
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0092096 A1

BAUMGARTNER et al.

US 2008.0092096A1

(43) Pub. Date: Apr. 17, 2008

(54)

(76)

(21)

(22)

(63)

METHOD AND SYSTEM FOR OPTIMIZED
AUTOMATED CASE-SPLTTING VA
CONSTRAINTS IN A SYMBOLC
SIMULATION FRAMEWORK

Inventors: JASON Raymond BAUMGARTNER,
Austin, TX (US); Christian Jacobi,
Schoenaich (DE); Viresh Paruthi,
Austin, TX (US); Kai Weber,
Boeblingen (DE)

Correspondence Address:
DLLON & YUDELL LLP
8911 N. CAPITAL OF TEXAS HWY.,
SUTE 2110
AUSTIN, TX 78759 (US)

Appl. No.: 11/954,626

Filed: Dec. 12, 2007

Related U.S. Application Data

Continuation of application No. 1 1/165.455, filed on
Jun. 23, 2005, now Pat. No. 7,340,704.

right = Build BDD

bdd=bdd and
(left, right)

not valid (bdd)?

CaSe-Split. On (eg node
with largest BDD) and
the value to Set it to

Publication Classification

(51) Int. Cl.
G06F 7/50 (2006.01)

(52) U.S. Cl. .. 71.6/5

(57) ABSTRACT

A method for performing verification is proposed. The
method comprises receiving a design and building an inter
mediate binary decision diagram for the design containing
one or more nodal binary decision diagrams. In response to
a size of the intermediate binary decision diagram exceeding
a size threshold, a node of the design is selected for
case-splitting. A first case-splitting is performed upon the
selected node of the design to generate a primary constraint
for setting the selected node to a primary value. A first
constraining is performed on one of the one or more nodal
binary decision diagrams with the primary constraint to
generate a primary final binary decision diagram, a first
verification of the design is performed using the primary
final binary decision diagram.

2OO

2O2

lefts Build BDD
for left Child

for right child
206

IS

Select a nOde to

COnStrain a BDOS with
the inverse of the BDD
Of the Selected node,
and Store them. On the

CaSeS Stack

Constrain a BDDS
with the BDD for the

Selected node

Patent Application Publication Apr. 17, 2008 Sheet 1 of 11 US 2008/0092096 A1

CONSTRAINTS OUTPUT TABLE RAM
1 34 1 22 102

LOGIC SIMULATOR
1 2 4

DATA PROCESSING BDD BUILDER
SYSTEM 126
1 OO CASE SPLIT BDD RESTRICTAPPLICATIONS

118 1 42 mamma

PROCESSOR - I -
104 A.

SigE T OPERATING SYSTEM

110
P/O CONTROLER INITIAL DESIGN NETS
H 108 STATEC) TARGETS 120

132 136 USERIO F
1 14

116 STACK

1 40

Fig. 1

Patent Application Publication Apr. 17, 2008 Sheet 2 of 11 US 2008/0092096 A1

20 O
Start

2O2

left = Build BDD
for left Child

204

right = Build BDD
for right child

206

bdd=bdd and
(left, right)

21 O

End
ls

not valid (bdd)?
NO

YeS
2 2

Select a node to
Case-Split On Sb nOde
with largest BDD) and
the Value to Set it to

2 4

COnStrain all BDDS With
the inverse of the BDD
Of the Selected node,
and StOre them. On the

CaSeS Stack

21 6

COnStrain a BDDS
With the BDD for the

Selected node

Fig. 2

Patent Application Publication Apr. 17, 2008 Sheet 3 of 11 US 2008/0092096 A1

3 O O

3 O 2

Cycle num=0

3 O 4
336 N S

O1Cycle_num < =
End (no. Of Cycles to

simulate)
?

31 O

Build BDDS for
initial Values and

initialize the design

334 Update registers with
RemOve this Case next-State

from the CaSeS-Stack function valueS

332

Set the value of Case-split node to
the Other value

31 A.

Create BDD war
of each input

316

330 Build BDDS for
Restore all BDDS for the COnStraints and
the Other Value Of the targetS

Case-Split node

324

3 18

328 Constrain target
Cycle num= Cycle BDDS
num of last case-split Cycle num + 1

326 320 S 322
NO DO YeS1 Cycle_num = Bui D uild BDDS for the

CaSeS remain (nd, Of Cycles to next-State functions
Simulate)

?

Fig. 3

Patent Application Publication Apr. 17, 2008 Sheet 4 of 11 US 2008/0092096 A1

400

4 O2

SERVER
EXECUTABLES

? GD-R
NO

41 O 4 12

YES IDENTIFY SERVER
ADDRESSES

426 428

YES
IDENTIFY CLIENTS G2)

436 4.38

N. YES IDENTIFY USER
O DIRECTORIES O

SEND TO
SERVERS

NO

CONTACT
USERS

NO

SEND TO
DIRECTORIES

NO
424 GO

Fig. 4a

Patent Application Publication Apr. 17, 2008 Sheet 5 of 11 US 2008/0092096 A1

4 4
DOES A 4 18

PRESSEYER SEND INVENTION
BUILT SOFTWARE SERVER

420

USERS ACCESS
PROCESS SOFTWARE INSTALL PROXY

SERVER

4.32

USERS RECEIVE
THE E-MAIL

434

DETACHON
CLIENTS

442
USERS ACCESS
DIRECTORIES O

422

SEND DIRECTLY TO INSTALL ON THE
CLIENTS STORAGE CLENT O

IDENTIFY SERVERS SEND EXECUTABLES
THAT WILL CONTAIN O SERVERS

EXECUTABLES

Fig. 4b

4.08

INS ALL ON
SERVERS

Patent Application Publication Apr. 17, 2008 Sheet 6 of 11 US 2008/0092096 A1

5 O2

504

YES
ISA

VPN FOR
REMOTEACCESS

REQUIRED
2

DOES THE
REMOTEACCESS

VPN EXIST
O

NO YES 5 10

ACCESS THE

NETwo ACHED-G) 5 O6 SERVER

F-G)
SA O

VPN FOR SITE
TO STEACCESS

REOURED 520
p

ACCESS CORP
NO NETWORK AND

526 REOUEST SOFTWARE
(6) EXT 522

TRANSPORT
PROCESS SOFTWARE

VIA TUNNELING

524

EXECUTE PROCESS
SOFTWARE

Fig. 5a

Patent Application Publication Apr. 17, 2008 Sheet 7 of 11 US 2008/0092096 A1

528 532 534 SA
VPN FOR NST ALL DEDICATED BUILD LARGESCALE

REMOTEACCESS EOUIPMENT ENCRYPTION
REOUIRED

?
530

ACCESS PROCESS
SOFTWAREN
NETWORK

532

TRANSPORT
PROCESS SOFTWARE

VIA TUNNELNG

534

RECEIVE THE O
PROCESS SOFTWARE

536 5 12
EXECUTE PROCESS IDENTIFY THIRD

PARTY SERVICE SOFTWARE ar

PROVIDER

5 14 Fig. 5b
IDENTIFY REMOTE

USERS

5 16

SET UP NETWORK
ACCESS SERVER

518

NSTADESKTOP
CLIENT SOFTWARE

Fig. 5c

Patent Application Publication Apr. 17, 2008 Sheet 8 of 11 US 2008/0092096 A1

6 O2

604 608 61 O

YES IDENTIFY SERVER IDEARE
ADDRESSES NUMBERSON SEVERS

6 12

DOES
PROCESS

SOFTWARE EXECUTE

ON SERVERS

NO
DO

VERSION
NUMBERS AND
SOFTWARE
MATCH

2

60 6 YES
YES (8)

62O NO 6 1 4
NO

DENTIFY CLENT UPDATESOFTWARE
618 ADDRESSES ON SERVERS

EXIT 622 6 16

DENTIFY SOFTWARE COMPLETE THE
(9) AND VERSION SERVER INTEGRATION

NUMBERSON CLIENTS

Fig. 6a

DOES
PROCESS

SOFTWARE EXECUTE
N ON CENTS 1

2

Patent Application Publication Apr. 17, 2008 Sheet 9 of 11 US 2008/0092096 A1

624 DO
VERSION

NUMBERS AND
SOFTWARE

UPDATE SOFTWARE
ON CLIENTS

628

COMPLETE THE
CLIENT INTEGRATION

Fig. 6b

Patent Application Publication Apr. 17, 2008 Sheet 10 of 11 US 2008/0092096 A1

702

704

CUSTOMER CREATES
THE ON DEMAND TXN

7 O 6

SEND TXN
TO SERVER

7 O 8

SERVER CAPACITIES
ARE OUERIED

7 10 7 18

ADD TO ON DEMAND
ENVIRONMENT

7 16

7 12

ALLOCATE SUFFICIENT NO
SERVER CAPACITY

7 14

SEND TO SERVER

IS
THERE

SUFFICIENT
CAPACTY

2

IS THE
ON DEMAND

3. ENVIRONMENT
n SUFFICIENT 1

2

YES

Fig. 7a

Patent Application Publication Apr. 17, 2008 Sheet 11 of 11 US 2008/0092096 A1

EXECUTE
TRANSACTION

720

7 22

RECORD
MEASUREMENTS

7 24

SUMMEASUREMENTS
AND COST

726 728

YES
POST TO THE WEB

73 O

DISPLAY
ON WEB

NO

732

YES SEND TO CUSOMER SEND TO
CUSTOMER

7

NO

734 736

YES GET PAYMENT FROM
CUSTOMER ACCOUNT

NO

738

PAY FROM
CUSTOMER
ACCOUNT

?

Fig. 7b

US 2008/0092096 A1

METHOD AND SYSTEM FOR OPTIMIZED
AUTOMATED CASE-SPLTTING VA

CONSTRAINTS IN A SYMBOLIC SIMULATION
FRAMEWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application is a continuation of U.S.
patent application Ser. No. 1 1/165.455, filed on Jun. 23.
2005, and entitled “Method and System for Optimized
Automated Case-Splitting via Constraints in a Symbolic
Simulation Framework” which is assigned to the assignee of
the present invention and incorporated herein by reference in
its entirety.

BACKGROUND OF THE INVENTION

0002) 1. Field of the Invention
0003. The present invention relates in general to verify
ing designs and in particular to verifying a logic function in
a decision diagram. Still more particularly, the present
invention relates to a system, method and computer program
product for optimized automated case splitting via con
straints in a symbolic simulation framework.
0004 2. Description of the Related Art
0005 Formal and semiformal verification techniques
provide powerful tools for discovering errors in verifying
the correctness of logic designs. Formal and semiformal
verification techniques frequently expose probabilistically
uncommon scenarios that may result in a functional design
failure. Frequently, formal and semiformal verification tech
niques provide the opportunity to prove that a design is
correct (i.e., that no failing scenario exists).
0006. One commonly-used approach to formal and semi
formal analysis for applications operating on representations
of circuit structures is to represent the underlying logical
problem structurally (as a circuit graph), and then use Binary
Decision Diagrams (BDDs) to convert the structural repre
sentation into a functionally canonical form.
0007. In such an approach, in which a logical problem is
represented structurally and binary decision diagrams are
used to convert the structural representation into a function
ally canonical form, a set of nodes for which binary decision
diagrams are required to be built, called "sink nodes, are
identified. Examples of sink nodes include the output node
or nodes in an equivalence checking or a false-paths analysis
context. Examples of sink nodes also include targets in a
property-checking or model-checking context.
0008 Unfortunately, formal verification techniques
require computational resources which are exponential with
respect to the size of the design under test. In particular,
many formal analysis techniques require exponential
resources with respect to the number of state elements in the
design under test. Semi-formal verification techniques lever
age formal algorithms on larger designs by applying them
only in a resource-bounded manner, though at the expense of
incomplete verification coverage; generally, coverage
decreases as design size increases.
0009 Constraints are often used in verification to prune
the possible input stimulus in certain states of the design. For
example, a constraint may state “if the designs buffer is full,

Apr. 17, 2008

then constrain the input stimulus to prevent new transfers
into the design”. Semantically, the verification tool will
typically discard any states for which a constraint evaluates
to a 0 (i.e., the verification tool may never produce a failing
scenario showing a violation of some property of the design,
if that scenario does not adhere to all the constraints for all
time-steps prior to the failure). In this previous example, it
would be illegal for the verification tool to produce a trace
of length 'i' showing a violation of some property, if that
trace illustrated the scenario that the buffer was full and a
new transfer was initiated into the design between time 0 and
i (inclusive).
0010) Symbolic simulation is a symbolic exploration
approach that has been used to exhaustively check designs
for a bounded number of steps, starting at the initial states.
This method verifies a set of scalar tests with a single
symbolic vector. Symbolic inputs (represented as BDDs) are
assigned to the inputs and propagated through the circuit to
the outputs. This technique has the advantage that large
input spaces are covered in parallel with a single symbolic
sweep of the circuit. The bottleneck of the approach lies in
the explosion of the BDD representations.

SUMMARY OF THE INVENTION

0011. A method for performing verification is proposed.
The method comprises receiving a design and building an
intermediate binary decision diagram for the design con
taining one or more nodal binary decision diagrams. In
response to a size of the intermediate binary decision
diagram exceeding a size threshold, a node of the design is
selected for case-splitting. A first case-splitting is performed
upon the selected node of the design to generate a primary
constraint for setting the selected node to a primary value. A
first constraining is performed on one of the one or more
nodal binary decision diagrams with the primary constraint
to generate a primary final binary decision diagram, a first
verification of the design is performed using the primary
final binary decision diagram.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. The present invention is described in a preferred
embodiment in the following description with reference to
the drawings, in which like numbers represent the same or
similar elements, as follows:
0013 FIG. 1 illustrates a block diagram of a general
purpose data processing system with which the present
invention of a method, system and computer program prod
uct for optimized automated case splitting via constraints in
a symbolic simulation framework may be performed;
0014 FIG. 2 is a flow diagram of a process for optimized
automated case splitting via constraints in a symbolic simu
lation framework, in accordance with the preferred embodi
ment of the present invention; and
0015 FIG. 3 is a high level logical flow chart of a process
for performing symbolic simulation in a preferred embodi
ment of the present invention;
0016 FIGS. 4a–b show a flow-chart of steps taken to
deploy software capable of executing the steps shown in
FIGS. 2 and 3:

0017 FIGS. 5a-c show a flow-chart of steps taken to
deploy in a Virtual Private Network (VPN) software that is
capable of executing the steps shown in FIGS. 2 and 3;

US 2008/0092096 A1

0018 FIGS. 6a-b show a flow-chart showing steps taken
to integrate into an computer system software that is capable
of executing the steps shown in FIGS. 2 and 3; and

0.019 FIGS. 7a-b show a flow-chart showing steps taken
to execute the steps shown in FIGS. 2 and 3 using an
on-demand service provider.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

0020. The present invention provides a method, system,
and computer program product to optimize case-splitting
and ameliorate the explosion in BDD representations when
simulating a design symbolically. The method of the present
invention ensures that the sizes of intermediate BDDs do not
exceed a specified size limit, ultimately improving the
likelihood that the symbolic simulation completes on a
design for which it otherwise may not have previously
completed under the prior art due to resources (e.g. available
memory on the machine) exhaustion. The method of the
present invention employs a strategy and heuristic for auto
mated case-splitting, and the overall case-splitting approach
improves the likelihood completeness—e.g., the analysis of
all cases, as if no case splitting had been performed. The
method of the present invention enables significant perfor
mance improvements over that possible in the prior art,
offering the hope of completing symbolic simulation when
prior-art Solutions may not have completed due to memory
explosion.

0021. The present invention is generally applicable to a
sequential design representation (application of this inven
tion to a combinational design follows as a special case of
the sequential model).

0022 With reference now to the figures, and in particular
with reference to FIG. 1, a block diagram of a general
purpose data processing system, in accordance with a pre
ferred embodiment of the present invention, is depicted.
Data processing system 100 contains a processing Storage
unit (e.g., RAM 102) and a processor 104. Data processing
system 100 also includes non-volatile storage 106 such as a
hard disk drive or other direct-access storage device. An
Input/Output (I/O) controller 108 provides connectivity to a
network 110 through a wired or wireless link, such as a
network cable 112. I/O controller 108 also connects to user
I/O devices 114 such as a keyboard, a display device, a
mouse, or a printer through wired or wireless link 116, such
as cables or a radio-frequency connection. System intercon
nect 118 connects processor 104, RAM 102, storage 106,
and I/O controller 108.

0023. Within RAM 102, data processing system 100
stores several items of data and instructions while operating
in accordance with a preferred embodiment of the present
invention. These include a design netlist 120 and an output
table 122 for interaction with a logic simulator 124 and a
binary decision diagram builder 126. Other applications 128
and logic simulator 124 interface with processor 104, RAM
102, I/O control 108, and storage 106 through operating
system 130. One skilled in the data processing arts will
quickly realize that additional components of data process
ing system 100 may be added to or substituted for those
shown without departing from the scope of the present
invention. Other data structures in RAM 102 include an
initial state data structure 132 containing an initial state of
design netlist 120, a constraints 134 data structure, binary
decision diagrams 138, a stack 140, and a targets 136 data

Apr. 17, 2008

structure, detailing operational characteristics of the simu
lation run by logic simulator 124.
0024. A netlist graph, such as design netlist 120, is a
popular means of compactly representing problems derived
from circuit structures in computer-aided design of digital
circuits. Such a representation is non-canonical and offers
limited ability to analyze the function from the nodes in the
graph. A netlist contains a directed graph with vertices
representing gates and edges representing interconnections
between those gates. The gates have associated functions,
Such as constants, which are also represented in constraints
134 data structure, primary inputs, primary outputs, combi
national logic (e.g., AND gates), and sequential elements
(hereafter referred to as registers). Registers have two asso
ciated components; their next-state functions and their ini
tial-value functions, which are represented as other gates in
the graph. Certain gates in the netlist may be labeled as
“primary outputs”, “targets”, “constraints', etc.
0025 Binary decision diagrams 138 are a popular choice
for efficiently applying Boolean reasoning to problems
derived from circuit structures, which are frequently repre
sented in netlist graphs. Binary decision diagrams 138 offer
a compact and canonical representation of the Boolean
function of a graph node, which expedites reasoning regard
ing a node's function.
0026. Processor 104 executes instructions from pro
grams, often stored in RAM 102, in the course of performing
the present invention. In a preferred embodiment of the
present invention, processor 104 executes logic simulator
124. Logic simulator 124 performs the creation of binary
decision diagrams 138 through the operation of binary
decision diagram builder 126 on the circuit specifications
contained in design netlist 120, which contains instructions
for modeling a simulated item of logical hardware.
0027. In a preferred embodiment, the present invention is
applied to a netlist representation where the only combina
tional gate type is a 2-input AND, and inverters are repre
sented implicitly as edge attributes. Registers have two
associated components, their next-state functions, and their
initial-value functions. Both are represented as other gates in
design netlist 120. Semantically, for a given register, the
value appearing at its initial-value gate at time 0 ("initial
ization” or “reset time) will be applied as the value of the
register itself; the value appearing at its next-state function
gate at time 'i' will be applied to the register itself at time
“i-1’’. Certain gates are labeled as “targets” and/or “con
straints'.

0028. Targets 136 represent nodes whose Boolean
expressions are of interest and need to be computed. The
goal of the verification process is to find a way to drive a 1
on a target node, or to prove that no such assertion of the
target is possible. In the former case, a "counterexample
trace' showing the sequence of assignments to the inputs in
every cycle leading up to the fail event getting triggered is
generated and recorded to output table 122.
0029 Logic simulator 124 includes a computer program
product, stored in RAM 102 and executed on processor 104,
which provides a series of tools for activities such as
equivalence checking, property checking, logic synthesis
and false-paths analysis. Generally speaking, logic simulator
124 contains rule-based instructions for predicting the
behavior of logically modeled items of hardware.
0030 Logic simulator 124 uses the series of rules con
tained in its own instructions, in conjunction with design

US 2008/0092096 A1

netlist 120, to represent the underlying logical problem
structurally (as a circuit graph), and uses binary decision
diagram builder 126 to construct binary decision diagrams
138, thereby converting the structural representation into a
functionally canonical form.
0031. In a preferred embodiment, logic simulator 124 is
a Cycle-Based Symbolic Simulator (CBSS), which performs
a cycle-by-cycle simulation on design netlist 120 symboli
cally by applying unique random, or non-deterministic,
variables to the netlist inputs in every cycle.
0032. At each step the Boolean expressions, represented
as BDDs 138, corresponding to each node in design netlist
120 are computed until the expressions for all “sink' nodes
(i.e. nodes labeled as primary outputs, targets, constraints
and next-state functions of registers) are obtained. At each
step of the simulation the Boolean expressions of the target
nodes are tested for being non-zero. If so, a counterexample
trace leading up to the failure (represented by the assertion
of the target node to a 1) is returned. The constraints need
to be factored in before this check for the targets being hit
can be done. This factoring is typically accomplished by
simply ANDing the Boolean expression for the target with
the Boolean expression for each of the constraints.
0033) A Cycle-Based Symbolic Simulator (CBSS), such
as is contained in logic simulator 124, performs a cycle-by
cycle symbolic simulation on a netlist representation of the
design in design netlist 124 symbolically by applying unique
random, or non-deterministic, variables to inputs in design
netlist 124 at every cycle. Logic simulator 124 essentially
performs forward BDD-based bounded symbolic simula
tion, starting from initial state 132. Logic simulator 124
extends the cycle simulation methodology to symbolic val
ues. Logic simulator 124 applies symbolic functions to the
inputs in every cycle and propagates them to the targets 136.
At each step the Boolean expressions, represented as binary
decision diagrams 138, corresponding to each node in
design netlist 120 are computed until the expressions for all
"sink nodes, i.e. nodes labeled as primary outputs, targets
136, constraints 134 and next-state functions of registers, are
obtained.

0034. At each step of the simulation the Boolean expres
sions of the target 136 nodes are tested for being non-zero.
If so, a counterexample trace leading up to the failure
(represented by the assertion of the target node to a 1) is
returned and reported to output table 122. If unsolved targets
136 remain, then the registers are updated with the values,
represented as binary decision diagrams 138, of the next
state functions, and the process continues. At every step of
the verification process process, there is a potential for a
blow-up in memory when computing the binary decision
diagrams 138 for any of the sink nodes.
0035. The method of the present invention addresses the
risk of memory blow-up when computing intermediate
binary decision diagrams 138 in several steps. First, if an
intermediate binary decision diagram 138 size exceeds a
certain size threshold at a particular time-step, logic simu
lator 124 selects a binary decision diagram 138 node to
case-split on, and the value to be applied to the selected,
node(s). Second, upon case-splitting the binary decision
diagram 138 sizes drop significantly, and logic simulator 124
then continues with the symbolic analysis using reduced
resources relative to that which was possible without the
case splitting. Third, logic simulator 124 may then repeat the
case-split on any number of nodes at different steps and
stages of the symbolic simulation. Fourth, once logic simu

Apr. 17, 2008

lator 124 completes the symbolic analysis (i.e. the design
has been symbolically simulated for the required number of
time-steps), logic simulator 124“backtracks” to the last
case-split (and the time-step in which it was applied) and
sets the selected node to the next constant (i.e. if a single
node was selected for case-splitting, the present invention
set it to the opposite value of what it was set to in the prior
analysis), and completes the symbolic analysis for that split.
This reversion step is continued until all case-splits are
covered, ensuring complete coverage of the search space.

0036 Furthermore, the present invention enables logic
simulator 124 to perform case-splitting using global
resources, in which case the case-splitting gracefully
degrades into underapproximate analysis if the global
resource limits are exceeded. In underapproximate analysis,
the complete search will not be performed by logic simulator
124 after global resources are exceeded, (i.e. the process will
not backtrack to try the other value of the case-split node(s)).
Nonetheless, very high coverage will be attained by logic
simulator 124 using the process of the present invention
through the selection of high-quality case splits.

0037 Lastly, the present invention includes in logic
simulator 124 a novel heuristic to select the node(s) to
case-split upon which is very effective in managing space
complexity of binary decision diagram 138 operations, and
efficiently yielding high coverage. Logic simulator 124
performs case-splitting via constraining with constraints
134. Logic simulator 124 selects a binary decision diagram
138 representation of the function of internal node for a
given time-step, and splits upon the selected node by forcing
the selected node to a selected constant. Logic simulator 124
propagates the effects of the split to the other live binary
decision diagrams 138, and thereby dramatically reduces
overall resources, by constraining the other binary decision
diagrams 138 with respect to this case-split binary decision
diagram 138 set to the selected constant. By doing do, in a
sense, logic simulator 124 restricts the values at the input
variables that lie in the cone-of-influence of the selected
node to combinations that cause this internal node to assume
the selected constant value. Next, once logic simulator 124
completes the analysis for the first selected constant, logic
simulator 124 backtracks to complete the symbolic simula
tion using the opposite constant for that node, thus ensuring
complete coverage.

0038 A special case of this approach arises in logic
simulator 124 case-splitting upon a register by selecting one
with the largest binary decision diagram 138 representation.
In a sense, by case-splitting on internal nodes, logic simu
lator 124 causes the entire logic in the cone-of-influence of
this node in an unfolded design netlist 120 to drop out from
any further analysis, and instead be replaced by a constant,
and the values enforced on the variables in the support of
this node to be propagated to the binary decision diagrams
138 for the other nodes.

0039. A useful feature of logic simulator 124 is that logic
simulator 124 selects internal nodes to automatically split
upon, with the effect of considering a set of values at the
inputs that lie in Support of the selected nodes, enabling
higher-quality case splits which cover more cases with fewer
splits, often yielding exponential speed improvement over
traditional methods.

0040. The overall symbolic simulation algorithm used by
logic simulator 124 can be represented as the following
pseudocode:

US 2008/0092096 A1

1. Function symbolic simulate

Apr. 17, 2008

2. Begin
3. cycle num = 0;
4. while (cycle num < (no. of cycles to be simulated) &&. (unsolved targets remaining)) do
5. if cycle num == 0) { Build BDDs for the initial values and Initialize the design by

applying the initial value functions to the registers
6. else

cycle num-1 to the register nodes to prepare for the current cycle
7. Create new BDD variables for each of the inputs for the current cycle
8. Build BDDs for the constraints
9. Build BDDs for the targets in the presence of constraints

10. Constrain the target BDDs and check for targets hit
11. Build BDDs for the next-functions in the presence of the constraints
12. cycle num++
13.endwhile
14.endfunction.

0041 Any of steps 5, 8, 9 and 11 of the overall symbolic
simulation algorithm discussed above are Subject to failure
due to resource exhaustion, as described above. Therefore,
logic simulator 124 performs steps 5, 8, 9 and 11 of the
overall symbolic simulation algorithm discussed above,
such that if a specified threshold (specified either by the user
or automatically determined by logic simulator 124 based on
whether the available allotment of resources—e.g., memory
available on the machine) is exceeded during binary deci
sion diagram 138 construction, logic simulator 124 intro
duces a case-split.
0042. The case-split restricts the values of the selected
variable and/or node causing a drop, often a dramatic drop,
in the number of live binary decision diagram 138 nodes.
Logic simulator 124 then continues the above-described
algorithm until completion (i.e., the number of steps to be
checked are completed or all targets 136 are solved), or until
a binary decision diagram 138 again exceeds resources, in
which case a next case-split is performed. The case-splits are
stored on Stack 140, and once all steps have been checked,
logic simulator 124“backtracks' to the last case-split and
applies the next value for the node/variable that the present
inventionre case-split upon (the next value selection is
described in more detail later). Logic simulator 124 contin
ues this process until Stack 140 becomes empty, increasing
the likelihood of completeness of the entire process in that
all possible values for all variables will have been consid
ered. Note that the backtracking involves logic simulator
124 going back to a previous time-step and then continuing
the temporal computation from there.
0043. Note also that stack 140 dynamically grows and
shrinks. For example, when logic simulator 124 backtracks
to the first case-split and assigns to the case-split node or

Begin

else {

Node node = source(edge);
bool ivt = is inverted(edge); see if the edge was inverted

If(bdd already built(node) bcdd = get node bdd(node); // check if already built

{ Propagate BDDs for the next-state function nodes from

variable the next value, the value previously disallowed.
Logic simulator 124 may apply another case-split while the
current case for the first case-split is being computed. This
new case-split is then entered on stack 140. Intuitively,
case-split evaluations by logic simulator 124 can be visual
ized as a tree in which each node of the tree represents a
case-split of a node at a certain cycle, and the children of the
tree node represent evaluations of the design caused by
setting the case-split node to the selected constant. The tree
node corresponding to a case-split will have two children,
one each for the '0' and 1 value applied to that case-split
node. A stack 140 entry consists of all live binary decision
diagrams 138 just before the case-splitAll live binary deci
sion diagrams 138 are preserved in a Snapshot at the time of
the case-split in order to be able to recreate the state once the
process backtracks to this case-split and processes the next
branch.

0044) While the present invention is described in the
context of selecting a single node to case-split upon at any
given point in time, it is equally applicable and easily
extended to the situation where multiple nodes may be
selected to case-split upon at every step. Generally, in a tree
like representation or visualization of the case-splits, the
number of children of any tree node should equal the total
number of possible value assignments to the case-split nodes
to ensure complete coverage. For completeness, the evalu
ations implied by all children nodes of a tree node cover all
values to the function being case split upon (i.e., the OR of
(function=child-value) across all child nodes is a tautology).
0045. The building function used by logic simulator 124
in BDD builder 126 when constructing binary decision
diagrams 138 in steps 5, 8, 9 and 11 (above) can be
represented as pseudo-code as follows:

Function build node bodd (Edge edge)

, see the gate which sources the edge

BDD left = build node bdd(get left child(node));
BDD right = build node bddget right child (node));
bdd = bold and (left, right);

US 2008/0092096 A1

-continued

10. if not valid (bdd)) { // resources exceeded
while(not valid (bdd)) {

Apr. 17, 2008

case split() i? performs the case-split - also choses the node(s), variable(s) to split upon
bdd = bodd and(left, right);

11. bdd = constrain bodd (bdd);
12. }
13. return ivt? bdd not(bdd): bdd:
14. endfunction

0046. A case split function 142 chooses the next node(s)
to split upon. It Subsequently preserves all live binary
decision diagrams 138, to be used when backtracking to
apply the other value of the case-split node(s), as explained
above, and stores them on stack 140. Case split function 142
also records the cycle number and the phase or stage of the
symbolic simulation when the case-split occurred (such as
“building target BDDs to “building next-state function
BDDs”).
0047 The selection of case split nodes is done by cas
e split function 142 as follows. We select the node with the
largest binary decision diagram 138 representation, and
force it to a constant—a 0 or a 1. Essentially, the resulting
binary decision diagrams 138 will be treated as a constraint
134 as set to the selected constant, and used to constrain all
live binary decision diagram 138 nodes. The constraint 134
defines a care-set, and uses a binary decision diagrams 138
operation from the set of bad constrain 144, bdd restrict
146 or bad compact 148 to minimize the other binary
decision diagrams 138 with respect to the defined care-set
(i.e. the effect of setting the internal node to a constant is
propagated to the other binary decision diagrams 138 by
constraining all those using this binary decision diagram 138
as set to the selected constant). A constraint is effectively a
constraint 134 on the variables on the support of the binary
decision diagrams 138, (i.e. it defines a set of values at the
inputs of the constraint which is then propagated to the other
live binary decision diagrams 138).
0.048. The binary decision diagram 138 at the selected
node is reduced to a single constant node. In a sense this
reduction is equivalent to removing the logic in the cone
of-influence of this node up to the current time-step (i.e.
logic in the cone-of-influence of this node in an unfolded
version of design netlist 120). The constant to set the node
to is selected by trying out the reduction on the binary
decision diagram 138 nodes obtained by setting it to both

constants 0 and 1, and selecting the value that causes the
maximum reduction in the number of binary decision dia
gram 138 nodes. As a variation to this reduction, logic
simulator 124 can also compute the binary decision diagram
138 size reduction obtained by case-splitting on multiple
internal nodes for which binary decision diagrams 138 have
been computed, and for each of the two values 0 and 1.
and splitting upon the node that results in the largest node
reduction.

0049. As an optimization, instead of creating a snapshot
of all the live binary decision diagrams 138, logic simulator
124 can create a Snapshot of only binary decision diagrams
138 computed for the other value of the selected node. These
binary decision diagrams 138 are already available when
choosing the value to set the variable to, as described above.
Once the process backtracks to this case-split the logic
simulator 124 for the other value of the node are already
available on the stack and are used. For example, if logic
simulator 124 first chose to set the node to a 1 logic
simulator 124 creates a Snapshot of the binary decision
diagrams 138 for the nodes that are obtained by constraining
their binary decision diagrams 138 before the case-split with
the case-split node set to 0 for use upon backtracking. As
another optimization, the stored binary decision diagrams
138 may be stored in off-line memory, such as in storage
106, so that they do not impact the optimality and perfor
mance of the processing of the current case. When back
tracking to the last case split, the stored binary decision
diagrams 138 may be restored within the active binary
decision diagram 138 handled by BDD builder 126 and
processing continues.

0050 Logic simulator 124 can incorporate the above
discussed refinements through a modified cycle-based sym
bolic simulation algorithm with the case-splits as demon
strated in the following pseudocode:

1. Function symbolic simulate
2. Begin
3. cycle num = 0;
4. while (cycle num <= (no. of cycles to be simulated) &&. (unsolved targets remaining) &&
(global resources exceeded) do
5. if cycle num = = 0) { Build BDDs for the initial values and Initialize the design by applying

the initial value functions to the registers
6. else { Propagate BDDs for the next-state function nodes from

cycle num-1 to the register nodes to prepare for the current cycle
7. Create new BDD variables for each of the inputs for the current cycle
8. Build BDDs for the constraints
9. Build BDDs for the targets in the presence of constraints

10. Constrain target BDDs and check for targets hit

US 2008/0092096 A1

-continued

11. if(cycle num = = (no. of cycles to be simulated)) {
12. if cases remain, i.e. cases stack is not empty) {
13. cycle num = cycle num of the last case-split
14. Restore BDDs for all nodes to their value for the other value of
the case split node, and set
the value of the node to the other value
15. Remove this case from the cases stack

Apr. 17, 2008

16. Go to the phase (such as building target BDDs or next-state function BDDs) in
which the case-split occurred

17. Build BDDs for the next-state functions in the presence of the constraints
18. cycle num++
19. endwhile
20. end function

0051. Note that logic simulator 124 supports termination
upon exceeding of global resources, in which case the
analysis by logic simulator 124 gracefully degrades into
underapproximate analysis by not completing analysis for
the values of the case-split nodes that have not been
attempted yet. This termination upon exceeding of global
resources is akin to performing a wide breadth-first simu
lation of the design with a large number of variables
assuming truly non-deterministic symbolic valuations, and
some variables (namely the variables in the support of the
case-split nodes) being assigned a constrained set of values.
Note that a variable refers here to a single copy of an input
to the design at a certain cycle and does not imply that the
inputs are fixed to a constrained values in every cycle.
Hence, this approach performs a simulation of a very large
number of test-vectors in parallel resulting in visiting, a
large number of States. Even in the case of early incomplete
termination due to global resources being exceeded, the
high-quality case splits selected by our automated frame
work very high coverage.
0.052 Turning now to FIG. 2, a high level logical flow
chart of a process for optimized automated case splitting via
constraints in a symbolic simulation framework is depicted.
The process starts at step 200. The process then proceeds to
step 202, which depicts binary decision diagram builder 126
building a binary decision diagram 138 for a left child node.
The process next moves to step 204. At step 204, binary
decision diagram builder 126 builds a binary decision dia
gram 138 for a right child node. The process next proceeds
to step 206, which depicts binary decision diagram builder
126 creating an aggregate binary decision diagram 138
composed of the combination of the binary decision diagram
138 for the left child node from step 202 and the binary
decision diagram 138 for the right child node from step 204.
The process next moves to step 208.
0053 At step 208, logic simulator 124 determines
whether the function not valid(BDD) is active for the aggre
gate binary decision diagram 138 constructed in step 206. If
logic simulator 124 determines that the function
not valid(BDD) is active for the aggregate binary decision
diagram 138 created in step 206, then the process ends at
step 210.
0054) If, at step 208 logic simulator 124 determines that
the function not valid(BDD) is valid for the aggregate
binary decision diagram 138 constructed in step 206, then
the process next moves to step 212, which depicts logic

simulator 124 selecting a node to case split on. Such a node
might be the node with the largest available binary decision
diagram 138. At step 212, binary decision diagram builder
126 also selects the value to which to set the node.

0055. The process then moves to step 214. At step 214
logic simulator 124 constraints all binary decision diagrams
with the inverse of the binary decision diagram 138 of the
selected node and stores them on the stack 140. The process
then moves to step 216, which depicts logic simulator 124
constraining all binary decision diagrams 138 with the
binary decision diagram 138 for the selected node. The
process then returns to step 202, which is described above.
0056 Turning now to FIG. 3, a high level logical flow
chart of a process for performing symbolic simulation in a
preferred embodiment of the present invention is depicted.
The process starts at step 300. The process next moves to
step 302, which depicts logical simulator 124 setting the
variable cycle num equal to Zero. The process then proceeds
to step 304. At step 304, logic simulator 124 determines
whether cycle num is less than or equal to the number of
cycles to simulate. If logic simulator 124 determines that
cycle num is not less than or equal to the number of cycles
to simulate then the process ends at step 336.

0057) If logic simulator 124 determines that cycle num is
less than or equal to the number of cycles to simulate, then
the process next moves to step 306, which depicts logic
simulator 124 determining whether cycle num is equal to
Zero. If cycle num is equal to Zero, then the process then
proceeds to step 310. At step 310, binary decision diagram
builder 126 builds binary decision diagrams 138 for initial
values and initializes the design contained in design netlist
120. The process then returns to step 304.

0058 Returning to step 306, if logic simulator 124 deter
mines that cycle num does not equal Zero, then the process
next moves to step 312. At step 312 logic simulator 124
updates registers with next state function values. The pro
cess then proceeds to step 314, which depicts logic simulator
124 creating a binary decision diagram 138 variable of each
input. The process then proceeds to step 316. At step 316,
binary decision diagram builder 126 builds binary decision
diagrams 138 for constraints 134 and targets 136. The
process then moves to step 318, which depicts binary
decision diagram builder 126 constraining binary decision
diagrams 138 representing targets 136. The process next
moves to step 320.

US 2008/0092096 A1

0059) At step 320, logic simulator 124 determines
whether cycle num equals the number of cycles to simulate.
If cycle num does not equal the number of cycles to
simulate then the process next moves to step 322. At step
322, binary decision diagram builder 126 builds binary
decision diagrams 138 for the next state functions. The
process then proceeds to step 324, which depicts logic
simulator 124 incrementing cycle num. The process then
returns to step 304.
0060 Returning to step 320, if logic simulator 124 deter
mines that cycle num is equal to the number of cycles to
simulate, then the process moves to step 326, which depicts
logic simulator 124 determining if any cases remain. If logic
simulator 124 determines that no cases remain, then the
process ends at step 336. If logic simulator 124 determines
that cases remain, then the process next moves to step 328.
At step 328, logic simulator 124 sets cycle num equal to the
value of cycle num at the last case split. The process then
moves to step 330.
0061. At step 330 binary decision diagram builder 126
restores all binary decision diagrams 138 for a previous
value of the case split node. The process then moves to step
332, which depicts binary decision diagram builder 126
setting the value of the case split node to the other value. The
process then moves to step 334. At step 334 binary decision
diagram builder 126 removes these cases from the stack 140.
The process then returns to step 316.
0062 Accordingly, the present invention may suitably be
embodied as a computer program product for use with a
computer system. Such an implementation may comprise a
series of computer readable instructions either fixed on a
tangible medium, Such as a computer readable medium, for
example, diskette, CD-ROM, ROM, or hard disk, or trans
mittable to a computer system, via a modem or other
interface device, over either a tangible medium, including
but not limited to optical or analog communications lines, or
intangibly using wireless techniques, including but not lim
ited to microwave, infrared or other transmission techniques.
The series of computer readable instructions embodies all or
part of the functionality previously described herein.

0063 Those skilled in the art will appreciate that such
computer readable instructions can be written in a number of
programming languages for use with many computer archi
tectures or operating systems. Further, Such instructions may
be stored using any memory technology, present or future,
including but not limited to, semiconductor, magnetic, or
optical, or transmitted using any communications technol
ogy, present or future, including but not limited to optical,
infrared, or microwave. It is contemplated that such a
computer program product may be distributed as a remov
able medium with accompanying printed or electronic docu
mentation, for example, shrink-wrapped software, pre
loaded with a computer system, for example, on a system
RON or fixed disk, or distributed from a server or electronic
bulletin board over a network, for example, the Internet or
World Wide Web.

Software Deployment

0064. Thus, the method described herein, and in particu
lar as shown in FIGS. 2 and 3, can be deployed as a process
software. Referring now to FIG. 4, step 400 begins the
deployment of the process software. The first thing is to

Apr. 17, 2008

determine if there are any programs that will reside on a
server or servers when the process software is executed
(query block 402). If this is the case, then the servers that
will contain the executables are identified (block 404). The
process software for the server or servers is transferred
directly to the servers storage via File Transfer Protocol
(FTP) or some other protocol or by copying though the use
of a shared file system (block 406). The process software is
then installed on the servers (block 408).

0065 Next, a determination is made on whether the
process Software is be deployed by having users access the
process software on a server or servers (query block 410). If
the users are to access the process Software on servers, then
the server addresses that will store the process software are
identified (block 412).
0066. A determination is made if a proxy server is to be
built (query block 414) to store the process software. A
proxy server is a server that sits between a client application,
such as a Web browser, and a real server. It intercepts all
requests to the real server to see if it can fulfill the requests
itself. If not, it forwards the request to the real server. The
two primary benefits of a proxy server are to improve
performance and to filter requests. If a proxy server is
required, then the proxy server is installed (block 416). The
process Software is sent to the servers either via a protocol
such as FTP or it is copied directly from the source files to
the server files via file sharing (block 418). Another embodi
ment would be to send a transaction to the servers that
contained the process Software and have the server process
the transaction, then receive and copy the process Software
to the server's file system. Once the process software is
stored at the servers, the users via their client computers,
then access the process Software on the servers and copy to
their client computers file systems (block 420). Another
embodiment is to have the servers automatically copy the
process Software to each client and then run the installation
program for the process Software at each client computer.
The user executes the program that installs the process
software on his client computer (block 422) then exits the
process (terminator block 424).

0067. In query step 426, a determination is made whether
the process software is to be deployed by sending the
process software to users via e-mail. The set of users where
the process software will be deployed are identified together
with the addresses of the user client computers (block 428).
The process software is sent via e-mail to each of the users
client computers (block 430). The users then receive the
e-mail (block 432) and then detach the process software
from the e-mail to a directory on their client computers
(block 434). The user executes the program that installs the
process software on his client computer (block 422) then
exits the process (terminator block 424).

0068 Lastly a determination is made on whether to the
process software will be sent directly to user directories on
their client computers (query block 436). If so, the user
directories are identified (block 438). The process software
is transferred directly to the user's client computer directory
(block 440). This can be done in several ways such as but not
limited to sharing of the file system directories and then
copying from the sender's file system to the recipient user's
file system or alternatively using a transfer protocol such as
File Transfer Protocol (FTP). The users access the directo

US 2008/0092096 A1

ries on their client file systems in preparation for installing
the process software (block 442). The user executes the
program that installs the process Software on his client
computer (block 422) and then exits the process (terminator
block 424).
VPN Deployment

0069. The present software can be deployed to third
parties as part of a service wherein a third party VPN service
is offered as a secure deployment vehicle or wherein a VPN
is build on-demand as required for a specific deployment.
0070 A virtual private network (VPN) is any combina
tion of technologies that can be used to secure a connection
through an otherwise unsecured or untrusted network. VPNs
improve security and reduce operational costs. The VPN
makes use of a public network, usually the Internet, to
connect remote sites or users together. Instead of using a
dedicated, real-world connection Such as leased line, the
VPN uses “virtual connections routed through the Internet
from the company’s private network to the remote site or
employee. Access to the software via a VPN can be provided
as a service by specifically constructing the VPN for pur
poses of delivery or execution of the process software (i.e.
the software resides elsewhere) wherein the lifetime of the
VPN is limited to a given period of time or a given number
of deployments based on an amount paid.
0071. The process software may be deployed, accessed
and executed through either a remote-access or a site-to-site
VPN. When using the remote-access VPNs the process
Software is deployed, accessed and executed via the secure,
encrypted connections between a company’s private net
work and remote users through a third-party service pro
vider. The enterprise service provider (ESP) sets a network
access server (NAS) and provides the remote users with
desktop client software for their computers. The telecom
muters can then dial a toll-bee number or attach directly via
a cable or DSL modem to reach the NAS and use their VPN
client software to access the corporate network and to
access, download and execute the process Software.
0072. When using the site-to-site VPN, the process soft
ware is deployed, accessed and executed through the use of
dedicated equipment and large-scale encryption that are
used to connect a companies multiple fixed sites over a
public network such as the Internet.
0073. The process software is transported over the VPN
via tunneling which is the process the of placing an entire
packet within another packet and sending it over a network.
The protocol of the outer packet is understood by the
network and both points, called runnel interfaces, where the
packet enters and exits the network.
0074 The process for such VPN deployment is described
in FIG. 5. Initiator block 502 begins the Virtual Private
Network (VPN) process. A determination is made to see if
a VPN for remote access is required (query block 504). If it
is not required, then proceed to (cquery block 506). If it is
required, then determine if the remote access VPN exists
(query block 508).
0075). If a VPN does exist, then proceed to block 510.
Otherwise identify a third party provider that will provide
the secure, encrypted connections between the company’s
private network and the company's remote users (block

Apr. 17, 2008

512). The company's remote users are identified (block
514). The third party provider then sets up a network access
server (NAS) (block 516) that allows the remote users to dial
a toll free number or attach directly via a broadband modem
to access, download and install the desktop client software
for the remote-access VPN (block 518).
0.076 After the remote access VPN has been built or if it
been previously installed, the remote users can access the
process software by dialing into the NAS or attaching
directly via a cable or DSL modem into the NAS (block
510). This allows entry into the corporate network where the
process software is accessed (block 520). The process soft
ware is transported to the remote user's desktop over the
network via tunneling. That is the process Software is
divided into packets and each packet including the data and
protocol is placed within another packet (block 522). When
the process Software arrives at the remote user's desk-top, it
is removed from the packets, reconstituted and then is
executed on the remote users desk-top (block 524).
0077. A determination is then made to see if a VPN for
site to site access is required (query block 506). If it is not
required, then proceed to exit the process (terminator block
526). Otherwise, determine if the site to site VPN exists
(query block 528). If it does exist, then proceed to block 530.
Otherwise, install the dedicated equipment required to estab
lish a site to site VPN (block 532). Then build the large scale
encryption into the VPN (block 534).
0078 After the site to site VPN has been built or if it had
been previously established, the users access the process
software via the VPN (block 530). The process software is
transported to the site users over the network via tunneling
(block 532). That is the process software is divided into
packets and each packet including the data and protocol is
placed within another packet (block 534). When the process
software arrives at the remote user's desktop, it is removed
from the packets, reconstituted and is executed on the site
users desk-top (block 536). The process then ends at termi
nator block 526.

Software Integration
0079 The process software which consists code for
implementing the process described herein may be inte
grated into a client, server and network environment by
providing for the process Software to coexist with applica
tions, operating systems and network operating systems
Software and then installing the process Software on the
clients and servers in the environment where the process
software will function.

0080. The first step is to identify any software on the
clients and servers including the network operating system
where the process software will be deployed that are
required by the process Software or that work in conjunction
with the process software. This includes the network oper
ating system that is software that enhances a basic operating
system by adding networking features.

0081. Next, the software applications and version num
bers will be identified and compared to the list of software
applications and version numbers that have been tested to
work with the process software. Those software applications
that are missing or that do not match the correct version will
be upgraded with the correct version numbers. Program
instructions that pass parameters from the process Software

US 2008/0092096 A1

to the software applications will be checked to ensure the
parameter lists matches the parameter lists required by the
process Software. Conversely parameters passed by the
software applications to the process software will be
checked to ensure the parameters match the parameters
required by the process software. The client and server
operating systems including the network operating systems
will be identified and compared to the list of operating
systems, version numbers and network Software that have
been tested to work with the process software. Those oper
ating systems, version numbers and network Software that
do not match the list of tested operating systems and version
numbers will be upgraded on the clients and servers to the
required level.
0082. After ensuring that the software, where the process
software is to be deployed, is at the correct version level that
has been tested to work with the process software, the
integration is completed by installing the process Software
on the clients and servers.

0.083 For a high-level description of this process, refer
ence is now made to FIG. 6. Initiator block 602 begins the
integration of the process Software. The first tiling is to
determine if there are any process Software programs that
will execute on a server or servers (block 604). If this is not
the case, then integration proceeds to query block 606. If this
is the case, then the server addresses are identified (block
608). The servers are checked to see if they contain software
that includes the operating system (OS), applications, and
network operating systems (NOS), together with their ver
sion numbers, which have been tested with the process
software (block 610). The servers are also checked to
determine if there is any missing Software that is required by
the process software in block 610.
0084. A determination is made if the version numbers
match the version numbers of OS, applications and NOS that
have been tested with the process software (block 612). If all
of the versions match and there is no missing required
software the integration continues in query block 606.
0085. If one or more of the version numbers do not
match, then the unmatched versions are updated on the
server or servers with the correct versions (block 614).
Additionally, if there is missing required software, then it is
updated on the server or servers in the step shown in block
614. The server integration is completed by installing the
process software (block 616).
0.086 The step shown in query block 606, which follows
either the steps shown in block 604, 612 or 616 determines
if there are any programs of the process software that will
execute on the clients. If no process Software programs
execute on the clients the integration proceeds to terminator
block 618 and exits. If this not the case, then the client
addresses are identified as shown in block 620.

0087. The clients are checked to see if they contain
Software that includes the operating system (OS), applica
tions, and network operating systems (NOS), together with
their version numbers, which have been tested with the
process software (block 622). The clients are also checked to
determine if there is any missing Software that is required by
the process software in the step described by block 622.
0088 A determination is made is the version numbers
match the version numbers of OS, applications and NOS that

Apr. 17, 2008

have been tested with the process software (query block
624). If all of the versions match and there is no missing
required software, then the integration proceeds to termina
tor block 618 and exits.

0089. If one or more of the version numbers do not
match, then the unmatched versions are updated on the
clients with the correct versions (block 626). In addition, if
there is missing required software then it is updated on the
clients (also block 626). The client integration is completed
by installing the process software on the clients (block 628).
The integration proceeds to terminator block 618 and exits.
On Demand

0090 The process software is shared, simultaneously
serving multiple customers in a flexible, automated fashion.
It is standardized, requiring little customization and it is
Scalable, providing capacity on demand in a pay-as-you-go
model.

0091. The process software can be stored on a shared file
system accessible from one or more servers. The process
Software is executed via transactions that contain data and
server processing requests that use CPU units on the
accessed server. CPU units are units of time Such as minutes,
seconds, hours on the central processor of the server. Addi
tionally the assessed server may make requests of other
servers that require CPU units. CPU units are an example
that represents but one measurement of use. Other measure
ments of use include but are not limited to network band
width, memory usage, storage usage, packet transfers, com
plete transactions etc.

0092. When multiple customers use the same process
software application, their transactions are differentiated by
the parameters included in the transactions that identify the
unique customer and the type of service for that customer.
All of the CPU units and other measurements of use that are
used for the services for each customer are recorded. When
the number of transactions to any one server reaches a
number that begins to affect the performance of that server,
other servers are accessed to increase the capacity and to
share the workload. Likewise when other measurements of
use Such as network bandwidth, memory usage, storage
usage, etc. approach a capacity so as to affect performance,
additional network bandwidth, memory usage, storage etc.
are added to share the workload.

0093. The measurements of use used for each service and
customer are sent to a collecting server that sums the
measurements of use for each customer for each service that
was processed anywhere in the network of servers that
provide the shared execution of the process software. The
Summed measurements of use units are periodically multi
plied by unit costs and the resulting total process Software
application service costs are alternatively sent to the cus
tomer and or indicated on a web site accessed by the
customer which then remits payment to the service provider.

0094. In another embodiment, the service provider
requests payment directly from a customer account at a
banking or financial institution.

0095. In another embodiment, if the service provider is
also a customer of the customer that uses the process
Software application, the payment owed to the service pro

US 2008/0092096 A1

vider is reconciled to the payment owed by the service
provider to minimize the transfer of payments.
0096] With reference now to FIG. 7, initiator block 702
begins the On Demand process. A transaction is created than
contains the unique customer identification, the requested
service type and any service parameters that further, specify
the type of service (block 704). The transaction is then sent
to the main server (block 706). In an On Demand environ
ment the main server can initially be the only server, then as
capacity is consumed other servers are added to the On
Demand environment.

0097. The server central processing unit-(CPU) capaci
ties in the On Demand environment are queried (block 708).
The CPU requirement of the transaction is estimated, then
the servers available CPU capacity in the On Demand
environment are compared to the transaction CPU require
ment to see if there is sufficient CPU available capacity in
any server to process the transaction (query block 710). If
there is not sufficient server CPU available capacity, then
additional server CPU capacity is allocated to process the
transaction (block 712). If there was already sufficient
Available CPU capacity then the transaction is sent to a
selected server (block 714).
0.098 Before executing the transaction, a check is made
of the remaining On Demand environment to determine if
the environment has sufficient available capacity for pro
cessing the transaction. This environment capacity consists
of such things as but not limited to network bandwidth,
processor memory, storage etc. (block 716). If there is not
sufficient available capacity, then capacity will be added to
the On Demand environment (block 718). Next the required
Software to process the transaction is accessed, loaded into
memory, then the transaction is executed (block 720).
0099. The usage measurements are recorded (block 722).
The usage measurements consist of the portions of those
functions in the On Demand environment that are used to
process the transaction. The usage of Such functions as, but
not limited to, network bandwidth, processor memory, Stor
age and CPU cycles are what is recorded. The usage
measurements are Summed, multiplied by unit costs and
then recorded as a charge to the requesting customer (block
724).
0100 If the customer has requested that the On Demand
costs be posted to a web site (query block 726), then they are
posted (block 728). If the customer has requested that the On
Demand costs be sent via e-mail to a customer address
(query block 730), then these costs are sent to the customer
(block 732). If the customer has requested that the On
Demand costs be paid directly from a customer account
(query block 734), then payment is received directly from
the customer account (block 736). The On Demand process
is then exited at terminator block 738.

What is claimed is:
1. A system for performing verification, said system

comprising:

means for receiving a design;

means for building an intermediate binary decision dia
gram for said design containing one or more nodal
binary decision diagrams;

Apr. 17, 2008

means for, in response to a size of said intermediate binary
decision diagram exceeding a size threshold, selecting
a node of said design for case-splitting:

means for first case-splitting upon said selected node of
said design to generate a primary constraint for setting
said selected node to a primary value, wherein said
means for first case-splitting upon said selected node
comprises means for first case-splitting upon said
Selected node of said design at an identified time step
to generate said primary constraint for setting said
determined node to said primary selected value;

means for first constraining one of said one or more nodal
binary decision diagrams with said primary constraint
to generate a primary final binary decision diagram;
and

means for first performing verification of said design
using said primary final binary decision diagram.

2. The system of claim 1, further comprising:

means for second case-splitting upon said selected node
of said design to generate a secondary constraint for
setting said determined node to a secondary value;

means for second constraining said one of said one or
more nodal binary decision diagrams with said second
ary constraint to generate a secondary final binary
decision diagram; and

means for second performing verification of said design
using said secondary final binary decision diagram.

3. The system of claim 2, wherein:

said means for selecting said node of said design for said
first case-splitting further comprises means for select
ing a set of multiple nodes of said design for said first
case-splitting and said second case-splitting; and

said system further comprises means for repeating said
first case-splitting, first constraining, first perform
ing, second case-splitting, second constraining and
second performing steps on each of said set of
multiple nodes of said design.

4. The system of claim 1, wherein:

said means for selecting said node of said design for said
first case-splitting further comprises means for select
ing a set of multiple nodes of said design for said first
case splitting:

said system further comprises means for repeating said
first case-splitting, said first constraining, and said first
performing stepson each of said set of multiple nodes
of said design.

5. A system for performing verification, said system
comprising:

means for receiving a design;

means for building an intermediate binary decision dia
gram for said design containing one or more nodal
binary decision diagrams;

means for, in response to a size of said intermediate binary
decision diagram exceeding a size threshold, selecting
a node of said design for case-splitting:

US 2008/0092096 A1
11

means for first case-splitting upon said selected node of
said design to generate a primary constraint for setting
said selected node to a primary value;

means for first constraining one of said one or more nodal
binary decision diagrams with said primary constraint
to generate a primary final binary decision diagram;
and

means for first performing verification of said design
using said primary final binary decision diagram;

means for backtracking to a time step of a last case-split;

means for setting said selected node to a next constant;
and

means for performing a symbolic analysis of said deter
mined node with said next constant.

6. The system of claim 1, wherein said means for building
said intermediate binary decision diagram for said design
further comprises:

means for combining one or more intermediate binary
decision diagrams of one or more child nodes of said
Selected node:

means for determining that said intermediate binary deci
sion diagram of said selected node is not valid;

means for, in response to determining that said interme
diate binary decision diagram of said selected node is
not valid, marking a splittable node:

means for setting said splittable node to a value;
means for obtaining one or more third binary decision

diagrams by inverting said second binary decision
diagrams;

means for storing said one or more third binary decision
diagram on a stack;

means for constraining one or more second binary deci
sion diagrams with an inverse of one or more of said
one or more third binary decision diagram of said
splittable node; and

means for constraining one or more fourth binary decision
diagrams with a fifth binary decision diagram of said
splittable node.

7. The system of claim 6, further comprising:
means for retrieving said third binary decision diagrams

said stack;

means for setting said splittable node to a next constant;
and

means for performing symbolic analysis of said design
with said next constant.

8. A machine-readable medium having a plurality of
instructions processable by a machine embodied therein,
wherein said plurality of instructions, when processed by
said machine, causes said machine to perform a method
comprising:

receiving a design;

building an intermediate binary decision diagram for said
design containing one or more nodal binary decision
diagrams;

Apr. 17, 2008

in response to a size of said intermediate binary decision
diagram exceeding a size threshold, selecting a node of
said design for case-splitting;

first case-splitting upon said selected node of said design
to generate a primary constraint for setting said selected
node to a primary value, wherein said first case-split
ting upon said selected node comprises first case
splitting upon said selected node of said design at an
identified time step to generate said primary constraint
for setting said determined node to said primary
selected value;

first constraining one of said one or more nodal binary
decision diagrams with said primary constraint to gen
erate a primary final binary decision diagram; and

first performing verification of said design using said
primary final binary decision diagram.

9. The machine-readable medium of claim 8, wherein said
method further comprises:

second case-splitting upon said selected node of said
design to generate a secondary constraint for setting
said determined node to a secondary value;

second constraining said one of said one or more nodal
binary decision diagrams with said secondary con
straint to generate a secondary final binary decision
diagram; and

second performing verification of said design using said
secondary final binary decision diagram.

10. The machine-readable medium of claim 8, wherein
the processable instructions are deployed to a server from a
remote location.

11. The machine-readable medium of claim 8, wherein the
processable instructions are provided by a service provider
to a customer on an on-demand basis.

12. A machine-readable medium having a plurality of
instructions processable by a machine embodied therein,
wherein said plurality of instructions, when processed by
said machine, causes said machine to perform a method
comprising:

receiving a design;
building an intermediate binary decision diagram for said

design containing one or more nodal binary decision
diagrams:

in response to a size of said intermediate binary decision
diagram exceeding a size threshold, selecting a node of
said design for case-splitting;

first case-splitting upon said selected node of said design
to generate a primary constraint for setting said selected
node to a primary value;

first constraining one of said one or more nodal binary
decision diagrams with said primary constraint to gen
erate a primary final binary decision diagram;

first performing verification of said design using said
primary final binary decision diagram;

backtracking to a time step of a last case-split;

setting said selected node to a next constant; and
performing a symbolic analysis of said determined node

with said next constant.

US 2008/0092096 A1

13. The machine-readable medium of claim 8, wherein
said step of building said intermediate binary decision
diagram for said design further comprises:

combining one or more intermediate binary decision
diagrams of one or more child nodes of said selected
node:

determining that said intermediate binary decision dia
gram of said selected node is not valid;

in response to determining that said intermediate binary
decision diagram of said selected node is not valid,
marking a splittable node:

setting said splittable node to a value;
obtaining one or more third binary decision diagrams by

inverting said second binary decision diagrams;
storing said one or more third binary decision diagram on

a stack;

Apr. 17, 2008

constraining one or more second binary decision diagrams
with an inverse of one or more of said one or more third

binary decision diagram of said splittable node; and

constraining one or more fourth binary decision diagrams
with a fifth binary decision diagram of said splittable
node.

14. The machine-readable medium of claim 13, further
comprising:

retrieving said third binary decision diagrams said stack;

setting said splittable node to a next constant; and

performing symbolic analysis of said design with said
neXt COnStant.

