woO 2007/117707 A1 |00 0000 O 0

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
18 October 2007 (18.10.2007)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

lﬂ[ﬁ A0 000

(10) International Publication Number

WO 2007/117707 Al

(51)

21

(22)
(25)
(26)
(30)

(1)

(72)

(81)

International Patent Classification:

HO4N 7/24 (2006.01)

International Application Number:
PCT/US2007/008937

International Filing Date: 9 April 2007 (09.04.2007)

Filing Language: English

Publication Language: English

Priority Data:

11/400,788 7 April 2006 (07.04.2006) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: ZUO, Xiping; One Microsoft Way, Redmond,
Washington 98052-6399 (US). LIN, Chih-Lung; One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

(34)

CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,
IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: QUANTIZATION ADJUSTMENT BASED ON TEXTURE LEVEL

(57) Abstract: A video encoder

Start identifies a current smooth

region of a current picture in a

Y sequence and performs temporal

1710 analysis by determining whether

Texture analysis -t a corresponding region in at least

one previous and/or future picture

¢ is smooth. Based at least in part

on the temporal analysis, the

1720~ . 1750 encoder adjusts quantization in
Temporal analysis Next block .

the current smooth region. An

i encoder determines a differential

1730

1740

Add to block count

No

Done?

quantization interval for a
sequence, the interval comprising
an interval number. The interval
constrains the encoder to skip
differential quantization for
at least the interval number
of predicted pictures after a
predicted differentially quantized
picture. An encoder analyzes
texture in a current picture and
sets a smoothness threshold.
The encoder compares texture
data with the smoothness

End

threshold and adjusts differential
quantization for at least part of the
current picture based on a finding
of at least one smooth region in
the current picture according to
the smoothness threshold.

WO 20077117707 A1 | NI DI0 000 0T 0000000 00

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations” appearing at the begin-
— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gazette.

claims and to be republished in the event of receipt of

amendments

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

QUANTIZATION ADJUSTMENT BASED ON TEXTURE LEVEL
BACKGROUND
With the increased popularity of DVDs, music delivery over the Internet, and
digital cameras, digital media have become commonplace. Engineers use a variety of
techniques to process digital audio, video, and images efficienily while still maintaining
quality. To understand these techniques, it helps to understand how the audio, video, and
image information is represented and processed in a computer.

L Representation of Media Information in a Computer

A computer processes media information as a series of numbers representing that
information. For example, a single number may represent the intensity of brightness or
the intensity of a color component such as red, green or blue for each elementary small
region of a picture, so that the digital representation of the picture consists of one or more
arrays of such numbers. Each such number may be referred to as a sample. For a color
imége, it is conventional to use more than one sample to represent the color of each
elemental region, and typically three samples are used. The set of these samples for an
elemental region may be referred to as a pixel, where the word "pixel" is a contraction
referring to the concept of a "picture element." For example, one pixel may consist of
three samples that represent the intensity of red, green and blue light necessary to
represent the elemental region. Such a pixel type is referred to as an RGB pixel. Several
factors affect quality of media information, including sample depth, resolution, and frame
rate (for video).

Sample depth is a property no'rrnally measured in bits that indicates the range of
numbers that can be used to represent; a sample. When more values are possible for the
sample, quality can be higher because the number can capture more subtle variations in
intensity and/or a greater range of values. Resolution generally refers to the number of
samples over some duration of time (for audio) or space (for images or individual video
pictures). Images with higher resolution tend to look crisper than other images and
contain more discernable useful details. Frame rate is a common term for temporal
resolution for video. Video with higher frame rate tends to mimic the smooth motion of
natural objects better than other video, and can similarly be considered to contain more
detail in the temporal dimension. For all of these factors, the tradeoff for high -quality is
the ¢ost of storing and transmitting the information in terms of the bit rate necessary to

represent the sample depth, resolution and frame rate, as Table 1 shows.

10

15

20

25

WO 2007/117707 PCT/US2007/008937

Bits Per Pixel Resolution Frame Rate | Bit Rate

(sample depth times (in pixels, Width | (in frames (in millions

samplés per pixel)) x Height) per second) of bits per
second)

8 (value 0-255, monochrome) | 160x120 7.5 1.2

24 (value 0-255, RGB) 320x240 15 27.6

24 (value 0-255, RGB) 640x480 30 221.2

24 (value 0-255, RGB) 1280x720 60 1327.1

Table 1: Bit rates for different quality levels of raw video

Despite the high bit rate necessary for storing and sending high quality video (such
as HDTV), companies and consumers increasingly depend on computers to create,
distribute, and play back high quality content. For this reason, engineers use compression
(also called source coding or source encoding) to reduce the bit rate of digital media.
Compression decreases the cost of storing and transmitting the information by converting
the information into a lower bit rate form. Compression can be lossless, in which quality
of the video does not suffer but decreases in bit rate are limited by the complexity of the
video. Or, compression can be lossy, in which quality of the video suffers but decreases in
bit rate are more dramatic. Decompression (also called decoding) reconstructs a version
of the original information from the compressed form. A “codec” is an encoder/decoder
system.

In general, video compression techniques include “intra” compression and “inter”
or predictive compression. For video frames, intra compression techniques compress
individual frames, typically called I-frames or key frames. Inter compression techniques
compress frames with reference to preceding and/or following frames, and inter-
compressed frames are typically called predicted frames, P-frames, or B-frames.

IL. Inter and Intra Compression in Windows Media Video, Versions 8 and 9

Microsoft Corporation’s Windows Media Video, Version 8 [“WMV8”] includes a

video encoder and a video decoder. The WMV 8 encoder uses intra and inter compression,
and the WMV8 decoder uses intra and inter decompression. Windows Media Video,
Version 9 [“WMV9”’] uses a similar architecture for many operations.

A. Intra Compression

Figure 1 illustrates block-based intra compression 100 of a block 105 of samples in
a key frame in the WMYV8 encoder. A block is a set of samples, for example, an 8x8
arrangement of samples. The WMV8 encoder splits a key video frame into 8x8 blocks

and applies an 8x8 Discrete Cosine Transform [“DCT”] 110 to individual blocks such as

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

the block 105. A DCT is a type of frequency transform that converts the 8x8 block of
samples (spatial information) into an 8x8 block of DCT coefficients 115, which are
frequency information. The DCT operation itself is lossless or nearly lossless. Compared
to th'e ori ginal sample values, however, the DCT coefficients are more efficient for the
encoder to compress since most of the significant information is concentrated in low
frequency coefficients (conventionally, the upper left of the block 115) and many of the
high frequency coefficients (conventionally, the lower right of the block 115) have values
of zero or close to zero.

The encoder then quantizes 120 the DCT coefficients, resulting in an 8x8 block of
quantized DCT coefficients 125. Quantization is lossy. Since low frequency DCT
coefficients tend to have higher values, quantization typically results in loss of precision
but not complefe loss of the information for the coefficients. On the other hand, since high
frequency DCT coefficients tend to have values of zero or close to zero, quantization of
the high frequency coefficients typically results in contiguous regions of zero values. In
addition, in some cases high frequency DCT coefficients are quantized more coarsely than
low frequency DCT coefficients, resulting in greater loss of precision/information for the
high frequency DCT coefficients.

The encoder then prepares the 8x8 block of quantized DCT coefficients 125 for
entropy encoding, which is a form of lossless compression. The exact type of entropy
encoding can vary depending on whether a coefficient is a DC coefficient (lowest
frequency), an AC coefficient (other frequencies) in the top row or left column, or another
AC coefficient.

The encoder encodes the DC coefficient 126 as a differential from the DC
coefficient 136 of a neighboring 8x8 block, which is a previously encoded neighbor (e.g.,
top or left) of the block being encoded. (Figure 1 shows a neighbor block 135 that is
sitnated to the left of the block being encoded in the frame.) The encoder entropy encodes
140 the differential.

The entropy encoder can encode the left column or top row of AC coefficients as a
differential from a corresponding left column or top row of the neighboring 8x8 block.
This is an example of AC coefficient prediction. Figure 1 shows the left column 127 of
AC coefficients encoded as a differential 147 from the left column 137 of the neighboring
(in reality, to the left) block 135. The differential coding increases the chance that the
differential coefficients have zero values. The remaining AC coefficients are from the
block 125 of quantized DCT coefficients.

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

The encoder scans 150 the 8x8 block 145 of quantized AC DCT coefficients into a
one-dimensional array 155 and then entropy encodes the scanned AC coefficients using a
variation of run length coding 160. The encoder selects an entropy code from one or more
run/level/last tables 165 and outputs the entropy code.

B. Inter Compression

Inter compression in the WMVS8 encoder uses block-based motion compensated
prediction coding followed by transform coding of the residual error. Figures 2 and 3
illustrate the block-based inter compression for a predicted frame in the WMV 8 encoder.
In particular, Figure 2 illustrates motion estimation for a predicted frame 210 and Figure 3
illustrates compression of a prediction residual for a motion-compensated block of a
predicted frame.

For example, in Figure 2, the WMV 8 encoder computes a motion vector for a
macroblock 215 in the predicted frame 210. To compute the motion vector, the encoder
searches in a search area 235 of a reference frame 230. Within the search area 235, the
encoder compares the macroblock 215 from the predicted frame 210 to various candidate
macroblocks in order to find a candidate macroblock that is a good match. The encoder
outputs information specifying the motion vector (entropy coded) for the matching
macroblock. The motion vector is differentially coded with respect to a motion vector
predictor.

After reconstructing the motion vector by adding the differential to the motion
vector predictor, a decoder uses the motion vector to compute a prediction macroblock for
the macroblock 215 using information from the reference frame 230, which is a previously
reconstructed frame available at the encoder and the decoder. The prediction is rarely
perfect, so the encoder usually encodes blocks of pixel differences (also called the error or
residual blocks) between the prediction macroblock and the macroblock 215 itself.

Figure 3 illustrates an example of computation and encoding of an error block 335
in the WMVS$ encoder. The error block 335 is the difference between the predicted block
315 and the original current block 325. The encoder applies a DCT 340 to the error block
335, resulting in an 8x8 block 345 of coefficients. The encoder then quantizes 350 the
DCT coefficients, resulting in an 8x8 block of quantized DCT coefficients 355. The
encoder scans 360 the 8x8 block 355 into a one-dimensional array 365 such that
coefficients are generally ordered from lowest frequency to highest frequency. The

encoder entropy encodes the scanned coefficients using a variation of run length coding

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

370. The encoder selects an entropy code from one or more rur/level/last tables 375 and
outputs the entropy code.

Figure 4 shows an example of a corresponding decoding process 400 for an inter-
coded block. In summary of Figure 4, a decoder decodes (410, 420) entropy-coded
information representing a prediction residual using variable length decoding 410 with one
or more run/level/last tables 415 and run length decoding 420. The decoder inverse scans
430 a one-dimensional array 425, storing the entropy-decoded information into a two-
dimensional block 435. The decoder inverse quantizes and inverse DCTs (together, 440)
the data, resulting in a reconstructed error block 445. In a separate motion compensation
path, the decoder computes a predicted block 465 using motion vector information 455 for
displacement from a reference frame. The decoder combines 470 the predicted block 465
with the reconstructed error block 445 to form the reconstructed block 475. An encoder
also performs the inverse quantization, inverse DCT, motion compensation and combining
to reconstruct frames for use as reference frames.

Iﬁ. Lossy Compression and Quantization

The preceding section mentioned quantization, a mechanism for lossy
compression, and entropy coding, also called lossless compression. Lossless compression
reduces the bit rate of information by removing redundancy from the informatioﬂ without
any reduction in fidelity. For example, a series of ten consecutive pixels that are all
exactly the same shade of red could be represented as a code for the particular shade of red
and the number ten as a "run length" of consecutive pixels, and this series can be perfectly
reconstructed by decompression from the code for the shade of red and the indicated
number (ten) of consecutive pixels having that shade of red. Lossless compression
techniques reduce bit rate at no cost to quality, but can only reduce bit rate up to a certain
point. Decreases in bit rate are limited by the inherent amount of variability in the
statistical characterization of the input data, which is referred to as the source entropy.

In contrast, with lossy compression, the quality suffers somewhat but the
achievable decrease in bit rate is more dramatic. For exarriple, a series of ten pixels, each
being a slightly different shade of red, can be approximated as ten pixels with exactly the
same particular approximate red color. Lossy compression techniques can be used to
reduce bit rate more than lossless compression techniques, but some of the reduction in bit
rate is achieved by reduciné quality, and the lost quality cannot be completely recovered.
Lossy compression is often used in conjunction with lossless compression — in a system

design in which the lossy compression establishes an approximation of the information

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

and lossless compression techniques are applied to represent the approximation. For
example, the series of ten pixels, each a slightly different shade of red, can be represented
as a code for one particular shade of red and the number ten as a run-length of consecutive
pixels. In general, an encoder varies quantization to trade off quality and bit rate. Coarser
quantizati;)n results in greater quality reduction but allows for greater bit rate reduction. In
decompression, the original series would then be reconstructed as ten pixels with the same
approximated red color.

According to one possible definition, quantization is a term used for an
approximating non-reversible mapping function commonly used for lossy compression, in
which there is a specified set of possible output values, and each member of the set of
possible output values has an associated set of input values that result in the selection of
that particular output value. A variety of quantization techniques have been developed,
including scalar or vector, uniform or non-uniform, and adaptive or non-adaptive
quantization.

A. Scalar Quantizers

According to one possible definition, a scalar quantizer is an approximating
functional mapping x = QOfx] of an input value x to a quantized value Q[x], sometimes
called a reconstructed value. Figure 5 shows.a "staircase" /O function 500 for a scalar
quantizer. The horizontal axis is a number line for a real number input variable x, and the
vertical axis indicates the corresponding quantized values Q[x]. The number line is
partitioned by thresholds such as the threshold 510. Each value of x within a given range
between a pair' of adjacent thresholds is assigned the same quantized value Q[x]. For
example, each value of x within the range 520 is assigned the same quantized value 530.
(At a threshold, one of the two possible quantized values is assigned to an input x,
depending on the system.) Overall, the quantized values Q[x] exhibit a discontinuous,
staircase pattern. The distance thé mapping continues along the number line depends on
the system, typically ending after a finite number of thresholds. The placement of the
thresholds on the number line may be uniformly spaced (as shown in Figure 5) or non-
uniformly spaced.

A scalar quantizer can be decomposed into two distinct stages. The first stage is
the classifier stage, in which a classifier function mapping x = A[x] maps an input x to a
quantization index A[x], which is often integer-valued. In essence, the classifier segments
an input number line or data set. Figure 6A shows a generalized classifier 600 and

thresholds for a scalar quantizer. As in Figure 5, a number line for a real number variable

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

x is segmented by thresholds such as the threshold 610. Each value of x within a given

range such as the range 620 is assigned the same quantized value Q[x]. Figure 6B shows a

. numerical example of a classifier 650 and thresholds for a scalar quantizer.

In the second stage, a reconstructor functional mapping k£ > £ [k] maps each
quantization index k to a reconstruction value S [£]. In essence, the reconstructor places
steps having a particular height relative to the input number line segments (or selects a
subset of data set values) for reconstruction of each region determined by the classifier.
The reconstructor functional mapping may be implemented, for example, using a lookup
table. Overall, the classifier relates to the reconstructor as follows:

Qlx] = BAlx]) .

In common usage, the term “quantization” is often used to describe the classifier
stage, which is performed during encoding. The term “inverse quantization” is similarly
used to describe the reconstructor stage, whether performed during encoding or decoding.

The distortion introduced by using such a quantizer may be computed with a
difference-based distortion measure d(x—Q[x]). Typically, such a distortion measure has
the property that d(x—Q[x]) increases as x—Q[x] deviates from zero; and typically each
reconstruction value lies within the range of the corresponding classification region, so
that the straight line that would be formed by the functional equation Qfx] =x will pass
through every step of the staircase diagram (as shown in Figure 5) and therefore Q[QO[x]]
will typically be equal to Q[x]. In general, a quantizer is considered better in rate-
distortion terms if the quantizer results in a lower average value of distortion than other
quantizers for a given bit rate of output. More formally, a quantizer is considered better if,
for a source random variable X, the expected (i.e., the average or statistical mean) value of
the distortion measure D = Ex{d(X-Q[X])} is lower for an equal or lower entropy H of
A[X]. The most commonly-used distortion measure is the squared error distortion .
measure, for which d(jx—[) = x—|*. When the squared error distortion measure is used,
the expected value of the distortion measure (D) is referred to as the mean squared error.

B. Dead Zone + Uniform Threshold Quantizers

A non-uniform quantizer has threshold values that are not uniformly spaced for all
classifier regions. According to one possible definition, a dead zone plus uniform
threshold quantizer [“DZ+UTQ"] is a quantizer with uniformly spaced threshold values
for all classifier regions except the one containing the zero input value (which is called the
dead zone [“DZ”]). In a general sense, a DZ+UTQ is a non-uniform quantizer, since the

DZ size is different than the other classifier regions.

-7-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

A DZ+UTQ has a classifier index mapping rule x -> 4[x] that can be expressed
based on two parameters. Figure 7 shows a staircase /O function 700 for a DZ+UTQ, and
Figux;e 8A shows a generalized classifier 800 and thresholds for a DZ+UTQ. The
parameter s, which is greater than 0, indicates the step size for all steps other than the DZ.

Mathematically, all s, are equal to s for i = 0. The parameter z, which is greater than or

equal to 0, indicates the ratio of the DZ size to the size of the other steps. Mathematically,
s, =z+s. In Figure 8A, z is 2, so the DZ is twice as wide as the other classification zones.

The index mapping rule x > A[x] for a DZAUTQ can be expressed as:
Alx]=sign(x) *max(O, ll—’-‘—' ‘% + 1D),
N

where || denotes the smallest integer less than or equal to the argument and where sign(x)
is the function defined as:
+1, forx=z0,

sign(x) = {-— 1, forx<0. (3).

Figure 8B shows a numerical example of a classifier 850 and thresholds for a
DZ+UTQ with s = 1 and z = 2. Figures 5, 6A, and 6B show a special case DZ+UTQ with
z = 1. Quantizers of the UTQ form have good performance for a variety of statistical
sources. In particular, the DZ+UTQ form is optimal for the statistical random variable
source known as the Laplacian source.

In some system designs (not shown), an additional consideration may be necessary
to fully characterize a DZ+UTQ classification rule. For practical reasons there may be a
need to limit the range of values that can result from the classification function 4[x] to
some reasonable finite range. This limitation is referred to as clipping. For example, in -

some such systems the classification rule could more precisely be defined as:

A[x] =sign(x) *min[g, max(O, ['—’s‘—'--;-nm @,

where g is a limit on the absolute value of A[x].

Different reconstruction rules may be used to determine the reconstruction value
for each quantization index. Standards and product specifications that focus only on
achieving interoperability will often specify reconstruction values without necessarily
specifying the classification rule. In other words, some specifications may define the
functional mapping k = S [k] without defining the functional mapping x > A[x]. This

allows a decoder built to comply with the standard/specification to reconstruct information

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

correctly. In contrast, encoders are often given the freedom to change the classifier in any
way that they wish, while still complying with the standard/specification.

Numerous systems for adjusting quantization thresholds have been developed.
Many standards and products specify reconstruction values that correspond to a typical
mid-point reconstruction rule (e.g., for a typical simple classification rule) for the sake of
simplicity. For classification, however, the thresholds can in fact be adjusted so that
certain input values will be mapped to more common (and hence, lower bit rate} indices,
which makes the reconstruction values closer to optimal.

In many systems, the extent of quantization is measured in terms of quantization
step size. Coarser quantization uses larger quantization step sizes, corresponding to wider
ranges of input values. Finer quantization uses smaller quantization step sizes. Often, for
purposes of signaling and reconstruction, quantization step sizes are parameterized as
multiples of a smallest quantization step size.

C. Quantization Artifacts

As mentioned above, lossy compression tends to cause a decrease in quality. For
example, a series of ten samples of slightly different values can be approximated using
quantization as ten samples with exactly the same particular approximate value. This kind
of quantization can reduce the bit rate of encoding the series of ten samples, but at the cost
of lost detail in the original ten samples.

In some cases, quantization produces visible artifacts that tend to be more
artificial-looking and visually distracting than simple loss of fine detail. For example,
smooth, un-textured content is susceptible to contouring arﬁfacts — artifacts that appear
between regions of two different quantization output values — because the human visual
system is sensitive to subtle variations (particularly luma differences) in smooth content.
Using the above example, consider a case where the luma values of the series of ten
samples change gradually and consistently from the first sample to the tenth sample.
Quantization may approximate the first five sample values as one value and the last five
sample values as another value. While this kind of quantization may not create visible
artifacts in textured areas due to masking effects, in smooth regions it can create a visible
line or step in the reconstructed image between the two sets of five samples.

IV. _ Differential Quantization in VC-1

In differential quantization, an encoder varies quantization step sizes (also referred

to herein as quantization parameters or QPs in some implementations) for different parts

of a picture. Typically, this involves varying QPs on a macroblock level or other sub-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

picture level. The encoder makes decisions on how to vary the QPs, and signals those
decisions, as appropriate, to a decoder.

For example, a VC-1 encoder optionally chooses differential quantization for
compression. The encoder sends a bitstream element (DQUANT) at a syntax level above
picture level to indicate whether or not the QP can vary among the macroblocks in
individual pictures. The encoder sends a picture-level bitstream element, PQINDEX, to
indicate a picture QP. If DQUANT = 0, the QP indicated by PQINDEX is used for all
macroblocks in the picture. If DQUANT = 1 or 2, different macroblocks in the same
picture can use different QPs.

The VC-1 encoder can use more than one approach to differential quantization. In
one approach, only two different QPs are used for a picture. This is referred to as bi-level
differential quantization, For example, one QP is used for macroblocks at picture edges
and another QP is used for macroblocks in the rest of the picture. This can be useful for
saving bits at picture edges, where fine detail is less important for maintaining overall
visual quality. Or, a 1-bit value signaled per macroblock indicates which of two available
QP values to use for the macroblock. In another approach, referred to as multi-level
differential quantization, a larger number of different QPs can be used for individual
macroblocks in a picture.

The encoder sends a picture-level bitstream element, VOPDQUANT, when
DQUANT is non-zero. VOPDQUANT is composed of other elements, potentially
including DQPROFILE, which indicates which parts of the picture can use QPs other than
the picture QP. When DQPROFILE indicates that arbitrary, different macroblocks can
use QPs other than the picture QP, the bitstream element DQBILEVEL is present. If
DQBILEVEL = 1, each macroblock uses one of two QPs (bi-level quantization). If
DQBILEVEL = 0, each macroblock can use any QP (multi-level quantization).

The bitstream element MQDIFF is sent at macroblock level to signal a 1-bit
selector for a macroblock for bi-level quantization. For multi-level quantization, MQDIFF
indicates a differential between the picture QP and the macroblock QP or escape-coded
absolute QP for a macroblock.

V. Other Standards and Products

Numerous international standards specify aspects of video decoders and formats
for compressed video information. Directly or by implication, these standards also specify
certain encoder details, but other encoder details are not specified. Some standards

address still image compression/decompression, and other standards address audio

-10-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

compression/decompression. Numerous companies have produced encoders and decoders
for audio, still images, and video. Various other kinds of signals (for example,
hyperspectral imagery, graphics, text, financial information, etc.) are also commonly
represented and stored or transmitted using compression techniques.

Various video standards allow the use of different ciuanﬁzation step sizes for
different picture types, and allow variation of quantization step sizes for rate and quality
control.

Standards typically do not fully specify the quantizer design. Most allow some
variation in the encoder classification rule x ~> Alx] and/or the decoder reconstruction rule
k = B[k]. The use of a DZ ratio z = 2 or greater has been implicit in 2 number of
encoding designs. For example, the spacing of reconstruction values for predicted regions
in some standards .implies use of z 2 2. Reconstruction values in these examples from
standards are spaced appropriately for use of DZ+UTQ classification with z =2. Designs
based on z =1 (or at least z < 2) have been used for quantization in several standards. In
these cases, reconstruction values are equally spaced around zero and away from zero.

Given the critical importance of video compression to digital video, it is not
surprising that video compression is a ric'hly developed field. Whatever the benefits of
previous vid;:o compression techniques, however, they do not have the advantages of the
following techniques and tools.

SUMMARY

The present application describes techniques and tools for adjusting quantization
based on texture levels in video. For example, a video encoder improves the perceptual
quality of video using adaptive smoothness thresholds for smooth regions and temporal
analysis of smooth regions when allocating bits during encoding.

This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter.

In one aspect, a video encoder identifies a current smooth region (e.g., a gradient
slope region) of a current video picture in a video picture sequence. The sequence has a
display order in which display of previous pictures occurs before display of the current
picture and display of future pictures occurs after the display of the current picture. The
encoder performs temporal analysis on the current smooth region. The temporal analysis

comprises determining whether a corresponding region in at least one of the previous

-11-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

and/or future pictures is smooth. Based at least in part on the temporal analysis, the
encoder adjusts quantization (e.g., reducing a quantization step size to avoid introduction
of a contouring artifact) in the current smooth region. The temporal analysis can be
performed on an adjustable number of future pictures. The temporal analysis can attribute
greater weight to smoothness in a corresponding region of a future picture that is
temporally nearer to the current picture. The encoder can analyze a texture map to
identify the current smooth region, and can analyze mean luminance values in the
temporal analysis.

In another aspect, a video encoder determines a differential quantization interval
(e.g., a fixed or adaptively adjustable interval) for a video picture sequence, the interval
comprising an interval number. The encoder uses the interval when performing
differential quantization for predicted differentially quantized pictures in the sequence.
The interval constrains the encoder to skip differential quantization for at least the interval
number of predicted pictures after one of the predicted differentially quantized pictures.
For example, the differential quantization comprises selecting one or more differentié.l
quantization step sizes for a first predicted picture and changing the one or more
'differential quantization step sizes for a second predicted picture, where the one or more
differential quantization step sizes differ from a picture quantization step size for the first
predicted picture, and the second predicted picture is outside the interval from the first
predicted picture.

In another aspect, a video encoder analyzes texture in a current video picture (e.g.,
by analyzing a texture map) and sets a smoothness threshold for the current picture based
at least in part on the analyzed texture. The encoder compares texture data of the current
picture with the smoothness threshold and adjusts differential quantization for at least part

" of the current picture based on a finding of at least one smooth region in the current
picture according to the smoothness threshold. The encoder can analyze texture by
applying a sliding window to a gradient value histogram of block gradient values. To
adjust differential quantization, the encoder can determine a-percentage of flat blocks in
the current picture and compare the percentage to one or more percentage thresholds. Or,
the encoder can identify an isolated flat block in a texture region in the current picture and
skip differential quantization for the isolated flat block.

The foregoing and other objects, features, and advantages will become more
apparent from the following detailed description, which proceeds with reference to the

accompanying figures.

-12-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

BRIEF DESCRIPTION OF THE DRAWINGS

Figure l isa diagram showing block-based intraframe compression of an 8x8
block of samples. _

Figure 2 is a diagram showing motion estimation in a video encoder.

Figure 3 is a diagram showing block-based compression for an 8x8 block of
prediction residuals in a video encoder.

Figure 4 is a diagram showing block-based decompression for an 8x8 block of
prediction residuals in a video decoder.

Figure S is a chart showing a staircase I/O function for a scalar quantizer.

Figures 6A and 6B are charts showing classifiers and thresholds for scalar
quantizers.

Figure 7 is a chart showing a staircase I/O function for a DZ+UTQ.

Figures 8A and 8B are charts showing classifiers and thresholds for DZ+UTQs.

Figure 9 is a block diagram of a suitable computing environment in conjunction
with which several described embodiments may be implemented.

Figure 10 is a block diagram of a generalized video encoder system in conjunction
with which several described embodiments may be implemented.

Figure 11 is a diagram of a macroblock format used in several described
embodiments.

Figure 12 is a flow chart of an adaptive video encoding method.

Figure 13 is a diagram showing computation of a pixel gradient using luminance
and chrominance data for a block.

Eigure 14 is a histogram graph of plural pixel gradients for the block of Figure 13.

Figure 15 is a graph of an example block value characterization framework.

Fi'gure 16 is a flow chart showing a generalized technique for applying differential
quantization based on texture information.

Figure 17 is a flow chart showing a technique for using temporal analysis to make
texture DQ decisions.

Figure 18 is a flow chart showing a technique for making a texture DQ decision
using percentage thresholds and isolated smooth block filtering.

Figure 19 is a flow chart showing a technique for selectively adjusting texture level
thresholds for high-texture pictures.

Figure 20 is a code diagram showing example pseudo-code for determining an
adaptive texture-level threshold.

-13 -

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

Figure 21 is a diagram showing two examples of gradient slope regions.

Figure 22A is a diagram showing an example frame with a gradient slope region, a
textured region, a sharp-edge region and a flat region. Figure 22B is a diagram showing a
contouring artifact in the gradient slope region of Figure 22A. Figure 22C shows
macroblock-level detail of a contouring artifact of Figure 22B.

Figure 23 is a flow chart showing a generalized region-based gradient slope
detection technique.

Figure 24 is a block diagram of an example gradient slope detector according to
one implementation.

Figure 25 is a diagram that depicts 4-to-1 down-sampling of a gradient slope
region with film grains that potentially cause anomalous gradient slope directions.

Figure 26 is an equation diagram for 16x16 compass operators Ky and K.

Figure 27 is a code diagram showing example pseudo-code for computing the
gradient direction for a region using the compass operators of Figure 26.

Figure 28 is a flow chart showing a technique for performing consistency checking
for gradient slope regions.

Figure 29 is a diagram that depicts buckets in a bucket voting technique.

Figure 30 is a flow chart showing an example technique for selecting a macroblock
‘QP to help preserve one or more non-zero AC coefficients.

Figure 31 is a diagram showing a DC shift in three neighboring blocks in a
gradient slope region after quantization and inverse quantization.

Figure 32 is a flow chart shoWing a generalized technique for adjusting
quantization to reduce or avoid introduction of contouring artifacts in DC shift areas.

Figure 33 is a flow chart showing a combined technique for tailoring quantization
in DC shift areas to reduce or avoid introduction of quantization artifacts.

DETAILED DESCRIPTION

The present application relates to techniques and tools for efficient compression of
video. In various described embodiments, a video encoder incorporates techniques for
encoding video, and corresponding signaling techniques for use with a bitstream format or
syntax comprising different layers or levels. Some of the described techniques and tools
can be applied to interlaced or progressive frames.

Various alternatives to the implementations described herein are possible. For
example, techniques described with reference to flowchart diagrams can be altered by

changing the ordering of stages shown in the flowcharts, by repeating or omitting certain

-14-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

stages, etc. For example, initial stages an analysis (e.g., obtaining texture information for
a picture or performing texture analysis in detecting smooth regions) can be completed
before later stages (e.g., making encoding decisions for the picture or performing temporal
analysis in detecting smooth regions) begin, or operations for the different stages can be
interleaved on a block-by-block, macroblock-by-macroblock, or other region-by-region
basis. As another example, although some implementations are described with reference
to specific macroblock formats, other formats also can be used.

The various techniques and tools can be used in combination or independently.
Different embodiments implement one or more of the described techniques and tools.
Some techniques and tools described herein can be used in a video encoder, or in some
other system not specifically limited to video encoding.

1. Computing Environment

Figure 9 illustrates a generalized example of a suitable computing environment 900
in which several of the described embodiments may be implemented. The computing
environment 900 is not intended to suggest any limitation as to scope of use or
functionality, as the techniques and tools may be implemented in diverse general-purpose
or special-purpose computing environments.

With reference to Figure 9, the computing environment 900 includes at least one
processing unit 910 and memory 920. In Figure 9, this most basic configuration 930 is
included within a dashed line. The processing unit 910 executes computer-executable
instructions and may be a real or a virtual processor. In a multi-processing system,
multiple processing units execute computer-executable instructions to increase processing
power. The memory 920 may be volatile memory (e.g., registers, cache, RAM), non-
volatile memory (e.g., ROM, EEPROM, flash memory, etc.), or some combination of the
two. The memory 920 stores software 980 implementing a video encoder with one or
more of the described techniques and tools.

A computing environment may have additional features. For example, the
computing environment 900 includes storage 940, one or more input devices 950, one or
more output devices 960, and one or more communication connections 970. An
interconnection mechanism (not shown) such as a bus, controller, or network interconnects
the components of the computing environment 900. Typically, operating system software
(not shown) provides an operating environment for other software executing in the

computing environment 900, and coordinates activities of the components of the

computing environment 900.

-15-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

The storage 940 may be removable or non-removable, and includes magnetic
disks, magnetic tapes or cassettes, CD-ROMs, DVDs, or any other medium which cah be
used to store information and which can be accessed within the computing environment
900. The storage 940 stores instructions for the software 980 implementing the video
encoder.

The input device(s) 950 may be a touch input device such as a keyboard, mouse,
pen, or trackball, a voice input device, a scanning device, or another device that provides
input to the computing environment 900. For audio or video encoding, the input device(s)
950 may be a sound card, video card, TV tuner card, or similar device that accepts audio
or video input in analog or digital form, or a CD-ROM or CD-RW that reads audio or
video samples into the computing environment 900. The output device(s) 960 may be a
display, printer, speaker, CD-writer, or another device that provides output from the
computing environment 900.

The communication connection(s) 970 enable communication over a
communication medium to another computing entity. The communication medium
conveys information such as computer-executable instructions, audio or video input or
output, or other data in a modulated data signal. A modulated data signal is a signal that
has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication media
include wired or wireless techniques implemented with an electrical, optical, RF, infrared,
acoustic, or other carrier.

The techniques and tools can be described in the general context of computer-
readable media. Computer-readable media are any available media that can be accessed
within a computing environment. By way of example, and not limitation, with the
computing environment 900, computer-readable media include memor}; 920, storage 940,
communication media, and combinations of any of the above.

The techniques and tools can be described in the general context of computer-
executable instructions, such as those included in program modules, being executed in a
computing environment on a target real or virtual processor. Generally, program modules
include routines, programs, libraries, objects, classes, components, data structures, etc. that
perform particular tasks or implement particular abstract data types. The functionality of
the program modules may be combined or split between program modules as desired in
various embodiments. Computer-executable instructions for program modules may be -

executed within a local or distributed computing environment.

-16-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

For the sake of presentation, the detailed description uses terms like “decide” and
“analyze” to describe computer operations in a computing environment. These terms are
high-level abstractions for operations performed by a computer, and should not be
confused with acts performed by a2 human being. The actual computer operations
corresponding to these terms vary depending on implementation.

IL Generalized Video Encoder

Figure 10 is a block diagram of a generalized video encoder 1000 in conjunction
with which some described embodiments may be implemented. The encoder 1000
receives a sequence of video pictures including a current picture 1005 and produces
compressed video information 1095 as output to storage, a buffer, or a communication
connection. The format of an output bitstream can be a Windows Media Video or VC-1
format, MPEG-x format (e.g., MPEG-1, MPEG-2, or MPEG-4), H.26x format (e.g.,
H.261, H.262, H.263, or H.264), or other format.

The encoder 1000 processes video pictures. The term picture generally refers to
source, coded or reconstructed image data. For progressive video, a picture is a
progressive video frame. For interlaced video, a picture may refer to an interlaced video
frame, the top field of the frame, or the bottom field of the frame, depending on the
coniext. The encoder 1000 is block-based and uses a 4:2:0 macroblock format for frames.
As shown in Figure 11, macroblock 1100 includes four 8x8 luminance (or luma) blocks
(Y1 through Y4) and two 8x8 chrominance (or chroma) blocks (U and V) that are co-
located with the four luma blocks but half resolution horizontally and vertically, following
the conventional 4:2:0 macroblock format. For fields, the same or a different macroblock
organization and format may be used. The 8x8 blocks may be further sub-divided at
different stages, e.g., at the frequency transform and entropy encoding stages. The
encoder 1000 can perform operations on sets of samples of different size or configuration
than 8x8 blocks and 16x16 macroblocks. Alternatively, the encoder 1000 is object-based
or uses a different macroblock or block format.

Returning to Figure 10, the encoder system 1000 compresses predicted pictures
and intra-coded, key pictures. For the sake of presentation, Figure 10 shows a path for key
pictures through the encoder system 1000 and a path for predicted pictures. Many of the
components of the encoder system 1000 are used for compressing both key pictures and
predicted pictures. The exact operations performed by those components can vary

depending on the type of information being compressed.

-17-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

A predicted picture (e.g., progressive P-frame or B-frame, interlaced P-field or B-
field, or interlaced P-frame or B-frame) is represented in terms of prediction (or
difference) from one or more other pictures (which are typically referred to as reference
pictures or anchors). A prediction residual is the difference between what was predicted
and the original picture. In contrast, a key picture (e.g., progressive I-frame, interlaced I-
field, or interlaced I-frame) is compressed without reference to other pictures.

If the current picture 1005 is a predicted picture, 2 motion estimator 1010 estimates
motion of macroblocks or other sets of samples of the current picture 1005 with respect to
one or more reference pictures, for example, the reconstructed previous picture 1025
buffered in the picture store 1020. If the current picture 1005 is a bi-predictive picture, a
motion estimator 1010 estimates motion in the current picture 1005 with respect to up to
four reconstructed reference pictures (for an interlaced B-field, for example). Typically, a
motion estimator estimates motion in a B-picture with respect to one or more temporally
previous reference pictures and one or more temporally future reference pictures, but B-
pictures need not be predicted from different temporal directions. The encoder system
1000 can use the separate stores 1020 and 1022 for multiple reference pictures.

The motion estimator 1010 can estimate motion by ﬁll—sample, Ys-sample, Va-
sample, or other increments, -and can switch the precision of the motion estimation on a
picture-by-picture basis or other basis. The motion estimator 1010 (and compensator
1030) also can switch between types of reference picture sample interpolation (e.g.,
between bicubic and bilinear) on a per-frame or other basis. The precision of the motion
estimation can be the same or different horizontally and vertically. The motion estimator
1010 outputs as side information motion information 1015 such as differential motion
vector information. The encoder 1000 encodes the motion information 1015 by, for
example, computing one or more predictors for motion vectors, computing differentials
between the motion vectors and predictors, and entropy coding the differentials. To
reconstruct a motion vector, a motion compensator 1030 combines a predictor with
differential motion vector information.

The motion compensator 1030 applies the reconstructed motion vector to the
reconstructed picture(s) 1025 to form a motion-compensated current picture 1035. The
prediction is rarely perfect, however, and the difference between the motion-compensated
current picture 1035 and the original current picture 1005 is the prediction residual 1045.
During later reconstruction of the picture, the prediction residual 1045 is added to the

motion compensated current picture 1035 to obtain a reconstructed picture that is closer to

-18-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

the original current picture 1005. In lossy compression, however, some information is still
lost from the original current picture 1005. Alternatively, a motion estimator and motion
compensator apply another type of motion estimation/compensation.

A frequency transformer 1060 converts the spatial domain video information into
frequency domain (i.e., spectral) data. For block-based video pictures, the frequency
transformer 1060 applies a DCT, variant of DCT, or other block transform to blocks of the
sample data or prediction residual data, producing blocks of frequency transform
coefficients. Alternatively, the frequency transformer 1060 applies another conventional
frequency transform such as a Fourier transform or uses wavelet or sub-band analysis.
The frequency transformer 1060 may apply an 8x8, 8x4, 4x8, 4x4 or other size frequency
transform.

A quantizer 1070 then quantizes the blocks of spectral data coefficients. The
quantizer applies uniform, scalar quantization to the spectral data with a step-size that
varies on a picture-by-picture basis or other basis (e.g., 2 macroblock-by-macroblock
basis). Alternatively, the quantizer applies another type of quantization to the spectral data
coefficients, for example, a non-uniform, vector, or non-adaptive quantization, or directly
quantizes spatial domain data in an encoder system that does not use frequency
transformations. Techniques and tools relating to quantization in some implementations
are described in detail below. . '

In addition to adaptive quantization, the encoder 1000 can use frame dropping,
adaptive filtering, or other techniques for rate control.

The encoder 1000 may use special signaling for a skipped macroblock, which is a
macroblock that has no information of certain types (e.g., no differential motion vectors
for the macroblock and no residual information).

When a reconstructed current picture is needed for subsequent motion
estimation/compensation, an inverse quantizer 1076 performs inverse quantization on the
quantized spectral data coefficients. An inverse frequency transformer 1066 then
performs the inverse of the operations of the frequency transformer 1060, producing a
reconstructed prediction residual (for a predicted picture) or a reconstructed key picture.
If the current picture 1005 was a key picture, the reconstructed key picture is taken as the
reconstructed current picture (not shown). If the current picture 1005 was a predicted |
picture, the reconstructed prediction residual is added to the motion-compensated current
picture 1035 to form the reconstructed current picture. One or both of the picture stores

1020, 1022 buffers the reconstructed current picture for use in motion compensated

-19.

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

prediction. In some embodiments, the encoder applies a de-blocking filter to the
reconstructed frame to adaptively smooth discontinuities and other artifacts in the picture.

The entropy coder 1080 compresses the output of the quantizer 1070 as well as
certain side information (e.g., motion information 1015, quantization step size (QP)).
Typical entropy coding techniques include arithmetic coding, differential coding, Huffman
coding, run length coding, LZ coding, dictionary coding, and combinations of the above.
The entropy coder 1080 typically uses different coding techniques for different kinds of
information (e.g., DC coefficients, AC coefficients, different kinds of side information),
and can choose from among multiple code tabies within a particular coding technique.

The entropy coder 1080 provides compressed video information 1095 to the
multiplexer (“MUX"") 1090. The MUX 1090 may include a buffer, and a buffer level
indicator may be fed back to a controller. Before or after the MUX 1090, the compressed
video information 1095 can be channel coded for transmission over the network. The
channel coding can apply error detection and correction data to the compressed video
information 1095.

' A controller (not shown) receives inputs from various modules such as the motion
estimator 1010, frequency transformer 1060, quantizer 1070, inverse quantizer 1076,
entropy coder 1080, and buffer 1090. The controller evaluates intermediate results during
encoding, for example, estimating distortion and performing other rate-distortion analysis.
The controller works with modules such as the motion estimator 1010, frequency
transformer 1060, quantizer 1070, and entropy coder 1680 to set and change coding
parameters during encoding. When an encoder evaluates different coding parameter
choices during encoding, the encoder may iteratively perform certain stages (e.g.,
quantization and inverse quantization) to evaluate different parameter settings. The
encoder may set parameters at one stage before proceeding to the next stage. Or, the
encoder may jointly evaluate different coding parameters. The tree of coding parameter
decisions to be evaluated, and the timing of corresponding encoding, depends on
implementation:

The relationships shown between modules within the encoder 1000 indicate
general flows of information in the encoder; other relationships are not shown for the sake
of simplicity. In particular, Figure 10 usually does not show side information indicating
the encoder settings, modes, tables, etc. used for a video sequence, picture, macroblock,
block, etc. Such side information, once finalized, is sent in the output bitstream, typically

after entropy encoding of the side information.

-20 -

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

Particular embodiments of video encoders typically use a variation or
supplemented version of the generalized encoder 1000. Depending on implementation
and the type of compression desired, modules of the encoder can be added, omitted, split
into multiple modules, combined with other modules, and/or replaced with like modules.
For example, the controller can be split into multiple controller modules associated with
different modules of the encoder. In alternative embodiments, encoders with different
modules and/or other configurations of modules perform one or more of the described
techniques.

II. _ Characterization of Video Content Using a Perceptual Model
Video content can be characterized using a perceptual model. This can help an

encoder to make appropriate encoding decisions for different kinds of video content. An
encoder can analyze a picture before encoding to provide characterizations for the content
in different parts of the picture (e.g., blocks, macroblocks, etc.). For example, relatively
smooth parts of a video picture, such as a blue sky, may be characterized as less
acceptable for introducing distortion because certain kinds of quality degradation (e.g.,
quantization artifacts) are more easily perceived by humans in smooth regions. In
contrast, distortion is generally less noticeable (and thus more acceptable) in texture
regions.

With reference to Figure 12, a video encoder such as one described above with
reference to Figure 10 implements adaptive encoding techniques in a process 1200 that
characterizes portions (e.g., blocks of macroblocks, macroblocks, or other'regions) ofa
video picture (e.g., as a smooth region, edge region, texture region, etc.) and adapts one or
more encoding techniques according to the characterization. Many of the described
techniques provide adaptive encoding within a picture, such as on a block, macroblock or
other region. The techniques use information to classify different parts of the image and
to encode them accordingly. More particularly, a video encoder characterizes portions of
the picture to classify content based on its perceptual characteristics.

At 1210, the video encoder characterizes one or more portions of a video picture.
For example, the encoder characterizes a block of the video picture based on intensity
variance within the block. In one implementation, the encoder computes a sum of the
differences between a pixel and its adjacent pixels for the pixels in the block or a down-
sampled version of the block. This sum of differences value measures intensity variance
between a pixel and its surroufnding pixels. For example, surrounding pixels comprise two

or more other pixels adjacent to or nearly adjacent to a pixel, such as above or below, to

-2]-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

the left or right, or diagonal to a pixel. The difference between a pixel’s intensity and the
intensities of its surrounding pixels is computed based on differences in luma and/or
chroma data. In other words, the differences are computed with luma samples and/or
chroma samples. An avera.ge computed difference value is assigned to the pixel (e.g., a
pixel gradient). A difference value is computed in this way for pixels in a block (e.g., a
block gradient), or for some sub-sampled set thereof. The difference values assigned to
pixels in a block are evaluated to determine a characterization or classification (e.g.,
smootﬁ, edge, or texture; texture or non-texture; smooth or non-smooth; etc.) for the block,
which can be expressed a block value. In one example, the pixel gradients for pixelsin a
block are evaluated to determine a median difference value for the block gradient (e.g., a
block median). Thus, intensity differences between pixels within a block provide a
measure of intensity variance for a block, macroblock, or other video picture region.

A block median is not required to determine a block value. An intensity variance
or block characterization may also be based on an average value for difference values
assigned to pixels in the block (e.g., a block average). The block median or average can
be used to classify the block and/or can be used as input to a finer-grained control
function. The characterization or control function adaptively varies one or more aspects of
encoding.

Alternatively, instead of computing an intensity variance to characterize a block,
the encoder uses another metric. '

At 1220, the encoder adaptively encodes the video picture based on the
characterizations. In one implementation, encoding technigues for removal or reduction of
contouring artifacts are performed based on block characterization. For example, gradient
slope detection, DC shift detection, AC coefficient preservation, and adaptive differential
quantization are performed for certain smooth regions, and textured regions are quantized
more strongly to conserve bit rate.

Although Figure 12 shows the characterizing stage 1210 preceding the adaptive
encoding stage 1220 for multiple portions of a picture, these stages may also occur
iteratively on a block-by-block basis in the picture or be ordered on some other basis.

At 1230, the encoder signals the adaptively encoded bit stream. When differential
quantization is used by the encoder to encode based on block characterization, for
example, the video encoder encodes information in the .compressed bit stream using a

signaling scheme for signaling the differential quantization to a video decoder.

4

-22.

10

15

20

25

130

WO 2007/117707 PCT/US2007/008937

At 1240, a corresponding video decoder reads the adaptively encoded bit stream,
including the encoded data for the video picture. For example, the video decoder reads
signaled differential quantization information. At 1250, the decoder decodes the
compressed bit stream, for example, dequantizing blocks according to signaled differential
quantization information.

A. Example Block-based Characterization

Figure 13 is a diagram showing block-based operations for characterizing blocks
using luma and/or chroma data. The luma block “Y” (1302) is an 8x8 block of a
macroblock in a 4:2:0 macroblock format. Although not required, in this example,
corresponding chroma blocks 1304, 1306 for the pixel block are also used in computing a
gradient block 1308. Althouéh not required, as shown in this example, the luma block
1302 is down-sampled 1312 by a factor of 2 horizontally and vertically (e.g., by simple
averaging of pairs of samples) to create a luma block 1310 that matches the 4x4
dimensions of the chroma blocks.

As shown in the down-sampled luma block 1310, the intensity value of a luma
sample for a pixel 1314 is compared to samples for four pixels near it in the down-
sampled luma block 1310, and an average sum of the difference between the sample for
the pixel 1314 and the samples for its surrounding vertical and horizontal pixels is
computed. In this example, the pixel 1314 is located at position Y’(r, ¢). The average sum
of the differences for the Iﬁma intensity value for this pixel 1314 as compared to its
surrounding pixels is:

Lirc)=[|Y'Tc)-Y (r,c- 1) +[Y'(r,c) - Y’ (1-1,¢)|+|Y'(r,c) - Y'(r,c+1)| +
[Y’(r,c) - Y(r+l,¢)| 1/ 4 (5)

As shown, Y’(r, ¢) is the luma component of the pixel 1314 at row r and column ¢
in the down-sampled block Y*. L;(r, ¢) provides an indication of how the pixel 1314
differs in luma intensity from its neighbors within the block Y’. This luma intensity
difference measurement is an example of a pixel gradient.

Optionally, chroma data 1304, 1306 may be considered alone instead of luma data,
or may be considered together with luma data to determine intensity differences. The
average sum of the differences for luma intensity values and chroma intensity values for
pixel 1314 can be represented as the average of the differences in intensity values of
samples for the surrounding pixels as shown in the following equation:

Gi(r,c) = {[|[Y’(r,c) = Y’(z, c-1)| +[Y’(r, €) = Y’(z-1, c)| + |Y’(r, c) = Y’(x, c+1)| +
[Y’(r, ¢) = Y’ (r+1,)|] + [[U(, ©) — U(x, c-1)} + [U(x, ¢) - U(r-1, ¢)| +

-23.

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

[U(r, ¢) = U(x, c+1)| + [U(x, c) = U(r+1, o)l 1 + [IV(r, ©) = V(r, c-1)| +
[V(r, €) = V(r-1, ¢)| + |V(r, ¢) — V(r, c+1)| +|V(r, ¢) = V(r+1,¢)[]} / 12 (6)

G (1, c) is an example of a pixel gradient for the pixel located at (r, ¢) in the down-
sampled block, and the pixel gradient provides an indication of how the pixel 1314 differs
in luma and chroma intensity from its surrounding pixel neighbors. In this example, the
pixel gradient value G (r, c) is based on pixels that are immediately vertical or horizontal,
but does not consider other pixels in the neighborhood. It is contemplated that other pixel
data may also be considered in creation of a pixel gradient in other variations. For
example, diagonal pixels could be considered as part of, or instead of the provided
arrangement. Or, intensity differences across a longer stretch (e.g., 2 or 3 pixels) could be
considered.

Gi (1, c) provides an indication of how a single pixel differs from its neighbors in
luma and chroma intensity. In order to characterize the intensity variance for an entire
block, the same analysis is performed on plural or all pixels within the block. In one such
example, a block 1308 of pixel gradients is created, and a block gradient is derived
therefrom. As noted, computing a pixel gradient or a block gradient may include luma
comparisons alone, chroma comparisons alone, or both luma and chroma comparisons
together.

If desirable, the above equation for finding G; (r, ¢) may be varied to account for
missing block boundary values. For example, samples outside the block may be
extrapolated or assumed to be the same as other adjacent samples within the block when
adapting the equation Gy (x, ¢) to account for boundary values. Or, the denominator of the
equations may be reduced and surrounding samples in certain directions ignored in the
comparisons, for example, where those surrounding samples are outside of the block. As
shown, a block 1308 of pixel gradients may provide pixel gradient data for all pixels in the
block. Or, a block 1308 of pixel gradients may include pixel gradient data for less than all
pixels in the block.

Figure 14 is a histogram of plural pixel gradients in the block 1308 of Figure 13.
More specifically, the histogram 1400 provides a visualization of how the block is
characterized or valued. In this example, there are eight pixel gradient values below 30,
and eight pixel gradient values above 30. Thus, a median value for this block gradient is
30. (For an even number of candidates, the median can be computed as the average of the
two middle candidate values, or as one or the other of the two middle candidate values.)

The median value may be used to characterize the block as smooth, texture, or edge. Of

.24 -

10

15

20

25

WO 2007/117707 PCT/US2007/008937

course, other metrics may be used to characterize blocks once the pixel gradients or blocks
of pixel gradients are obtained. For example, blocks may be characterized according to an
average of pixel gradient values. Once a block value is assigned it can be used in a
characterization scheme (e.g., smooth or non-smooth; smooth, texture, edge; etc.) orin a
finer grained control function. The block value can be used to determine how the block is
treated in an adaptive encoding strategy. ,

A block value may be selected by ordering plural pixel gradients and selecting a
median gradient value from the ordered values. For example, a set of pixel gradients
within a block, such as {10, 14, 28, 36, 38}, has a block value assigned equal to the
median pixel gradient in the set, or 28. In another example, a block value is determined
based on the average gradient in the set, or 25.2 for the preceding numerical example. Of
course, the set may be obtained from a complete block gradient, or a subset thereof.

C. Example Use of Characterization Information

Figure 15 is a graph of an example block characterization framework, continuing
the example of Figures 13 and 14. As shown, a block with a block value in the range from
0 up to and including 30 will be characterized as a smooth block. A block with a block
value in the range of greater than 30 but less than or equal to 60 will be characterized as a
texture block, and a block with a block value greater than 60 will be characterized as an
edge block.

Alternatively, an encoder uses another characterization framework, for example,
one including other and/or additional characterizations for blocks or other portions of
video pictures. For different gradients and metrics, the framework can change in scale
and/or number of dimensions.

An encoder can use the characterizations of the blocks or other portions of video
pictures when making encoding decisions. Table 2 relates features of an example adaptive
coding scheme to block characterizations as described with reference to Figure 15. As
shown, differently characterized blocks are treated differently in terms of one or more

adaptive features.

'Characterization DC Shift Detection Gradient Slope Quantization
Detection
Smooth Yes Yes Lower QP
Edge No No Higher QP
Texture No No Higher QP

Table 2: Adaptive Encoding Features

-25-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

The various adaptive features shown in Table 2 are discussed throughout this
document and will be further discussed below. Alternatively, an encoder uses another
mapping of adaptive feature decisions to block characterizations. Moreover, some
features described herein need not take into account characterizations of video content.

IV. Differential Quantization Based on Texture Level

In differential quantization, an encoder varies quantization step sizes (also referred

to herein as quantization parameters or QPs in some implementations) for different parts
of a picture. Typically, this involves varying QPs on a macroblock or other sub-picture
level. An encoder makes decisions on how to vary the QPs and can signal those decisions,
as appropriate, to a decoder.

Previous encoders have used bi-level differential quantization (varying between
two QPs) and multi-level differential quantization (varying between three or more QPs).
For example, in one bi-level differential quantization approach, one QP is used for
macroblocks at picture edges and another QP is used for macroblocks in the rest of the
picture. This can be useful for saving bits at picture edges, where fine detail is less
important for maintaining overall visual quality. In a multi-level differential quantization
approach, a larger number of different QPs can be used for individual macroblocks in a
picture. For example, an encoder can choose a QP for a macroblock and signal a
differential between the QP for the current picture and the QP for the macroblock.

Perceptual sensitivity to quantization artifacts is highly related to the texture level
of the video in both the spatial and temporal domain. High texture levels often result in
masking effects that can hide quality degradation and quantization artifacts. However, in
regions with lower texture levels (e.g., smooth regions), degradation and quantization
artifacts are more visible. Although previous encoders have made quantization
adjustments for some parts of video pictures (e.g., picture edges), a more comprehensive
content-based differential quantization strategy as described herein provides improved
rate-distortion performance in many scenarios.

Accordingly, many of the described techniques and tools use texture-based
differential quantization (referred to herein as texture DQ) to allocate bits based on various
texture levels to achieve better perceptual quality. In texture DQ, different QPs are chosen
to code video based or; texture information and, in some cases, based on other information
such as temporal analysis information. An encoder analyzes texture information (and
possibly other information) and applies texture DQ to appropriate regions (texture DQ

regions), such as 8x8 blocks or macroblocks in a picture. Many of the described

-26-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

techniques and tools focus on smooth regions as potential texture DQ regions. Smooth
regions include flat regions (areas of constant or nearly constant color) and gradient slope
regions (areas of color that vary at a constant or nearly constant rate across the region).
Smooth regions may be considered smooth even when interrupted by small areas of noise,
film grains, or other color variations.

Figure 16 is a flow chart showing a generalized technique 1600 for applying
differential quantization based on texture information. An encoder such as the encoder
1000 of Figure 10 or other tool performs the technique 1600.

At 1610, an encodgr obtains texture information (e.g., characterizations or block
values that indicate whether different regions are smooth, edge, or texture regions) for a
current picture. At 1620, the encoder finds a texture DQ region (e.g., a smooth region in
which contouring artifacts may be present) or texture DQ regions in the current picture.

At 1630, the encoder applies texture DQ to the texture DQ region(s) and encodes the
picture. For example, smooth regions are coded with smaller QPs than high texture
regions. If there are more pictures to encode, the encoder takes the next picture at 1640
and selectively applies texture DQ to the next picture, as appropriate. The encoder outputs
encoded data for the video picture, for example, to storage, a communication connection,
or a buffer.

Different texture DQ region detection techniques can be used to determine whether
a region should be treated as a smooth region. For example, an encoder can use different
texture metrics and/or different texture thresholds (and can adjust thresholds adaptively) to
determine whether a particular region should be considered a texture DQ region. Adaptive
quantization value mapping can be used to allocate bits for better perceptual video quality. '
Differential quantization decisions also can be based on temporal analysis (i.e., looking at
future pictures to make decisions based on characteristics of a region over time).

Differential quantization decisions can be made for both intra pictures and
predicted pictures. For predicted pictures, P- and B-picture differential quantization
intervals between differentially quantized pictures can be controlled. Further, by
observing the texture of a picture when dominant high texture areas are present, the
smooth region texture threshold can be relaxed to code a relatively smooth region
(compared to the dominant high texture areas) with a smaller QP.

Techniques similar to those described with reference to Figures 12-15 in Section
III, above, can be used to generate a texture map for a current picture. For example, the

encoder calculates gradients for the texture levels for the picture as the first derivatives

-27-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

(differences) in the Y, U and V channels for the picture, as described in section III. When
the macroblock format is 4:2:0, to speed up the calculation process, the encoder can
downsample the Y channel by a factor of 2:1 horizontally and vertically. The encoder
sums the gradients of Y, U and V for each pixel in both horizontal and vertical direction.
For an 8x8 block in full resolution, the encoder computes the mean of the sum of the
gradients in the corresponding 4x4 block in the downsampled picture to use as the block
gradient value. Computing the mean of the gradien;cs has a lower computational
complexity than computing the median as described in section III.

Alternatively, an encoder obtains texture information for the picture in some other
way. For example, an éncoder chooses different gradient directions for calculating
gradients, calculates gradients only for the luma channel, etc. However the texture
information is obtained or calculated, it can then be used to make texture DQ decisions.

The texture map indicates the texture levels of the different parts of the picture.
For example, the texture map can be used to identify smooth regions (e.g., blocks,
macroblocks, edges, or other areas) and textured regions in the picture. Described
differential quantization techniques can be performed on appropriate parts of the picture
based on the information in the texture map. Alternatively, an encoder use texture
information without first creating a texture map.

A, Temporal Ahalysis

In addition to texture information from a current video picture, temporal analysis
can be used to make accurate differential quantization decisions. One reason for using
temporal analysis is that the impact of using a smaller QP on a smooth region will be
greater if the smooth region remains smooth over several pictures, especially when the
other pictures reference the smooth region in motion compensation. Conversely, one
benefit of using a smaller QP will be lost if smooth blocks are replaced with high texture
or edge blocks in future pictures. Accordingly, an encoder looks at future pictures after
finding a smooth region in a current picture and makes differential quantization decisions
based on how smoothness of the region changes in the future pictures. The encoder can
also look at previous pictures, for example, B-pictures that precede a current video picture
in display order but reference the current video picture in motion compensation.

Figure 17 shows an example technique 1700 for using temporal analysis to make

texture DQ decisions. An encoder such as the encoder 1000 of Figure 10 or other tool
performs the technique 1700.

-28 -

10

.15

20

25

30

WO 2007/117707 PCT/US2007/008937

At 1710, an encoder performs texture analysis on a current block in a current
picture in a video sequence. For example, the encoder looks at gradient information for
the block. The encoder can compare the gradient information to a gradient threshold for
the block and classify the block as smooth or non-smooth (e.g., texture, edge), where the
gradient threshold is fixed or set dynamically for the current picture or other part of the
video sequence. - Alternatively, the encoder performs texture analysis for some other
portion in the current picture.

At 1720, the encoder performs temporal analysis. The encoder can perform the
temporal analysis automatically or only if the current block is classified as a smooth block.
For example, the encoder determines if a smooth block in a current picture stays smooth in
future pictures. If so, the smooth region in the current picture is later coded with a smaller
QP. Or, the encoder determines if 2 smooth block in the current picture was also smooth
in i)revious pictures, or in both previous and future pictures.

The number of previous and/or future pictures that the encoder analyzes can vary
depending on implementation. If the smooth region is replaced in a future picture (e.g.,
the next picture or some other temporally close picture) by a textured region, the smooth
region in the current picture might be coded with a larger QP, since the advantages of
using a smaller QP are likely not as persistent. In one implementation, temporally closer
pictures are weighted more heavily than more distant pictures in making the differential
quantization decision. The weighting and the number of previous and/or future pictures
that the encoder looks at can vary depending on implementation.

To simplify the calculations, the encoder can find a single value to compare the
current block and the corresponding block in a future picture. For example, since luma
values are fairly consistent within smooth blocks, the mean of the luma values for the
block is calculated to measure the similarity of corresponding blocks in future pictures. In
the following example equation, the “strength” S(¥) of the future smoothness of
corresponding blocks in a future picture is calculated by a sum of the weighted absolute
difference between the mean luma values of the current block and the corresponding block
in the future picture, the mean luma values of the corresponding blocks in the two future
pictures, and so on.

S(t).= C(n)* i(n — i+ DM@+ -M(E+i-1)| @)

i=l .
where r is the total number of temporal “look-ahead” pictures, C(n) is normalization

factor, which is defined to be 2/(n*(n+1)), and M(¢) is the mean of luma values for the

-20-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

block (or corresponding block) in the picture at time ¢. The encoder can also measure past
smoothness instead of or in addition to future smoothness. Alternatively, the encoder uses
another weighting system and/or smoothness metric in the temporal analysis of
smoothness.

Referring again to Figure 17, at 1730 the encoder uses results of the texture
analysis and the temporal analysis to determine whether to classify the block as a texture
DQ block. For example, the encoder computes a smoothness strength S(?) for a smooth
block (but not other blocks) and compares the smoothness strength S(f) to a temporal
smoothness threshold. The temporal smoothness threshold can be fixed or dynamically
set.

In Figure 17, if the encoder finds that the current block is a smooth block and that
the corresponding block in previous and/or future pictures is also smooth, the encoder
adds the current block to a count of texture DQ blocks at 1740. The encoder can use the
count of texture DQ blocks to determine whether to perform texture DQ on the picture.
Alternatively, an encoder uses temporal analysis in some other way to make a texture DQ
decision.

If there are more blocks to analyze, the encoder takes the next block at 1750 and
repeats the process shown in Figure 17. This continues until the encoder has evaluated the
blocks of the current video picture. At that point, the encoder uses the count of smooth
blocks or other results of the temporal analysis in an encoding decision.

Although Figure 17 shows an encoder performing temporal analysis on a block-by-
block, alternatively, the encoder performs temporal analysis on a macroblock-by-
macroblock basis or some other region-by-region basis.

B. Texture DQ Thresholds and Isolated Smooth Block Filtering

Whether or not the encoder uses temporal analysis, the encoder can use several
other mechanisms in deciding when to apply texture DQ. An encoder can use one or more
prevalence thresholds (e.g., percentages of smooth blocks in the picture) to make decisions
on whether to perform DQ and, if so, how fine the QPs for texture DQ regions should be.
For example, if the number or percentage of smooth blocks in a picture is above a
threshold, the encoder can choose a coarser step size in order to avoid spending too many
bits encoding smooth content with small QPs. The encoder also may have a lower
threshold to determine whether the number or percentage of smooth blocks is enough to

use texture DQ in the picture at all.

-30-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

Another way to reduce bit rate is to treat certain smooth blocks as texture blocks
when the smooth blocks are in predominantly textured regions. This can be referred to as
isolated smooth block filtering (although a smooth block need not be completely
“jsolated” to be filtered in this way). For example, a smooth block surrounded by textured
blocks need not be coded with a smaller QP than the textured blocks, since quantization
artifacts in the smooth block are likely to be masked by the surrounding textured content.
As a result, an encoder can choose not to perform texture DQ on isolated smooth blocks.
The encoder also can disregard isolated smooth blocks when calculating the number or
percentage of smooth blocks in a picture.

Figure 18 shows an example technique 1800 for making a texture DQ decision
using thresholds and isolated smooth block filtering. An encoder such as the encoder 1000
of Figure 10 or other tool performs the technique 1800.

At 1810, the encoder finds smooth blocks in the current picture. For example, the
encoder performs texture analysis and temporal analysis as described with reference to
Figure' 17. Alternatively, the encoder finds the smooth blocks in the current picture in
some other way.

At 1820, the encoder performs isolated smooth block filtering. For example, the
encoder removes single smooth blocks that are surrounded in the current picture by non-
smooth blocks. An encoder can use many different decision models to perform isolated
smooth block filtering. For example, an encoder can choose to treat a smooth block as a
textured block only when all its neighboring blocks are textured blocks. Or, an encoder
can choose to treat a smooth block as a textured block if a certain number of its
neighboring blocks are textured. Or, the encoder removes isolated smooth blocks in larger -
groups (e.g., 2 or 3) and/or using some other test for whether block(s) are isolated.

At 1830, the encoder checks the percentage of smooth blocks in the picture against
a low threshold (e.g., 1-2% of the total blocks in the picture). If the percentage of smooth
blocks falls below the low threshold, the encoder determines that texture DQ will not be
used for this picture (1840). If the percentage of smooth blocks is above the low
threshold, the encoder checks the percentage against a high threshold at 1850. This higher
threshold is used to pick a QP for the smooth blocks. If the percentage is higher than the
high threshold, the encoder performs texture DQ but chooses a coarser QP (1860) for the
smooth blocks to reduce bit rate. Otherwise, the encoder chooses a finer QP (1870) for the

smooth blocks. If there are more pictures to analyze (1880), the encoder can repeat the

-3 -

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

process for other pictures. The number of thresholds and the threshold percentage values
can vary depending on implementation. .

Alternatively, an encoder performs isolated smooth block filtering without using
texture DQ thresholds, or uses texture DQ thresholds without isolated smooth block
filtering. Or, an encoder performs texture DQ without isolated smooth block filtering or
using DQ thresholds.

C. Adaptive Texture Level Threshold

An encoder can use a fixed texture-level or smoothness threshold to determine
whether a given block should be considered a texture DQ block (e.g., 2 smooth block).
Taking info account the bit rate cost of DQ signaling (e.g., one bit per macroblock in an
“all macroblock” bi-level DQ signaling scenario) and the bit rate cost of quantizing some
parts of a picture at a smaller QP, the threshold acts as a cheé:k on the costs of texture DQ.
For example, an encoder obtains a block value (using a t.echnique described with reference
to Figures 13 and 14 or some other technique) for a block and compares the block value to
a fixed texture-level/smoothness threshold value (e.g., a threshold value described with
reference to Figure 15).

An encoder also can adaptively change texture-level/smoothness threshold values.
For example, since the perceptibility of smooth blocks may change in pictures with a lot of
high-texture content, the texture-level threshold for classifying a block as a smooth block
can be relaxed in a medium-texture or high-texture picture. This is an example of an
adaptive texture-level threshold. An encoder may allow several different thresholds to be
selected within a range of thresholds. In one implementation, an adaptive texture-level
threshold for smooth blocks can be varied between a block value of 14 and a block value
of 30. Different differential quantization mappings can be used for different texture-level
thresholds. An adaptive texture level threshold can be useful for allocating bits to
smoother regions in higher-texture frames to improve quality in the smoother regions.

Figure 19 shows a technique 19 for selectively adjusting texture level thresholds
for high-texture pictures. An encoder such as the encoder 1000 of Figure 10 or other tool
performs the technique 1900. The encoder determines whether to adjust texture level
thresholds by detecting the presence of dominant high-texture content in a picture. In one
implementation, the detection of high-texture content is implemented by calculating the
texture “energy” in a sliding window with size of 10 in a texture histogram.

Referring to Figure 19, an encoder obtains a texture information (e.g., a texture

level histogram) for a picture at 1910 in an adaptive texture-level threshold technique

-32-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

1900. For example, the encoder obtains a texture map as described above and creates a
texture level histogram from the information.

At 1920, the encoder checks whether the picture is a high-texture picture. If the
picture is a high-texture picture, the encoder adjusts the texture level threshold for ‘the
picture at 1930. If the picture is not a high-texture picture, the encoder processes the
picture without adjusting the texture level threshold (1940). The encoder then can
analyze and choose texture level thresholds for other pictures (1950). Alternatively, the
encoder applies a sliding scale of different texture level thresholds for different levels of
high-texture content in the picture.

For example, to check the extent of dominant high-texture content in a picture, an
encoder computes a texture histogram for the picture. The encoder applies a sliding
window in the texture histogram to calculate texture energy and determine a peak or
prominent high-texture band. Equation (8) shows one way for the encoder to calculate the
texture energy in the window. The sliding window starts sliding from the minimum
texture level threshold g0 (which is by default 30), and the encoder computes the window
value W(g) at g0. The sliding window shifts 1 to the right after calculation of texture
energy for that window, and the encoder computes the next window value W(g) starting at
the new value of g0. This continues until the encoder reaches the maximum of the texture
levels represented in the histogram.

Let F(g) be the histogram of texture level per pixel. Let E(g) be the texture energy
for the texture level, where E(g) = F(g) * g. The encoder calculates the texture energy of
the sliding window W/(g) as follows:

£20+10

we)= Y. (F(g)*g) (®).

£=50

If the maximum sliding window energy W{(g) exceeds a certain percentage
threshold of overall picture energy, g0 for that maximum sliding window energy W(g) is
used to adjust the threshold for smooth regions. '

Figure 20 shows pseudo-code 2000 used to determine a new adaptive smooth
region threshold from g0. If g0 is over 100, the adaptive threshold is set to 30. The
encoder also checks if g0 is less than 30 and, if so, sets the adaptive threshold to 14.
Otherwise, if 30 < g0 <100, the adaptive threshold is set to a value from the table

g_iFlatThTable. To help maintain video quality, the maximum difference of a new
adaptive threshold from the last adaptive threshold is capped at +/- 4 for all pictures except

scene change key pictures. The adaptive smooth threshold should not exceed the

-33-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

threshold used to identify textured blocks — for example, in Figure 20 the highest adaptive
threshold value is 30.

Alternatively, an encoder adaptively adjusts texture level thresholds in some other
way (e.g., with a different texture strength or energy metric, without a sliding window,
with a differently configured sliding window, with different threshold values in a table or
other data structure, without capping differences between adaptive thresholds, capping
differences in adaptive thresholds in some other way, etc.).

D. I-Picture and P-Picture Differential Quantization

Described differential quantization techniques and tools can be used separately or
in combination on intra pictures and predicted pictures. The term I-picture differential
quantization (I-picture DQ) refers to application of differential quantization to I-pictures,
and the term P-picture differential quantization (P-picture DQ) refers to application of
differential quantization to P-pictures. The use of I-picture DQ results in higher quality I-
pictures, and the quality improvement can be maintained longer for predicted pictures that
depend from those I-pictures. P-picture DQ can further improve P-picture quality in both
intra and inter blocks, but the quality of those P-pictures will also depend on the quality of
the pictures from which they are predicted. Similarly, the impact of P-picture DQ on the
quality of later predicted pictures will depend the similarity of the later predicted pictures
to the pictures from which they are predicted.

E. Differential Quantization Intervals

Both I-picture DQ and P-picture DQ use one or more of the techniques described
herein to decide whether to apply different QPs for different texture-level blocks. To
balance quality and bit usage, a P-picture DQ interval can be used to control the amount of
bits that are spent on P-picture DQ. For example, an encoder chooses to use P-picture DQ
on one in every n P-pictures, where n 21, but skips P-picture DQ for pictures in the
interval between differentially quantized P-pictures. The encoder spends bits on
differential quantization to improve the perceptual quality of some P-pictures, and those
quality improvements carry over into other predicted pictufes. At the same time, the DQ
interval helps constrain the overall number of bits the encoder spends on differential
quantization of predicted pictures.

Altenatively, the encoder selects another interval. For example, the encoder may
choose to use P-picture DQ on only one P-picture per I-picture, or choose some other
interval. The interval may be fixed or adaptive. For example, the encoder may adaptively

adjust the P-picture DQ interval based on the type of content being encoded.

.34 -

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

V. Gradient Slope Detection
Among various visual artifacts introduced in video compression, contouring is one

particular artifact that can be caused by quantization. Contouring artifacts are perceived
by human eyes as structured, gradient discontinuities in what are otherwise continuous,
very smooth regions such as sky, water, etc. Such discontinuities can be very distracting
and may lead a human observer to conclude that a whole picture is badly distorted even if
other parts of the picture are coded with little visual distortion.

Gradient slope regions can give rise to contouring artifacts. According to one
definition, a region is considered to be a gradient slope region if the region is smooth or
relatively smooth but pixel values change gradually within the region. Thus, while both
gradient slope regions and flat regions are considered to be smooth regions, gradient slope
regions differ from flat regions. According to one definition, a flat region is characterized
by constant or relatively constant pixel values throughout the flat region. Gradient slope
regions typically lack strong edges and extensive texture detail.

Figure 21 shows two examples of gradient slope regions. The gradient slope
direction in each region is represented by arrows. In gradient slope region 2100, luma
values increase gradually from the top to the bottom of the region. The direction of the
slope in gradient slope region 2100 is the same in each part of the region. In gradient
slope region 2110, luma values increase gradually from the center to the edges of the
region. The direction of the gradient slope varies within the gradient slope region 2110.
However, within small neighborhoods, the gradient slope direction at each point is within
a small angle @ of the gradient slope direction at other points in the neighborhood, except
for the neighborhood that includes the center point. As shown in Figure 21, gradient slope
regions include regions where the gradient slope direction is constant throughout the
region, and regions where the gradient slope direction has small variations within a
neighborhood.

Figure 22A is a diagram showing an example picture 2200 with a gradient slope
region 2210, a textured region 2220, a sharp-edge region 2230 and a flat region 2240.
Figure 22B is a diagram showing results of quantization in the gradient slope region 2210.
The banding effect that is now visible (e.g., within macroblock 2250) is a contour artifact. ‘
Figure 22C shows detail of the macroblock 2250. Quantization of transform coefficients
for the top half of the luma samples in macroblock 2250 results in uniform values
stemming from a DC value of 68. Quantization of transform coefficients for the bottom

half of the luma samples in macroblock 2250 results in uniform values stemming from the

-35-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

DC value of 70. Thus, the quantization of the transform coefficients for the luma samples

has created a visible contour artifact between the top-half 8x8 blocks and the bottom-half

" 8x8 blocks in macroblock 2250.

Many existing video encoders use techniques that are applied to a whole video
picture in an attempt to reduce contouring artifacts in the picture. Such techniques may
result in over-spending bits, especially in regions that contain little or no contouring
artifacts. Accordingly, several described techniques and tools allow an encoder to detect
gradient slope regions, where contouring artifacts are likely to happen. When gradient
slope regions are detected, an encoder can make coding decisions that reduce or avoid
introduction of contouring artifacts (e.g., adjustments of QPs) in the gradient slope
regions. By doing so, an encoder can allocate bits more effectively and achieve better
visual quality.

To detect gradient slope regions, an encoder can implement one or more of the
following techniques:

1. Gradient slope region detection with coding decisions focused on reducing or

removing introduction of contouring artifacts in the detected region(s).

2. Region-based gradient estimation and down-sampling to reduce computational
cost and/or allow accurate gradient slope region detection despite the presence
of anomalies such as film .grains.‘

3. A gradient consistency check to detect gradual gradient change in local
neighborhoods.

4. Bucket voting to make a binary decision regarding the presence of gradient
slope region(s) in a picture. '

5. The generation of a gradient slope mask (e.g., at macroblock-level) and
gradient direction map to help an encoder to make appropriate coding
decisions.

Figure 23 shows a generalized region-based gradient slope detection technique

2300. An encoder such as the encoder 1000 of Figure 10 or other tool performs the
technique 2300. In some cases, the region-based gradient slope detection technique 2300
allows faster detection of gradient slope content by eliminating the need to find gradient
slope directions for each pixel in a picture. For example, the picture is divided into non-
overlapping rectangular regions of the same size. The size of the regions can vary
depending on implementation. In one implementation, a region is a 16x16 macroblock

(four 8x8 blocks). Preferably, the region is of a size that allows macroblock alignment.

-36-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

At 2310, an encoder checks whether a current region is a smooth region. For
example, the encoder uses a texture map of the picture in which an 8x8 block is
characterized as smooth if its assigned block gradient value is less than 30, or the encoder
uses checks whether the current region is smooth using another technique described in
section ITI or IV. When a region includes multiple blocks, the region is considered to be a
smooth region if all blocks contained in the region are smooth (or, alternatively, if some
minimum number of the blocks are smooth). Different implementations can use different
criteria for determining whether a particular region or block is smooth. For example, the
criteria for determining whether a region is smooth may be different if the picture is down-
sampled.

If a region is not smooth, the next region is processed (2320). For a smooth region,
the encoder finds a gradient direction at 2330. For example, the encoder finds a gradient
direction using a technique such as the one described with reference to Figures 26 and 27.
Alternatively, the encoder finds the gradient direction with some other technique.

At 2340, the encoder makes a gradient slope decision for the region, using
thresholds and/or decision-making logic that depend on the technique and metrics used to
find the gradient direction for the region. If there are more regions to be processed, the
encoder processes the next region (2320). In one implementation, after computing initial
gradient directions for different regions in a picture, the encoder generates a binary mask
that indicates whether gradient slope is present in different regions by applying a sliding
window in the picture. The information in the binary mask allows the encoder to make
accurate gradient slope decisions.

Figure 24 is a block diagram of an example gradient slope region detector (GSR
detector) 2400 in a video encoder such as the one shown in Figure 10. The GSR detector
2400 takes pixel data from a current picture 2405 as input.

Depending on picture size and potentially other factors, the GSR detector 2400
determines whether to perform down-sampling in down-sampling module 2410. Example
down-sampling techniques are described below.

The gradient calculator 2420 takes (possibly down-sampled) pixel data and a
texture map 2425 as input and calculates gradients for smooth regions. For example, the
gradient calculator uses a technique such as the one described with reference to Figures 26
and 27 or uses some other technique. An example region size in the gradient calculation is
16x16, but the size of regions can vary depending on implementation. Depending on

whether and how much down-sampling is applied, the region for which a gradient is

.37-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

calculated can represent different amounts of area in the original picture 2405. The
gradient calculator 2420 outputs a map or other data structure indicating the gradient
directions for smooth regions.

The consistency checker 2430 takes the calculated gradients for smooth regions
and checks the angular consistency of those gradients, for example, as described below.
The consistency checker 24 produces a consistency map or other data structure indicating
consistency information for the calculated gradients.

The decision module 2440 uses additional decision rules (after consistency
checking) to determine whether smooth regions should bé considered gradient slope
regions. Example decision rules and criteria are described below. The decision module
2440 considers the consistency map or other data structure indicating consistency
information, and can also consider the calculated gradient directions or other information.
The decision module 2440 outputs decision information in a map or other data structure
for regions of the same or different size than the region size used in the gradient
calculation.

The decision for each region is provided to mask generator 2450 which produces a
gradient slope mask and/or a binary gradient slope decision mask 2495 that indicates
gradient slope decisions for regions in the picture. For example, a mask 2495 comprises a
bit equal to “1” for each gradient slope region and a bit equal to “0” for other regions. ‘
Accepting calculated gradients as input, the mask generator 2450 can produce another
mask 2495 that indicates final gradient slopes for different regions of the original picture,
accounting for down-sampling and mask decisions. When the GSR detector 2400
performs down-sampling before gradient calculation, the mask generator 2450 can assign
gradient slopes for down-sampled regions to corresponding regions of the original picture.

The components of the GSR detector 2400 are shown as separate modules in
Figure 24, but the functions of these components can be rearranged, combined or split into
different modules depending on implementation. Furthermore, components of gradient
slop detector 2400 can be omitted in other implementations. For example, down-sampling
is not required. A GSR detector need not take a texture map as input, and can instead get
an indication of whether a region is smooth or not from some other source. A GSR
detector need not use a consistency checker. Although a GSR detector will make some
kind of decision as to whether a region is a gradient slope region, the specifics of how

decisions are made (including decision rules in the decision module) can vary depending

-38-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

implementation. Gradient slope decisions need not be included in a binary mask and may
be communicated to other parts of the encoder in some other way.

A. Region-based Gradient Direction Estimation with Down-sampling

Down-sampling can be used prior to finding gradient directions for regions in
order to reduce computational cost. In one implementation, if the original picture width is
greater than 1280 and the height is greater than 720, the original picture is 4-to-1 down-
sampled. For example, in a 1080p arrangement with a picture width of 1920 pixels and a
picture height of 1080 pixels, a decoder produces a down-sampled picture with a width of
480 pixels and a height of 270 pixels. _

Typically, a down-sampled picture is divided into non-overlapping rectangular '
regions of the same size. For eJ‘cample, after downsampling, each 16x16 region
corresponds to 4 macroblocks (16 blocks) of the original, full resolution picture. A region
in the down-sampled picture is considered to be a smooth region if at least 12 blocks to
which the region corresponds are smooth. Region sizes depend on implementation, and
the relation between regions in gradient estimation and regions in original pictures varies
depending on down-sampling ratio.

Down-sampling also is useful for improving accuracy of gradient slope region
detection despite the presence of anomalies such as film grains. For example, consider a
portion of a picture 2500 with DC values of blocks as shown in Figure 25. The majority
of the picture portion 2500 has consistent gradient slope directions, as shown by the
gradually increasing DC values from the top to the bottom of the picture portion.
However, the white sample values represent DC values affected by film grains that create
anomalous gradient slope directions at full resolution. With simple 2-to-1 down-sampling
horizontally and vertically, the dark-bordered sample values are used to calculate the
gradient slope direction. Because the down-sampled values maintain a consistent gradient
slope, the film grains do not affect detection of the gradient slope.

Down-sampling can be used for other picture resolutions, and other down-
samipling ratios also can be used.

B. Calculating Gradient Slope Direction

In one implementation, to calculate gradient slope direction for a smooth region,
two 16x16 compass operators Ky and Ky (defined in Figure 26) are applied to the region.
This produces two gradients gy, gy for the region, one for the horizontal direction and one

for the vertical direction. For a 16x16 region, the compass operators give positive weights

-39

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

to some values of the region and negative weight to other values of the region.
Alternatively, the compass operators compute gradients in some other way.

An angular representation of the gradient direction, denoted as ¢ , is derived from
the two gradients and mapped to an integer in [0, 255]. The pseudo-code 2700 in Figure
27 shows an example routing for computing the gradient direction for a region (&® denotes
a per-element product) using the compass operators of Figure 26. If the regionis a
textured region or edge region, the routine returns -2. If the region is smooth but flat
(indicated by low absolute values for the gradients gy and gy for the region, the routine
returns -1. Otherwise, the routine computes the gradient slope as the arctangent of the
vertical gradient gy over the horizontal gradient gx, using offsets to differentiate between
slope directions for same arctangent values (e.g., whether a positive arctangent value
indicates an above, right slope or a below, left slope) and represent the range of slope
values as positive numbers.

Alternatively, the gradient direction is computed in some other way. For example,
the encoder uses different compass operators, different thresholds for slope regions,
different logic to compute the slope, and/or a different representation for slope
information.

C. Neighborhood Gradient Consistency Check

An encoder can perform a gradient consistency check for regions in order to help
make an accurate decision about whether a region should be considered a gradient slope
region. The gradient consistency check helps to avoid “false alarms” in gradient slope
content detection. In one implementation, the gradient slope consistency check involves
using a 3x3 sliding window (three regions by three regions) to determine gradient slope
consistency.

Figure 28 shows a technique for performing consistency checking for gradient
slope regions. An encoder such as the encoder 1000 .of Figure 10 or other tool performs
the technique 2800.

At 2810, the encoder positions a sliding window at a current region in the picture.
At 2820, the encoder checks the gradient directions of regions in the sliding window.
Then, at 2830, the encoder makes a consistency decision for the current region. For
example, given the gradient directions of detected smooth regions in a picture (potentially
down-sampled), a gradient consistency check is performed with the sliding window
containing 3x3 neighboring regions. The window is moved in raster scan order,

positioning the window on a region in the picture (e.g., by centering the window on the

-40-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

region, performing the consistency check, then moving the window from left to right
across the picture). For a given window value, the consistency check requires the
difference between the maximum and the minimum gradientDirection (see, e.g., Figure
27) of all 9 regions within the window to be less than 32 (equivalent to 45 dégrees when
slopes are represented by numbers from 0 to 255). If this condition is satisfied, the
moving window value for the 3x3 set of regions is 1; otherwise it is 0. Alternatively, the
encoder uses a different mechanism to check consistency of slope directions, for example,
using a different size sliding window, different slope range threshold for maximum slope —
minimum slope, different measure such as variance for slope consistency, and/or different
checking pattern, or computes a sliding window value for each region as opposed to sets
of regions. The consistency check varies for different representations of slope
information.

The encoder can then process the next set of regions (2840). As output, the
encoder produces a mask or other data structure indicating decision information. For
example, the encoder produces a binary consistency mask (referred to herein as
consistencyMask) obtained by positioning the sliding window and performing the
consistency check on sets of regions in the picture, and assigning each set of regions a
decision of 1 (consistent slope) or 0.

Optionally, the encoder performs further processing on the decision information.
In some implementations, an encoder performs morphological operations on a consistency
mask to help refine gradient consistency decisions for a picture. Two possible
morphological operations are Erode and Dilate. .

For example, an Erode operation is performed on every bit in the consistencyMask,
followed by a Dilate operation. In the Erode operation, a bit initially marked as 1 is
marked as 0 if in the four closest pixels (here, values in the consistencyMask), more than
one was initially marked as 0. In the Dilate operation, a bit initially marked as 0 is marked
1 if in the four closest pixels, more than one were initially marked as 1.

Alternatively, an encoder generates masks without using morphological operations
or other post-processing of the decision information.

D. Decision Rules and Bucket Voting

Even after performing consistency checking, the incidence of smooth regions may
be so low, or the smooth regions may be so isolated, that they would be inefficient to
encode specially. For example, even after applying morphological operations, there may

still be gradient slope regions represented in consistencyMask that are isolated enough to

-41 -

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

not need differential quantization. In some implementations, an encoder uses decision
rules (including, for example, bucket voting) to help decide whether DQ should be applied
to gradient slope regions in the picture. In the GSR detector 2400 of Figure 24, decision
module 2440 makes such decisions.

In one implementation, the encoder makes one or more binary decisions regarding
whether the current picture contains significant gradient slope based on consistencyMask.
The mask consistencyMask is divided into 25 rectangular regions of the same size (called
buckets) with 5 buckets in each row and 5 in each column. (The “bucket” regions are
hence larger than the regions used for decisions and regions used for gradient
calculations.) The 1s within each bucket are counted. Let Buckets(i][j] be the number of
1s contained in the bucket at location (i, j), where 0 <7, j <4. Horizontal and vertical
bucket projections — the number of 1s in each column of buckets and the number of 1s in
each row of buckets, respectively — also are calculated according to the following
relationship:

BucketProjection _ H [1] = Z Bucketsi][j]
0sjs4 (€))]

BucketProjection_V []] = ogZ‘Bucket.s[i][¥

<

In this implementation, the picture is considered to contain significant gradient
slope if any of the following conditions are satisfied:

1. Atleast 6% of the pixels in consistencyMask (regardless of bucket distribution)

are marked as 1, OR .
2. In one or more of the buckets, at least 75% of the pixels are marked as 1, OR
3. In one or more of the bucket projections, at least 20% of the pixels are marked
as 1.

For example, 16 x 16 regions for a down-sampled picture of size 960x1440 are
represented with 2 mask of size 20x30 (each value for a 3x3 set of regions of the down-
sampled picture), which is in turn divided into 25 buckets, each bucket corresponding to a
24 regions of the consistency mask. Each bucket includes 24 bits from consistencyMask,
for a total of 25 x 24 = 600 bits. The encoder counts the number of 1s in each bucket, with
a distribution as shown in Figure 29. The encoder checks whether the total number of is
is more than 6% of all bits. In this case, the total number of 1s (as shown in Figure 29) is
83, which is more than 6% of all bits. Thus, the encoder in the case would skip bucket
projection, due to satisfaction of condition 1, above. If the total number of 1s were below

the threshold for condition 1, the encoder would whether 75% of the bits in any bucket

_42-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

were 1s (condition 2), and, if necessary, check horizontal and vertical bucket projections
(condition 3) to determine whether the regions indicated asrbeing gradient slope regions
are such that a gradient slope mask and decision mask should be generated, such as the
macroblock-level gradient slope masks described below.

Alternatively, an encoder uses other decision rules for processing consistency
information in a mask consistencyMask or other representation. For example, the
percentage thresholds shown in conditions 1, 2 and 3 can vary depending on
implementation. Or, one or more of the conditions is omitted, or the conditions are
reordered, replaced or supplemented by other conditions (e.g., different directions for
bucket projections, etc.). Aside from checking consistency information, the encoder can
also consider gradient values and/or other information when deciding whether or how
much DQ should be applied to gradient slope regions in the picture. As another
alternative, an encoder can omit these decision rules altogether, and simply use the
consistencyMask when generating a gradient slope mask.

E. Macroblock-level Gradient Slope Mask Generation

To provide gradient slope information in a form useful for later encoder decision-
making, the encoder puts the information in maps, masks, or other data structures. The
information can include gradient slope region presence/absence information as well as
actual gradient direction values for gradient slope regions.

For gradient slope presence/absence information, if gradient slope regions are
detected, the encoder produces a gradient slope mask. For example, an encoder produces
a macroblock-level gradient slope mask (referred to herein as MBSlopeMask) by
converting a region-level mask (such as consistencyMask) back to macroblock-level for
the original picture, considering possible down-sampling. Note that each value in
consistencyMask corresponds to 9 macroblocks in the original picture, or 36 macroblocks
if the picture is 4-to-1 down-sampled. For each bit with value 1 in consistencyMask, the
encoder marks corresponding macroblocks as 1 in MBSlopeMask exéept for macroblock
that are not smooth. Checking for smoothness again helps to avoid false alarms in
gradient slope detection. For example, in one implementation an encoder uses a texture
map to obtain texture information for blocks in a macroblock, and the macroblock is
considered smooth only if all four blocks within the macroblock are smooth.

Altematively, the encoder provides gradient decision information in some other

form and/or uses some other decision for macroblock smoothness.

.43 -

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

For gradient direction information, a gradient direction map is generated by
assigning each region’s gradient direction to all its corresponding macroblocks that are
smooth. In doing so, the encoder accounts for possible size differences between
macroblocks of the original picture and gradient regions due to down-sampling before
gradient calculation.

The generated gradient slope mask and gradient direction map are then used in the
encoder to make better coding decisions. Generally speaking, the results generated by a
gradient slope region detector can be used by an encoder to make other coding decisions.
For example, an encoder can make quantization decisions based on a generated gradient
slope mask and/or gradient direction map. Some of the possible encoder decisions are
described below.

V5. Adjusting Quantization to Preserve Non-zero AC Coefficients

Typically, a picture is assigned a picture-level quantization parameter by a rate
control unit in an encoder. Using the same picture-level QP, the amount of bits used to
represent a highly textured macroblock is typically much greater (as much as 10 to 50
times greater) than the amount of bits used to represent a low textured macroblock. Since
the human visual system is less sensitive to distortion in a busy, highly textured area than
in a smooth, low-textured area, however, it makes sense to use a smaller QP for low
textured macroblocks and a larger QP for highly textured macroblocks.

This leads to the often-used strategy of classifying macroblocks according to
human visual importance (usually using variance of the blocks or the strength of the
gradients inside the blocks) and assigning a target number of bits proportional to some
perceptual weighting. The quantization parameter for each macroblock to be modified is
selected by modifying the picture level quantizer according to the weighting.

Experiments have shown that in smooth regions of very low variation, blocks are
often quantized to have energy only in DC coefficients (with no non-zero AC coefficients
remaining) eyén at a reasonably low QP. Surprisingly, when DC values in adjacent blocks
in extremely smooth regions vary by only 1 from block-to-block, the perceived blocky,
contouring artifact are a lot more severe than one would expect with such a small
difference in absolute terms. The occurrence of this type of artifact in relatively small
regions inside an otherwise well-coded picture can cause the overall perceived quality for
the entire picture to be lowered.

Traditional rate-distortion-based and perceptual-based macroblock QP selection

techniques do not handle this situation well. With rate-distortion optimization, the smooth

44

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

blocks would be considered well-coded because of the small distortion in absolute terms,
and thus no further bits would be spent fdr these blocks. On the other hand, typical
perceptual-based methods classify macroblocks into perceptual classes and assign a
quantization parameter to each macroblock by adding or subtracting a pre-defined offset to
the picture-level quantization parameter according to the perceptual class of the
macroblock. Unless the pre-defined offset is very aggressive (e.g., reducing QP for
smooth regions to 1), such methods cannot guarantee that smooth blocks with small
variations will not be quantized to a single non-zero DC coefficient, with all AC
coefficients quantized to zero. But setting a very aggressive offset can increase bits spent
in macroblocks that may not need them to improve perceptual quality, raising bit rate
inefficiently and conflicting with the picture-level quantization parameter selected by the
encoder for rate control.

Accordingly, several techniques and tools described below selectively and
judiciously allocate bits within pictures such that enough bits are allocated to smooth
regions to reduce or remove introduction of blocking or contour artifacts.

For example, an encoder calculates QPs and selects a quantization parameter for
each macroblock within an I-picture to allocate enough bits to smooth blocks, thereby
reducing perceived blocking artifacts in the I-picture. For each macroblock with one or
more smooth blocks, a QP is selected such that there are at least N non-zero quantized AC
coefficients per block of the macroblock, wheré N is an integer greater than or equal to 1.
Often, the preserved AC coefficients are coefficients for the lowest frequency AC basis
functions of the transform, which characterize gradual value changes horizontally and/or
vertically across a block. This tends to help perceived visual quality for each block,
especially for smooth regions with low variation. In one implementation, an encoder
selects the largest QP, not exceeding the picture QP, that still preserves AC coefficients as
desired. There may be situations (e.g., very flat blocks) that non-zero AC coefficients are
not preserved. In general, however, in this way, the encoder is not overly aggressive in
spending bits with smaller QPs and reduces or avoids conflict with the picture QP.

With reasonable values of N, the selected QP does not change for most
macroblocks; it is the same as the picture QP for most macroblocks, and only a few
smooth blocks are affected. Reasonable values of Nare 1, 2, 3 or 4. The selected QP is
more likely to change for macroblocks with low texture. In one implementation, N=1 or

2 improves perceived quality without too much increase in the picture’s bit rate.

-45.

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

Figure 30 shows an example technique 3000 for selecting a macroblock QP to help
preserve one or more non-zero AC coefficients. An encoder such as the encoder 1000 of
Figure 10 or other tool performs the technique 3000.

At ‘3010, the encoder finds the N largest AC coefficients of each luma block of
the macroblock. For example, the encoder finds the second largest AC coefficient of each
of the four 8x8 blocks of a 16x16 macroblock, if N=2. Let AC (0), AC (1), AC (2), AC
(3) be the N*™ largest coefficients for the four luma blocks 0, 1, 2 and 3, respectively. For
different block organizations in a macroblock, the N™ coefficients can come from more or
fewer blocks in the macroblock.

At 3020, the encoder finds the minimum of these N™ coefficient values. For the
N'™ coefficients of four blocks, 4Cmin = min (4C (0), AC (1), AC (2), AC (3)). For other
numbers of blocks, ACni, is computed differently.

At 3030, the encoder sets a QP for the macroblock such that ACy;, is outside the
dead zone threshold for that QP. The dead zone threshold is a “cut-off” threshold for
quantizing an AC coefficient to zero when the value of QP is used for quantization. The
dead zone threshold is usually predetermined for, and proportional to, a given QP. The
dead zone threshold is selected at some point between 0 and the first reconstruction point.
When the encoder uses either a uniform quantizer or non-uniform quantizer, the first
reconstruction point depends on the QP value and whether uniform or non-uniform
quantization is used. In one implementation, the first reconstruction poiﬁt is the
reconstructed value of quantized coefficient level = 1, which for uniform quantization is 2
* QP and for non-uniform quantization is 3 * QP. For uniform quantization, the cut-off
threshold thus lies between 0 and 2*QP. For non-uniform quantization, the cut-off
threshold thus lies between 0 and 3*QP. For example, the dead zone threshold Z(QP) is
selected as Z(QP) = 6*QP/5 for uniform quantization, and Z(QP) = 2*QP for non-uniform
quantization. Alternatively, other cut-off thresholds can be used.

An AC coefficient AC will be quantized to zero if: Abs(4AC) < Z(QP). To set
(3030) the QP for a macroblock, an encoder can find the QP for the macroblock (QPy,)
that will preserve at least N AC coefficients by comparing 4Cpyi, with Z(QP) for candidate
values of QP, starting with the picture QP and decreasing QP until a minimum QP for the
quantizer is reached (e.g., QP = 1) or the inequality Abs(4Cy,,) >= Z(QP) is satisfied. If
the inequality Abs(4Cmin) >=Z(QP) is satisfied, the encoder sets the threshold QP for the
macroblock to be the first QP (i.e., highest qualifying QP) that satisfies the inequality.

- 46 -

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

Alternatively, the encoder uses other logic to compute the QP for the macroblock, for
example, starting from the lowest QP or using a binary search of QP values.

The process of using QP,, to quantize all blocks in the macroblock can be referred
to as unconstrained bit rate quantization. In a constrained bit rate quantization technique,
an encoder determines the maximum QP (not greater than the picture QP) needed to
produce the desired number of non-zero AC coefficients for each of the luma blocks of the
macroblock separately (e.g., QPo, QP1, QP2, and QP; for blocks 0, 1, 2 and 3, respectively)
as described above. It follows that QP,, equals the minimum of QPp, QPy, QP2, and QPs.
To reduce bit usage, an encoder could use QP; to quantize block i (where i =0, 1, 2, 3,
etc.) in place of QPm. In an encoder that specifies a single QP for an entire macroblock,
the encoder can instead keep only those AC coefficients that are non-zero when quantized
using QP; for each block i/ when quantizing the block using QP preserving only the top N
non-zero AC coefficients in a given block even if other AC coefficients in the block would
be preserved with quantization by QP,.. For the quantization process shown in Figure 30,
the quantization process for each luma block can be performed as a two-pass process. In
the first pass, the encoder “thresholds” DCT coefficients to zero if the coefficient is less
than Z(QP,), and otherwise keeps the same DCT coefficients. Then, the “thresholded”
DCT coefficients are quantized in the same manner using QP

Alternatively, an encoder preserves non-zero AC coefficients in some other way.
For example, an encoder can select a QP on a basis other than a macroblock-by-
macroblock basis (e.g., block-by-block basis). The encoder c.an preserve AC coefficient
for I-pictures, P-pictures, or B-pictures, or combinations thereof.

If at the minimum possible QP the number of non-zero quantized coefficients is
less than N, N can be adjusted accordingly.

VIIL. _ Differential Quantization on DC Shift

In a typical lossy encoding scenario, not all quantized DC and AC coefficients can

be recovered exactly after inverse quantization. For example, in some video codecs, DC
coefficient values shift by one (i.e., increase or decrease by one relative to their pre-
quantization value) for some QPs and DC coefficient values. This phenomenon is an
example of DC shift. Representations of some DC coefficient values are lossless through
quantization and inverse quantization at one or more lower QPs, but lossy in other, higher
QPs.

A region with several blocks in which all the AC coefficients are quantized to 0

and the DC coefficients cannot be recovered exactly can exhibit visible contouring

-47-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

artifacts in DC shift areas. Such regions with contouring artifacts are often smooth,
gradient slope regions, such as sky, water or light rays. Figure 31 is a diagram showing a
DC shift in three neighboring blocks in a gradient slope region after quantization and
inverse quantization. The DC values of three neighboring blocks 3102, 3104, 3106 ina
gradient slope region are 68, 69, and 70, respectively, prior to quantization. After
quantization and inverse quantization, the DC value of block 3104 is shifted to 70. As
shown in Figure 31, the DC values of the three neighboring blocks are now 68, 70, and 70.
‘When such blocks are in a gradient slope region, the quantized DC values may cause
perceptible contouring artifacts. For example, referring again to Figures 22A-C, the
gradient slope region 2210 has been quantized, resulting in a visible contouring artifact in
Figure 22B. As shown in Figure 22C, quantization of the DC coefficients for the top-half
blocks of macroblock 2250 results in uniform values reconstructed from a DC value of 68,
while quantization of DC coefficients for the bottom-half blocks results in uniform values
reconstructed from a DC value of 70.

Accordingly, several techniques and tools described below are used by a video
encoder to detect DC shift areas and adjust quantization to reduce or avoid introduction of
contouring artifacts in the DC shift areas.

Figure 32 is a flow chart showing a generalized technique 3200 for adjusting
quantization to reduce or avoid introduction of contouring artifacts in DC shift areas. An
encoder such as the encoder 1000 of Figure 10 or other tool performs the technique 3200.

At 3210, an encoder detects a shift area. The search for DC shift areas can be
aided by previous gradient slope detection. For example, the encoder detects DC shift
areas by detecting one or more gradient slope regions (or using previously computed
gradient slope detection information) then identifying DC shift blocks in the gradient slope
region(s), as described below.

At 3220, the encoder adjusts quantization in the DC shift area. For example, an
encoder can use differential quantization (DQ) to code DC shift blocks in order to reduce
or avoid introduction of contouring artifacts caused by DC shift. The encoder reduces QP
for some macroblocks (those with DC shift blocks) but does not change QP for other
blocks. Reducing QP for macroblocks having DC shift blocks can help keep DC values
lossless for the macroblocks, thereby reducing or avoiding introduction of contouring
artifacts. An encoder can use bi-level DQ or multi-level DQ to resolve DC shift problems
and thereby improve visual quality while controlling bit usage. If there are more pictures

to analyze, the encoder processes the next picture (3230).

- 48 -

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

Alternatively, the encoder adjusts quantization for DC shift areas on a macroblock-
by-macroblock basis or some other basis.

A. Gradient Slope Detection

Gradient slope detection can be used to identify one or more gradient slope regions
in a picture. The gradient slope region(s) tend to exhibit contouring artifacts, especially
when blocks in the region(s) have non-zero DC coefficient values and AC coefficients of
only zero after quantization. Once found, such region(s) can be checked for DC shift
blocks that may contribute to contouring artifacts.

For example, an encoder finds a gradient slope region using a technique described
herein (Section V) or some other technique. If the only non-zero coefficients in blocks are
DC coefficients after quantization, the encoder treats the blocks as candidates for DC shift
area adjustment. Alternatively, the encoder considers additional blocks as candidates for
DC shift area adjustment.

B. Identifying DC-shift blocks

The encoder identifies certain candidate blocks as DC shift blocks. The
identification of DC shift blocks depends on details of the quantizer and QPs used to
compress the blocks. For example, some reconstructed DC coefficients will not shift from
their original value at one QP, but will shift at a coarser QP.

Examples of DC shift coefficients for different QPs in one encoder are provided in
the following table. The table indicates DC coefficient values exhibiting DC shift for
different values of QP, where QP is derived explicitly from the parameter PQIndex (and,
potentially, a half step parameter) or implicitly from the parameter PQIndex (and,
potentially, a half step parameter). DC values not listed in the table are lossless for the
indicated QP in the example encoder; DC values for QPs under 3 (which are not shown in
the table) are all lossless. The example encoder does not perform DC shift adjustment for
QPs higher than those shown in the table. In the example encoder, quantization of DC
coefficients is the same for different quantizers (e.g., uniform, non-uniform). Which DC
coefficient values are DC shift coefficients will differ in different video codecs. Different
quantizers (e.g., uniform, non-uniform) can result in different shift patterns if quantization

of DZ coefficients is different in the different quantizers.

-49 -

WO 2007/117707

PCT/US2007/008937
Table 3: Example DC-shift Coefficients
POIndex | POIndex | Original | Shifted | Original | Shifted | Original | Shifted
(Implicit | (Explicit DC DC DC DC DC DC
OP) QP)
3-5.5 3-5.5 6 7 96 97 186 187
15 16 105 106 195 196
24 25 114 115 204 205
33 34 123 124 213 214
42 43 132 133 222 223
51 52 141 142 231 232
60 61 150 151 240 241
69 70 159 160 249 250
78 79 168 169
87 88 177 178
6- 6-7.5 2 1 92 93 178 177
7.5,9- 6 7 97 96 183 182
10.5 11l 12 102 101 187 188
16 15 106 107 192 193
21 20 111 112 197 196
25 26 116 115 202 201
30 31 121 120 207 206
35 34 126 125 211 212
40 39 158 157 216 217
45 44 130 131 221 220
49 50 135 136 225 226
54 53 140 139 230 231
59 58 144 145 235 236
63 " 64 149 150 240 239
68 69 154 155 245 244
73 74 159 158 249 250
78 77 164 163 254 255
83 82 168 169
87 88 173 174

~-50-

WO 2007/117707 PCT/US2007/008937

PQIndex | PQIndex | Original | Shifted Original | Shifted | Original | Shifted
(Implicit | (Explicit DC DC DC DC DC DC
QP) OP)

8,11~ 8-9 2 1 88 89 171 172

12 5 6 92 21 175 174
o 8 95 26 178 179
i2 11 99 o8 182 181
15 16 102 101 185 186
19 18 105 106 189 188
22 23 109 108 192 191
26 25 (112 113 195 196
29 30 116 115 199 198
33 32 119 120 202 203
36 37 123 122 206 205
40 39 126 127 209 210
43 44 158 156 213 212
47 46 130 129 216 217
50 51 133 134 220 219
54 53 137 {136 223 224
57 56 140 141 227 226
60 61 144 143 230 231
64 63 147 146 234 233
67 68 150 151 237 236
71 70 154 153 240 241
74 75 157 158 244 243
78 77 161 160 247 248
81 82 164 165 251 250
85 84 168 167 254 255

-51-

WO 2007/117707 PCT/US2007/008937
PQIndex | POQIndex | Original | Shifted | Original | Shifted | Original | Shifted
(Implicit | (Explicit | DC DC DC DC DC DC

QpP) QP)

13-14 10-11 2 3 90 89 175 174
5 4 93 92 177 178
8 7 95 96 180 181
11 10 98 9% 183 184
13 14 101 102 186 185
16 17 104 103 189 188
19 20 107 106 192 191
22 21 110 109 194 19%
25 24 112 113 197 198
27 28 115 1l1le 200 201
30 31 1i8 118 203 202
33 34 121 120 206 205
36 35 124 123 209 208
39 38 126 127 211 212
42 41 158 157 214 215
45 44 129 130 217 218
47 48 132 133 220 219
50 51 135 136 223 222
53 52 138 137 225 226
56 55 141 140 228 229
5% 58 144 143 231 232
61 62 lae 147 234 235
64 65 149 150 237 236
67 68 152 151 240 23¢9
70 69 155 154 243 242
73 72 158 157 1245 246
76 75 160 16l 248 249
78 79 163 164 251 250

| 81 82 166 167 254 253
84 85 169 168
87 86 172 171

-52-

WO 2007/117707 PCT/US2007/008937

PQIndex | PQIndex | Original | Shifted | Original | Shifted | Original | Shifted
(Implicit | (Explicit DC DC DC DC DC DC
oP) oP)

15-16 12-13 2 1 87 88 171 170
4 3 g0 895 173 174
6 7 92 93 176 175
9 8 95 94 178 179
11 12 97 o8 181 180
14 13 100 99 183 184
16 17 102 103 186 185
19 18 105 104 188 189
21 22 107 108 191 190
24 23 110 109 193 194
26 27 112 111 195 196
29 28 114 118 198 197
31 30 117 116 200 201
33 34 1l19° 120 203 202
36 35 122 121 205 206
38 39 124 125 208 207
41 40 127 126 210 211
43 44 158 157 213 212
46 45 129 130 218 216
48 49 132 131 218 217
51 50 134 135 220 221
53 54 137 136 222 223
56 55 139 140 225 224
58 57 141 142 227 228
60 61 144 143 230 | 229
63 62 146 147 232 233
65 66 149 148 235 234
68 67 151 152 237 238
70 71 154 153 240 239
73 72 156 157 242 243
75 76 159 158 245 244
78 77 161 162 247 248
80 81 164 163 249 250"
83 82 166 167 252 251
85 84 168 169 254 255

-53-

WO 2007/117707 PCT/US2007/008937
POIndex | PQIndex | Original | Shifted | Original | Shifted | Original | Shifted
(Implicit | (Explicit DC DC DC DC DC DC

QP) oP)

17-18 14-15 1 2 87 88 171 172
3 4 89 30 173 174
5 6 92 91 175 176
8 7 94 93 178 177
10] 26 95 180 179
12 13 98 99 182 183
14 15 100 101 184 185
16 17 103 102 186 187
19 18 105 104 189 188
21 20 107 106 191 190
23 24 109 110 193 194
25 26 111 112 195 196
27 28 114 113 198 197
30 29 116 115 200 199
32 31 118 119 202 201
34 35 120 121 204 205
36 37 122 123 206 207
39 38 125 124 209 208
41 40 127 126 211 210
43 42 158 157 213 212
45 46 129 130 215 216
a7 48 131 132 217 218
50 49 133 134 220 219
52 51 136 135 222 221
54 53 138 137 224 223
56 57 140 141 226 227
58 59 142 143 228 229
61 60 144 145 231 230
63 62 147 146 233 232
65 66 149 148 235 236
67 68 151 152 237 238
69 70 153 154 239 240
72 71 156 158 242 241
74 73 158 157 244 243
76 77 160 159 246 247
78 79 162 163 248 249
81 80 164 165 250 251
83 82 167 166 253 252
85 84 169 168 255 254

The example encoder with the DC shift coefficients shown in Table 3 generally

uses different QPs for textured regions than for smooth regions. The example encoder

typically uses a QP in the range of 3-5 to encode smooth regions. As shown in Table 3,

above, for QP 3-5, all the shifted DC values are 1 more than the original DC value. Other

encoders may use different QPs for smooth regions versus texture regions.

-54.

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

To help reduce or avoid introduction of contouring artifacts when DC shift blocks
are detected, the example encoder changes the QP for macroblocks containing DC shift
blocks to keep the DC values lossless in those macroblocks. In particular, the example
encoder reduces the QP for macroblocks containing DC shift blocks to QP = 2. (Other
encoders may use some other QP for DC shift areas.) In general, an encoder can select the
largest available QP that results in lossless treatment of the DC coefficients of the blocks
of the macroblock.

An encoder calculates a mean luma value per block to determine DC shift blocks
in the gradient slope region(s), since the mean luma value corresponds to the DC shift
value (after compensating for expansion in the transform). The mean luma value allows
the encoder to estimate or predict which blocks have DC shifts. Alternatively, an encoder
calculates real DC values and looks them up in the DC shift table to identify exactly which
blocks will have shifts.

The encoder can perform additional .processing to exclude certain isolated DC shift
blocks in the gradient slope region(s). In the example encoder, once a current block is
identified as a DC shift block located in a gradient slope region, the surrounding four
neighboring blocks are checked. If any of the surrounding four neighboring blocks is a
smooth block and has a DC value lower than the shifted DC value of the current block, the
encoder uses QP = 2 to for the macroblock containing the current block in order to keep
the DC values lossless. Alternatively, an encoder does not do a check of neighboring
blocks, or checks some other arrangement of neighboring blocks to determine whether to
make a change in the QP for the DC shift area.

C. Multi-level Differential Quantization Cost Model

_ Bi-level DQ and multi-level DQ typically have different bit rate costs. In one
implementation, 1 bit per macroblock is used to signal a picture QP or alternative QP in
“all macroblock” bi-level DQ, and at least 3 bits per macroblock are used to signal a
picture QP or alternative QPs in multi-level DQ.

Although an encoder can use multi-level DQ to allow for reducing QP in a smooth
region that contains DC shift blocks, an encoder instead can choose to adjust the QP for all
smooth regions (e.g., to QP = 2) and use a coarser picture QP for the rest of the picture in a
bi-level DQ scenario. For example, an encoder may do this where the signaling costs of
multi-level DQ are found to be too expensive relative to the costs of bi-level DQ.

In one implementation, the following table is used to calculate the cost of smooth

blocks that going from QP = 3, 4, 5, and 6, respectively, to QP = 2.

-55.

10

15

20

25

30

WO 2007/117707

PCT/US2007/008937

g_iSmoothBlockDiffQPCost[4] = {18, 22, 28, 36}.

This table is used in the following example of bi-level DQ cost B(QP) cost
calculation.

B(QP) = counts_of total MBs + (counts_of _bilLevel Dgquan MBs —

counts_of DC_Shift_Blocks) * g_iSmoothBlockDiffQPCost[QP-3];

The cost B(QP) accounts for the costs of per-macroblock bi-level cost signaling
and estimates the increased bit cost of using QP =2 instead of a 3,4, 5, 0or 6 fora i)lock.
Multi-level DQ cost M{QP) is calculated as:

M(QP) = (counts_of frameQP_ MBs * 3) + (counts_of _biLevel Dquan_MBs —

counts_of DC_Shift Blocks)* 8 + (counts_of DC_Shift_Blocks * 3);
The cost M(QP) accounts for signaling costs of multi-level DQ, assuming escape coding
for some macroblock quantization parameters. If B(gp) < M{(gp), then bi-level DQ will be
used and QP = 2 will be used for all smooth blocks. Otherwise, multi-level DQ will be
used. '

Alternatively, an encoder uses other costs models for different types or
configurations of DQ. Or, an encoder reduces QP for the entire picture when DC shift
blocks are detected, or uses some other technique to change quantization to reduce or
avoid introduction contouring artifacts when DC shift blocks are detected.

D. Picture QP switching

In one example encoder, multi-level DQ requires 3 bits to signal any QP from
picture QP to picture QP+6. Any QP outside of this range will be signaled with 8 bits
through escape coding. Alternative QPs that are used for smooth regions are normally
smaller than the picture QP, and hence require escape coding.

Switching picture QPs can thus save coding overhead for multi-level DQ. For
example, an encoder can choose a picture QP using the multi-level DQ cost model
described above. For example, for a three-level scenario (e.g., a picture QP, a smooth
region QP, and a DC shift QP), multi-level DQ cost is computed for different candidate
values for a picture QP. An encoder can select the picture QP with minimum overhead
cost.

Alternatively, an encodfar uses other criteria to switch picture QPs, or does not
perform picture QP switching.

E. Coarse Quantization for High-texture Macroblocks

If a decision is made to use multi-level DQ, coarse quantization can be used for

high-texture macroblocks by assigning them a higher (coarser) QP than the picture QP.

-56-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

The decision to use multi-level DQ for the picture (e.g., in order to use smaller QP for DC
shift macroblocks) means there is no additional overhead cost to signal a per macroblock
coarse QP that is higher than the picture QP. For example, picture QP + 1 can used as the
coarse QP to avoid noticeable differences in the quantization level, or some other QP can
be used. A texture threshold can be used to determine which macroblocks will be
quantized with the coarse QP, after the encoder has decided to use multi-level DQ for the
current picture, '

Alternatively, an encoder uses other criteria to determine whether certain regions
(e.g., macroblocks) should use a coarse QP, or does not use coarse QPs.

F. Example Techﬁique for DC Shift Quantization .

Figure 33 is a flow chart showing a combined technique 3300 for tailoring
quantization in DC shift areas to reduce or avoid introduction of quantization artifacts. An
encoder such as the encoder 1000 of Figure 10 or other tool performs the technique 3300.
This combined technique is an example that combines several of the aspects described
above. Other techniques will not use all of the aspects described with reference to this
example, or will perform them in a different order or in alternative ways.

At 3310, an encoder detects one or .more gradient slope regions in a current picture,
for example, as described in Section V. At 3320, the encoder detects DC shift blocks in
the gradient slope region(s), for example, using a DC shift table.

The encoder then decides how to quantize the picture. At 3330, the encoder
decides whether to use bi-level DQ for the picture. If it'does, the encoder uses a QP
smaller than the picture QP for DC shift areas (3340) and other smooth areas. Otherwise,
at 3350, the encoder decides whether to use multi-level DQ for the picture. Ifit does, the
encoder uses a QP smaller than the picture QP for DC shift areas (3360), can use a
different QP for other smooth areas, and, if high-texture macroblocks are present, uses a
coarse QP (such as one that is larger than the picture QP) for the high-texture macroblocks
(3370). If the encoder does not choose bi-level or multi-level DQ, the encoder reduces the
picture QP and uses the reduced picture QP for DC shift areas (3380) as well as other
areas. Or, the encoder skips QP reduction for the DC shift areas if the costs of bi-level DQ
and multi-level DQ are both too high. When the encoder has chosen a quantization
scheme, the encoder compress the picture at 3390, and process the next picture if any
pictures remain to be processéd (3395).

Having described and illustrated the principles of our invention with reference to

various embodiments, it will be recognized that the various embodiments can be modified

-57-

WO 2007/117707 PCT/US2007/008937

in arrangement and detail without departing from such principles. It should be understood
that the programs, processes, or methods described herein are not related or limited to any
particular type of computing environment, unless indicated otherwise. Various types of
. general purpose or specialized computing environments may be used with or perform

operations in accordance with the teachings described herein. Elements of embodiments
shown in software may be implemented in hardware and vice versa.

In view of the many possible embodiments to which the principles of our invention
may be applied, we claim as our invention all such embodiments as may come within the

scope and spirit of the following claims and equivalents thereto.

-58.

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

We claim:
1. In a video encoder, a method comprising:
identifying a current smooth region of a current video picture in a video picture
sequence, the video picture sequence having a display order in which display of plural
previous pictures occurs before display of the current video picture in the display order
and display of plural future pictures occurs after the display of the current video picture in
the display order;
performing temporal analysis on the current smooth region, wherein the temporal
analysis comprises determining whether a corresponding region in at least one of the
plural previous and/or future pictures is smooth;
based at least in part on the temporal analysis, adjusting quantization in the current
smooth region; and
outputting encoded data for the current video picture.
2, The method of claim 1 wherein the adjusting quantization in the current smooth
region comprises reducing a quantization step size for the cufrent smooth region.
3. The method of claim 2 wherein the reducing the quantization step size for the
current smooth region avoids introduction of a contouring artifact in the current smooth
‘region when the current video picture is reconstructed.
4, The method of claim 1 wherein the temporal analysis is performed on an adjustable
number of the plural future pictures, and wherein the adjustable number is cne or greater.
5. The method of claim 1 wherein the temporal analysis attributes greater weight to
smoothness in a cori-esponding region of a future picture that is temporally nearer to the
current video picture than to smoothness in a corresponding region of a future picture that

is temporally more distant from the current video picture.

6. The method of claim 1 wherein the current smooth region is a gradient slope
region.
7. The method of claim 1 wherein the video encoder analyzes a texture map to

identify the current smooth region, and wherein the video encoder analyzes mean
luminance values in the temporal analysis.
8. One or more computer-readable media having stored thereon computer executaﬁle
instructions to cause a computer to perform the method of claim 1.
9. In a video encoder, a method comprising:

determining a differential quantization interval for a video picture sequence, the

interval comprising an interval number;

-50-

10

15

20

25

30

WO 2007/117707 PCT/US2007/008937

using the interval when performing differential quantization for plural predicted
differentially quantized pictures in the video picture sequence, wherein the interval
constrains the encoder to skip differential quantization for at least the interval number of
predictea pictures after one of the plural predicted differentially quantized pictures; and
outputting encoded data for the video picture sequence.
10. The method of claim 9 wherein the differential quantization comprises:
selecting one or more differential quantization step sizes for a first
predicted picture of the plural predicted differentially quantized predicted pictures,
the one or more differential quantization step sizes differing from a picture
quantization step size for the first predicted picture;
changing the one or more differential quantization step size for a second
predicted picture of the plural predicted differentially quantized predicted pictures,
wherein the second predicted picture is outside the interval from the first predicted
picture. ‘
11. The method of claim 9 wherein the plural predicted differentially quantized
pictures comprise at]east one P-picture.
12. The method of claim 9 wherein the plural predicted differentially quantized

pictures comprise at least one B-picture.

13. The method of claim 9 wherein the differential quantization interval is a fixed
interval.
14. The method of claim 9 wherein the differential quantization interval is an

adaptively adjustable interval.
15. One or more computer-readable media having stored thereon computer executable
instructions to cause a computer to perform the method of claim 9.
16. In a video encoder, a method comprising:

analyzing texture in a current video picture;

setting a smoothness threshold for the current video picture based at léast in part on
the analyzed texture in the current video picture;

comparing texture data of the current video picture with the smoothness threshold;

adjusting differential quantization for at least part of the current video picture
based on a finding of at least one smooth region in the current video picture accordiné to
the smoothness threshold; and

outputting encoded data for the current video picture.

- 60 -

10

WO 2007/117707 PCT/US2007/008937

17. The method of claim 16 wherein the analyzing texture comprises analyzing a
texture map.
18. The method of claim 16 wherein the analyzing texture comprises applying a

sliding window to a gradient value histogram of block gradient values.

19. The method of claim 16 wherein the adjusting differential quantization comprises:
determining a percentage of flat blocks in the current video picture; and
comparing the percentage to one or more percentage thresholds, wherein the

adjusting differential quantization depends on results of the comparing the percentage to

the one or more percentage thresholds.

20. The method of claim 16 wherein the adjusting differential quantization compriseé:
identifying an isolated flat block in a texture region in the current video picture;

and

skipping the differential quantization for the isolated flat block.

.61-

WO 2007/117707 PCT/US2007/008937

1/23
. VLE
Figure 1 136 —F - _ 140
~135 []
100 137 —F N -l =4—147
\
AN
126 /
Quant- <4 }
ization /
DCT 110 120 ’ . i
» — // >
127 —F
8x8 block of DCT coefficients Quantized DCT
samples 105 115 coefficients 125 . 145
Zig-zag
scan 150
Run Level Last
VLE RLE
&0 DR I I [TT)
S 155
165
Figure 2
230 210
{ (
/]
O | 0
% %

235 215

PCT/US2007/008937

2723

WO 2007/117707

GCE SIUDIII0D Sve

wNm N 100 paznueny) SJuaIdl200 [Od
S9t ARRN
) AN
«— «— I [TT] +— — O
JIA 0Lt . 09¢ uess
gguon
gepaemy o4 Bez-317 -znuend) 1/
ove
1od
$E£€ 319019 Jolrg
-
00¢ (ourer aousIRyaI

ut 3joo[q pajoipad

Jo Juswaoe[dsip
sa1j10ads)

Tojoor uonoly [am3L] 508
— « ‘vopeumsg
AAIN UONIOJ\
XA
Sz€ ¥olq SI€ ¥0[q
8Xg ua1my 8X8 padlpald

¢ 2131,

PCT/US2007/008937

WO 2007/117707

3/23

SLY ¥001q

PalonnSu0dy
(surey 9oUaIS)aI
u1 joojq pajorpaid
Jo jusuraoejdsip
0Ly saroads)
f J0)09A UOTIO]
+ T *Sov AAl
XA
) 599 01 AN
Sy 8X8 pa3oIpald 7
. Svv G SIURIOLJ0D
J00[q 10119 §X§ 100 8X8 pazuuend) Sy
Y44 ¢
+— «— [[[[™7 [1T1] «— -
1144 oty 0ty 0Tv
ueos aTd aiIA
H%MH Bez-31z s8] [PAdT Uy
puenb 9SIBAU]

oSIoAU] .—V 3 Hﬁwﬂ hﬁ

WO 2007/117707

4/23

Figure 5

PCT/US2007/008937

500

OnT=x u

510
< [\l [L 1) $ 1 S
520
..." 2
Figure 6A
) 600

o
4+

J I 1 1 1 1 1 1
~ i L) I 1] []] >
620
Figure 6B
650
5
35 25 -15 -5 5 1.5 2.5 3.5

WO 2007/117707 PCT/US2007/008937
5/23
Fi gurc 7) Ofx]=x 700
Ofx e
pa X 1 1 [] L 1 [[[
Figure 8A
. 800
& X 1 1 [] I 1 1 l/
~ | 1 1 lwl i ¥ 4
S.3 S S.y So S Sy S3
Figure 8B
850
pa d [1 1 1 1 [1 l/

WO 2007/117707 PCT/US2007/008937
6/23
Figure 9
T e e— |
Computing environment 900 Communication
___________ connection(s) 970
~ ™) I
Input device(s) 950

Processing
unit 910

Memory 920

Software 980 implementing video encoder

Output device(s) 960

r-----

+ Storage 940

with described techniques and tools

s o — — — — — — — —

PCT/US2007/008937

WO 2007/117707

7723

N
1 \, —
7201 21018 0zZ01 21035 7/ @mummuﬁa d
~— S101 SIRLd SMld J uoae&o.m
y
9L01 9901 "wen 0£01 10388 0101
i 10znuenb] Aousnbaxy | -uaduos Ll Iojewnsa
3SI9AU] OSIDAU] UOLOIA] UOHOJA
0901 Tew
0601 080T 13p0o 0L01
Am ogng [4domug [rozguenpy [€ I [
: Aouanbaiy w 00T
S601 S¥01 amord
OJUI 0SPIA [enpIsoy Wo1m)
passaid
-wo)) yjed Jajug
yred enu
0601 | g Josormpoaf | ocor | | TR
< { gng Adonyuyg Iaznuend) foustbarg w
S601 $001
OJur 09pIA amyoid
passaxd ua1my)
-wo)

0] 2In3rg

WO 2007/117707 PCT/US2007/008937
8/23
Figure 11 ‘/1 100
Y1 Y2
Y3 Y4 U A\
Figure 12 1200
/
1210 —
Characterize portion(s) of video picture
based on texture
1220 —
Adaptively encode picture using
characterizations
| —
Y
1230 —
Signal adaptively encoded bit stream
1240 —
Read adaptively encoded bit stream
1250
Decode encoded bit stream

END

PCT/US2007/008937

WO 2007/117707
9/23
Figure 13
1302
Y
1310
Y’ c ¥
1314
O %
-
= r|l |Oolefo
Down-
sampling O
1312
1304
U c ¥
@
Y
ry 10 .T\c?_ 1308
O \ G c ' 4
\ 10[10]18]32
1314
10|25 {4040
1306 rl20|29]33 42
v c * / 2031]35]44
O
r O O
O

WO 2007/117707 PCT/US2007/008937

10/23
Figure 14 ’/1400
A 40
5
40
4
35
3 .
10 | 20 33
2 .
10 | 20 1 29 | 32 | 44
1
10] 18 | 25 | 31 | 42
0 —p
0 10 20 30 40 50
PIXEL GRADIENT
- Figure 15
A
EDGE
60 —
TEXTURE
30 —
SMOOTH

WO 2007/117707

Figure 16

11/23

Start

1610~

Obtain texture information
for current picture

PCT/US2007/008937

!

1620~

Find texture DQ region(s)
in current picture

!

1630~

Apply texture DQ to texture
DQ region(s)

Done?

1600

1640 -

Next picture

A

Yes

End

WO 2007/117707

12/23

Figure 17

Start

PCT/US2007/008937

1700

1710
Texture analysis -t
1720~ : 1750~
Temporal analysis Next block
A
1730
~—1740
Adad to block count
No
Done?
Yes

End

WO 2007/117707

Figuré 18

Start

13/23

1810~

Find smooth blocks -

PCT/US2007/008937

1800

!

1820 Perform isolated smooth

block filtering

1830

Remaining

smooth blocks exceed *

ow threshold?

Yes

Remaining
smooth blocks exceed
igh threshold?

1880~

Next picture

Yes
1850

A

1840~

1870 1860
\ 4 0 P
Finer quantization Coarser quantization
No texture DQ for smooth blocks for smooth blocks
| |]
N
Done? °
Yes

End

WO 2007/117707 PCT/US2007/008937

14/23

Figure 19 1900

1910~ . . .
Obtain texture information
. -
for picture
1950
Next picture
A
1930~ : .
Adjust texture level Don’t adjust texture [~ 1940
threshold for picture level threshold

No

Done?

Yes

End

WO 2007/117707 PCT/US2007/008937

15/23

Figure 20 2000

pr——

#define TEXTURELOWTH 30
#define TEXTUREMAX 100
#define MINFLATTH 14
#define MAXFLATTH 28

const Ulnt g_iFlatThTable[TEXTUREMAX-TEXTURELOWTH]={
16, 16, 16, 16, 18, 18, 18, 18, 18, 18,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
22,22,22,22,22,22,22,22,22,22,
24,24,24,24,24, 24,24, 24, 24 24,
24,24,24,24,24, 24,24 24 24 24,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26
b

unsigned integer decide AdaptiveFlatThreshold(unsigned integer g0)
{
Integer new_adaptive_threshold;
if (g0 < TEXTURELOWTH) new_adaptive_threshold=MINF LATTH;
else
if (g0 >= TEXTUREMAX) _
new_adaptive_threshold=MAXFLATTH;
else
new__adaptive_thresho1d=g__iF1atThTable[gO-TEXTURELOWTH];

if (not scene change key frames)
new_adaptive_threshold = last_adaptive_threshold +

max(-4, min(4, new_adaptive_threshold-last_adaptive_threshold));

return new_adaptive_threshold;

WO 2007/117707 PCT/US2007/008937

16/23

Figure 21

2100

rd

JILIiidiiiiilill
JIIIddliiiiiliill

Jilildl

WO 2007/117707

PCT/US2007/008937

17/23

Figure 22A

2210

2240

Figure 22B

2230

Figure 22C

3 0 10 T G I 7 O R | R 150
22 | N OO O O O ;3
R LI EE B B B L B BRIE B
T8 0 R G O |57 | O N N 5
IO LI EICIL I
305 | 0 {0 { O O3 £ o O L 0 4
G D e 2 0 T
I IR O O O O O O

2250

'

: DC value = 68

J: DC value= 70

2200

WO 2007/117707 PCT/US2007/008937

18/23

Figure 23 2300

2320 —

Smooth —| Next region

2310 .
region?

A

2330 Find gradient

direction for region

!

Gradient slope
region decision

2340

No

Done?

Yes

End

Figure 24 2400
Texture /

Current map 2425
picture : -
2405 Down- Gradient Consistency
1 sampling | detector |[——m] checker
2410 2420 2430

Gradient slope
mask and decision .
mask 2495 Mask Decision
Generator |(@——— Module

2450 2440

WO 2007/117707 PCT/US2007/008937

19/23

Figure 25 2500
5

Figure 26

1 ifi<8
KH=[k‘.j] whereOSi,jSlS,k,.j={ 111'}1'>8'
=l i1z

1 if j<8
K, -—-[k,.j] whereOSi,jSls,kD_={ 1 ’.;J.<>8
~1if j=

. 2700

Figure 27 S

ComputeGradientDirection (IN region, OUT gradientDirection)
if (region is NOT smooth) {

gradientDirection = -2; //texture or edge region
return;

/

gx = sum of all elements of K,, ®block

gy = sum of all elements of K, @ block

if (abs(gy) < 32 && abs(GradY) <32) { -
gradientDirection = -1, // flat region
return;

9=tan—l(gy/gx)’
Offset = 0;
if(gx<0){

Offset = 3.14159;

4
Else if (gr<0) {
Offset = 2 * 3.14159;

8 = 8 + Offset,;

gradientDirection = ((Int) (8* 2598)) >> 6;
End_ComputeGradientDirection
S— a——

WO 2007/117707 PCT/US2007/008937

20/23-
Figure 28 2800

Start

2810 Position sliding window at

current region

!

Check gradient direction of 2840
regions in sliding window

l A
Make consistency decision
for current region

2820~
Next set of regions

2830

Done?

End

F igure 29

0 1 2 3 4

0 0 5 110 5 0

WO 2007/117707 PCT/US2007/008937
21/23
Figure 30 A/3000
Start
3010~ Find Nth largest AC
coefficient for each luma |«&
block
Find minimum of Nth
3020~ —
largest AC coefficients 3040 Next macroblock
(ACmin)
* A
3030 Set QP for macroblock such
that AC,i, is outside
deadzone
N
Done? 2
Yes
End
Figure 31
3102~ DC = 3102~ DC=
68 Quantization and 68
3104~ DC = .inverse quant. 3104~ DC =
69 » 70
31061 DC = 3106— DC =
70 70

WO 2007/117707 PCT/US2007/008937

22/23

Figure 32 3200

Start

3210~ petect DC shift in

current picture

l

Adjust quantization
in DC shift areas

3230 -

3220 - Next picture

Done?

Yes

End

WO 2007/117707

Figure 33

Detect gradient
slope region(s)

v

Detect DC shift
blocks in gradient
slope region(s)

3310 -

3320 —

3330 bi-level

DQ?

PCT/US2007/008937

23/23

3300

3395~ Next picture

\

Use
multi-level
DQ?

Yes

3340 = Use QP smaller than | 3360 — Use QP smaller than
picture QP for DC picture QP for DC
shift areas shift areas
3370 ~7 Use coarse QP for
high-texture
macroblocks
| Y
3390 - 3380 — Change picture QP
Compress picture |- and use for DC shift
‘ areas
N
Done? °
Yes

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2007/008937

A. CLASSIFICATION OF SUBJECT MATTER

HO4N 7/24(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 8 HOAN

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility Models: IPC as above

eKIPASS(KIPO internal): "encode, smooth region, adjust"

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See abstract, page 1, [0001] - page 2, [0023]

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A WO 99/48300 A1 (DEAWOO ELECTRONICS CO., LTD.) 23. Sep.1999. 1-20
See abstract, page 1, line 5 - page 6, line 34.
A US 2002/0118884 A1 (HYUN DUK CHO, ALEXANDER L. MAIBORODA, PETERSBERG) 1-20
08. Oct. 2002.
See abstract, page 1, [0001] - page 5, [0087].
A US 6,463,100 B1 (SANGHEE CHO, et al.) 08. Oct. 2002. 1-20
See abstract, page 1, line 1 - page 5, line 16.
A US 2003/0095599 A1 (JIN SOO LEE, et al.)22. May. 2003. 1-20

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later

than the priority date claimed

e

e

ey

ng"

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

13 SEPTEMBER 2007 (13.09.2007)

Date of mailing of the international search report

13 SEPTEMBER 2007 (13.09.2007)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701,
Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.

CHO, Woo Yeon

82-42-481-8524

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2007/008937
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO9948300A1 23.09. 1999 AU749227B2 20.06.2002
AU7940098A1 11.10. 1999
CN1166204C 08.09.2004
CN1229324A 22.09.1999
DE69837497C0 16.05.2007
EPO1076999A1 21.02.2001
JP11298900A2 29.10.1999
US06351492 26.02.2002
US20020118884A1 29.08.2002 KR1020020047460 22.06.2002
US6993197BB 31.01.2006
US6463100B 1 08.10.2002 KR100243430B 1 01.02.2000
KR1019990060795 26.07.1999
US20030095599A1 22.05.2003 CN1288910C 06.12.2006
CN1420690 28.05.2003
EPO1313322A2 21.05.2003
KR1020030040974 23.05.2003

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - wo-search-report
	Page 88 - wo-search-report

