A guidewire for use in ear, nose and throat procedures may include an elongate core wire having a proximal region and a distal region. The distal region of the core wire may include a flattened portion adapted to provide preferential flexure along at least one axis of the wire. The distal region of the core wire may include a tip portion distal of the flattened portion, where at least one cross-sectional dimension of the tip portion is greater than at least one cross-sectional dimension of the flattened portion. The guidewire may include an outer coil disposed around at least a portion of the elongate core wire. The guidewire may also include an atraumatic tip coupled to the core wire or the outer coil.

25 Claims, 8 Drawing Sheets

Good, R.H. "An Intranasal Method for Opening the Frontal Sinus Establishing the Largest Possible Drainage" Laryngoscope. (1908) vol. 18 pp. 266-274.

* cited by examiner
COREWIRE DESIGN AND CONSTRUCTION FOR MEDICAL DEVICES

BACKGROUND OF THE INVENTION

Embellishments of the present invention relate generally to medical devices and methods and more particularly to minimally invasive devices, systems and methods for treating sinusitis and other ear, nose & throat disorders.

The human head includes a number of hollow cavities called paranasal sinuses, which connect to the nasal cavity via small openings called “ostia” (singular “ostium”). Generally, the human head includes eight paranasal sinuses (two sets of four on each side), called the frontal, ethmoid, sphenoid and maxillary sinuses. The frontal sinuses are located in the forehead, the maxillary sinuses are in the cheeks, the ethmoids and not under the eyes and the sphenoid sinuses are farther back in the head, near the pituitary gland. Paranasal sinuses are lined with mucus-producing epithelial tissue and have cilia to sweep mucus out of the sinuses and through the ostia into the nasal cavity.

Sinusitis is defined as an inflammation of the paranasal sinuses lining commonly caused by bacterial, viral and/or microbial infections, as well as structural issues such as blockage of the ostia. Symptoms include nasal congestion, facial discomfort, nasal discharge, headache, and fatigue. Sinusitis is considered acute when symptoms last 4 weeks or less. The disease is considered chronic when it lasts 3 months or longer. Sinusitis affects 37 million people each year, making it one of the three most common health problems in the U.S. It is more prevalent than arthritis and hypertension and has a greater impact on quality of life than diabetes or congestive heart failure. Sinusitis is also responsible for $8 billion in direct healthcare expenditures and a significant loss of workplace productivity.

The initial therapy typically attempted when treating chronic sinusitis is drug therapy involving anti-inflammatory agents to reduce the inflammation and antibiotics to treat the infection. A large number of patients, however, do not respond to drug therapy and seek a surgical option. The most common surgical procedure currently performed for chronic sinusitis treatment is Functional Endoscopic Sinus Surgery (FESS).

In FESS, an endoscope is inserted into the nose and, under visualization through the endoscope, the surgeon removes diseased or hypertrophic bone and soft tissue in the nasal cavity and enlarges the ostia of the affected sinuses to restore normal drainage of the sinuses. Instruments used in FESS procedures are generally rigid surgical shavers, drills and burrs and not only areengauged during FESS procedures, but also anatomical structures are often removed just to gain access to the ostia with the rigid surgical tools. This removal of structures increases the post-surgical pain and bleeding after FESS. FESS procedures are typically performed with the patient under general anesthesia and involve days or even weeks of recovery, with painful and uncomfortable post-surgical packing of the nasal cavity, bleeding and scarring requiring follow-up debridement procedures.

Due to the invasiveness of FESS procedures, many otolaryngologists consider FESS an option only for patients who suffer from severe sinus disease (e.g., those showing significant abnormalities under CT scan), and many patients who would benefit from a surgical solution to their chronic sinusitis nevertheless avoid surgery. Thus, patients with less severe disease may not be considered candidates for FESS and may be left with no option but drug therapy.

An alternative to FESS employs dilating balloons and related devices for less invasive sinus intervention. Examples of dilating balloons and related devices and their methods of use can be found, for example, in U.S. patent application Ser. No. 10/829,917, entitled “Devices, Systems and Methods for Treatment of Nasal and Sinus Disorders of the Ears, Nose and/or Throat” and filed on Apr. 21, 2004; Ser. No. 10/944,270, entitled “Apparatus and Methods for Dilating and Modifying Ostia for Paranasal Sinuses and Other Infranasal or Paranasal Structures” and filed on Sep. 17, 2004; Ser. No. 11/037,548, entitled “Systems and Methods for Treating Disorders of the Ear, Nose and Throat” and filed on Jan. 18, 2005; and Ser. No. 11/150,847, entitled “Devices, Systems and Methods Useable for Treating Sinusitis” and filed: Jun. 10, 2005, which are incorporated by reference in their entirety. Less invasive procedures of the type described in the above applications may sometimes be referred to as “Balloon Simulasty” or more generally “Sinulasty.”

In addition to Balloon Simulasty devices, systems and methods, the assignee of the present invention has invented other devices, systems and methods for minimally invasive sinus procedures. For example, an irrigation catheter for use in the paranasal sinuses is described in U.S. patent application Ser. No. 12/011,100, entitled “Methods, Devices and Systems for Treatment and/or Diagnosis of Disorders of the Ear, Nose and Throat,” and filed on Jan. 23, 2008, the full disclosure of which is hereby incorporated by reference. Another example is a lighted guidewire device for use in a Balloon Simulasty procedure, such as the embodiments described in U.S. patent application Ser. No. 11/522,497, entitled “Methods and Devices for Facilitating Visualization in a Surgical Environment,” and filed Sep. 15, 2006, the full disclosure of which is hereby incorporated by reference.

In some Balloon Simulasty procedures, as well as in other procedures invented by the assignee of the present invention, such as paranasal sinus irrigation using an irrigation catheter device as described in the above-referenced patent application, a guidewire may be used for advancement and positioning of one or more devices in or through a paranasal sinus ostium and sometimes into a paranasal sinus itself. For example, in some procedures a guidewire may be advanced through an angled guide catheter, through a paranasal sinus ostium, and into a paranasal sinus. A balloon catheter may then be advanced over the guidewire to position a balloon of the catheter in the paranasal sinus ostium, and the balloon may then be inflated to expand the ostium. In some cases, the balloon catheter and guidewire may then be removed from the paranasal sinus by pulling them back through the angled guide catheter. Optionally, the same guide catheter, guidewire and balloon catheter may be used to access and expand multiple paranasal sinus ostia in one patient.

Although the assignee of the present invention has previously developed guidewires for use in such procedures, improvements are continually being sought. For example, when a distal end of a guidewire is passed into a sinus, it is often advantageous to continue to pass an additional length of guidewire into the sinus, thus causing it to curl and turn up on itself and thus facilitating confirmation of the location of the guidewire distal end in the sinus, using fluoroscopy. The distal end of the guidewire is also passed in and out of an angled guide catheter at least once and often more than once. These two parts of the procedure may often cause the guidewire to kink or bend, and this kinking or bending may make it very difficult or impossible to access subsequent paranasal sinuses in the same patient with the same guidewire. Ideally, the guidewire distal portion should be
flexible enough to pass through tortuous anatomy without damaging the anatomy while also resistant to kinking and bending. The ideal guidewire should also be pushable, to allow it to be advanced through a guide catheter. Such a guidewire should also be sufficiently strong to support a balloon catheter, irrigation catheter or other device that is passed over it.

The challenges faced by a guidewire for paranasal sinus procedures are also much more daunting than those faced by a guidewire used in cardiology vascular applications. For example, the anatomy in the nasal cavity and paranasal sinuses is composed of bone covered in soft tissue, formed into many folds, twists and turns, so the sinus guidewire faces both hard tissue that it must navigate and soft tissue that it ideally will leave relatively undamaged. The circumference and shape of the paranasal sinus cavities vary significantly from patient to patient and within a patient. The circumference of a sinus cavity may vary from about 0.5 cm to about 10 cm within a patient. Based on the size of the sinus cavity, the amount of guidewire that is positioned in the sinus also can vary significantly. The amount of guidewire that is positioned in the sinus can also vary based on physician preference as well as support needed during passage of devices. The guidewire must also pass in and out of an angled guide catheter that is usually at least partially rigid while still retaining approximately it overall shape. Further, the guidewire must provide support for the balloon catheter, irrigation catheter or other device being advanced over it.

Thus, there is a need for devices and methods for easily navigating the complex anatomy of the nasal cavities and paranasal sinuses and for treating disorders of the paranasal sinuses with minimal complications due to individual variations in anatomy and causing minimal trauma to or disruption of anatomical structures that are not pathogenic. Specifically, there is a need for a guidewire that balances flexibility and ease of use with the resilience and rigidity to provide support for a balloon catheter, irrigation catheter and/or other device(s).

BRIEF SUMMARY OF THE INVENTION

Embodiments of the present invention are related to a guidewire for use in ear, nose and throat procedures. The guidewire may include an elongate core wire having a proximal region and a distal region. The distal region of the core wire may include a flattened portion adapted to provide preferential flexure along at least one axis of the wire. The distal region of the core wire may include a tip portion distal of the flattened portion, where at least one cross-sectional dimension of the tip portion is greater than at least one cross-sectional portion of the flattened portion. The guidewire may include an outer coil disposed around at least a portion of the elongate core wire. The guidewire may also include an atrumatic tip coupled to the core wire or the outer coil.

Some embodiments of the present invention are related to a core wire for a device useable in ear, nose and throat procedures. The core wire may include a proximal portion having a first cross-sectional area and a distal tip having a second cross-sectional area. The core wire may include a transitional portion between the proximal portion and the distal tip. The transitional portion may include a third cross-sectional area, where the second cross-sectional area is greater than the third cross-sectional area.

Some embodiments of the present invention are related to a method of making a guidewire for use in ear, nose and throat procedures. In various embodiments, for example, a method for making a guidewire may include: fabricating an elongate core wire having a proximal section and a distal section; configuring a portion of the distal section to have preferential flexibility along at least one axis of the portion; configuring a distal tip portion having at least one cross sectional dimension greater than at least one cross sectional dimension of the preferentially flexible portion; and disposing an outer coil around at least part of a length of the core wire.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

FIGS. 1A through 1D are partial sectional views through a human head showing various steps of a method for treating a paranasal sinus using a guidewire and a balloon catheter device.

FIGS. 2A through 2F are partial sectional views through a human head showing various steps of a method for accessing and treating an ethmoid sinus through a natural or artificially created opening of the ethmoid sinus, using a guidewire and a balloon catheter device.

FIG. 4A illustrates a cross-sectional view of a guidewire according to one embodiment of the present invention.

FIG. 4B illustrates a close-up view of a distal region of the guidewire of FIG. 4A.

FIGS. 5A and 5B illustrate two views of a core wire according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention are useful in sinusplasty procedures, and may also be useful in other less or minimally invasive procedures in the ear, nose, or throat. In some sinusplasty procedures, a guidewire is used to probe openings to critical structures and paranasal sinuses. After a distal end of a guidewire has been advanced into a paranasal sinus, it may sometimes be advantageous to continue advancing the guidewire, thus causing it to curl up in the sinus. A curled-up distal portion of a guidewire may facilitate, for example, viewing the distal portion via fluoroscopy, thus allowing a surgeon to confirm that the distal portion is located in the desired paranasal sinus.

A distal portion of a sinusplasty guidewire may be atraumatic and flexible (to curl and potentially straighten out upon removal), while also being at least somewhat stiff (to provide support for passing diagnostic and therapeutic devices). The distal guidewire portion may also enable or facilitate passing devices for therapeutic and diagnostic procedures by anchoring the guidewire to some degree. The distal portion of the guidewire can be low profile and small to allow easier access and crossing of narrow ostia and passageways. In certain embodiments, the distal portion of the guidewire may be resilient enough to keep its shape after multiple passes through the guide. The preferred guidewire design provides the right balance of flexibility and stiffness in the distal section to support passage of balloon catheters.

Referring to FIGS. 1A-1D, in one embodiment of a Balloon Sinusplasty™ procedure, a balloon catheter is delivered over a guidewire to access, cross and dilate a sinus ostium. As shown in FIG. 1A, a guidewire 110 may be introduced into a nasal cavity. (A frontal sinus FS, sphenoid sinus, sphenoid sinus ostium SSO, and nasopharynx NP are labeled in FIGS. 1A-1D.) To facilitate navigation through tortuous nasal cavity anatomy, guidewire 110 may have any of a number of configurations. For example, in one embodiment, guidewire 110...
may be substantially straight, while in alternative embodiments it may angled, curved or bent at a region between a proximal portion and a distal portion of guidewire 110. In many embodiments, some of which are described in the patent applications incorporated above by reference, guidewire 110 may be advanced into the nasal cavity and into a paranasal sinus through a guide catheter (not shown in FIGS. 1A-1D). In FIG. 1B, guidewire 110 is advanced through the nasal anatomy so that the distal tip of guidewire enters a sphenoid sinus SS through an ostium SSO. In FIG. 1C, a working device in the form of a balloon catheter 120 is advanced along guidewire 110 into the sphenoid sinus SS. Typically, balloon catheter 120 will have a guidewire lumen extending through or formed in or on at least a portion of balloon catheter 120 to facilitate advancement of balloon catheter 120 over guidewire 110. The position of balloon catheter 120 is adjusted so that the balloon of the balloon catheter is located in the ostium SSO. In FIG. 1D, balloon catheter 120 is used to dilate the ostium SSO. After completion of the procedure, guidewire 110 and balloon catheter 120 are withdrawn from the nasal anatomy.

Another sinus procedure is depicted in FIGS. 2A through 2F, which are partial sectional views through a human head showing various steps of a method for accessing and treating an ethmoid sinus ES and ethmoid air cells EAC through a natural or artificially created opening of the ethmoid sinus.

In FIG. 2A, an introducing device in the form of a guide catheter 210 is introduced in an ethmoid sinus ES. Ethmoid sinus ES comprises multiple ethmoid air cells EAC. In FIG. 2B, a guidewire 220 is introduced through guide catheter 210 into a first EAC. Thereafter, in FIG. 2C, a balloon catheter 230 is introduced over guidewire 220 into the first EAC. In FIG. 2D, balloon catheter 230 is inflated to dilate the structures of ES. In FIG. 2E, guide catheter 210, guidewire 220 and balloon catheter 230 are withdrawn leaving a first new passage in the ES. The newly created passage in the ES facilitates drainage of the mucous of the mucous through the ES.

Alternatively, in FIG. 2F, only balloon catheter 230 is withdrawn. The position of guide catheter 210 is adjusted and guidewire 220 is introduced into a second EAC. A second new passage from the ES to the second EAC further facilitates drainage of the mucous through the ES. This method of dilating the structures of ES can be repeated to create multiple new passages in the ES.

FIGS. 3A through 3C are partial sectional views through a human head showing various steps of a method of accessing a paranasal sinus using a guide catheter and a guidewire. In FIG. 3A, an angled guide catheter 390 is inserted through a nostril and placed to access a maxillary sinus MS. In FIG. 3B, guidewire 300 is advanced through guide catheter 390, around the angled bend of guide catheter 390, and into the MS. Guidewire 300 can be coiled to facilitate identification of guidewire 300 via fluoroscopy and thus verify the location of the distal portion of guidewire 300 in the MS. As shown in FIG. 3C, guide catheter 390 is then withdrawn over guidewire 300, thus leaving guidewire 300 in place, with its distal end in the MS and its proximal end outside the patient. Any of a number of working devices, such as a balloon catheter, irrigation catheter and/or the like, can be advanced over guidewire 300 into the MS. In such a procedure, it would be advantageous for guidewire 300 to have a flexibility and stiffness profile to allow it to slide through angled guide catheter 390 and have guide catheter 390 be removed over it, multiple times, without “taking a shape” or retaining a bend or kink. It would also be advantageous for guidewire 300 to have sufficient stiffness support advancement of a balloon catheter, irrigation catheter and/or other device over it.

The foregoing three illustrated examples demonstrate some of the characteristics and properties useful for a simul plastic guidewire, including, but not limited to:

- Having anatraumatic tip to allow probing of bony structures, cavities and openings;
- Having rigidity to access and cross a narrowed ostium or passageway and to provide support for a balloon catheter or other working device;
- Having flexibility and a low profile to navigate tortuous anatomy;
- Being steerable to allow selectively access to the desired anatomy;
- Having resilience to retain its shape after multiple passes through a guiding member, multiple passes through ostia, multiple curlings in sinuses cavities, and multiple balloon dilations and removals;
- Being lubricious to allow ease of passage of working devices;
- Having an appropriate length to allow easier handling, improved performance, and exchange of devices.

Optimizing for one of the above properties can result in deficiencies in another property. For example, if the guidewire is too flexible, then it may become difficult to cross a tight ostium with a balloon catheter advanced over the guidewire. If the guidewire is too stiff, then it may not be easy to curl in the sinus. Also, depending on the amount of wire that curls in the sinus, the balloon support performance of the guidewire may change significantly. A useful total length of the guidewire provides ease of use and improved performance, including steerability, handling, and catheter support.

Certain other features may also be advantageous in some guidewire embodiments. For example, the proximal portion of the guidewire may be sufficiently stiff to allow translation of torque from the proximal region to the distal region, but sufficiently flexible to allow the removal of maxillary and frontal guides (which are typically more rigid than a guidewire) without losing the guidewire shape. Further, the distal portion of the guidewire that comes out of the tip of the guide catheter is not supported when accessing frontal recess or ostium. The balance of strength and flexibility is thus particularly challenging for the distal portion. The distal portion may also be radiopaque to facilitate visualization under fluoroscopy.

FIG. 4A illustrates a view of a guidewire 300 according to certain embodiments of the present invention. Guidewire 300 includes core wire 310 and outer coil 320. While outer coil 320 encircles at least a portion of core wire 310, for ease of illustration outer coil 320 is depicted in cross section. Core wire 310 has proximal portion 312, transition portion 314, and distal portion 316. Proximal tip 330 and distal end 340 are connected to outer coil 320 and core wire 310. Outer coil 320 may also be attached to core wire 310. For example, outer coil 320 may be attached to core wire 310 along proximal portion 312. Marker coil 350 is connected to distal portion 316 and may also be connected to distal tip 340. Marker coil 350 may be alternatively or additionally connected to distal tip 340.

Still referring to FIG. 4A, proximal portion 312 of core wire 310 extends from about proximal tip 330 to transition portion 314. In certain embodiments, the length of proximal portion 312 can range from about 30 cm to about 100 cm. In certain embodiments, the length of proximal portion 312 is about 78 cm. In certain embodiments, proximal portion 312 has a generally circular cross section. In other embodiments, proximal portion 312 has a non-circular cross section. In certain embodiments, the cross section of proximal portion
312 may be generally symmetric such that its flexibility and rigidity are uniform about its long axis. While proximal portion 312 may have a generally circular cross section about substantially all of its length, the diameter of that circular cross section may vary. In certain embodiments, the diameter of the cross section of proximal portion 312 ranges from about 0.050 inches (1.27 mm) to about 0.001 inches (0.0254 mm). In certain embodiments, proximal portion 312 may have a region with a circular cross section having a diameter of about 0.019 inches (0.483 mm). Moving distally along core wire 310 from this region, proximal portion 312 may have a region with a circular cross section having a diameter of about 0.016 inches (0.406 mm). In between these two regions of differing diameters, proximal portion 312 may have a tapered region whose diameter varies from about 0.019 inches (0.483 mm) to about 0.016 inches (0.406 mm). The diameter of the tapered region may vary linearly or non-linearly along its length. In certain embodiments, proximal portion 312 has multiple regions of constant diameter cross section connected by multiple tapered regions. Generally, the diameter of the cross section of proximal portion 312 decreases in the distal direction. In certain embodiments, the region of proximal portion 312 that is immediately proximal of transition portion 314 has the smallest diameter cross section of any region of proximal portion 312. In certain embodiments, this distal-most region of proximal portion 312 has a cross section with a diameter of about 0.0065 inches (0.165 mm).

Referring still to FIG. 4A, core wire 310 includes distal portion 316. Distal portion 316 extends from about distal tip 340 to transition portion 314. In certain embodiments, the length of distal portion 316 ranges from about 0.2 cm to about 2.0 cm. In certain embodiments, the length of distal portion 316 is about 0.5 cm. In certain embodiments, distal portion 316 has a generally circular cross section. In other embodiments, distal portion 316 has a non-circular cross section. In certain embodiments, the cross section of distal portion 316 may be generally symmetric such that its flexibility and rigidity are uniform about its long axis. The diameter of the cross section of distal portion 316 may be generally constant along its length or the diameter may vary. In certain embodiments, the diameter of the cross section of distal portion 316 ranges from about 0.050 inches to about 0.001 inches. In certain embodiments, the diameter of the cross section of distal portion 316 is about 0.007 inches (0.178 mm) along substantially all of its length.

Referring still to FIG. 4A, transition portion 314 extends from proximal portion 312 to distal portion 316. In certain embodiments, the length of transition portion 314 ranges from about 0.5 cm to about 5.0 cm. In certain embodiments, the length of transition portion 314 is about 0.5 cm. The transition portion, in particular the cross section of the transition portion, is discussed in more detail below in reference to FIGS. 5A and 5B.

Referring again to FIG. 4A, outer coil 320 is disposed around core wire 310. In certain embodiments, outer coil 320 extends substantially the entire length of core wire 310. In some embodiments, outer coil 320 is shorter than core wire 310, and in other embodiments outer coil 320 is longer than core wire 310. In certain embodiments, the wire forming outer coil 320 may have a circular cross section, as shown in FIG. 4A. In other embodiments, the wire forming outer coil 320 may have a non-circular cross section, such as a rectangular cross section. In certain embodiments, the pitch of outer coil 320 is closed, such that there is substantially no space between coils. In certain embodiments, the pitch of outer coil 320 is open, such that there is space between coils. In certain embodiments, outer coil 320 has regions of both closed and open pitch. Open pitch coils tend to be more flexible than closed pitch coils while closed pitch coils tend to have better pushability than open pitch coils. It may be advantageous to vary the flexibility of one section of outer coil 320 as compared to another section.

Still referring to FIG. 4A, depth marker 360 is a region of outer coil 320 that is visually distinct from the rest of outer coil 320. Depth marker 360 may be an etched or colored region of outer coil 320. Depth marker 360 allows a physician to determine how much of the guidewire is inside a patient's anatomy. In certain embodiments, the length of depth marker 360 ranges from about 3 mm to about 15 mm. In certain embodiments, the length of depth marker 360 is about 9 mm.

Referring again to FIG. 4A, proximal tip 330 is connected to outer coil 320 and core wire 310. In certain embodiments, proximal tip 330 has a rounded surface for ease of handling. Distal tip 340 is also connected to outer coil 320 and core wire 310. In certain embodiments, distal tip 340 has a rounded surface to provide an atrumatic tip for minimizing damage to tissue during guidewire use.

FIG. 4B illustrates a close-up view of the distal region of guidewire 300. In the embodiment illustrated in FIG. 4B, the distal region of guidewire 300 has been pre-shaped to include a bend and further includes radiopaque marker 350. In certain embodiments, the angle of the bend ranges from about 1 degree to about 135 degrees. In certain embodiments, the angle of the bend ranges from about 15 degrees to about 30 degrees. In some embodiments, the angle of the bends can be about 30 degrees, about 45 degrees, about 60 degrees, about 70 degrees, about 90 degrees, or about 120 degrees. The distal tip may be pre-shaped or it may be shaped by the user.

Still referring to FIG. 4B, radiopaque marker 350 is connected to distal tip 340. In certain embodiments, radiopaque marker 350 is connected to distal portion 316. In certain embodiments, radiopaque marker 350 is connected to transition portion 314. In certain embodiments, radiopaque marker 350 is connected to outer coil 320. Radiopaque marker 350 may be a coil, as in the embodiment depicted in FIG. 4B, or it may be another shape. In certain embodiments, the length of radiopaque marker 350 ranges from about 0.2 cm to about 2 cm. In certain embodiments, the length of radiopaque marker 350 is about 0.5 cm.

FIGS. 5A and 5B illustrate two views of a core wire 310 according to one embodiment. The perspective of FIG. 5A is 90 degrees different from the perspective of FIG. 5B. In these complementary views, the shape of transition portion 314 is more easily appreciated. FIG. 5A is a similar perspective to FIG. 4B. From FIG. 5B, it is apparent that transition portion 314 has flattened profile. In certain embodiments, transition portion 314 has a generally rectangular cross section. In certain embodiments, transition portion 314 has a generally elliptical cross section. Typically, the width of transition portion 314 (the width is the dimension depicted in FIG. 5B, for example) is greater than the thickness of transition portion 314 (the thickness is the dimension depicted in FIG. 5B, for example).

In certain embodiments, the width of transition portion 314 can range from about 0.002 inches (0.051 mm) to about 0.1 inches (2.54 mm). In certain embodiments, the width of transition portion 314 is about 0.01 inches (0.254 mm). In certain embodiments, the thickness of transition portion 314 can range from about 0.001 inches (0.0254 mm) to about 0.08 inches (2.032 mm). In certain embodiments, the thickness of transition portion 314 is about 0.0035 inches (0.0889 mm).

Referring still to FIGS. 5A and 5B, the flattened cross section of transition portion 314 provides certain advantageous mechanical properties. For example, transition portion 314 will bend more easily in its thickness dimension than in
its width dimension. This type of bending is depicted, for example, in FIG. 4B. In contrast, proximal portion 312 does not have a preferential bending direction, in certain embodiments of the invention where proximal portion 312 has a circular or other symmetrically shaped cross section. Generally, a wire flexes and creates an angle with its long axis. This axis of flexion is generally independent of wire orientation when the wire has a symmetric cross section. In certain embodiments where transition portion 314 has a flattened cross section, transition portion 314 is more flexible along one axis of flexion than another. Preferential flexibility is useful in a simplicity guidewire, for example, to facilitate guidewire steering.

In certain embodiments, the cross sections of the different portions of the core wire are arranged in specific relationships in order to provide the appropriate balance of properties for use in a simplicity guidewire. In certain embodiments, the cross sectional area of a distal portion of the core wire is greater than the cross sectional area of the transition portion of the core wire. In such embodiments, the distal portion may have sufficient resilience and rigidity to probe sinus cavities and bony structures while the transition portion may be flexible and steerable. In certain embodiments, the cross sectional area of a distal portion of the core wire is greater than the cross sectional area of a proximal portion of the core wire. In such embodiments, the distal portion may have sufficient resilience and rigidity while the proximal portion may be flexible and steerable. In certain embodiments, the diameter of the cross section of a distal portion of the core wire is greater than the thickness of the cross section of the transition portion of the core wire. In certain embodiments, the diameter of the cross section of a distal portion of the core wire is at least twice the thickness of the cross section of the transition portion of the core wire.

Guidewires of certain embodiments have different amounts of flexibility in different regions. For example, a proximal region of guidewire (extending from the proximal end of the guidewire to a point ranging from about 15 cm to about 88 cm distal of the proximal end) may have a stiffness ranging from about 6000 mg force (Gurley units) to about 18,000 mg force. Continuing this example, a mid section of the guidewire (extending about 10 cm distal from the distal end of the aforementioned proximal section) may have a stiffness ranging from about 2400 mg force to about 2800 mg force. Continuing this example, a distal section of the guidewire (the final section of the guidewire, about 2 cm in this example) may have a stiffness ranging from about 200 mg force to about 400 mg force. In this example, the guidewire has a balance of flexibility and rigidity.

Referring now again to FIG. 4B, and keeping in mind the flattened cross section of certain embodiments of transition portion 314, proximal portion 312 is connected to transition portion 314 via proximal transition taper 313. Further, transition portion 314 is connected to distal portion 316 via distal transition taper 315. The cross sections of proximal transition taper 313 and distal transition taper 315 may be, independently, flattened or symmetric.

Guidewires and their constituent parts for use according to the embodiments of the present invention may be manufactured as follows. Core wire 310 may be formed by any known wire-forming process, such as drawing. Any conventional wire material may be suitable for forming core wire 310. However, certain embodiments may use materials generally known for their use in medical devices, such as alloys of stainless steel and alloys of nickel and titanium (conventionally known as nitinol or NITI). In certain embodiments, core wire 310 is formed from a nickel-titanium alloy. The profile of the cross section of a region of core wire 310 may be formed by the choice of draw plate in the drawing process, or it may be formed by a grinding or other shaping process after the wire is drawn. Similarly, the different diameters and the tapered regions of core wire 310 may be formed by further reducing the diameter of those regions using a staged drawing technique or by a material removal technique, such as grinding. Also, transition portion 314 may be formed by drawing techniques or material removal techniques. Further, transition portion 314 may be formed by a flattening, rolling, or stamping technique (or an equivalent technique). Conventional metal working techniques, such as cold working or heat treatment, may also be used to impart useful properties to core wire 310. For example, the austenite finish temperature of the nitinol alloy used to form the core wire may be controlled to impart a desired flexibility and resilience.

Outer coil 320 may also be formed from any conventionally known wire forming material. Certain embodiments may use materials generally known for their use in medical devices, such as alloys of stainless steel, alloys of nickel and titanium, platinum and the like. In certain embodiments, outer coil 320 is formed from a stainless steel alloy. Outer coil 320 may be formed from a round wire, a flat wire, or a wire of any other cross section. In certain embodiments, outer coil 320 is formed by wrapping wire around a mandrel to form a coil. The coil can then be removed from the mandrel and placed coaxially with a core wire. Alternatively, outer coil 320 can be formed by wrapping a wire directly around a core wire such that the core wire acts as the mandrel for forming the coil.

Radiopaque marker 350 may be formed from any conventionally known radiopaque materials, including iridium, platinum, tungsten, gold or alloys thereof. In certain embodiments, radiopaque marker 350 is formed from an alloy of 92% platinum and 8% tungsten. Radiopaque marker 350 may be formed into a coil by wrapping around a mandrel (including using the core wire as a mandrel). In certain embodiments, radiopaque marker 350 may be placed around core wire 310. In certain embodiments, radiopaque marker 350 is a coil with the same inner diameter and pitch as a region of outer coil 320. In such embodiments, radiopaque coil 350 may be placed such that the coils of outer coil 320 alternate with the coils of radiopaque marker 350. In some embodiments, radiopaque marker 350 is not a coil, but a tab of material that can be attached to another component of the guidewire. In certain embodiments, a region of outer coil 320 may itself be formed of radiopaque material.

Components of the guidewire may be connected with one another by any suitable method, including welding, soldering, brazing, swaging, adhesives, laser bonding, compression fitting, or combinations thereof. In certain embodiments, the proximal and distal ends of the guidewire are connected using solder that forms the proximal tip 330 and the distal tip 340. In such embodiments, a plug of solder is brought into contact with the end of the guidewire and the region is heated to cause the solder flow. The final shape of the tip can be controlled and formed into a rounded, atraumatic shape. In other embodiments, proximal tip 330 and, independently, distal tip 340 can be formed from rounded components that are attached to the ends of the guidewire. These tip components can be formed of any suitable material.

Lubricious coatings may be applied to any of the parts of guidewire 300. Such coatings are intended to reduce friction. Core wire 310 may have a lubricious coating, for example, to reduce the friction between it and the inner surface of outer coil 320. Similarly, the inner surface of outer coil 320 may have a lubricious coating to reduce the friction between it and core wire 310. The outer surface of outer coil 320 may have a
Lubricious coating to reduce the friction between it and tissue. Lubricious coatings may be formed from any suitable material, including polymers, such as PTFE, and hydrogels conventionally used in medical devices as lubricious coatings. In certain embodiments, the lubricious coating is formed of silicone polymer.

Guidewires made according to embodiments of the present invention can be used in sinusplasty procedures. Specifically, such guidewires can be used to locate the desired sinus anatomy and provide support for a dilating member or other treatment device because such guidewires achieve the appropriate balance of flexibility, rigidity, steerability, resilience, and support. In particular, such guidewires are useful because, as compared to guidewires typically used in the vasculature, they can provide support for a dilating member with less reliance on the patient’s anatomy to assist in supporting the dilating member.

EXAMPLE

In one example, the stiffness of a guidewire designed and constructed according to an embodiment of the present invention was compared to a standard sinusplasty guidewire and a “floppy” sinusplasty guidewire.

An 80 cm guidewire with the following dimensions was tested in a standard guidewire flexibility test (STM02236): Core Wire (Nickel Titanium)

1

1st proximal region—length 55.8 cm; diameter 0.019 inches
2nd proximal region (mid region)—length 14.5 cm; diameter 0.016 inches
3rd proximal region—length 1.5 cm; diameter 0.0065 inches

transition region—length 1.1 cm; thickness 0.0035 inches; width 0.01 inches

distal region—length 0.2 cm; diameter 0.007 outer coil (stainless steel)
formed of 0.007 inch wire to 0.033 inch coil; length 80 cm
radioopaque coil (92% platinum/8% tungsten)
0.016 inch diameter coil; length 0.5 cm proximal and distal tips
smooth solder caps

The stiffness of 10 samples of such a guidewire was compared at the distal region (final 3 cm) and at the balloon support region (distal 10 cm). The results are presented in Table 1 below:

<table>
<thead>
<tr>
<th>Stiffness Comparison (mg Force)</th>
<th>Distal region (Ave)</th>
<th>Support Region (Ave)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test GW</td>
<td>2582.9</td>
<td>431.6</td>
</tr>
<tr>
<td>Standard GW</td>
<td>3272.4</td>
<td>461.1</td>
</tr>
<tr>
<td>Floppy GW</td>
<td>1227.7</td>
<td>344.1</td>
</tr>
</tbody>
</table>

The test guidewire provides about 20% less balloon support than standard guidewire and about 50% more than the floppy guidewire. The test guidewire provides comparable distal flexibility as compared to the standard guidewire.

While the invention has been described with reference to certain embodiments, various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.

The invention claimed is:

1. A guidewire for a device useable in ear, nose and throat procedures, the guidewire comprising:
 a core wire including:
 a proximal portion having a length, a first constant cross-sectional area with a circular shape extending a length of the proximal portion and to a proximal terminal end of the core wire;
 a cylindrical distal tip having a second cross-sectional area; and
 a transitional portion between and adjacent the proximal portion and the distal tip, the transitional portion having a length equal to or less than the length of the proximal portion, a first minimum cross-sectional dimension perpendicular to a second maximum cross-sectional dimension and a third cross-sectional area that is constant along a length of the transitional portion, the length being greater than the second maximum cross-sectional dimension, wherein the second cross-sectional area is greater than the third cross-sectional area, is approximately equal to the first cross-sectional area, and has a diameter less than the second maximum cross-sectional dimension;
 an outer coil; and
 an inner coil, the inner coil disposed about the cylindrical distal tip and a portion of the transitional portion and within the outer coil.

2. The core wire of claim 1, wherein the proximal portion of the core wire is tapered from a fourth cross-sectional area at a proximal end of the wire to the first cross-sectional area at a distal end of the proximal portion.

3. The core wire of claim 2, wherein the second cross-sectional area is greater than the first cross-sectional area.

4. The core wire of claim 1, wherein the transitional portion has a rectangular cross-sectional profile.

5. The core wire of claim 1, wherein the transitional portion has an elliptical cross-sectional profile.

6. The core wire of claim 1, wherein the transitional region is more flexible along one axis of flexion than along another axis of flexion.

7. The core wire of claim 1, wherein a total length of the core wire is approximately 80 cm, wherein a length of the transitional portion is between approximately 1.0 cm and approximately 1.2 cm, and wherein a diameter of the distal tip is approximately twice a smallest diameter of the transitional portion.

8. The core wire of claim 1, wherein the distal tip further comprises an atraumatic tip.

9. The core wire of claim 1, wherein the core wire comprises nickel titanium alloy.

10. The core wire of claim 1, wherein the proximal portion comprises a support region having a cross-sectional diameter greater than the second cross-sectional area and adapted to provide support for a dilating member.

11. The core wire of claim 1, wherein the core wire further includes a bend located in or adjacent the transitional portion and generally straight adjacent sections proximal and distal to the bend.

12. The core wire of claim 1, wherein the bend has an angle of between about 15 degrees and about 30 degrees.
13. A guidewire for use in ear, nose and throat procedures, the guidewire comprising:

- an elongate core wire having a proximal region and a distal region, the proximal region of the core wire having:
 - a proximal portion having a length, a proximal portion maximum width and a proximal portion constant cross-sectional area extending a length of the proximal portion and to a proximal terminal end of the core wire;
 - a flattened portion adjacent to the proximal portion adapted to provide preferential flexure along at least one axis of the wire, the flattened portion having a length equal to or less than the length of the proximal portion, a first minimum cross-sectional dimension perpendicular to a second maximum cross-sectional dimension and defining a cross-sectional area that is constant along a length of the flattened portion that is greater than the second maximum dimension, the second maximum cross-sectional dimension being greater than the proximal portion maximum width; and
 - a tip portion adjacent to and distal of the flattened portion, the tip portion having a cross-sectional area defining a circular pattern and having a diameter wherein at least one cross-sectional dimension of the tip portion is greater than at least one cross-sectional dimension of the flattened portion and approximately equal to the proximal portion cross-sectional area and the diameter is less than the second maximum cross-sectional dimension;

- an inner coil disposed around the tip portion and a portion of the flattened portion;
- an outer coil disposed around at least a portion of the elongate core wire and the inner coil; and
- an atraumatic tip coupled to the core wire or the outer coil and placed adjacent the inner coil.

14. The guidewire of claim 13, wherein a cross-sectional diameter of the tip is larger than a smallest cross-sectional diameter of the proximal portion.

15. The guidewire of claim 13, wherein the core wire is formed from a nickel titanium alloy.

16. The guidewire of claim 13, wherein the outer coil is formed from a steel alloy.

17. The guidewire of claim 13, further comprising a coating disposed over the outer coil.

18. The guidewire of claim 13, wherein an outer diameter of the guidewire, measured at a portion about which the outer coil is disposed, is between about 0.030" and about 0.040".

19. The guidewire of claim 13, wherein the atraumatic tip is formed from solder.

20. The guidewire of claim 13, wherein the inner coil is a radiopaque coil coupled to the wire or the outer coil.

21. The guidewire of claim 13, further comprising a coating disposed on at least a portion of the wire or the outer coil.

22. The guidewire of claim 13, further comprising a depth marker on the outer coil.

23. A method of making a guidewire for use in ear, nose and throat procedures, the method comprising:

- fabricating an elongate core wire having a proximal section and a distal section, the proximal section having a length, a proximal section cross-sectional area adjacent the distal section extending a length of the proximal section and to a proximal terminal end of the core wire, and a proximal section maximum width;
- configuring a portion of the distal section to have preferential flexibility along at least one axis of the portion, the distal section having a length equal to or less than the length of the proximal section, a first minimum cross-sectional dimension perpendicular to a second maximum cross-sectional dimension and defining a cross-sectional area that is constant along a length that is greater than the second maximum dimension, the second maximum cross-sectional dimension being greater than the proximal section maximum width;
- configuring a cylindrical distal tip portion adjacent the portion of the distal section having preferential flexibility, the distal tip portion having at least one cross-sectional dimension greater than at least one cross-sectional dimension of the preferentially flexible portion and having a distal tip cross-sectional area approximately equal to proximal section cross-sectional area;
- disposing an inner coil around the cylindrical distal tip portion and a portion of the distal section; and
- disposing an outer coil around at least part of a length of the core wire and around the inner coil.

24. The method of claim 23, wherein configuring the preferentially flexible portion comprises flattening the wire.

25. The method of claim 23, further comprising coupling an atraumatic tip with at least one of the core wire and the outer coil.

* * * * *