发明名称
土壤CO₂、CH₄和N₂O通量协同测定装置

摘要
一种土壤CO₂、CH₄和N₂O通量协同测定装置

主要包括采样系统(19)、控制系统(20)和分析系统(21)，其特征在于：所述采样系统(19)内设有多个气室(1)，所述控制系统(20)内设有主控板(15)、进气口电磁阀(3)和出气口电磁阀(5)，所述的每个气室(1)都分别与对应的进气口电磁阀(3)和出气口电磁阀(5)相连。本发明创造的有益效果是，本系统实现同时测得土壤CO₂、CH₄和N₂O通量的数据，在测定过程中可自动观测采集，可减轻野外工作强度。
1. 一种土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置主要包括采样系统 (19)、控制系统 (20) 和分析系统 (21)，其特征在于：所述采样系统 (19) 内设有多个气室 (1)，所述控制系统 (20) 内设有主控板 (15)、进气口电磁阀 (3) 和出气口电磁阀 (5)，所述的每个气室 (1) 都分别与对应的进气口电磁阀 (3) 和出气口电磁阀 (5) 相连，所述气室 (1) 与进气口电磁阀 (3) 之间设有控制系统过滤器 (2)，所述进气口电磁阀 (3) 总气管上设有与出气口电磁阀 (5) 总气管相连的同步泵 (4)，所述控制系统 (21) 内设有 CO₂/CH₄ 分析仪 (7) 和 N₂O 分析仪 (9)，所述 CO₂/CH₄ 分析仪 (7) 和 N₂O 分析仪 (9) 为并联方式连接，所述 CO₂/CH₄ 分析仪 (7) 与 N₂O 分析仪 (9) 在与控制系统 (20) 连接的管路中设有分析系统过滤器 (6)，在 CO₂/CH₄ 分析仪 (7) 与 N₂O 分析仪 (9) 的后方设有分析泵 (8)，所述分析泵 (8) 后连有与控制系统 (20) 相通的气路。

2. 根据权利要求 1 所述的土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置，其特征在于：所述控制系统 (20) 设置在三防箱 (32) 内，所述三防箱 (32) 的一侧设有航空插头 (11) 和阀板 (10)，所述阀板 (10) 上装有进气口电磁阀 (3) 和出气口电磁阀 (5)，所述三防箱 (32) 内设有面板，所述面板上设有指示灯条 (13) 和 SD 卡座 (14)，所述三防箱 (32) 设还包括有在同步泵 (12)、主控板 (15) 和副控板 (16)，所述同步泵 (12) 与同步泵 (4) 相连，用于控制同步泵 (4) 与分析仪进气口 (17) 和出气口 (18) 的气路通断，所述副控板 (5) 作为接口板与主控板 (15) 共同实现对进气口电磁阀 (3) 和出气口电磁阀 (5) 的通断控制，以及对气室 (1) 的动作和气室传感器 (33) 数据采集的控制。

3. 根据权利要求 2 所述的土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置，其特征在于：所述主控板 (15) 上设有 SD 卡座 (14)，所述主控板 (15) 上设有数据传输单元 (25)，所述数据传输单元 (25) 可通过有线传输 (26) 和无线传输 (27) 两种方式传输数据。

4. 根据权利要求 3 所述的土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置，其特征在于：所述控制系统 (20) 内设有数据采集单元 (22) 和主控板 (15)，所述 CO₂/CH₄ 分析仪 (7) 和 N₂O 分析仪 (9) 通过数据采集单元 (22) 与主控板 (15) 相连，所述气室 (1) 上设有气室传感器 (33)，所述气室传感器 (33) 一方面与数据采集单元 (22) 连接，另一方面气室传感器 (33) 通过控制单元 (23) 与主控板 (15) 相连，所述主控板 (15) 上连有存储单元 (24)，用于数据存储，通过数据采集单元 (22) 实现对 CO₂/CH₄ 分析仪 (7) 和 N₂O 分析仪 (9) 发送的数据以及气室 (1) 温度传感器的数据的采集。

5. 根据权利要求 4 所述的土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置，其特征在于：所述主控板 (15) 上设有指示灯条 (13)，用于显示土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置的工作状态，通过控制单元 (23) 实现对气室 (1) 开启关闭动作及进气口电磁阀 (3) 和出气口电磁阀 (5) 的控制，以切换不同的采集通道。

6. 根据权利要求 5 所述的土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置，其特征在于：所述主控板 (15) 上设有数据传输单元 (25)，用于对传输数据，数据传输单元 (25) 可以通过有线传输 (26) 和无线传输 (27) 两种方式实现数据的传输。

7. 根据权利要求 1-6 任一所述的土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置，其特征在于：所述主控板 (15) 对 CO₂、NH₄、N₂O 的浓度进行动态分析计算气体通量的公式为：
\[F_c = \frac{10VP_0 \left(1 - \frac{W_0}{1000}\right)}{RS(T_0 + 273.15)} \times \frac{\partial C^*}{\partial t}, \] (1)

式中：

\(F_c\) 为土壤中 CO₂ 通量，单位为 umol/(m²×s)；

\(V\) 为系统内部总体积，单位为 cm³；

\(P_0\) 为初始气压，单位为 kPa；

\(W_0\) 为初始水汽浓度，单位为 mmol/mol；

\(R\) 为气体常数，单位为 8.314 cm³·MPa / (k×mol)

\(S\) 为土壤表面积，单位为 cm²；

\(T_0\) 为初始气温，单位为 °C；

其中 \(\frac{\partial C^*}{\partial t}\) 为水校正后 CO₂ 摩尔浓度的初始变化速率，其单位为 1/μmol×s。
土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置

技术领域
【0001】本发明涉及土壤气体通量测定装置和方法领域，具体为一种土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置。

背景技术
【0002】生态系统碳氮循环过程对全球变化响应的研究方法主要借助于基于滴度校方差（EC）技术和途径法的实时通量观测、控制实验、模型模拟、卫星遥感等技术方法。然而，在众多的方法中，以 EC 技术对生态系统的干扰较小，通过长时间序列的观测，可获取自然条件下的系统对全球变化的响应信息，是研究碳通量的生物物理控制机制、碳源/碳汇潜力及影响动变化较为直接的方法。
【0003】同时，静态箱 - 气象色谱法是我国观测土壤温室气体（CO₂、CH₄、N₂O）排放的主要方法。IPCC 估算全球陆地生态系统温室气体排放总量时，除森林冠层之外，以碳氧化法观测的数据为基线。而在全球范围内对 SOC 通量观测方面，日常仅为对 CO₂ 通量进行测定。
【0004】目前，公开的专利 CN103235410A、CN103235105A 和 CN103235106A 等专利仅仅公开气体采集装置，但没有对其控制系统以及原理、气体测定计算方法等进行公开，而这些是当前气体通量测定过程中急需解决的问题。

发明内容
【0005】本申请的目的在于提供一种土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置，以解决土壤 CO₂、CH₄ 和 N₂O 通量测定数据难以获得的问题。
【0006】为了达到上述目的，本发明采用以下技术方案：

一种土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置主要包括采样系统（19）、控制系统（20）和分析系统（21），其特征在于：所述采样系统（19）内设有多个气室（1），所述控制系统（20）内设有主控板（15）、进气口电磁阀（3）和出气口电磁阀（5），所述的每个气室（1）都分别与对应的进气口电磁阀（3）和出气口电磁阀（5）相连，所述气室（1）与进气口电磁阀（3）之间设有控制系统过滤器（2），所述进气口电磁阀（3）总气管上设有与出气口电磁阀（5）总气管相连的同步泵（4），所述分析系统（21）内设有 CO₂/CH₄ 分析仪（7）和 N₂O 分析仪（9），所述 CO₂/CH₄ 分析仪（7）和 N₂O 分析仪（9）为并联方式连接，所述 CO₂/CH₄ 分析仪（7）与 N₂O 分析仪（9）在与控制系统（20）连接的管路中设有分析系统过滤器（6），在 CO₂/CH₄ 分析仪（7）与 N₂O 分析仪（9）的后方设有分析仪泵（8），所述分析仪泵（8）后连有与控制系统（20）相通的气路。

【0007】进一步，所述控制系统（20）设置在三防箱（32）内，所述三防箱（32）的一侧设有航空插头（11）和阀体（10），所述阀体（10）上装有进气口电磁阀（3）和出气口电磁阀（5），所述三防箱（32）内设有面板，所述面板上设有指示灯条（13）和 SD 卡座（14），所述三防箱（32）内设有在同步泵（12）、主控板（15）和副控制板（16），所述同步泵（12）与同步泵（14）相连，用于控制同步泵（4）与分析仪进气口（17）和出气口（18）的气路通断，所述副
控制板 (16) 作为接口板与主控板 (15) 共同实现对进气口电磁阀 (3) 和出气口电磁阀 (5) 的通断控制，以及对气室 (1) 的动作和气室传感器 (33) 数据采集的控制。

[0008] 进一步，所述主控板 (15) 上设有 SD 卡座 (14)，所述主控板 (15) 上设有数据传输单元 (25)，所述数据传输单元 (25) 可通过有线传输 (26) 和无线传输 (27) 两种方式传输数据。

[0009] 进一步，所述控制系统 (20) 内设有数据采集单元 (22) 和主控板 (15)，所述 CO₂/CH₄ 分析仪 (7) 和 N₂O 分析仪 (9) 通数据采集单元 (22) 与主控板 (15) 相连，所述气室 (1) 上设有气室传感器 (33)，所述气室传感器 (33) 一方面与数据采集单元 (22) 连接，另一方面气室传感器 (33) 通过控制单元 (23) 与主控板 (15) 相连，所述主控板 (15) 上连有存储单元 (24)，用于数据存储，通过数据采集单元 (22) 实现对 CO₂/CH₄ 分析仪 (7) 和 N₂O 分析仪 (9) 发送的数据以及气室 (1) 温度传感器的数据的采集。

[0010] 进一步，所述主控板 (15) 上设有指示灯条 (13)，用于显示土壤 CO₂、CH₄ 和 N₂O 通量协同测定装置的工作状态，通过控制单元 (23) 实现对气室 (1) 开启关闭动作及进气口电磁阀 (3) 和出气口电磁阀 (5) 的控制，以切换不同的采集通道。

[0011] 进一步，所述主控板 (15) 上设有数据传输单元 (25)，用于对传输数据，数据传输单元 (25) 可通过有线传输 (26) 和无线传输 (27) 两种方式实现数据的传输。

[0012] 进一步，所述主控板 (15) 对 CO₂、NH₄、N₂O 的浓度进行动态分析计算气体通量的公式为：

\[
F_c = \frac{10V P_o \left(1 - \frac{W_o}{1000}\right)}{R S (T_o + 273.15)} \times \frac{dC_o}{dt},
\]

式中:
- \(F_c\) 为土壤中 CO₂ 通量，单位为 umol/(m² × s)；
- \(V\) 为系统内部总体积，单位为 cm³；
- \(P_o\) 为初始气压，单位为 kPa；
- \(W_o\) 为初始水气浓度，单位为 mmol/mol；
- \(R\) 为气体常数，单位为 8.314 cm³ · kPa / (k·mol)
- \(S\) 为气室表面积，单位为 cm²；
- \(T_o\) 为初始气温，单位为 °C；

其中 \(\frac{dC_o}{dt}\) 为水校正后 CO₂ 摩尔浓度的初始变化速率，其单位为 1/μmol×s。

[0013] 进一步，所述主控板 (15) 采用 ARM1778 单片机，所述主控板 (15) 的中央处理器为 ARM Cortex-M3 内核的微控制器。

[0014] 本发明创造的有益效果是：本系统实现同时测得土壤 CO₂、CH₄ 和 N₂O 通量的数据，在测定过程中可自动观测采集，可减轻野外工作强度，能够连续获得生态系统长期的数据。本系统采用高精度集成的阀板，一是大量管路连接带来的泄漏风险，二是加快响应速度，三是节省了控制系统中宝贵的系统。控制系统的集成在三防箱内，对抗各种恶劣天气，并适合野外作业。
附图说明
[0015] 图1是电路原理图。
[0016] 图2是控制部分结构图。
[0017] 图3是控制示意图。
[0018] 图4是采样系统气室关闭示意图。
[0019] 图5是采样系统气室打开示意图。
[0020] 图6是工作原理图。
[0021] 气室1；控制系统过滤器2；进气口电磁阀3；同步泵4；出气口电磁阀5；分析系统过滤器6；Fg/CH4分析仪7；分析仪泵8；N2/0分析仪9；阀板10；航空插座11；同步泵阀12；指示灯条13；SD卡座14；主控板15；副控板16；进气口17；出气口18；采样系统19；控制系统20；分析系统21；数据采集单元22；控制单元23；存储单元24；数据传输单元25；有线传输26；无线传输27；呼吸室测量时间28；呼吸室排空时间29；平衡时间30；测量及合成曲面31；三防箱32；气室传感器33。

具体实施方式
[0022] 如图1所示，土壤CO2, CH4和N2O通量协同测定装置主要包括采样系统（19）、控制系统（20）和分析系统（21），在采样系统（19）内设有多个气室（1），在控制系统（20）内设有主控板（15），以及与每个气室（1）相连的进气口电磁阀（3）和出气口电磁阀（5），在气室（1）与进气口电磁阀（3）之间设有控制过滤器（2），在与进气口电磁阀（3）连接的总气管上设有与出气口电磁阀（5）连接的总气管相连的同步泵（4），在分析系统（21）内设有CO2/CH4分析仪（7）和N2/0分析仪（9），CO2/CH4分析仪（7）和N2/0分析仪（9）并联，CO2/CH4分析仪（7）与N2/0分析仪（9）在与控制系统（20）连接的管路中设有分析系统过滤器（6），用于控制进入CO2/CH4分析仪（7）或N2/0分析仪（9）的气体，CO2/CH4分析仪（7）与N2/0分析仪（9）的后方设有分析泵（8），通过分析泵（8）气体再进入到控制系统（20）中。

[0023] 当气室（1）处于图4所示的关闭状态时，即如图6所示的呼吸室测量时间（28）时，土壤中自然排放的CO2, NH3, N2O在气室（1）内富集，此时，气室（1）中的各种气体的浓度随时间延长而升高。

[0024] 在此状态下，主控板（15）控制一起进气口电磁阀（3）和出气口电磁阀（5）打开，在分析系统（21）中的分析泵（8）的作用下，气室（1）内的被测气体进入控制系统过滤器（2）中进行过滤，并在同步泵（4）的同步作用下进入到分析系统过滤器（6）中，然后再通过CO2/CH4分析仪（7）和N2/0分析仪（9）中分别对CO2, NH3, N2O的浓度进行动态分析，其获得的数据通过数据采集单元（22）经主控板（15）处理后存到存储单元（24）中。经过主控板（15）分析完成后，被测气体打开的出气口电磁阀（5）返回到气室（1）中，经过上述过程实现测量过程的动态循环。

[0025] 当该路测量完毕时，气室（1）打开，其状态如图5所示，土壤CO2, CH4和N2O通量协同测定装置进入呼吸室排空阶段，对应图6所示的呼吸室排空时间（29）的阶段。排空结束后，主控板（15）再控制下一组进气口电磁阀（3）和出气口电磁阀（5）打开，并使相应的气室（1）进入到如图4所示的气体测量状态。
图2为控制系统(20)的结构示意图。在控制系统(20)的一侧设有航空插头(11)、阀门(10)、进气口电磁阀(3)和出气口电磁阀(5)。安装在阀板(10)上，阀门(10)安装在三防箱(32)上，指示灯条(13)和SD卡座(14)安装在控制系统(20)内的面板上，分别用于对工作状态的指示和数据的存储。

在控制系统(20)内部设有同步泵阀(12)，其中同步泵阀(12)用于控制同步泵(4)与分析仪进气口(17)和出气口(18)的气路通断。副控制板(16)作为接口板与主控板(15)共同实现对进气口电磁阀(3)和出气口电磁阀(5)的通断控制，以及对气室(1)的动作和传感器数据采集的控制。

在主控板(15)上设有SD卡座(14)，用来放置SD卡，并可防止工作时SD卡脱落及灰尘进入控制箱内。

如图3所示，控制系统(20)内设有数据采集单元(22)和主控板(15)，其中CO₂/CH₄分析仪(7)和N₂O分析仪(9)通过数据采集单元(22)与主控板(15)相连。为了便于对气室(1)的控制，在气室(1)上设有气室传感器(33)，用于控制气室(1)的开合，气室传感器(33)一方面与数据采集单元(22)连接，将气室(1)开合数据传递至数据采集单元(22)，另一方面通过控制单元(23)与主控板(15)相连，通过控制单元(15)控制气室(1)的开合，在主控板(15)上选有存储单元(24)，用于数据存储，通过数据采集单元(22)实现对CO₂/CH₄分析仪(7)和N₂O分析仪(9)发送的数据以及气室(1)温度传感器的数据的采集。

指示灯条(13)连接在主控板(15)上，用于显示土壤CO₂、CH₄和N₂O通量协同测定装置的工作状态，通过控制单元(23)实现对气室(1)开启关闭动作及进气口电磁阀(3)和出气口电磁阀(5)的控制，以切换不同的采集通道。

主控板(15)上设有数据传输单元(25)，用于对传输数据，数据传输单元(25)可以通过有线传输(26)和无线传输(27)两种方式实现数据的传输。

在图4所示实施例中，显示了气室关闭时对气室内的气体浓度进行动态测量。

在图5所示实施例中，显示了气室打开时气室内的气体与外界进行气体交换，并最终实现与外界相同的环境状态。

在图6所示实施例中，呼吸室测量时间(28)对应于图4所示的气室(1)处于关闭的状态，呼吸室排空时间(29)对应于图5中气室(1)处于打开的状态。平衡时间(30)是主控板(15)对采集到的测量数据进行线性拟合时含去的数据对应的时间，测量及拟合曲线(31)是对采集到的浓度离散数据进行拟合后得到的拟合直线，主控板(15)根据公式计算：

\[
F_c = \frac{10VP_0\left(1 - \frac{W_0}{1000}\right)}{RS(T_0 + 273.15) \times \frac{\Delta C}{\Delta t}},
\]

通过上述公式计算，得出的气体通量结果数据保存到存储单元(24)中。

虽然上面的举例了一些特定实施例来说明和描述本发明，但并不意味着本发明仅局限于其中的各种细节。相反地，在等价于权利要求书的范畴和范围内可以不偏离本发明精神地在各种细节上做出各种修改。说明书中未写明的的部分为本领域公知常识，未进行详细述说。