(54) Title: MULTI-CAVITY TRAVELLING MOLD TUNNEL FOR MOLDING PROFILED PIPE AND MOLD BLOCK TUNNELS

(57) Abstract

A travelling mold tunnel (12) for the vacuum forming of profiled tube from extruded parison of molten thermoplastic material includes a plurality of parallel mold cavities (18) with a vacuum applied to each of the mold cavities.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country Name</th>
<th>Code</th>
<th>Country Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People’s Republic</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SK</td>
<td>Slovak Republic</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SU</td>
<td>Soviet Union</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
TITLE: MULTI-CAVITY TRAVELLING MOLD TUNNEL FOR MOLDING PROFILED PIPE AND MOLD BLOCK TUNNELS

FIELD OF THE INVENTION

This invention relates to a method and apparatus for simultaneously forming a plurality of profiled tubes in a single travelling mold tunnel. The profiled tube may be for example, ribbed tube or corrugated tube such as single walled corrugated tube or double walled corrugated tube having a corrugated outer wall and a smooth inner wall.

BACKGROUND OF THE INVENTION

A travelling mold tunnel may often be utilized for molding tube of different diameters by substitution of the mold blocks or by the use of interchangeable mold blocks as disclosed in U.S. Patent No. 4,325,685, issued on April 20, 1982 to Manfred A. A. Lupke. However, a necessary criterion for such tunnels is that they be of sufficient size and power to accommodate the largest mold blocks which it is expected to use. Such mold tunnels are large and may be uneconomic in use for molding tube of very small diameter using small mold blocks.

One reason for the any reduced efficiency in the molding of small diameter tube is due to the utilization of
the cooling capacity of the machine. This is measured in terms of the weight of tube which can be produced on the machine during a given period. If large molds are used in a travelling mold tunnel, the tunnel will be run at a slower speed than when small molds are used. Nevertheless, efficiency of the machine may be greater for the large molds since a greater weight of material may be processed using the cooling capacity of the machine efficiently. For the greater speeds and lesser weights of material processed in small molds, problems arise in utilizing the cooling capacity fully.

Further problems may arise in the provision of carrier means for the mold blocks suitable for use with very large mold blocks and for small mold blocks.

It has frequently been found desirable to utilize different travelling mold tunnels for molding large diameter tube and small diameter tube resulting, for some users in the capital expense of more than one machine.

SUMMARY OF THE INVENTION

The problem of providing a single travelling mold tunnel suitable for molding both large and small diameter pipe has been addressed, and according to the present invention, there is provided a travelling mold tunnel for forming profiled tube utilizing vacuum forming of an extruded parison of molten thermoplastics material, in which the tunnel includes a plurality of parallel mold cavities for forming tube. The mold cavities may be of the same or different profiles and/or the same or different sizes.

The plurality of mold cavities may be accommodated in mold blocks of an overall size suitable for use in a large installation normally capable of molding large
diameter tube. Such tube may sometimes have a diameter of as much as five feet or more.

The number of parallel mold cavities which may be provided is, of course, not only dependent on their individual diameters but also upon the overall size of the tunnel itself. It is envisaged that from two to ten cavities may conveniently be used.

The mold blocks utilized in the travelling mold tunnel may be formed in pairs of half molds carried in any convenient manner on separate conveyors as disclosed in the Lupke and Hegler patents previously referred to. Alternatively, they may be of the type disclosed in international application No. PCT/CA90/00372 filed by Manfred A. A. Lupke disclosing apparatus for making plastic tubing including hinged mold blocks. Whatever the general form of the mold blocks and the arrangements for their conveyance in the travelling mold tunnel, the invention includes mold blocks including a plurality of parallel mold cavities for the simultaneous molding of a plurality of tubes in a travelling mold tunnel comprising the blocks. the blocks also including means for vacuum form the tube in the mold blocks.

BRIEF DESCRIPTION OF THE DRAWINGS

The above as well as other advantages and features of the present invention will be described in greater detail according to preferred embodiments of the present invention in which;

Figure 1 is a rough perspective sketch of mold blocks according to the invention assembled into a travelling mold tunnel according to the invention;

Figures 2A, B, C and D are views of an engineering drawing of the apparatus of Figure 1;

SUBSTITUTE SHEET
Figures 3A, B, C and D are views of an engineering drawing of another embodiment of the invention; Figures 4A, B, C and D are views of an engineering drawing of another embodiment.

DETAILED DESCRIPTION ACCORDING TO THE PREFERRED EMBODIMENTS OF THE PRESENT INVENTION

Referring to the drawings, the illustrated apparatus includes a travelling mold 10 advancing in the direction of arrow A. In this embodiment, the mold tunnel consists of two sets of mold blocks 12, each comprising a pair of cooperating mold block halves 14, 16. Each mold block 12 is illustrated in all the embodiments as comprising an upper mold block half 14 and a lower mold block half 16. It is to be understood however, that the mold block halves 14, 16 might be located side by side, might be hinged together, might not be strictly halves but rather might be unequal parts, and other configurations are also possible.

The cooperating mold block halves 14, 16 of the aligned mold blocks 12 define two parallel mold tunnel cavities 18. In the embodiments illustrated the mold tunnel cavities 18 are formed by machining suitably configure half channels in the faces of the mold block halves 14, 16 which come together to form the tunnel. The configuration of the channels 18 is variable but, as may be seen from Figures 2A, 3A, and 4A, they may suitably be corrugated.

No means of circulating the mold block halves 14, 16 is shown but it will be appreciated that this may be by any convenient means. Moreover, Figure 1 which is included only as a rough picture of the tunnel does not show details of the vacuum forming means applicable to the mold surface.
of cavities 18. Such details are illustrated in Figures 2, 3 and 4.

In practice, a tubular parison of thermoplastics material extrudate will be extruded into each of the mold cavities 18 to form parallel tubes simultaneously as the mold tunnel advances in the direction of arrow A.

Figure 1 shows the mold block halves 14, 16 as having bases 20, 22 (base 20 is referred to as a base because mold block half 14 is upside down with respect to mold block half 16). Bases 20, 22 include a T-channel extending from side to side of the aligned mold blocks. The T-channel mates with a T-bar 24 of a carrier block 26 for the respective mold block half 14, 16. The carrier blocks 26 are themselves carried by a longitudinal track of a conveyor of the travelling mold tunnel. For this purpose each carrier block 26 is provided with a groove 30 in its base surface for cooperation with the track. The bases 20, 22 of mold block halves 14, 16 may be formed unitarily with mold block halves 14, 16 or may be separate parts connected to the respective mold block halves through tongue and groove connections.

In any event, the T-channel and T-bar 24 connections between the carrier blocks and the bases of the mold block halves 14, 16 may allow for the substitution of the mold blocks of the invention by conventional mold blocks having a single mold cavity therethrough when desired. Such conventional mold blocks may have a diameter comparable to the overall diameter of mold blocks 12 or may be somewhat smaller or larger. Indeed, the mold blocks 12 may be slid off T-bars 24 and substituted by other inventive mold blocks of different size and/or having a different number or configuration of mold cavities 18 or having different arrangements of vacuum forming tube in mold cavities 18.
Figures 2A, B, C and D illustrate provision of vacuum to cavities 18 from vacuum manifolds 32 in both mold halves 14, 16. Although the configurations are possible, the illustrated exemplary embodiment shows a vacuum channel 34 extending from top manifold 32 to one of the mold cavities 18, and a vacuum channel 36 extending from the bottom manifold 32 to the other of mold cavities 18. A longitudinally extending (i.e. parallel to the aligned mold blocks 12) subsidiary vacuum manifold 38 is provided for each channel 34, 36 adjacent the respective mold cavity 18. Communication of vacuum to the inner mold surface of cavities 18 from subsidiary manifolds 38 may be by conventional means. Seals 43 may be provided to inhibit leakage of vacuum.

In the embodiment of Figures 1 and 2, it is possible to control the vacuum to each of cavities 18 because separate manifolds 32 supply each of them.

At the interface between mold blocks 12, sealing means 44 may be provided to minimize leakage of vacuum.

Figures 3A, B, C and D illustrate another embodiment. Similar reference numerals are used to indicate similar apparatus parts as in Figures 1 and 2. In the Figure 3 embodiment vacuum is drawn only from a vacuum manifold 32 in the lower mold block halves 16. In this case, three vacuum channels 33, 35, 37 may be provided to distribute vacuum to three subsidiary manifolds 38 located to each side of mold cavities 18. Shut-off valves 40 are provided to control the vacuum in each of channels 33, 35, 37 so that either one of mold cavities 18 may be isolated or the vacuum thereto may be otherwise controlled.

Figures 4A, B, C and D illustrate another embodiment employing side vacuum manifolds 38. Again
similar reference numerals to those of the previous Figures are used to indicate similar parts. In this case, vacuum is supplied between the mold block halves 14, 16 to subsidiary manifolds 38 and thence to mold cavities 18. A seal 42 may be provided to allow independent operation of mold cavities 18 and to inhibit leakage therebetween.

There may be times when it is not desired to mold tube in all the mold cavities 18 which are provided. This is easily achieved by only extruding thermoplastic material into one of the cavities 18. However, in these circumstances it may be desirable to seal off the unused channel or channels 18 from vacuum. This may be achieved in some embodiments (see for example Figure 3B) by shut-off valves 40 or in others by the seals 42.

It is to be emphasized that while the drawings indicate only two mold cavities 18, the number of such cavities is limited only by the overall size of mold blocks 12. In practice, it is envisaged that any number from two to ten cavities may be present. The cavities may have similar or different profiles within the same mold tunnel and/or may have similar or different diameters.

Although various preferred embodiments of the present invention have been described herein in detail, it will be appreciated by those skilled in the art, that variations may be made thereto without departing from the spirit of the invention or the scope of the appended claims.
THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A travelling mold tunnel for vacuum forming of profiled tube from extruded parison of molten thermoplastics material, said tunnel including a plurality of parallel mold cavities and being characterized in that the vacuum is independently controllable for each of said mold cavities.

2. A travelling mold tunnel for vacuum forming of at least one profiled tube from extruded parison of molten thermoplastic material, said tunnel including a plurality of parallel mold cavities and being characterized by a plurality of vacuum channels, one to each of said mold cavities.

3. A travelling mold tunnel as claimed in Claim 2, characterized in that each of said vacuum channels is connected to its own source of vacuum.

4. A travelling mold tunnel as claimed in Claim 2, characterized by a separate vacuum manifold for each of said vacuum channels.

5. A travelling mold tunnel as claimed in Claim 2, characterized by a common vacuum source for all of said vacuum channels and control means for controlling vacuum through each vacuum channel.

6. A travelling mold tunnel as claimed in Claim 2, characterized by a common vacuum manifold for all of said vacuum channels and valve means to control the vacuum independently through each vacuum channel.

7. A travelling mold tunnel as claimed in Claim 6, characterized by a control valve for each vacuum channel.
8. A travelling mold tunnel as claimed in Claim 7, wherein each control valve is movable between an open and a closed position for sealing off selected ones of the channels from the vacuum.

9. A travelling mold tunnel as claimed in Claim 2, wherein each mold cavity is formed by a plurality of mold blocks, each of which comprises opposing mold block parts and characterized in that each of said mold block parts is provided with one of said vacuum channels.

10. A travelling mold tunnel as claimed in Claim 2, wherein each mold cavity is formed by a plurality of mold blocks each of which comprises opposing mold block parts characterized in that all of said vacuum channels are provided in only one of said mold block parts.

11. A travelling mold tunnel as claimed in Claim 1, characterized by common tube profile forming configurations for each of said mold cavities.

12. A travelling mold tunnel as claimed in Claim 1, characterized by different tube profile forming configurations for said mold cavities.

13. A travelling mold tunnel for vacuum forming of profiled tube from extruded parison of molten thermoplastic material, said tunnel including a plurality of parallel mold cavities and being characterized by means of applying the vacuum to each of said mold cavities.

SUBSTITUTE SHEET
I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.Cl. 5 B29C47/12; B29C49/00

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl. 5</td>
<td>B29C</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP, A, 0 143 278 (FRÄNKISCHE ROHRWERKE GEBR. KIRCHNER GMBH & CO.) 5 June 1985 see the whole document</td>
<td>13</td>
</tr>
<tr>
<td>A</td>
<td>---</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 0 048 113 (LUPKE, GERD PAUL HEINRICH) 24 March 1982 cited in the application see abstract see page 3, line 24 - line 26; figures ---</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 0 359 089 (LUPKE, MANFRED ARNO ALFRED) 21 March 1990 cited in the application see abstract see claims; figures ---</td>
<td>1-13</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

- **X** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

A document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

26 August 1993

Date of Mailing of this International Search Report

08-09-93

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Officer

JENSEN K.S.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US,A,4 374 079 (FOUSS ET AL.) 15 February 1983</td>
<td>1-13</td>
</tr>
</tbody>
</table>
This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDIP file on 26/08/93.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO-A-8501471</td>
<td>01-04-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-61500657</td>
<td>23-06-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A-2108514</td>
<td>26-03-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A-5002478</td>
<td>None</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.