溶解させた。こうして出来上がった溶
液中に、試料を 10 秒間浸漬して金属組織を現出させた。次に、この金属組
織を光学顕微鏡で 100 倍に拡大して観察視野 0.5 m m 2 の範囲の写真を撮
った。続いて、当該写真に基づいて個々の結晶粒の圧延方向の最大径と厚み
方向の最大径との平均を各結晶について求め、各観察視野に対して平均値を
算出し、さらに観察視野 15 箇所の平均値を平均結晶粒径とした。

(2) 不連続析出 (D P) セルの面積率 (D P 面積率) 及び不連続析出帯
の最大幅の平均値 (D P 最大幅平均値)
F E — S E M として P H I L I P S 社製型式 X L 3 O S F E G を使用して
、先述した方法で測定した。また、不連続析出 (D P) セルを構成する第二
相粒子が コバルト トリサイドであることを E D S (エネルギー分散型 X 線分
析) を用いて確認した。

(3) 0.2% 耐力 (Y S)
圧延平行方向の引張り試験をJIS-Z2241に従って行い、0.2%耐力（YS：MPa）を測定した。

（4）ピーク0.2%耐力（ピークYS）及び過時効0.2%耐力（過時効YS）

ピークYS及び過時効YSは、最終工程が低温時効処理ではなく冷間圧延又は歪取焼鉄として得られた試験片（実施例の工程A14、A16、A18、A19及び比較例の工程Jで得られた試験片）については、得られた試験片に対して更に以下の時効処理を行うことで求めた。

同一ロットの試験片について、時効処理時間を30hr、時効処理温度を300℃、325℃、350℃、375℃、400℃、425℃、450℃、475℃、500℃、525℃、550℃、575℃、600℃の13条件でそれぞれ時効処理を行い、時効処理後のそれぞれの試験片について0.2%耐力を測定した。そのうち、最も高い0.2%耐力をピークYSとし、ピークYSが得られた時効処理温度よりも25℃高い時効処理温度とした試験片の0.2%耐力を過時効YSとした。0.2%耐力は、圧延平行方向の引張り試験をJIS-Z2241に従って行い、測定した。

一方、最終工程が第二時効処理の試験片（実施例の工程A17で得られた試験片）、並びに低温時効処理の試験片（実施例の工程A1～A13、A15、A20及び比較例の工程B1で得られた試験片）については、同一ロットの試験片について、第二時効処理又は低温時効処理に代えて今述べた時効処理を行うことでピークYS及び過時効YSを求めた。

（5）△YS／ピークYS

△YS を以下の様に定義した。

△YS = （ピークYS） - （過時効YS）

また、△YS／ピークYS比を以下の様に定義した。

△YS／ピークYS比 = △YS／ピークYS x 100（%）

（6）導電率（EC）

ダブルブリッジによる体積抵抗率測定を行って、導電率（EC：% IAC
S)を求めた。

(7) 曲げ表面の平均粗さ

Badway（曲げ軸が圧延方向と同一方向）のW曲げ試験として、W字型の試験板厚と曲げ半径の比が1となる条件で90°曲げ加工を行った。続いて、共焦点顕微鏡を用いて曲げ加工部表面の表面粗さRa（μm）をJISB0601に従って求めた。

(8) 材料温度50°Cとして30分加熱した後の0.2%耐力の低下率

加熱前後で、圧延平行方向の引張り試験をJIS-Z2241に従って行い、0.2%耐力（YS：MPa）を測定した。加熱処理前の0.2%耐力をYS_0、加熱処理後の0.2%耐力をYSとするとき、低下率(%) = (YS_0 - YS) / YS_0 x 100で表される。

(9) 粒径が1μm以上の連続相析出物の個数密度

材料の圧延方向に平行な断面を、直径1μmのダイヤモンド砥粒を用いて機械研磨により鏡面に仕上げた後、20°Cの5%リン酸水溶液で1.5Vの電圧にて30秒間電解研磨した。この電解研磨によりCuの母地が溶解し、第2相粒子が溶け残って現出した。この断面をFEG-SEM（電界放射型走査電子顕微鏡：PHILIPS社製）を用いて倍率3000倍（観察視野30μm x 40μm）で任意の10箇所を観察し、粒径1μm以上の連続相析出物の個数を数え、1000μm^2当たりの平均個数を算出した。連続相析出物がコバルトトリシライドを含有することをEDS（エネルギー分散型X線分析）を用いて確認した。

[0070] 結果を表3に示した。以下に、各試験片の結果説明をする。

No.1〜1〜!〜20、No.2〜!〜2〜20、No.3〜!〜3〜
14、No.4〜!〜4〜14、No.5〜!〜5〜14、No.6〜!〜
6〜14、No.7〜!〜7〜14、No.8〜!〜8〜14、No.9〜
!〜9〜14、No.10〜!〜10〜14、No.11〜!〜11〜14
、No.12〜!〜12〜14、No.13〜!〜13〜14、No.14〜
1〜14〜14、No.15〜!〜15〜14、No.16〜!〜16〜
20、No.17-1〜17-20は本発明の実施例である。中でも製造条
件A1によって製造したNo.1-1、No.2-1、No.3-1、No.
4-1、No.5-1、No.6-1、No.7-1、No.8-1、No.
9-1、No.10-1、No.11-1、No.12-1、No.1
3-1、No.14-1、No.15-1、No.16-1及びNo.17
-1は同一組成同士を比べたときに強度及び導電性のバランスが最も優れて
いる。
一方、製造条件Bで製造したNo.1-23、No.2-23、No.3
-17、No.4-17、No.5-17、No.6-23、No.17
-23及び製造条件Iで製造したNo.1-28、No.2-28、No.
16-28、及びNo.17-28は何れも第4冷間圧延における加工度が
不適切であったために、低温時効処理工程で不連続析出物が成長した。その
ため、DPセルの面積率、最大幅の平均値が高くなり、各組成に対応する発
明例に比べて強度及び導電性のバランスが低下し、曲げ性、耐熱性も悪化し
た。
製造条件Cで製造したNo.1-22、No.2-22、No.3-16
、No.4-16、No.5-16、No.16-22、及びNo.17-22は何れも第3冷間圧延における加工度が不適切であったために、その後
の時効処理で不連続析出物が成長した。そのため、DPセルの面積率、最大
幅の平均値が高くなり、各組成に対応する発明例に比べて強度及び導電性の
バランスが低下し、曲げ性、耐熱性も悪化した。
製造条件Dで製造したNo.1-26、No.2-26、No.3-20
、No.4-20、No.5-20、No.16-26、及びNo.17-26は何れも溶体化処理における最高到達温度が低かったために、未固溶の
第2相粒子（以前の工程で生成した不連続析出物も含む）が多く残存した。
そして、その後の時効処理で不連続析出物が成長した。そのため、DPセル
の面積率、最大幅の平均値が高くなり、各組成に対応する発明例に比べて強
度及び導電性のバランスが低下し、曲げ性、耐熱性も悪化した。
製造条件Eで製造したNo.1－27、No.2－27、No.3－21、No.4－21、No.5－21、No.16－27及びNo.17－27は何れも第一時効処理を必要以上に高温で実施したために、連続析出物及び不連続析出物が粗大に成長した。そのため、溶体化後に連続析出物及び不連続析出物が多く残存し、最終的なDPセルの面積率、最大幅の平均値が高くなり、1 μm以上の連続析出物の個数が多くなり、各組成に対応する発明例に比べて強度及び導電性のバランスが低下し、曲げ性、耐熱性も悪化した。

製造条件Fで製造したNo.1－21、No.2－21、No.3－15、No.4－15、No.5－15、No.16－21、No.17－21、並びに、製造条件Jで製造したNo.1－29、No.2－29、No.16－29及びNo.17－29は何れも第1冷間圧延における加工度が不適切だったために、その後の時効処理で不連続析出物が成長した。そのため、溶体化後に不連続析出物が多く残存し、最終的なDPセルの面積率、最大幅の平均値が高くなり、各組成に対応する発明例に比べて強度及び導電性のバランスが低下し、曲げ性、耐熱性も悪化した。

製造条件Gで製造したNo.1－24、No.2－24、No.3－18、No.4－18、No.5－18、No.16－24、及びNo.17－24は何れも熱間圧延終了後の冷却速度が高すぎたために、再結晶粒の成長が不十分となってしまい、その後の時効処理で不連続析出物が成長した。そのため、溶体化後に不連続析出物が多く残存し、最終的なDPセルの面積率、最大幅の平均値が高くなり、各組成に対応する発明例に比べて強度及び導電性のバランスが低下し、曲げ性、耐熱性も悪化した。

製造条件Hで製造したNo.1－25、No.2－25、No.3－19、No.4－19、No.5－19、No.16－25、及びNo.17－25は何れも熱間圧延終了後の冷却速度が低すぎたために、再結晶粒のほか、不連続析出物及び連続析出物を含めた第2相粒子が粗大に成長した。そのため、溶体化後に不連続・連続析出物が多く残存し、最終的に粗大な不連続
連続析出物が多く存在し、各組成に対応する発明例に比べて強度及び導電性のバランスが低下し、曲げ性、耐熱性も悪化した。
また、No.18-1、No.20-1、No.21-1は、製造条件A1で製造したが、組成が本発明の範囲外であったため、強度及び導電性のバランスが低下した。
また、No.19-1は、製造条件A1で製造したが、Co濃度及びSi濃度が高く、本発明の範囲外であったため、熱間圧延時に割れが生じた。そのため、本組成での製品の製造を中止した。
<table>
<thead>
<tr>
<th>質素</th>
<th>GS（μm）</th>
<th>DP面積率（％）</th>
<th>DPセラ（観察される視野での最大幅の平均値（μm））</th>
<th>∆YS/YS(%)</th>
<th>∆YS(MPa)</th>
<th>EC（％/ACS）</th>
<th>曲げ表面粗さ平均（μm）</th>
<th>500℃×30分保持後のYS低下率</th>
<th>性能が1μm以上の連続形試験物価（/1000μm²）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.5</td>
<td>2.8</td>
<td>0.7</td>
<td>0.9</td>
<td>9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>19.7</td>
<td>0.9</td>
<td>9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20.6</td>
<td>3.4</td>
<td>1.1</td>
<td>0.9</td>
<td>9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
</tr>
<tr>
<td>4</td>
<td>19.9</td>
<td>1.5</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>19.5</td>
<td>0.8</td>
<td>0.9</td>
<td>18.5</td>
<td>50</td>
<td>0.20</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0072]
<table>
<thead>
<tr>
<th>発明例 No.</th>
<th>GS (μm)</th>
<th>DP面積率 (%</th>
<th>DPセルが観察される視野での最大幅の平均値 (μm)</th>
<th>∠YS/</th>
<th>EC (%)</th>
<th>∠YS (MPa)</th>
<th>YS (MPa)</th>
<th>YS (MPa)</th>
<th>1以下</th>
<th>10%以下</th>
<th>25%以下</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>17.3</td>
<td>3.4</td>
<td>2.9</td>
<td>25</td>
<td>631</td>
<td>54</td>
<td>0.55</td>
<td>6.0</td>
<td>18.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-2</td>
<td>16.9</td>
<td>3.3</td>
<td>2.3</td>
<td>23</td>
<td>634</td>
<td>52</td>
<td>0.63</td>
<td>6.3</td>
<td>15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-3</td>
<td>17.8</td>
<td>3.3</td>
<td>1.1</td>
<td>23</td>
<td>622</td>
<td>54</td>
<td>0.59</td>
<td>6.1</td>
<td>14.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-4</td>
<td>17.3</td>
<td>3.7</td>
<td>1.1</td>
<td>23</td>
<td>613</td>
<td>54</td>
<td>0.56</td>
<td>7.2</td>
<td>18.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>15.5</td>
<td>4.0</td>
<td>1.1</td>
<td>27</td>
<td>835</td>
<td>52</td>
<td>0.74</td>
<td>6.6</td>
<td>16.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-6</td>
<td>19.2</td>
<td>3.6</td>
<td>1.1</td>
<td>29</td>
<td>820</td>
<td>55</td>
<td>0.62</td>
<td>6.4</td>
<td>21.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-7</td>
<td>15.2</td>
<td>3.5</td>
<td>1.0</td>
<td>27</td>
<td>635</td>
<td>52</td>
<td>0.58</td>
<td>6.9</td>
<td>15.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-8</td>
<td>19.3</td>
<td>3.6</td>
<td>1.2</td>
<td>31</td>
<td>850</td>
<td>51</td>
<td>0.62</td>
<td>8.1</td>
<td>22.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-9</td>
<td>16.9</td>
<td>3.9</td>
<td>1.4</td>
<td>36</td>
<td>836</td>
<td>53</td>
<td>0.72</td>
<td>7.8</td>
<td>17.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-10</td>
<td>18.0</td>
<td>3.2</td>
<td>0.9</td>
<td>27</td>
<td>636</td>
<td>50</td>
<td>0.54</td>
<td>5.4</td>
<td>14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-11</td>
<td>17.3</td>
<td>3.4</td>
<td>1.0</td>
<td>25</td>
<td>849</td>
<td>54</td>
<td>0.56</td>
<td>6.1</td>
<td>17.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-12</td>
<td>17.9</td>
<td>3.5</td>
<td>1.0</td>
<td>32</td>
<td>855</td>
<td>54</td>
<td>0.57</td>
<td>6.6</td>
<td>16.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-13</td>
<td>27.2</td>
<td>0.9</td>
<td>0.5</td>
<td>21</td>
<td>881</td>
<td>50</td>
<td>1.48</td>
<td>5.2</td>
<td>13.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-14</td>
<td>17.4</td>
<td>3.1</td>
<td>1.0</td>
<td>26</td>
<td>836</td>
<td>53</td>
<td>0.37</td>
<td>6.3</td>
<td>15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-1</td>
<td>18.7</td>
<td>3.4</td>
<td>1.1</td>
<td>28</td>
<td>666</td>
<td>46</td>
<td>0.59</td>
<td>6.8</td>
<td>17.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-2</td>
<td>18.9</td>
<td>3.7</td>
<td>1.3</td>
<td>26</td>
<td>840</td>
<td>43</td>
<td>0.74</td>
<td>6.9</td>
<td>15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-3</td>
<td>19.2</td>
<td>3.4</td>
<td>1.2</td>
<td>27</td>
<td>846</td>
<td>44</td>
<td>0.67</td>
<td>6.4</td>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-4</td>
<td>19.1</td>
<td>3.8</td>
<td>1.1</td>
<td>32</td>
<td>620</td>
<td>46</td>
<td>0.60</td>
<td>9.1</td>
<td>19.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-5</td>
<td>17.6</td>
<td>3.0</td>
<td>1.2</td>
<td>33</td>
<td>869</td>
<td>45</td>
<td>0.68</td>
<td>6.6</td>
<td>16.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td>21.0</td>
<td>3.5</td>
<td>1.5</td>
<td>29</td>
<td>839</td>
<td>45</td>
<td>0.70</td>
<td>7.3</td>
<td>20.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-7</td>
<td>16.6</td>
<td>3.4</td>
<td>1.1</td>
<td>29</td>
<td>673</td>
<td>43</td>
<td>0.66</td>
<td>6.3</td>
<td>15.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-8</td>
<td>21.1</td>
<td>3.8</td>
<td>1.3</td>
<td>28</td>
<td>860</td>
<td>41</td>
<td>0.76</td>
<td>7.6</td>
<td>21.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-9</td>
<td>19.5</td>
<td>4.1</td>
<td>1.4</td>
<td>35</td>
<td>840</td>
<td>45</td>
<td>0.76</td>
<td>7.1</td>
<td>17.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-10</td>
<td>19.4</td>
<td>3.8</td>
<td>1.0</td>
<td>30</td>
<td>869</td>
<td>43</td>
<td>0.62</td>
<td>6.7</td>
<td>14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-11</td>
<td>18.7</td>
<td>3.5</td>
<td>1.1</td>
<td>28</td>
<td>860</td>
<td>45</td>
<td>0.62</td>
<td>6.6</td>
<td>16.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-12</td>
<td>19.7</td>
<td>3.6</td>
<td>1.3</td>
<td>35</td>
<td>870</td>
<td>44</td>
<td>0.66</td>
<td>7.1</td>
<td>15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-13</td>
<td>29.1</td>
<td>1.0</td>
<td>0.8</td>
<td>24</td>
<td>891</td>
<td>41</td>
<td>1.71</td>
<td>5.8</td>
<td>12.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-14</td>
<td>18.9</td>
<td>3.3</td>
<td>1.2</td>
<td>27</td>
<td>851</td>
<td>44</td>
<td>0.75</td>
<td>6.8</td>
<td>14.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-1</td>
<td>16.0</td>
<td>3.2</td>
<td>1.1</td>
<td>30</td>
<td>850</td>
<td>54</td>
<td>0.67</td>
<td>6.8</td>
<td>16.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-2</td>
<td>16.0</td>
<td>3.2</td>
<td>1.2</td>
<td>25</td>
<td>840</td>
<td>53</td>
<td>0.62</td>
<td>6.6</td>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-3</td>
<td>16.7</td>
<td>3.1</td>
<td>1.0</td>
<td>34</td>
<td>836</td>
<td>54</td>
<td>0.7</td>
<td>7.1</td>
<td>15.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-4</td>
<td>17.1</td>
<td>3.5</td>
<td>1.0</td>
<td>30</td>
<td>819</td>
<td>56</td>
<td>0.7</td>
<td>6.9</td>
<td>17.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-5</td>
<td>15.5</td>
<td>3.7</td>
<td>1.1</td>
<td>35</td>
<td>853</td>
<td>54</td>
<td>0.7</td>
<td>8.3</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-6</td>
<td>19.1</td>
<td>3.5</td>
<td>1.1</td>
<td>35</td>
<td>831</td>
<td>55</td>
<td>0.7</td>
<td>7.0</td>
<td>20.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td>18.1</td>
<td>3.5</td>
<td>1.0</td>
<td>29</td>
<td>847</td>
<td>52</td>
<td>0.7</td>
<td>6.8</td>
<td>15.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-8</td>
<td>19.2</td>
<td>3.5</td>
<td>1.2</td>
<td>30</td>
<td>832</td>
<td>55</td>
<td>0.6</td>
<td>6.8</td>
<td>21.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-9</td>
<td>17.9</td>
<td>3.8</td>
<td>1.3</td>
<td>37</td>
<td>840</td>
<td>53</td>
<td>0.8</td>
<td>8.0</td>
<td>18.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10</td>
<td>16.2</td>
<td>3.7</td>
<td>1.1</td>
<td>29</td>
<td>851</td>
<td>51</td>
<td>0.6</td>
<td>6.1</td>
<td>13.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-11</td>
<td>16.0</td>
<td>3.7</td>
<td>1.1</td>
<td>30</td>
<td>847</td>
<td>54</td>
<td>0.7</td>
<td>6.8</td>
<td>15.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-12</td>
<td>16.7</td>
<td>3.7</td>
<td>1.1</td>
<td>29</td>
<td>858</td>
<td>52</td>
<td>0.8</td>
<td>6.7</td>
<td>14.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-13</td>
<td>26.6</td>
<td>0.9</td>
<td>0.6</td>
<td>21</td>
<td>868</td>
<td>48</td>
<td>1.7</td>
<td>6.1</td>
<td>11.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-14</td>
<td>16.4</td>
<td>2.8</td>
<td>1.2</td>
<td>29</td>
<td>834</td>
<td>52</td>
<td>0.8</td>
<td>6.6</td>
<td>13.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>表3-3</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>10-30</td>
<td>5%以下</td>
<td>2μm以下</td>
<td>5%以下</td>
<td>1以下</td>
<td>10%以下</td>
<td>25%以下</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-1</td>
<td>19.0</td>
<td>3.4</td>
<td>1.2</td>
<td>3.2</td>
<td>28</td>
<td>883</td>
<td>49</td>
<td>0.71</td>
<td>7.1</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>7-2</td>
<td>19.0</td>
<td>3.7</td>
<td>1.4</td>
<td>3.2</td>
<td>28</td>
<td>856</td>
<td>49</td>
<td>0.64</td>
<td>7.1</td>
<td>14.9</td>
<td></td>
</tr>
<tr>
<td>7-3</td>
<td>19.6</td>
<td>3.3</td>
<td>1.1</td>
<td>3.6</td>
<td>30</td>
<td>852</td>
<td>52</td>
<td>0.73</td>
<td>7.6</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>7-4</td>
<td>19.7</td>
<td>3.4</td>
<td>1.0</td>
<td>3.2</td>
<td>27</td>
<td>859</td>
<td>53</td>
<td>0.70</td>
<td>7.0</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>7-5</td>
<td>18.2</td>
<td>3.7</td>
<td>1.2</td>
<td>3.7</td>
<td>32</td>
<td>865</td>
<td>49</td>
<td>0.81</td>
<td>8.6</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>7-6</td>
<td>21.6</td>
<td>3.6</td>
<td>1.2</td>
<td>3.6</td>
<td>30</td>
<td>844</td>
<td>49</td>
<td>0.79</td>
<td>7.6</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td>7-7</td>
<td>17.5</td>
<td>3.5</td>
<td>1.1</td>
<td>3.1</td>
<td>27</td>
<td>868</td>
<td>48</td>
<td>0.74</td>
<td>7.1</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td>21.7</td>
<td>3.5</td>
<td>1.3</td>
<td>3.2</td>
<td>28</td>
<td>857</td>
<td>48</td>
<td>0.60</td>
<td>7.4</td>
<td>23.3</td>
<td></td>
</tr>
<tr>
<td>7-9</td>
<td>20.2</td>
<td>4.0</td>
<td>1.4</td>
<td>3.9</td>
<td>33</td>
<td>851</td>
<td>49</td>
<td>0.61</td>
<td>8.5</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>7-10</td>
<td>19.5</td>
<td>3.5</td>
<td>1.1</td>
<td>3.1</td>
<td>27</td>
<td>862</td>
<td>48</td>
<td>0.68</td>
<td>6.8</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>7-11</td>
<td>19.0</td>
<td>3.5</td>
<td>1.2</td>
<td>3.2</td>
<td>28</td>
<td>861</td>
<td>50</td>
<td>0.75</td>
<td>7.1</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>7-12</td>
<td>20.0</td>
<td>3.5</td>
<td>1.3</td>
<td>3.2</td>
<td>28</td>
<td>881</td>
<td>48</td>
<td>0.82</td>
<td>7.3</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>7-13</td>
<td>29.4</td>
<td>0.6</td>
<td>0.8</td>
<td>2.1</td>
<td>18</td>
<td>883</td>
<td>47</td>
<td>1.79</td>
<td>6.4</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>7-14</td>
<td>19.3</td>
<td>3.0</td>
<td>1.2</td>
<td>3.0</td>
<td>26</td>
<td>861</td>
<td>46</td>
<td>0.89</td>
<td>7.6</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td>8-1</td>
<td>15.6</td>
<td>3.4</td>
<td>1.0</td>
<td>3.4</td>
<td>29</td>
<td>859</td>
<td>56</td>
<td>0.68</td>
<td>6.8</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>8-2</td>
<td>15.6</td>
<td>3.3</td>
<td>1.2</td>
<td>2.9</td>
<td>25</td>
<td>851</td>
<td>53</td>
<td>0.79</td>
<td>6.8</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>8-3</td>
<td>16.3</td>
<td>3.4</td>
<td>1.0</td>
<td>3.4</td>
<td>29</td>
<td>847</td>
<td>54</td>
<td>0.70</td>
<td>7.0</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>8-4</td>
<td>16.9</td>
<td>3.3</td>
<td>1.1</td>
<td>2.9</td>
<td>24</td>
<td>833</td>
<td>56</td>
<td>0.67</td>
<td>6.9</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>8-5</td>
<td>15.1</td>
<td>3.5</td>
<td>1.1</td>
<td>3.4</td>
<td>30</td>
<td>828</td>
<td>54</td>
<td>0.77</td>
<td>8.2</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>8-6</td>
<td>18.6</td>
<td>3.3</td>
<td>1.1</td>
<td>3.5</td>
<td>29</td>
<td>839</td>
<td>55</td>
<td>0.75</td>
<td>6.8</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>8-7</td>
<td>14.9</td>
<td>3.3</td>
<td>1.0</td>
<td>2.9</td>
<td>25</td>
<td>861</td>
<td>51</td>
<td>0.71</td>
<td>6.8</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td>8-8</td>
<td>18.9</td>
<td>3.3</td>
<td>1.1</td>
<td>3.0</td>
<td>25</td>
<td>854</td>
<td>54</td>
<td>0.78</td>
<td>6.7</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td>17.8</td>
<td>3.9</td>
<td>1.3</td>
<td>3.6</td>
<td>31</td>
<td>848</td>
<td>54</td>
<td>0.79</td>
<td>7.9</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>8-10</td>
<td>15.7</td>
<td>3.8</td>
<td>1.1</td>
<td>2.9</td>
<td>25</td>
<td>858</td>
<td>51</td>
<td>0.65</td>
<td>6.0</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>8-11</td>
<td>15.6</td>
<td>3.8</td>
<td>1.1</td>
<td>3.3</td>
<td>28</td>
<td>856</td>
<td>54</td>
<td>0.71</td>
<td>6.8</td>
<td>16.6</td>
<td></td>
</tr>
<tr>
<td>8-12</td>
<td>16.1</td>
<td>3.6</td>
<td>1.1</td>
<td>2.9</td>
<td>28</td>
<td>874</td>
<td>52</td>
<td>0.78</td>
<td>6.6</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>8-13</td>
<td>26.2</td>
<td>0.9</td>
<td>0.8</td>
<td>2.1</td>
<td>18</td>
<td>878</td>
<td>49</td>
<td>1.74</td>
<td>6.0</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>8-14</td>
<td>16.0</td>
<td>2.6</td>
<td>1.1</td>
<td>2.9</td>
<td>25</td>
<td>852</td>
<td>52</td>
<td>0.81</td>
<td>6.4</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>9-1</td>
<td>16.4</td>
<td>3.3</td>
<td>1.1</td>
<td>3.1</td>
<td>26</td>
<td>851</td>
<td>54</td>
<td>0.65</td>
<td>6.9</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td>9-2</td>
<td>16.4</td>
<td>3.2</td>
<td>1.2</td>
<td>3.1</td>
<td>26</td>
<td>841</td>
<td>53</td>
<td>0.75</td>
<td>6.9</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td>9-3</td>
<td>17.1</td>
<td>3.2</td>
<td>1.1</td>
<td>3.5</td>
<td>29</td>
<td>836</td>
<td>54</td>
<td>0.67</td>
<td>7.2</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td>9-4</td>
<td>17.4</td>
<td>3.2</td>
<td>1.0</td>
<td>3.1</td>
<td>25</td>
<td>820</td>
<td>55</td>
<td>0.64</td>
<td>6.9</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>9-5</td>
<td>15.8</td>
<td>3.4</td>
<td>1.1</td>
<td>3.6</td>
<td>30</td>
<td>853</td>
<td>54</td>
<td>0.73</td>
<td>8.3</td>
<td>14.9</td>
<td></td>
</tr>
<tr>
<td>9-6</td>
<td>19.4</td>
<td>3.2</td>
<td>1.1</td>
<td>3.5</td>
<td>29</td>
<td>831</td>
<td>55</td>
<td>0.72</td>
<td>7.1</td>
<td>20.4</td>
<td></td>
</tr>
<tr>
<td>9-7</td>
<td>15.3</td>
<td>3.2</td>
<td>1.1</td>
<td>3.0</td>
<td>25</td>
<td>848</td>
<td>53</td>
<td>0.68</td>
<td>6.9</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>9-8</td>
<td>19.4</td>
<td>3.2</td>
<td>1.2</td>
<td>3.1</td>
<td>25</td>
<td>840</td>
<td>54</td>
<td>0.76</td>
<td>6.9</td>
<td>22.8</td>
<td></td>
</tr>
<tr>
<td>9-9</td>
<td>18.1</td>
<td>3.8</td>
<td>1.4</td>
<td>3.8</td>
<td>32</td>
<td>840</td>
<td>53</td>
<td>0.77</td>
<td>8.1</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td>9-10</td>
<td>16.7</td>
<td>3.5</td>
<td>1.1</td>
<td>3.0</td>
<td>26</td>
<td>851</td>
<td>51</td>
<td>0.62</td>
<td>6.3</td>
<td>13.7</td>
<td></td>
</tr>
<tr>
<td>9-11</td>
<td>16.4</td>
<td>3.4</td>
<td>1.2</td>
<td>3.1</td>
<td>26</td>
<td>847</td>
<td>54</td>
<td>0.69</td>
<td>6.6</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>9-12</td>
<td>17.2</td>
<td>3.4</td>
<td>1.2</td>
<td>3.1</td>
<td>27</td>
<td>859</td>
<td>52</td>
<td>0.74</td>
<td>6.8</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>9-13</td>
<td>27.0</td>
<td>0.5</td>
<td>0.6</td>
<td>2.1</td>
<td>18</td>
<td>869</td>
<td>48</td>
<td>1.70</td>
<td>6.1</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>9-14</td>
<td>16.8</td>
<td>2.6</td>
<td>1.1</td>
<td>3.0</td>
<td>25</td>
<td>835</td>
<td>52</td>
<td>0.77</td>
<td>6.8</td>
<td>13.6</td>
<td></td>
</tr>
</tbody>
</table>

[0074]
表3-4

| 発明例No. | GS（μm） | DP面積率（%） | DPセルが観察される視野での最大幅の平均値（μm） | ∆YS/YS（%） | ∆YS（MPa） | EC（%AC） | 曲げ表面粗さ平均（μm） | 500°C×30分後10Ktn後のYS低下率 | 疲労強度が1μm以下の連続物晶出物

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10-1</td>
<td>17.5</td>
<td>3.5</td>
<td>1.1</td>
<td>3.3</td>
<td>28</td>
<td>851</td>
<td>54</td>
<td>0.62</td>
<td>7.0</td>
</tr>
<tr>
<td>10-2</td>
<td>17.5</td>
<td>3.5</td>
<td>1.3</td>
<td>3.3</td>
<td>28</td>
<td>841</td>
<td>53</td>
<td>0.71</td>
<td>7.0</td>
</tr>
<tr>
<td>10-3</td>
<td>18.1</td>
<td>3.3</td>
<td>1.1</td>
<td>3.5</td>
<td>30</td>
<td>837</td>
<td>54</td>
<td>0.63</td>
<td>7.4</td>
</tr>
<tr>
<td>10-4</td>
<td>18.1</td>
<td>3.6</td>
<td>1.0</td>
<td>3.3</td>
<td>27</td>
<td>820</td>
<td>55</td>
<td>0.60</td>
<td>7.0</td>
</tr>
<tr>
<td>10-5</td>
<td>18.7</td>
<td>3.8</td>
<td>1.2</td>
<td>3.7</td>
<td>32</td>
<td>854</td>
<td>54</td>
<td>0.69</td>
<td>8.5</td>
</tr>
<tr>
<td>10-6</td>
<td>20.0</td>
<td>3.7</td>
<td>1.2</td>
<td>3.6</td>
<td>30</td>
<td>832</td>
<td>55</td>
<td>0.68</td>
<td>7.4</td>
</tr>
<tr>
<td>10-7</td>
<td>15.9</td>
<td>3.6</td>
<td>1.1</td>
<td>3.1</td>
<td>27</td>
<td>848</td>
<td>53</td>
<td>0.64</td>
<td>7.0</td>
</tr>
<tr>
<td>10-8</td>
<td>20.2</td>
<td>3.6</td>
<td>1.3</td>
<td>3.3</td>
<td>27</td>
<td>831</td>
<td>52</td>
<td>0.74</td>
<td>7.1</td>
</tr>
<tr>
<td>10-9</td>
<td>18.6</td>
<td>3.7</td>
<td>1.3</td>
<td>4.0</td>
<td>34</td>
<td>841</td>
<td>53</td>
<td>0.75</td>
<td>8.3</td>
</tr>
<tr>
<td>10-10</td>
<td>18.0</td>
<td>3.5</td>
<td>1.1</td>
<td>3.1</td>
<td>27</td>
<td>852</td>
<td>51</td>
<td>0.58</td>
<td>6.6</td>
</tr>
<tr>
<td>10-11</td>
<td>17.5</td>
<td>3.5</td>
<td>1.2</td>
<td>3.3</td>
<td>28</td>
<td>848</td>
<td>53</td>
<td>0.65</td>
<td>7.0</td>
</tr>
<tr>
<td>10-12</td>
<td>18.6</td>
<td>3.6</td>
<td>1.2</td>
<td>3.3</td>
<td>28</td>
<td>839</td>
<td>52</td>
<td>0.70</td>
<td>7.0</td>
</tr>
<tr>
<td>10-13</td>
<td>27.9</td>
<td>0.6</td>
<td>0.8</td>
<td>2.1</td>
<td>18</td>
<td>870</td>
<td>49</td>
<td>1.64</td>
<td>6.3</td>
</tr>
<tr>
<td>10-14</td>
<td>17.8</td>
<td>3.1</td>
<td>1.2</td>
<td>3.1</td>
<td>26</td>
<td>836</td>
<td>52</td>
<td>0.72</td>
<td>7.2</td>
</tr>
<tr>
<td>11-1</td>
<td>15.1</td>
<td>3.3</td>
<td>1.0</td>
<td>2.8</td>
<td>25</td>
<td>855</td>
<td>53</td>
<td>0.70</td>
<td>6.7</td>
</tr>
<tr>
<td>11-2</td>
<td>15.1</td>
<td>3.2</td>
<td>1.1</td>
<td>2.9</td>
<td>24</td>
<td>859</td>
<td>52</td>
<td>0.61</td>
<td>6.7</td>
</tr>
<tr>
<td>11-3</td>
<td>15.8</td>
<td>3.3</td>
<td>1.0</td>
<td>3.4</td>
<td>29</td>
<td>855</td>
<td>54</td>
<td>0.71</td>
<td>6.9</td>
</tr>
<tr>
<td>11-4</td>
<td>16.5</td>
<td>3.3</td>
<td>1.0</td>
<td>2.8</td>
<td>24</td>
<td>843</td>
<td>55</td>
<td>0.69</td>
<td>6.6</td>
</tr>
<tr>
<td>11-5</td>
<td>14.7</td>
<td>3.4</td>
<td>1.0</td>
<td>3.7</td>
<td>32</td>
<td>869</td>
<td>53</td>
<td>0.79</td>
<td>6.2</td>
</tr>
<tr>
<td>11-6</td>
<td>18.5</td>
<td>3.1</td>
<td>1.1</td>
<td>3.5</td>
<td>30</td>
<td>846</td>
<td>54</td>
<td>0.77</td>
<td>6.8</td>
</tr>
<tr>
<td>11-7</td>
<td>14.6</td>
<td>3.2</td>
<td>1.0</td>
<td>2.8</td>
<td>25</td>
<td>872</td>
<td>52</td>
<td>0.72</td>
<td>6.7</td>
</tr>
<tr>
<td>11-8</td>
<td>18.5</td>
<td>3.2</td>
<td>1.1</td>
<td>2.9</td>
<td>25</td>
<td>862</td>
<td>54</td>
<td>0.79</td>
<td>6.6</td>
</tr>
<tr>
<td>11-9</td>
<td>17.5</td>
<td>3.6</td>
<td>1.3</td>
<td>3.5</td>
<td>30</td>
<td>854</td>
<td>53</td>
<td>0.60</td>
<td>7.8</td>
</tr>
<tr>
<td>11-10</td>
<td>15.1</td>
<td>3.8</td>
<td>1.1</td>
<td>3.4</td>
<td>30</td>
<td>864</td>
<td>51</td>
<td>0.66</td>
<td>5.9</td>
</tr>
<tr>
<td>11-11</td>
<td>15.1</td>
<td>3.7</td>
<td>1.1</td>
<td>2.8</td>
<td>26</td>
<td>864</td>
<td>53</td>
<td>0.73</td>
<td>6.7</td>
</tr>
<tr>
<td>11-12</td>
<td>15.4</td>
<td>3.6</td>
<td>1.1</td>
<td>2.9</td>
<td>25</td>
<td>878</td>
<td>51</td>
<td>0.80</td>
<td>6.5</td>
</tr>
<tr>
<td>11-13</td>
<td>25.7</td>
<td>0.9</td>
<td>0.7</td>
<td>2.1</td>
<td>18</td>
<td>886</td>
<td>49</td>
<td>1.76</td>
<td>5.9</td>
</tr>
<tr>
<td>11-14</td>
<td>15.5</td>
<td>2.4</td>
<td>1.1</td>
<td>2.9</td>
<td>25</td>
<td>866</td>
<td>51</td>
<td>0.84</td>
<td>6.2</td>
</tr>
<tr>
<td>12-1</td>
<td>16.6</td>
<td>3.4</td>
<td>1.1</td>
<td>3.1</td>
<td>27</td>
<td>856</td>
<td>54</td>
<td>0.65</td>
<td>6.9</td>
</tr>
<tr>
<td>12-2</td>
<td>16.6</td>
<td>3.2</td>
<td>1.2</td>
<td>3.1</td>
<td>27</td>
<td>847</td>
<td>53</td>
<td>0.75</td>
<td>6.9</td>
</tr>
<tr>
<td>12-3</td>
<td>17.3</td>
<td>3.3</td>
<td>1.1</td>
<td>3.5</td>
<td>29</td>
<td>843</td>
<td>54</td>
<td>0.66</td>
<td>7.2</td>
</tr>
<tr>
<td>12-4</td>
<td>17.5</td>
<td>3.3</td>
<td>1.0</td>
<td>3.1</td>
<td>25</td>
<td>828</td>
<td>55</td>
<td>0.63</td>
<td>6.9</td>
</tr>
<tr>
<td>12-5</td>
<td>16.0</td>
<td>3.5</td>
<td>1.1</td>
<td>3.6</td>
<td>31</td>
<td>863</td>
<td>54</td>
<td>0.72</td>
<td>8.3</td>
</tr>
<tr>
<td>12-6</td>
<td>19.5</td>
<td>3.3</td>
<td>1.1</td>
<td>3.5</td>
<td>30</td>
<td>836</td>
<td>55</td>
<td>0.71</td>
<td>7.2</td>
</tr>
<tr>
<td>12-7</td>
<td>15.4</td>
<td>3.2</td>
<td>1.1</td>
<td>3.0</td>
<td>26</td>
<td>856</td>
<td>53</td>
<td>0.67</td>
<td>6.9</td>
</tr>
<tr>
<td>12-8</td>
<td>19.6</td>
<td>3.2</td>
<td>1.2</td>
<td>3.1</td>
<td>26</td>
<td>840</td>
<td>55</td>
<td>0.76</td>
<td>6.9</td>
</tr>
<tr>
<td>12-9</td>
<td>18.2</td>
<td>3.7</td>
<td>1.4</td>
<td>3.8</td>
<td>32</td>
<td>845</td>
<td>53</td>
<td>0.77</td>
<td>8.1</td>
</tr>
<tr>
<td>12-10</td>
<td>16.9</td>
<td>3.5</td>
<td>1.1</td>
<td>3.0</td>
<td>26</td>
<td>856</td>
<td>51</td>
<td>0.61</td>
<td>6.3</td>
</tr>
<tr>
<td>12-11</td>
<td>16.6</td>
<td>3.5</td>
<td>1.2</td>
<td>3.1</td>
<td>27</td>
<td>853</td>
<td>54</td>
<td>0.68</td>
<td>6.9</td>
</tr>
<tr>
<td>12-12</td>
<td>17.4</td>
<td>3.4</td>
<td>1.2</td>
<td>3.1</td>
<td>27</td>
<td>866</td>
<td>52</td>
<td>0.73</td>
<td>6.8</td>
</tr>
<tr>
<td>12-13</td>
<td>27.1</td>
<td>0.5</td>
<td>0.8</td>
<td>2.1</td>
<td>18</td>
<td>875</td>
<td>49</td>
<td>1.69</td>
<td>6.1</td>
</tr>
<tr>
<td>12-14</td>
<td>17.0</td>
<td>2.7</td>
<td>1.1</td>
<td>3.0</td>
<td>25</td>
<td>846</td>
<td>52</td>
<td>0.76</td>
<td>6.8</td>
</tr>
</tbody>
</table>

[0075]
<table>
<thead>
<tr>
<th>発明例 No.</th>
<th>GS （μm）</th>
<th>DP粒積率（%）</th>
<th>DP粒が観察される視野での最大幅の平均値（μm）</th>
<th>∆YS/YS (%)</th>
<th>∆YS (MPa)</th>
<th>EC (容積％ACS)</th>
<th>曲げ表面粗さ平均値（μm）</th>
<th>500°C×30 min保持後のYS低下率</th>
<th>特徴が1μm以上の連続断面の面数（/1000μm²）</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-1</td>
<td>16.3</td>
<td>3.3</td>
<td>1.1</td>
<td>3.1</td>
<td>26</td>
<td>657</td>
<td>53</td>
<td>0.66</td>
<td>6.9</td>
</tr>
<tr>
<td>13-2</td>
<td>16.3</td>
<td>3.1</td>
<td>1.2</td>
<td>3.1</td>
<td>26</td>
<td>648</td>
<td>53</td>
<td>0.76</td>
<td>6.9</td>
</tr>
<tr>
<td>13-3</td>
<td>16.9</td>
<td>3.2</td>
<td>1.0</td>
<td>3.4</td>
<td>29</td>
<td>644</td>
<td>54</td>
<td>0.67</td>
<td>7.2</td>
</tr>
<tr>
<td>13-4</td>
<td>17.3</td>
<td>3.2</td>
<td>1.0</td>
<td>3.1</td>
<td>26</td>
<td>632</td>
<td>55</td>
<td>0.64</td>
<td>6.9</td>
</tr>
<tr>
<td>13-5</td>
<td>15.7</td>
<td>3.4</td>
<td>1.1</td>
<td>3.5</td>
<td>30</td>
<td>660</td>
<td>53</td>
<td>0.74</td>
<td>8.3</td>
</tr>
<tr>
<td>13-6</td>
<td>19.3</td>
<td>3.1</td>
<td>1.1</td>
<td>3.5</td>
<td>30</td>
<td>637</td>
<td>54</td>
<td>0.73</td>
<td>7.1</td>
</tr>
<tr>
<td>13-7</td>
<td>15.2</td>
<td>3.2</td>
<td>1.1</td>
<td>3.0</td>
<td>26</td>
<td>657</td>
<td>53</td>
<td>0.68</td>
<td>6.9</td>
</tr>
<tr>
<td>13-8</td>
<td>19.3</td>
<td>3.1</td>
<td>1.2</td>
<td>3.1</td>
<td>26</td>
<td>643</td>
<td>52</td>
<td>0.77</td>
<td>6.8</td>
</tr>
<tr>
<td>13-9</td>
<td>18.1</td>
<td>3.6</td>
<td>1.3</td>
<td>3.8</td>
<td>32</td>
<td>646</td>
<td>53</td>
<td>0.78</td>
<td>8.0</td>
</tr>
<tr>
<td>13-10</td>
<td>16.5</td>
<td>3.5</td>
<td>1.1</td>
<td>3.0</td>
<td>26</td>
<td>657</td>
<td>53</td>
<td>0.62</td>
<td>6.2</td>
</tr>
<tr>
<td>13-11</td>
<td>16.3</td>
<td>3.4</td>
<td>1.1</td>
<td>3.1</td>
<td>26</td>
<td>854</td>
<td>53</td>
<td>0.69</td>
<td>6.9</td>
</tr>
<tr>
<td>13-12</td>
<td>17.0</td>
<td>3.3</td>
<td>1.2</td>
<td>3.1</td>
<td>27</td>
<td>870</td>
<td>52</td>
<td>0.75</td>
<td>6.8</td>
</tr>
<tr>
<td>13-13</td>
<td>26.8</td>
<td>0.5</td>
<td>0.8</td>
<td>2.1</td>
<td>18</td>
<td>876</td>
<td>49</td>
<td>1.70</td>
<td>6.1</td>
</tr>
<tr>
<td>13-14</td>
<td>16.7</td>
<td>2.6</td>
<td>1.1</td>
<td>3.0</td>
<td>25</td>
<td>848</td>
<td>51</td>
<td>0.78</td>
<td>6.7</td>
</tr>
<tr>
<td>14-1</td>
<td>14.5</td>
<td>3.1</td>
<td>1.0</td>
<td>2.7</td>
<td>23</td>
<td>655</td>
<td>54</td>
<td>0.71</td>
<td>6.6</td>
</tr>
<tr>
<td>14-2</td>
<td>14.5</td>
<td>3.1</td>
<td>1.1</td>
<td>2.7</td>
<td>23</td>
<td>646</td>
<td>53</td>
<td>0.64</td>
<td>6.7</td>
</tr>
<tr>
<td>14-3</td>
<td>15.2</td>
<td>3.2</td>
<td>1.0</td>
<td>3.3</td>
<td>28</td>
<td>641</td>
<td>54</td>
<td>0.73</td>
<td>6.8</td>
</tr>
<tr>
<td>14-4</td>
<td>16.2</td>
<td>3.2</td>
<td>0.9</td>
<td>2.7</td>
<td>22</td>
<td>826</td>
<td>55</td>
<td>0.71</td>
<td>6.8</td>
</tr>
<tr>
<td>14-5</td>
<td>14.2</td>
<td>3.3</td>
<td>1.0</td>
<td>3.4</td>
<td>29</td>
<td>661</td>
<td>54</td>
<td>0.61</td>
<td>6.1</td>
</tr>
<tr>
<td>14-6</td>
<td>18.2</td>
<td>3.0</td>
<td>1.1</td>
<td>3.5</td>
<td>29</td>
<td>655</td>
<td>55</td>
<td>0.79</td>
<td>6.6</td>
</tr>
<tr>
<td>14-7</td>
<td>14.4</td>
<td>3.1</td>
<td>1.0</td>
<td>2.7</td>
<td>24</td>
<td>660</td>
<td>53</td>
<td>0.74</td>
<td>6.7</td>
</tr>
<tr>
<td>14-8</td>
<td>18.1</td>
<td>3.1</td>
<td>1.1</td>
<td>2.8</td>
<td>24</td>
<td>651</td>
<td>55</td>
<td>0.60</td>
<td>6.4</td>
</tr>
<tr>
<td>14-9</td>
<td>17.3</td>
<td>3.5</td>
<td>1.3</td>
<td>3.4</td>
<td>29</td>
<td>844</td>
<td>53</td>
<td>0.62</td>
<td>7.7</td>
</tr>
<tr>
<td>14-10</td>
<td>14.4</td>
<td>3.3</td>
<td>1.0</td>
<td>2.7</td>
<td>23</td>
<td>855</td>
<td>51</td>
<td>0.68</td>
<td>5.7</td>
</tr>
<tr>
<td>14-11</td>
<td>14.5</td>
<td>3.5</td>
<td>1.1</td>
<td>3.0</td>
<td>26</td>
<td>852</td>
<td>54</td>
<td>0.75</td>
<td>6.7</td>
</tr>
<tr>
<td>14-12</td>
<td>14.7</td>
<td>3.6</td>
<td>1.2</td>
<td>3.1</td>
<td>27</td>
<td>866</td>
<td>52</td>
<td>0.82</td>
<td>6.3</td>
</tr>
<tr>
<td>14-13</td>
<td>25.2</td>
<td>1.0</td>
<td>0.7</td>
<td>2.1</td>
<td>18</td>
<td>874</td>
<td>49</td>
<td>1.79</td>
<td>5.8</td>
</tr>
<tr>
<td>14-14</td>
<td>14.9</td>
<td>2.2</td>
<td>1.1</td>
<td>2.8</td>
<td>24</td>
<td>843</td>
<td>52</td>
<td>0.86</td>
<td>6.0</td>
</tr>
<tr>
<td>15-1</td>
<td>15.0</td>
<td>3.1</td>
<td>1.0</td>
<td>2.8</td>
<td>24</td>
<td>859</td>
<td>54</td>
<td>0.70</td>
<td>6.7</td>
</tr>
<tr>
<td>15-2</td>
<td>15.0</td>
<td>3.1</td>
<td>1.1</td>
<td>2.8</td>
<td>24</td>
<td>840</td>
<td>54</td>
<td>0.82</td>
<td>6.7</td>
</tr>
<tr>
<td>15-3</td>
<td>15.7</td>
<td>3.2</td>
<td>1.0</td>
<td>3.3</td>
<td>28</td>
<td>835</td>
<td>54</td>
<td>0.72</td>
<td>6.8</td>
</tr>
<tr>
<td>15-4</td>
<td>16.5</td>
<td>3.3</td>
<td>1.1</td>
<td>2.8</td>
<td>23</td>
<td>819</td>
<td>56</td>
<td>0.69</td>
<td>6.8</td>
</tr>
<tr>
<td>15-5</td>
<td>14.6</td>
<td>3.5</td>
<td>1.0</td>
<td>3.5</td>
<td>30</td>
<td>652</td>
<td>54</td>
<td>0.78</td>
<td>6.1</td>
</tr>
<tr>
<td>15-6</td>
<td>18.4</td>
<td>3.2</td>
<td>1.1</td>
<td>3.5</td>
<td>29</td>
<td>631</td>
<td>55</td>
<td>0.78</td>
<td>6.7</td>
</tr>
<tr>
<td>15-7</td>
<td>14.6</td>
<td>3.2</td>
<td>1.0</td>
<td>2.8</td>
<td>24</td>
<td>647</td>
<td>54</td>
<td>0.73</td>
<td>6.7</td>
</tr>
<tr>
<td>15-8</td>
<td>18.4</td>
<td>3.2</td>
<td>1.1</td>
<td>2.8</td>
<td>24</td>
<td>646</td>
<td>55</td>
<td>0.79</td>
<td>6.5</td>
</tr>
<tr>
<td>15-9</td>
<td>17.5</td>
<td>3.4</td>
<td>1.3</td>
<td>3.5</td>
<td>29</td>
<td>639</td>
<td>54</td>
<td>0.81</td>
<td>7.8</td>
</tr>
<tr>
<td>15-10</td>
<td>14.9</td>
<td>3.7</td>
<td>1.1</td>
<td>3.1</td>
<td>26</td>
<td>851</td>
<td>53</td>
<td>0.67</td>
<td>5.8</td>
</tr>
<tr>
<td>15-11</td>
<td>15.0</td>
<td>3.5</td>
<td>1.1</td>
<td>3.1</td>
<td>26</td>
<td>847</td>
<td>54</td>
<td>0.74</td>
<td>6.7</td>
</tr>
<tr>
<td>15-12</td>
<td>15.3</td>
<td>3.7</td>
<td>1.1</td>
<td>3.2</td>
<td>27</td>
<td>857</td>
<td>55</td>
<td>0.81</td>
<td>6.4</td>
</tr>
<tr>
<td>15-13</td>
<td>25.6</td>
<td>1.0</td>
<td>0.7</td>
<td>2.1</td>
<td>18</td>
<td>868</td>
<td>50</td>
<td>1.77</td>
<td>5.9</td>
</tr>
<tr>
<td>15-14</td>
<td>15.4</td>
<td>2.4</td>
<td>1.0</td>
<td>2.9</td>
<td>24</td>
<td>833</td>
<td>52</td>
<td>0.84</td>
<td>6.1</td>
</tr>
</tbody>
</table>

[0076]
<table>
<thead>
<tr>
<th>発明例No.</th>
<th>GS (μm)</th>
<th>DP面積率 (%)</th>
<th>DPセルが観察される視野での最大幅の平均値 (μm)</th>
<th>∠YS/ピークYS (%)</th>
<th>YS (MPa)</th>
<th>EC (%)</th>
<th>AC-S</th>
<th>50°Cx30min加熱後のYS低下率</th>
<th>"500°C×30min加熱後のYS低下率"</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-1</td>
<td>16.0</td>
<td>1.3</td>
<td>0.4</td>
<td>2.5</td>
<td>16.8</td>
<td>63</td>
<td>63</td>
<td>0.27</td>
<td>5.2</td>
</tr>
<tr>
<td>16-2</td>
<td>16.9</td>
<td>1.4</td>
<td>0.6</td>
<td>2.9</td>
<td>18.2</td>
<td>65</td>
<td>65</td>
<td>0.48</td>
<td>4.9</td>
</tr>
<tr>
<td>16-3</td>
<td>16.9</td>
<td>1.4</td>
<td>0.3</td>
<td>3.0</td>
<td>18.1</td>
<td>64</td>
<td>64</td>
<td>0.33</td>
<td>5.9</td>
</tr>
<tr>
<td>16-4</td>
<td>17.5</td>
<td>2.0</td>
<td>0.4</td>
<td>3.1</td>
<td>19.6</td>
<td>65</td>
<td>65</td>
<td>0.34</td>
<td>5.7</td>
</tr>
<tr>
<td>16-5</td>
<td>14.5</td>
<td>2.3</td>
<td>0.6</td>
<td>3.1</td>
<td>19.2</td>
<td>64</td>
<td>64</td>
<td>0.47</td>
<td>5.5</td>
</tr>
<tr>
<td>16-6</td>
<td>19.9</td>
<td>1.7</td>
<td>0.5</td>
<td>3.4</td>
<td>21.8</td>
<td>65</td>
<td>65</td>
<td>0.44</td>
<td>5.7</td>
</tr>
<tr>
<td>16-7</td>
<td>15.4</td>
<td>1.1</td>
<td>0.5</td>
<td>2.8</td>
<td>17.2</td>
<td>64</td>
<td>64</td>
<td>0.37</td>
<td>4.5</td>
</tr>
<tr>
<td>16-8</td>
<td>19.3</td>
<td>1.7</td>
<td>0.4</td>
<td>3.0</td>
<td>19.2</td>
<td>65</td>
<td>65</td>
<td>0.62</td>
<td>4.9</td>
</tr>
<tr>
<td>16-9</td>
<td>18.7</td>
<td>2.0</td>
<td>0.7</td>
<td>3.2</td>
<td>20.2</td>
<td>65</td>
<td>65</td>
<td>0.53</td>
<td>5.6</td>
</tr>
<tr>
<td>16-10</td>
<td>19.6</td>
<td>1.7</td>
<td>0.5</td>
<td>2.7</td>
<td>17.6</td>
<td>63</td>
<td>63</td>
<td>0.32</td>
<td>4.9</td>
</tr>
<tr>
<td>16-11</td>
<td>16.9</td>
<td>1.4</td>
<td>0.4</td>
<td>2.9</td>
<td>18.3</td>
<td>63</td>
<td>63</td>
<td>0.27</td>
<td>5.1</td>
</tr>
<tr>
<td>16-12</td>
<td>17.5</td>
<td>1.4</td>
<td>0.4</td>
<td>3.0</td>
<td>19.3</td>
<td>63</td>
<td>63</td>
<td>0.42</td>
<td>4.9</td>
</tr>
<tr>
<td>16-13</td>
<td>28.3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>9.2</td>
<td>66</td>
<td>66</td>
<td>1.34</td>
<td>2.6</td>
</tr>
<tr>
<td>16-14</td>
<td>16.9</td>
<td>1.1</td>
<td>0.4</td>
<td>2.0</td>
<td>13.2</td>
<td>61</td>
<td>61</td>
<td>0.33</td>
<td>4.4</td>
</tr>
<tr>
<td>16-15</td>
<td>16.6</td>
<td>1.4</td>
<td>0.3</td>
<td>2.8</td>
<td>17.1</td>
<td>64</td>
<td>64</td>
<td>0.34</td>
<td>4.5</td>
</tr>
<tr>
<td>16-16</td>
<td>16.3</td>
<td>0.5</td>
<td>0.2</td>
<td>1.6</td>
<td>10.6</td>
<td>62</td>
<td>62</td>
<td>0.30</td>
<td>2.7</td>
</tr>
<tr>
<td>16-17</td>
<td>16.3</td>
<td>0.5</td>
<td>0.2</td>
<td>1.7</td>
<td>10.9</td>
<td>61</td>
<td>61</td>
<td>0.30</td>
<td>2.5</td>
</tr>
<tr>
<td>16-18</td>
<td>16.9</td>
<td>0.5</td>
<td>0.2</td>
<td>1.5</td>
<td>10.6</td>
<td>61</td>
<td>61</td>
<td>0.20</td>
<td>2.1</td>
</tr>
<tr>
<td>16-19</td>
<td>16.9</td>
<td>0.5</td>
<td>0.2</td>
<td>1.5</td>
<td>10.6</td>
<td>61</td>
<td>61</td>
<td>0.20</td>
<td>2.1</td>
</tr>
<tr>
<td>16-20</td>
<td>17.2</td>
<td>1.7</td>
<td>0.4</td>
<td>3.0</td>
<td>19.6</td>
<td>65</td>
<td>65</td>
<td>0.30</td>
<td>5.1</td>
</tr>
<tr>
<td>17-1</td>
<td>11.0</td>
<td>4.4</td>
<td>1.7</td>
<td>4.4</td>
<td>41.4</td>
<td>92</td>
<td>92</td>
<td>0.84</td>
<td>8.5</td>
</tr>
<tr>
<td>17-2</td>
<td>11.0</td>
<td>4.5</td>
<td>1.5</td>
<td>4.3</td>
<td>40.3</td>
<td>91</td>
<td>91</td>
<td>1.06</td>
<td>8.5</td>
</tr>
<tr>
<td>17-3</td>
<td>11.6</td>
<td>4.6</td>
<td>1.5</td>
<td>4.3</td>
<td>39.3</td>
<td>90</td>
<td>90</td>
<td>0.96</td>
<td>8.7</td>
</tr>
<tr>
<td>17-4</td>
<td>11.3</td>
<td>4.8</td>
<td>1.5</td>
<td>4.3</td>
<td>39.4</td>
<td>89</td>
<td>89</td>
<td>1.17</td>
<td>8.4</td>
</tr>
<tr>
<td>17-5</td>
<td>11.1</td>
<td>4.9</td>
<td>1.6</td>
<td>4.9</td>
<td>46.1</td>
<td>93</td>
<td>93</td>
<td>1.05</td>
<td>9.9</td>
</tr>
<tr>
<td>17-6</td>
<td>13.4</td>
<td>4.1</td>
<td>1.5</td>
<td>4.4</td>
<td>40.6</td>
<td>90</td>
<td>90</td>
<td>1.15</td>
<td>8.9</td>
</tr>
<tr>
<td>17-7</td>
<td>8.9</td>
<td>4.2</td>
<td>1.7</td>
<td>4.0</td>
<td>37.9</td>
<td>92</td>
<td>92</td>
<td>1.33</td>
<td>8.4</td>
</tr>
<tr>
<td>17-8</td>
<td>13.4</td>
<td>4.6</td>
<td>1.5</td>
<td>4.5</td>
<td>41.1</td>
<td>91</td>
<td>91</td>
<td>1.19</td>
<td>6.6</td>
</tr>
<tr>
<td>17-9</td>
<td>11.9</td>
<td>4.8</td>
<td>1.6</td>
<td>4.8</td>
<td>44.1</td>
<td>91</td>
<td>91</td>
<td>1.20</td>
<td>9.7</td>
</tr>
<tr>
<td>17-10</td>
<td>11.6</td>
<td>4.5</td>
<td>1.5</td>
<td>4.2</td>
<td>39.7</td>
<td>91</td>
<td>91</td>
<td>1.15</td>
<td>8.2</td>
</tr>
<tr>
<td>17-11</td>
<td>11.0</td>
<td>4.7</td>
<td>1.6</td>
<td>4.4</td>
<td>40.5</td>
<td>92</td>
<td>92</td>
<td>0.98</td>
<td>8.5</td>
</tr>
<tr>
<td>17-12</td>
<td>12.2</td>
<td>4.6</td>
<td>1.6</td>
<td>4.3</td>
<td>41.3</td>
<td>93</td>
<td>93</td>
<td>1.07</td>
<td>8.7</td>
</tr>
<tr>
<td>17-13</td>
<td>2.5</td>
<td>1.7</td>
<td>1.4</td>
<td>2.9</td>
<td>27.1</td>
<td>95</td>
<td>95</td>
<td>2.05</td>
<td>7.6</td>
</tr>
<tr>
<td>17-14</td>
<td>11.3</td>
<td>4.1</td>
<td>1.5</td>
<td>4.1</td>
<td>37.9</td>
<td>91</td>
<td>91</td>
<td>1.11</td>
<td>6.8</td>
</tr>
<tr>
<td>17-15</td>
<td>10.7</td>
<td>4.0</td>
<td>1.8</td>
<td>3.9</td>
<td>36.0</td>
<td>90</td>
<td>90</td>
<td>0.67</td>
<td>7.5</td>
</tr>
<tr>
<td>17-16</td>
<td>11.3</td>
<td>3.7</td>
<td>1.6</td>
<td>3.6</td>
<td>33.0</td>
<td>91</td>
<td>91</td>
<td>0.93</td>
<td>7.0</td>
</tr>
<tr>
<td>17-17</td>
<td>11.0</td>
<td>3.6</td>
<td>1.5</td>
<td>3.5</td>
<td>31.5</td>
<td>90</td>
<td>90</td>
<td>1.05</td>
<td>5.9</td>
</tr>
<tr>
<td>17-18</td>
<td>11.3</td>
<td>4.1</td>
<td>1.8</td>
<td>3.7</td>
<td>32.0</td>
<td>89</td>
<td>89</td>
<td>1.12</td>
<td>5.6</td>
</tr>
<tr>
<td>17-19</td>
<td>12.2</td>
<td>4.0</td>
<td>1.4</td>
<td>3.2</td>
<td>26.9</td>
<td>88</td>
<td>88</td>
<td>1.16</td>
<td>6.0</td>
</tr>
<tr>
<td>17-20</td>
<td>11.5</td>
<td>4.7</td>
<td>1.8</td>
<td>4.3</td>
<td>39.3</td>
<td>90</td>
<td>90</td>
<td>1.21</td>
<td>8.6</td>
</tr>
</tbody>
</table>

表3-6
比較例 No.	GS (μm)	DP面積率 (%)	DPセラが観察される視野での最大幅の平均値 (μm)	∆YS/ピークYS (%)	∆YS (MPa)	EC (%)	AC (%)	500℃×30 min保持後のYS低下率	500℃×30 min保持後1μm以上の連続断続物価数 (∫1000μm²⁻¹)		
1-1	2.1	15.1	6.8	3.1	7.0	43	614	54	1.27	15.4	14.9
1-2	18.7	5.9	2.9	6.5	41	632	55	1.01	13.7	13.5	
1-3	16.8	4.8	2.5	5.5	36	654	56	1.32	12.1	11.0	
1-4	13.4	4.4	2.4	5.3	34	644	57	0.95	11.6	19.3	
1-5	24.4	5.5	2.6	6.0	39	640	55	2.03	12.2	26.1	
1-6	12.1	5.4	2.0	5.4	40	633	53	1.28	13.8	18.5	
1-7	17.5	5.1	2.7	5.7	37	644	55	1.69	12.7	25.5	
1-8	16.7	6.2	3.1	7.1	46	657	56	1.27	14.8	11.1	
1-9	16.6	5.6	2.6	6.4	39	618	54	1.22	12.8	15.1	
2-1	17.1	7.0	3.1	7.4	56	777	60	1.34	15.6	14.7	
2-2	18.1	6.6	2.9	6.4	30	778	61	1.23	14.0	16.6	
2-3	18.8	6.8	2.8	6.4	49	763	52	1.28	13.8	16.1	
2-4	16.2	6.0	2.3	5.5	45	611	52	1.07	11.3	24.4	
2-5	25.7	7.2	3.1	6.8	53	777	52	2.62	14.3	31.2	
2-6	14.8	7.6	3.2	7.0	54	765	46	1.44	14.2	26.6	
2-7	18.0	7.5	3.3	7.1	55	770	49	2.54	15.9	29.8	
2-8	18.7	7.1	2.9	6.6	51	766	56	1.23	13.7	16.1	
2-9	18.6	6.2	2.7	6.8	45	778	54	1.29	12.5	14.9	
3-1	17.4	6.8	3.3	7.3	62	645	46	0.67	14.8	15.4	
3-2	19.5	6.0	2.6	5.7	47	619	45	1.13	12.6	17.2	
3-3	19.0	5.9	2.6	5.2	43	634	46	0.64	11.3	17.2	
3-4	14.8	6.4	2.6	6.0	49	612	45	1.18	12.5	24.1	
3-5	25.6	6.1	2.6	5.9	50	637	46	2.47	12.3	30.5	
3-6	15.4	5.9	2.5	5.8	48	614	44	2.03	12.9	25.5	
3-7	16.2	7.5	3.4	7.2	58	602	43	2.39	15.7	28.1	
4-1	16.1	7.0	3.2	6.9	53	776	47	1.27	13.2	15.6	
4-2	17.9	6.4	3.0	6.7	53	786	48	1.29	13.9	19.2	
4-3	17.7	6.3	2.5	6.1	48	788	49	1.17	13.0	18.7	
4-4	15.0	5.1	2.0	5.6	45	813	50	1.98	12.0	25.5	
4-5	25.3	5.5	2.6	5.2	43	628	52	2.43	11.1	31.5	
4-6	13.9	7.2	3.3	7.3	55	759	46	2.07	15.9	26.6	
4-7	16.5	6.2	2.8	5.9	48	810	46	2.41	11.9	30.1	
5-1	17.7	7.2	3.5	7.6	63	629	42	0.99	16.4	16.1	
5-2	18.9	6.5	2.8	6.4	52	819	42	1.24	13.9	18.3	
5-3	19.4	5.4	1.8	5.3	43	816	45	0.83	11.0	20.0	
5-4	15.9	5.6	2.3	5.5	46	838	43	1.04	11.8	26.3	
5-5	26.3	5.6	2.3	5.4	45	838	44	2.56	11.7	29.6	
5-6	14.7	7.1	3.0	6.7	55	623	39	1.99	14.3	26.6	
5-7	17.8	7.6	3.5	7.3	60	622	44	2.33	15.5	29.7	
表3-8

<table>
<thead>
<tr>
<th>比較例No.</th>
<th>GS (μm)</th>
<th>DP面積率（％）</th>
<th>DPセルが観察される視野での最大幅の平均値（μm）</th>
<th>ΔYS/ピークYS（％）</th>
<th>ΔYS (MPa)</th>
<th>EC (％/A/S)</th>
<th>曲げ表面粗さ平均値（μm）</th>
<th>500℃×30分加熱後のYS低下率</th>
<th>経年1μm以上の連続型析出物圧数（/1000μm²）</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-30 5％以下 2μm以下 5％以下</td>
<td>1以下 15％以下 25％以下</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-21</td>
<td>16.0</td>
<td>6.0</td>
<td>2.7</td>
<td>6.6</td>
<td>38</td>
<td>576</td>
<td>61</td>
<td>1.24</td>
<td>13.5</td>
</tr>
<tr>
<td>16-22</td>
<td>19.6</td>
<td>5.1</td>
<td>2.6</td>
<td>6.2</td>
<td>37</td>
<td>595</td>
<td>62</td>
<td>1.01</td>
<td>11.9</td>
</tr>
<tr>
<td>16-23</td>
<td>17.5</td>
<td>3.9</td>
<td>2.1</td>
<td>5.1</td>
<td>32</td>
<td>617</td>
<td>64</td>
<td>1.33</td>
<td>10.2</td>
</tr>
<tr>
<td>16-24</td>
<td>14.2</td>
<td>3.6</td>
<td>2.1</td>
<td>5.1</td>
<td>31</td>
<td>606</td>
<td>65</td>
<td>0.90</td>
<td>10.1</td>
</tr>
<tr>
<td>16-25</td>
<td>25.3</td>
<td>4.6</td>
<td>2.2</td>
<td>5.6</td>
<td>33</td>
<td>692</td>
<td>63</td>
<td>2.16</td>
<td>10.4</td>
</tr>
<tr>
<td>16-26</td>
<td>13.0</td>
<td>5.5</td>
<td>2.5</td>
<td>6.0</td>
<td>35</td>
<td>585</td>
<td>62</td>
<td>1.26</td>
<td>12.0</td>
</tr>
<tr>
<td>16-27</td>
<td>18.4</td>
<td>4.1</td>
<td>2.1</td>
<td>5.3</td>
<td>32</td>
<td>606</td>
<td>63</td>
<td>2.08</td>
<td>10.8</td>
</tr>
<tr>
<td>16-28</td>
<td>17.5</td>
<td>5.4</td>
<td>2.6</td>
<td>6.8</td>
<td>42</td>
<td>620</td>
<td>64</td>
<td>1.23</td>
<td>12.9</td>
</tr>
<tr>
<td>16-29</td>
<td>17.5</td>
<td>4.8</td>
<td>2.2</td>
<td>6.0</td>
<td>34</td>
<td>575</td>
<td>60</td>
<td>1.14</td>
<td>11.0</td>
</tr>
<tr>
<td>17-21</td>
<td>10.1</td>
<td>8.2</td>
<td>3.5</td>
<td>8.5</td>
<td>72</td>
<td>555</td>
<td>49</td>
<td>1.62</td>
<td>17.1</td>
</tr>
<tr>
<td>17-22</td>
<td>11.9</td>
<td>8.2</td>
<td>3.4</td>
<td>7.4</td>
<td>63</td>
<td>555</td>
<td>49</td>
<td>1.72</td>
<td>15.4</td>
</tr>
<tr>
<td>17-23</td>
<td>11.6</td>
<td>8.1</td>
<td>3.1</td>
<td>7.2</td>
<td>61</td>
<td>549</td>
<td>43</td>
<td>1.66</td>
<td>15.3</td>
</tr>
<tr>
<td>17-24</td>
<td>9.2</td>
<td>7.3</td>
<td>2.8</td>
<td>6.5</td>
<td>57</td>
<td>587</td>
<td>42</td>
<td>1.57</td>
<td>12.7</td>
</tr>
<tr>
<td>17-25</td>
<td>18.5</td>
<td>8.4</td>
<td>3.5</td>
<td>7.8</td>
<td>67</td>
<td>555</td>
<td>41</td>
<td>3.17</td>
<td>15.7</td>
</tr>
<tr>
<td>17-26</td>
<td>7.7</td>
<td>8.7</td>
<td>3.6</td>
<td>7.9</td>
<td>66</td>
<td>841</td>
<td>37</td>
<td>2.00</td>
<td>15.4</td>
</tr>
<tr>
<td>17-27</td>
<td>10.7</td>
<td>8.9</td>
<td>3.6</td>
<td>8.2</td>
<td>69</td>
<td>846</td>
<td>39</td>
<td>3.01</td>
<td>17.4</td>
</tr>
<tr>
<td>17-28</td>
<td>11.6</td>
<td>8.4</td>
<td>3.5</td>
<td>7.5</td>
<td>63</td>
<td>843</td>
<td>47</td>
<td>1.50</td>
<td>15.2</td>
</tr>
<tr>
<td>17-29</td>
<td>11.3</td>
<td>7.5</td>
<td>3.1</td>
<td>6.7</td>
<td>57</td>
<td>854</td>
<td>43</td>
<td>1.72</td>
<td>13.8</td>
</tr>
<tr>
<td>18-1</td>
<td>14.8</td>
<td>0.8</td>
<td>0.1</td>
<td>2.9</td>
<td>10.0</td>
<td>556</td>
<td>61</td>
<td>0.16</td>
<td>5.5</td>
</tr>
</tbody>
</table>

符号の説明

[0079] 11 不連続析出（D P）セル
12 連続型析出物
請求の範囲

[請求項1] 〇を0.5〜4.0質量%、及び、S iを0.1〜1.2質量%含有し、残部がC u及び不可避的不純物からなり、C o及びS iの質量%比(C o/S i)が3.5≦C o/S i≦5.5で、不連続析出(DP)セルの面積率が5%以下であり、不連続析出(D P)セルの最大幅の平均値が2リーメ以下である電子材料用鋼合金。

[請求項2] 粒径が1μm以上である連続析出物が、圧延方向に平行な断面において1000パラミ2あたり25個以下である請求項1記載の電子材料用鋼合金。

[請求項3] 材料温度500℃として30分加熱した後の0.2%耐力の低下率が10%以下である請求項1又は2記載の電子材料用鋼合金。

[請求項4] Bad wayのW曲げ試験を板厚と曲げ半径の比が1となる条件で90°曲げ加工を行ったときの曲げ部の表面粗さRaが1μm以下である請求項1〜3何れか一項記載の電子材料用鋼合金。

[請求項5] 圧延方向に対し平行な断面における平均結晶粒径が10〜30μmである請求項1〜4何れか一項記載の電子材料用鋼合金。

[請求項6] ビーク0.2%耐力（ビークYS）、過時効0.2%耐力（過時効YS）、及びビークYSと過時効YSの差（ASYS）、及びA YSビークYS比≧5.0%の関係を満たす請求項1〜5何れか一項記載の電子材料用鋼合金。

ここで、ビーク0.2%耐力（ビークYS）とは時効処理時間を30時間とし、時効処理温度を25℃ずつ変化させて時効処理を行った際の最も高い0.2%耐力であり、過時効0.2%耐力（過時効YS）とはビークYSが得られた時効処理温度よりも25℃高い時効処理温度としたときの0.2%耐力である。

[請求項7] C r、S n、P、M g、M n、A g、A s、S b、B e、B 、T i、Z r、A l及びF eよりなる群から選ばれる少なくとも1種の合金元素を更に含有し、且つ、合金元素の総量が2.0質量%以下である
請求項1〜6何れか一項記載の電子材料用銅合金。

[請求項8]
- 所定の組成を有するインゴットを溶解錠造する工程1と、

- 次いで、材料温度を950℃〜1070℃として1時間以上加熱した後に熱間圧延をする工程2と、ただし、材料温度が850℃から600℃まで低下する際の平均冷却速度を0.4℃/s以上15℃/s以下とし、600℃以下の平均冷却速度を15℃/s以上とし、

- 次いで、冷間圧延及び焼鈍を随時に繰り返す工程3と、ただし焼鈍として時効処理を行う場合は材料温度を450℃〜600℃として3〜24時間実施し、時効処理直前に冷間圧延を行う場合は加工度を40％以下又は70％以上とし、

- 次いで、溶体化処理をする工程4と、ただし、溶体化処理における材料の最高到達温度を900℃〜1070℃とし、材料温度が最高到達温度に保持されている時間を480秒以下とし、材料温度が最高到達温度から400℃に低下するときの平均冷却速度を15℃/s以上とし、

- 次いで、時効処理を行う工程5と、ただし、時効処理直前に冷間圧延を行う場合は加工度を40％以下又は70％以上とし、

を含む請求項1〜7何れか一項記載の電子材料用銅合金の製造方法。

[請求項9]
工4の後、(1)〜(4')の何れかを実施することを含む請求項8記載の電子材料用銅合金の製造方法:

(1) 冷間圧延⇒時効処理 (工程5) ⇒冷間圧延

(1') 冷間圧延⇒時効処理 (工程5) ⇒冷間圧延⇒ (低温時効処理又は歪取焼鈍)

(2) 冷間圧延⇒時効処理 (工程5)

(2') 冷間圧延⇒時効処理 (工程5) ⇒ (低温時効処理又は歪取焼鈍)

(3) 時効処理 (工程5) ⇒冷間圧延

(3') 時効処理 (工程5) ⇒冷間圧延⇒ (低温時効処理又は歪取焼
鋳)
(4) 時効処理（工程5）→冷間圧延→時効処理
(4') 時効処理（工程5）→冷間圧延→時効処理→(低温時効処理
又は歪取焼錳)
ただし、低温時効処理は300℃〜500℃で1〜30時間実施す
る。
[請求項10] 請求項1〜7何れか一項記載の電子材料用銅合金を加工して得られ
た伸銅品。
[請求項11] 請求項1〜7何れか一項記載の電子材料用銅合金を備えた電子部品
。
A. CLASSIFICATION OF SUBJECT MATTER
C22C9/0 6 (2006.01)i, C22C9/0 0 (2006.01) i, C22C9/01 (2006.01) i, C22C9/02 (2006.01)i, C22C9/05 (2006.01)i, C22F1/08 (2006.01)i, H01B1/02 (2006.01)i, C22F1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C22C9/00 - 9/10, C22F1/08, H01B1/02, C22F1/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

X Further documents are listed in the continuation of Box C. [] See patent family annex.

* "A" special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "A" earlier application or patent but published on or after the international filing date
 * "A" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "A" document referring to an oral disclosure, use, exhibition or other means
 * "A" document published prior to the international filing date but later than the priority date claimed
 * "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "&" document member of the same patent family

Date of the actual completion of the international search: 01 July, 2011 (01.07.11)
Date of mailing of the international search report: 12 July, 2011 (12.07.11)

Name and mailing address of the ISA:
Japanese Patent Office

Facsimile No. Authorised officer

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2007-169764 A (The Furukawa Electric Co., Ltd.), 05 July 2007 (05.07.2007), entire text (Family: none)</td>
<td>1-7, 10, 11</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2009-242890 A (Nippon Mining & Metals Co., Ltd.), 22 October 2009 (22.10.2009), claims; paragraphs [0029] to [0031] (Family: none)</td>
<td>2</td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT／JP2011／058921

A． 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. C22C9/06 (2006. 01) Ⅱ, C22C9/00 (2006. 01) Ⅱ, C22C9/01 (2006. 01) Ⅱ, C22C9/02 (2006. 01) Ⅱ, C22C9/05 (2006. 01) Ⅱ, C22F1/08 (2006. 01) Ⅱ, H01B1/02 (2006. 01) Ⅱ, C22F1/00 (2006. 01) Ⅱ

B． 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. C22C9/00- 9/10 Ⅱ, C22F1/08, H01B1/02, C22F1/00

最小限資料以外の資料で調査を行った分野に含まれるもの
日本 国 実用 新案 公報 1922-Ⅱ
日本 国公開 実用 新案 公報 1971-2
日本 国実用 新案 紙公報 1996-Ⅱ
日本 国実用 新案 公報 1994-2

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C． 関連すると認められる文献
引用文献の カテゴリー

<table>
<thead>
<tr>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y JP 2010-59543 A (古河電気工業株式会社) 2010- 03. 18 , 全文</td>
<td>1-7 , 10 , 11</td>
</tr>
<tr>
<td>A & W0 2010/013790 A1</td>
<td>8 , 9</td>
</tr>
<tr>
<td>Y JP 2008-88512 A (日鉄金属株式会社) 2008- 04. 17 , 全文</td>
<td>1-7 , 10 , 11</td>
</tr>
<tr>
<td>Y JP 2007-169764 A (古河電気工業株式会社) 2007- 07. 05 , 全文 (フミリーなし)</td>
<td>1-7 , 10 , 11</td>
</tr>
<tr>
<td>A</td>
<td>8 , 9</td>
</tr>
</tbody>
</table>

☑ C欄の続きにも文献が挙列されている。

インターネットファミリーに関する別紙を参照。

* 引用文献のカテゴリー
IA に特に関連のある文献では、一般的技術水準を示すもの
IE 国際出願 日前の出願 または特許であるが、国際出願 日 以後に公表されたもの
EK 優先権主張に疑義を提起する文献又は他の文献の発行 日 はもとより他の 特別な理由を 確立するために引用する文献（理由を付す）
IB 口頭による開示、使用、展示等に 言及する文献
IP 国際出願 日前の出願、かつ優先権の主張の基礎となる出願
TA の日も後に公表された文献
TB に特に関連のある文献であって、発明の原理又は理論が 日の後に公表された文献
TM 国際出願 日後の出願 または特許であって、発明の原理又は理論が 日の後に公表された文献
X 新規性又は進歩性が認められないもの
Y 特に関連のある文献であって、当該文献のみで発表が 日の後に公表された文献
Z 特に関連のある文献であって、当該文献と他の1以上の文献との、当該文献の部分を 日の後に公表された文献
IA 同一バテンファミリー文献
国際調査報告
国際出願番号 ＰＣＴ／ＪＰ2011／058921

<table>
<thead>
<tr>
<th>ページ１の続き</th>
<th>関連すると認められる文献</th>
<th>連関する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (続き)</td>
<td>関連すると認められる文献</td>
<td>連関する請求項の番号</td>
</tr>
<tr>
<td>引用文献のカテゴリ</td>
<td>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</td>
<td>連関する請求項の番号</td>
</tr>
<tr>
<td>Ｙ</td>
<td>JP 2009-242890 A（日鉱金属株式会社）2009.10.22【特許請求の範囲】00291－0031（ファミリーなし）</td>
<td>2</td>
</tr>
</tbody>
</table>

様式ＰＣＴ／ＩＳＡ／２１０（第２ページの続き）（2009年7月）