

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2011280031 B2

**(54) Title
Synthesis and use of Kinase inhibitors**

(51) International Patent Classification(s)
C07D 413/00 (2006.01) **C07D 279/10** (2006.01)
A61K 31/535 (2006.01)

(21) Application No: **2011280031** **(22) Date of Filing:** **2011.06.28**

(87) WIPO No: **WO12/012139**

(30) Priority Data

(31) Number **61/359,942** **(32) Date** **2010.06.30** **(33) Country** **US**

(43) Publication Date: **2012.01.26**
(44) Accepted Journal Date: **2015.09.10**

(71) Applicant(s)
Verastem, Inc.

(72) Inventor(s)
Lei, Yixiong;Behrens, Carl Henry;Li, Hui-Yin;SUN, Connie L.

(74) Agent / Attorney
Shelston IP, L 21 60 Margaret St, Sydney, NSW, 2000

(56) Related Art
WO 2008/115369 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 January 2012 (26.01.2012)

(10) International Publication Number
WO 2012/012139 A1

(51) International Patent Classification:
C07D 413/00 (2006.01) *A61K 31/535* (2006.01)
C07D 279/10 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2011/042169

(22) International Filing Date:
28 June 2011 (28.06.2011)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/359,942 30 June 2010 (30.06.2010) US

(71) Applicant (for all designated States except US):
PONIARD PHARMACEUTICALS, INC. [US/US];
300 Elliot Avenue West, Suite 500, Seattle, Washington
98119-4114 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **LEI, Yixiong** [CN/US]; 10 Crompton Ct., Newark, Delaware 19702 (US).
BEHRENS, Carl Henry [US/US]; 60 Beech Hill Drive, Newark, Delaware 19711 (US). **LI, Hui-Yin** [US/US]; 161 Thompson Drive, Hockessin, Delaware 19707 (US). **LI, Hui-Yin** [US/US]; 161 Thompson Drive, Hockessin, Delaware 19707 (US).

(74) Agents: **ARORA, Suneel** et al.; Schwegman, Lundberg & Woessner, P.A., P.O. Box 2938, Minneapolis, Minnesota 55402 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

WO 2012/012139 A1

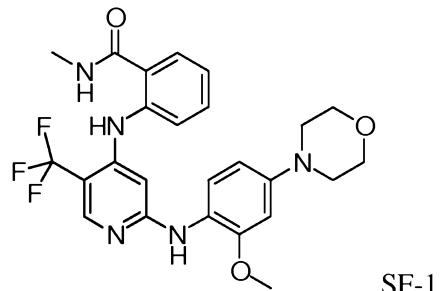
(54) Title: SYNTHESIS AND USE OF KINASE INHIBITORS

(57) Abstract: An improved synthesis of a class of inhibitor of Focal Adhesion Kinase (FAK) is provided, wherein use of an expensive palladium-based catalyst is reduced and reaction yields and product purities are improved. Two key reactions of coupling of aryl halides with anilines are optimized with the surprising discovery that the palladium-based catalyst can be dispensed with entirely in one of the reactions. The invention also provides the use of the FAK-inhibitory compounds in the treatment of inflammatory and immune disorders and of arthritis.

SYNTHESIS AND USE OF KINASE INHIBITORS

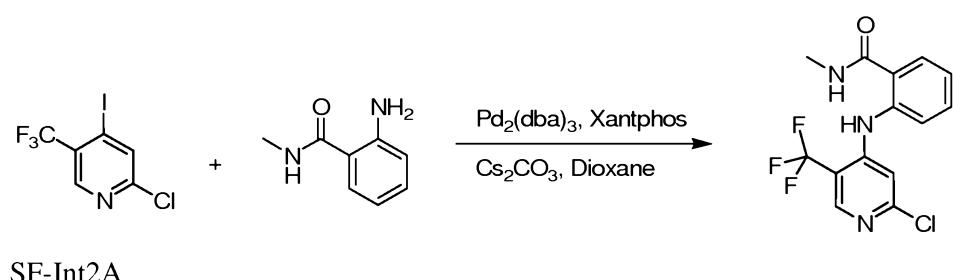
5

CROSS-REFERENCE TO RELATED APPLICATIONS


This application claims the priority of U.S. provisional application Serial Number 61/359,942, filed June 30, 2010, which is incorporated by reference herein in its entirety.

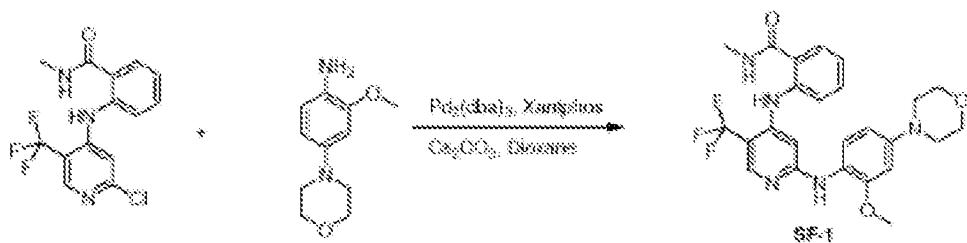
10

BACKGROUND


Compound SF-1 is disclosed and claimed in the PCT application, published as WO 2008/115,369, as a potent inhibitor of Focal Adhesion Kinase (FAK). Example 10 of the published PCT application provides the structure and a synthesis of compound SF-1, termed compound **6** therein.

15

20

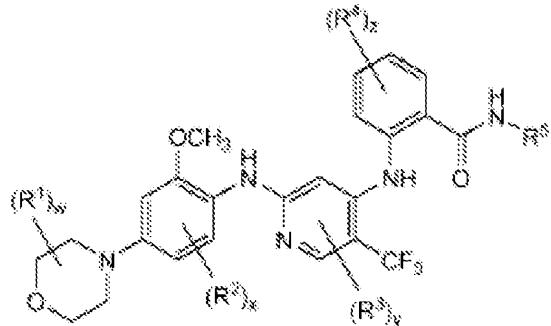

The preparation of SF-1 was carried out in two steps from available precursor materials. In a first step 2-chloro-4-iodo-5-trifluoromethylpyridine was condensed with the N-methyl amide of anthranilic acid to provide intermediate SF-Int2A.

25

In the second step, SF-Int2A was condensed with o-methoxy-p-N-

morpholinoaniline (SM3) to yield SF-1 in free base form.

The free base form of SF-1 was subsequently converted to a hydrochloride salt and purified by recrystallization from dioxane.

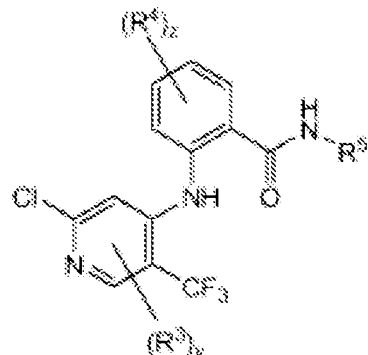

Both couplings used the $\text{Pd}_2(\text{dba})_3$ / xantphos system as catalyst. $\text{Pd}_2(\text{dba})_3$ is 5 tris(dibenzylideneacetone)dipalladium(0). Xantphos is 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene.

The efficacy of this exemplary compound as an inhibitor of Focal Adhesion Kinase (FAK) has made scaleable, high-yield synthetic routes desirable for large scale production of the compound and closely analogous compounds that may also prove to be 10 effective inhibitors of FAK.

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.

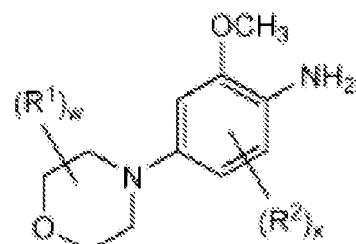
SUMMARY

15 According to a first aspect of the invention there is provided a method of synthesizing a compound of formula (I)



wherein

R^1 is independently at each occurrence alkyl, aryl, cycloalkyl, heterocyclyl, aryl, 20 or heteroaryl;


R^2 , R^3 and R^4 are independently at each occurrence alkyl, aryl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, or fluoro;

R^5 is hydrogen, alkyl, aryl, cycloalkyl, heterocyclyl, aryl, or heteroaryl;
w is 0 to 8;
x is 0 to 3;
y is 0 to 2; and
z is 0 to 4;
including any stereoisomer thereof;
comprising contacting a compound of formula (II)

Formula (II)

and a compound of formula (III)

di-hydrochloride salt:

Formula (III)

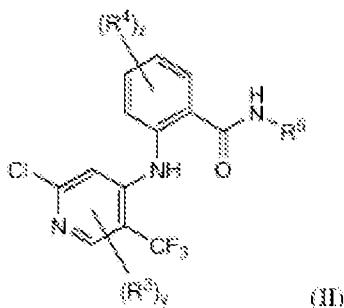
under conditions comprising:

15 (a) a solution of compounds (II) and (III) in a liquid hydroxylic solvent of boiling point higher than about 115 degrees C;

(b) the compound of formula (II) being present at a concentration of no less than about 0.4 M;

(c) the compound of formula (III) being present at a concentration about 10% higher than the concentration of the compound of formula (II);

20 (d) a temperature in excess of about 100°C;


(e) a duration of time of at least about 48 hours;

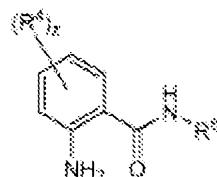
- (f) an absence of added bases;
- (g) an absence of transition metal catalysts;

followed by precipitation of the compound of formula (I) by addition of a hydrocarbon to the hydroxylic solvent following cooling of the solvent to ambient temperature, then

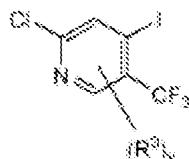
5 collection of the precipitated compound.

According to a second aspect of the invention there is provided a method of preparing a compound of formula (II)

wherein R^3 and R^4 are independently at each occurrence alkyl, aryl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, or fluoro;


10 R^5 is hydrogen, alkyl, aryl, cycloalkyl, heterocyclyl, aryl, or heteroaryl;

y is 0 to 2; and


z is 0 to 4;

comprising:

15 (a) contacting a compound of formula IV)

and a compound of formula (V)

in an ethereal solvent at about 80°C,

20 under conditions comprising:

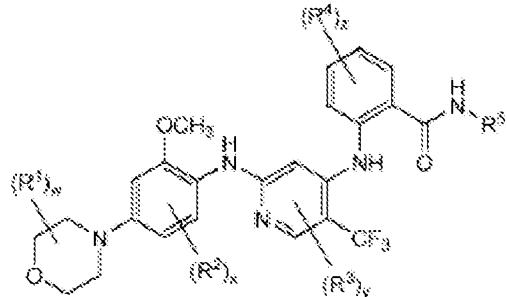
- (a) no more than about 0.5wt% $Pd_2(dba)_3$;
- (b) no more than about 1.5wt% xantphos;
- (c) no more than about 1.1 molar equivalents of Cs_2CO_3 ;

- (d) a concentration of the compound of formula (IV) of no less than about 0.5 M;
- (e) a concentration of the compound of formula (V) of no less than about 0.5 M;
- (f) for a duration of about 2-3 days.

According to a third aspect of the invention there is provided a compound of

5 formula (I) of the first aspect or a pharmaceutically acceptable salt thereof prepared by a method comprising the method of the first aspect.

According to a fourth aspect of the invention there is provided use of a compound of formula (I) of the first aspect in preparation of a medicament for treatment of an inflammatory or immune disorder, or arthritis.

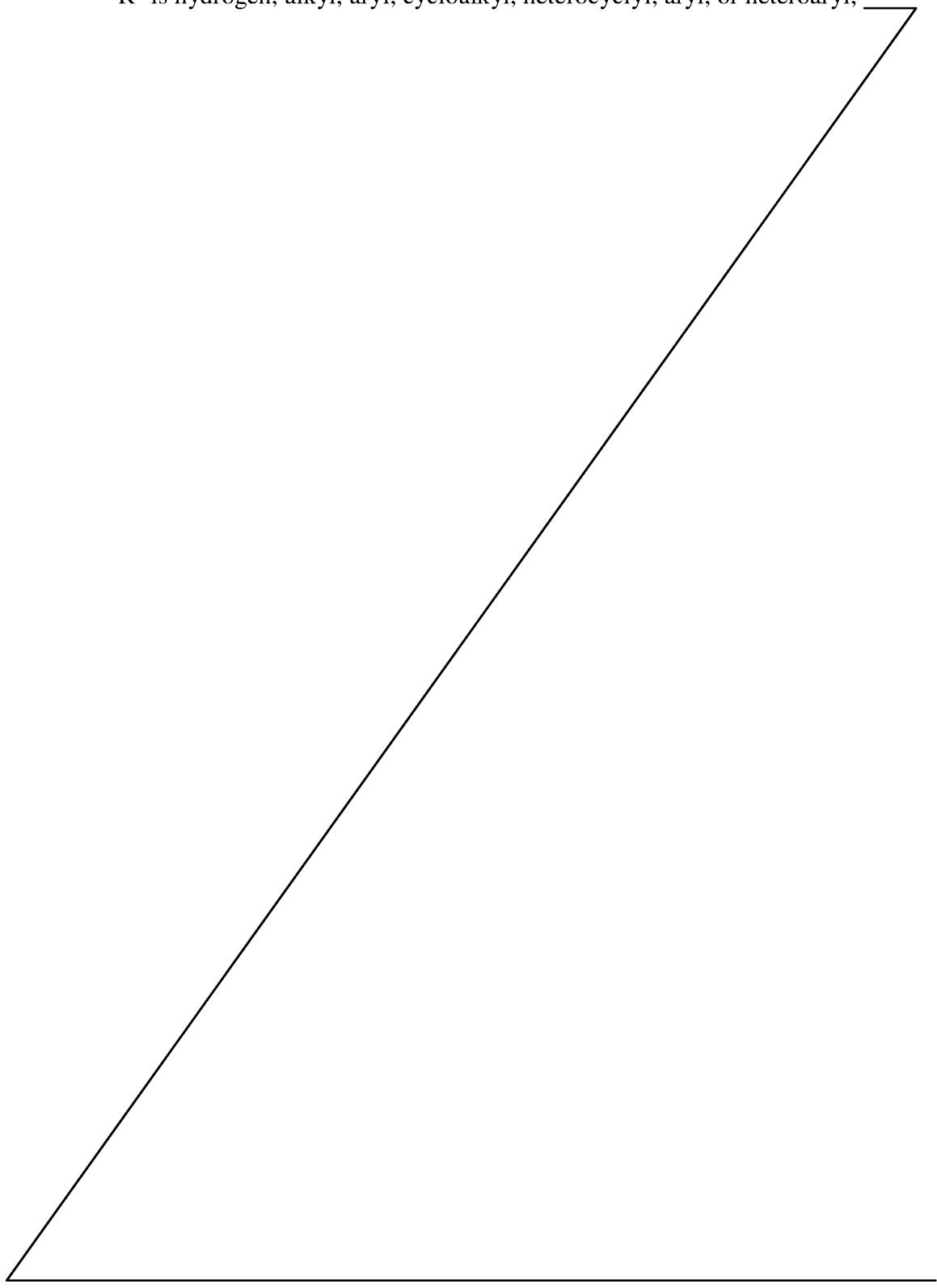

10 According to a fifth aspect of the invention there is provided a method of treatment of an inflammatory or immune disorder, or arthritis, in a patient comprising administering to the patient an effective dose of a compound of formula (I) of the first aspect at a frequency and for a duration of time to provide a beneficial effect to the patient.

15 According to a sixth aspect of the invention there is provided a compound of formula (II) when prepared according to the method of the second aspect.

Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the

20 sense of "including, but not limited to".

Embodiments of the present invention are directed to improved synthetic procedures for the preparation of compound SF-Int2A and its conversion to SF-1 hydrochloride. In various embodiments, the invention provides method of synthesizing a compound of formula (I)


25

wherein

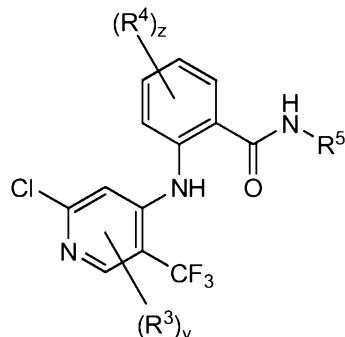
R^1 is independently at each occurrence alkyl, aryl, cycloalkyl, heterocyclyl, aryl, or heteroaryl;

2d

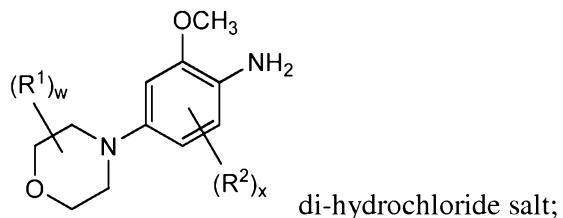
R^2 , R^3 and R^4 are independently at each occurrence alkyl, aryl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, or fluoro;

R^5 is hydrogen, alkyl, aryl, cycloalkyl, heterocyclyl, aryl, or heteroaryl;

w is 0 to 8;


x is 0 to 3;

y is 0 to 2; and


z is 0 to 4;

5 including any stereoisomer thereof;

comprising contacting a compound of formula (II)

and a compound of formula (III)

10 under conditions comprising:

(a) a solution of compounds (II) and (III) in a liquid hydroxylic solvent of boiling point higher than about 115 degrees C;

(b) the compound of formula (II) being present at a concentration of no less than about 0.4 M;

15 (c) the compound of formula (III) being present at a concentration about 10% higher than the concentration of the compound of formula (II);

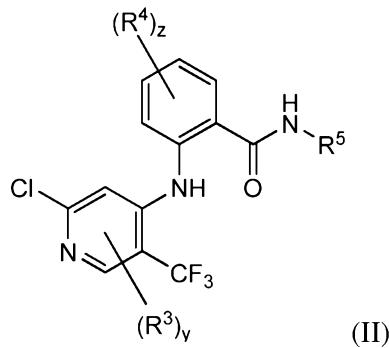
(d) a temperature in excess of about 100°C;

(e) a duration of time of at least about 48 hours;

(f) an absence of added bases;

20 (g) an absence of transition metal catalysts;

followed by precipitation of the compound of formula (I) by addition of a hydrocarbon to the hydroxylic solvent following cooling of the solvent to ambient temperature, then collection of the precipitated compound.

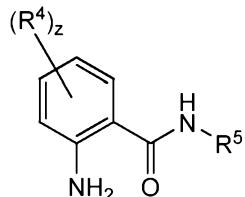

In various embodiments, the invention further provides a method of purification of the compound of formula (I), comprising:

- (a) first, dissolving and partitioning the compound of formula (I) between aqueous base and a water-immiscible organic solvent, then separating a solution of the compound of formula (I) free base in the water-immiscible organic solvent;
- 5 (b) then, adding to the solution silica gel, and optionally anhydrous magnesium sulfate, and optionally activated charcoal, then separating the solid material from the solvent to provide a purified solution of free base;
- 10 (c) then, adding a hydrocarbon to the purified solution to cause precipitation of the free base; and
- (d) then, collecting the precipitated free base of the compound of formula (I).

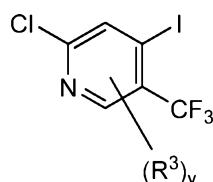
In various embodiments, the invention further provides a method of 15 converting the free base of the compound of formula (I) to a hydrochloride salt thereof by a process comprising:

- (a) contacting a first alcoholic solution of the free base and a second alcoholic solution of hydrogen chloride, then
- (b) adding a hydrocarbon to precipitate the compound of formula (I)
- 20 (c) collecting the compound of formula (I) hydrochloride salt; then
- (d) collecting the compound of formula (I) hydrochloride salt.

In various embodiments, the invention provides a method of preparing a compound of formula (II)



- 25 wherein R³ and R⁴ are independently at each occurrence alkyl, aryl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, or fluoro;
- R⁵ is hydrogen, alkyl, aryl, cycloalkyl, heterocyclyl, aryl, or heteroaryl;
- y is 0 to 2; and


z is 0 to 4;

comprising:

(a) contacting a compound of formula (IV)

5 and a compound of formula (V)

in an ethereal solvent at about 80°C,

under conditions comprising:

(a) no more than about 0.5wt% Pd₂(dba)₃;

10 (b) no more than about 1.5wt% xantphos;

(c) no more than about 1.1 molar equivalents of Cs₂CO₃;

(d) a concentration of the compound of formula (IV) of no less than

about 0.5 M;

(e) a concentration of the compound of formula (V) of no less than about

15 0.5 M;

(f) for a duration of about 2-3 days.

In various embodiments, the invention further provides recovering the compound of formula (II), following heating for a duration of about 2-3 days, comprising:

20 (a) filtering the ethereal solvent; then

(b) washing the filtrate with a water immiscible solvent to provide a filtered solution; then

(c) washing the filtered solution with aqueous base; then

(d) reducing the volume of the solution by about 90%; then

25 (e) adding a hydrocarbon to precipitate the compound of formula (II).

In various embodiments the invention provides a compound of formula

(I), such as SF-1, prepared by a method comprising a method of the invention.

In various embodiments, the invention provides a use of a compound of formula (I) in the preparation of a medicament for treatment of inflammatory or immune disorders, or arthritis.

In various embodiments, the invention provides a method of treatment of 5 malconditions involving inflammatory and immune responses, such as for instance arthritis in its various forms, such as osteoarthritis and rheumatoid arthritis.

DETAILED DESCRIPTION

10 Definitions

As used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise.

15 The term "about" as used herein, when referring to a numerical value or range, allows for a degree of variability in the value or range, for example, within 10%, or within 5% of a stated value or of a stated limit of a range.

As used herein, "individual" (as in the subject of the treatment) means 20 both mammals and non-mammals. Mammals include, for example, humans; non-human primates, e.g. apes and monkeys; and non-primates, e.g. dogs, cats, cattle, horses, sheep, and goats. Non-mammals include, for example, fish and birds.

The term "disease" or "disorder" or "malcondition" are used 25 interchangeably, and are used to refer to diseases or conditions wherein FAK plays a role in the biochemical mechanisms involved in the disease or malcondition such that a therapeutically beneficial effect can be achieved by acting on the kinase. "Acting on" FAK can include binding to FAK and/or inhibiting the bioactivity of FAK.

The expression "effective amount", when used to describe therapy to an 30 individual suffering from a disorder, refers to the amount of a compound of the invention that is effective to inhibit or otherwise act on FAK in the individual's tissues wherein FAK involved in the disorder is active, wherein such inhibition or other action occurs to an extent sufficient to produce a beneficial therapeutic effect.

"Substantially" as the term is used herein means completely or almost completely; for example, a composition that is "substantially free" of a component either has none of the component or contains such a trace amount that any relevant functional property of the composition is unaffected by the 5 presence of the trace amount, or a compound is "substantially pure" if there are only negligible traces of impurities present.

"Treating" or "treatment" within the meaning herein refers to an alleviation of symptoms associated with a disorder or disease, or inhibition of further progression or worsening of those symptoms, or prevention or 10 prophylaxis of the disease or disorder, or curing the disease or disorder. Similarly, as used herein, an "effective amount" or a "therapeutically effective amount" of a compound of the invention refers to an amount of the compound that alleviates, in whole or in part, symptoms associated with the disorder or condition, or halts or slows further progression or worsening of those symptoms, 15 or prevents or provides prophylaxis for the disorder or condition. In particular, a "therapeutically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result. A therapeutically effective amount is also one in which any toxic or detrimental effects of compounds of the invention are outweighed by the therapeutically 20 beneficial effects.

A "salt" as is well known in the art includes an organic compound such as a carboxylic acid, a sulfonic acid, or an amine, in ionic form, in combination with a counterion. For example, acids in their anionic form can form salts with cations such as metal cations, for example sodium, potassium, and the like; with 25 ammonium salts such as NH_4^+ or the cations of various amines, including tetraalkyl ammonium salts such as tetramethylammonium, or other cations such as trimethylsulfonium, and the like. A "pharmaceutically acceptable" or "pharmacologically acceptable" salt is a salt formed from an ion that has been approved for human consumption and is generally non-toxic, such as a chloride 30 salt or a sodium salt. A "zwitterion" is an internal salt such as can be formed in a molecule that has at least two ionizable groups, one forming an anion and the other a cation, which serve to balance each other. For example, amino acids such as glycine can exist in a zwitterionic form. A "zwitterion" is a salt within the meaning herein. The compounds of the present invention may take the form

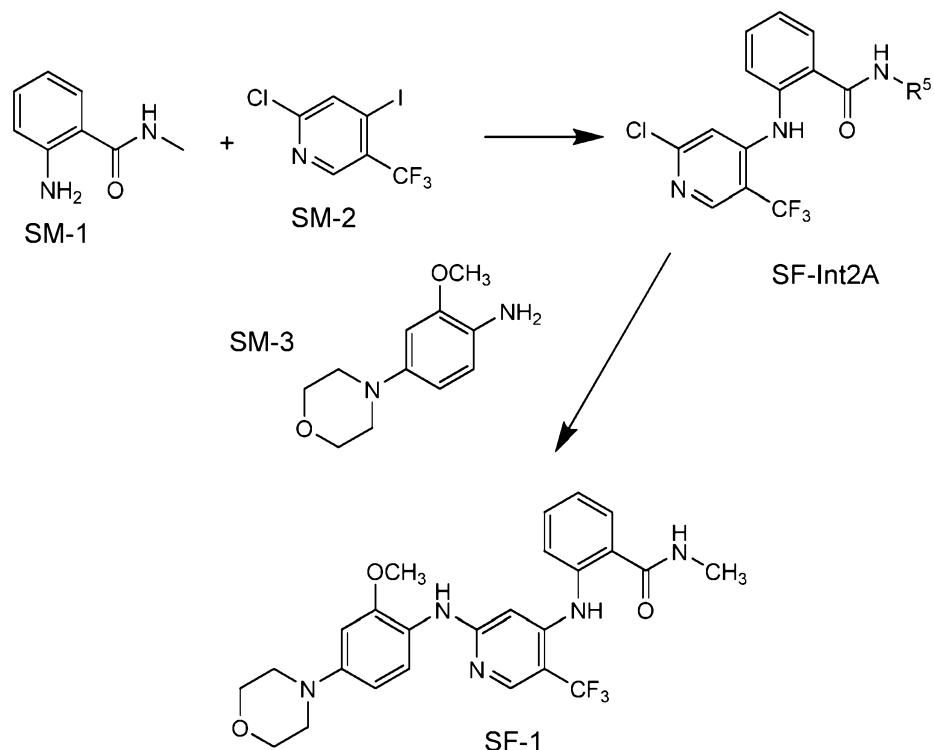
of salts. The term "salts" embraces addition salts of free acids or free bases which are compounds of the invention. Salts can be "pharmaceutically-acceptable salts." The term "pharmaceutically-acceptable salt" refers to salts which possess toxicity profiles within a range that affords utility in

5 pharmaceutical applications. Pharmaceutically unacceptable salts may nonetheless possess properties such as high crystallinity, which have utility in the practice of the present invention, such as for example utility in process of synthesis, purification or formulation of compounds of the invention.

Suitable pharmaceutically-acceptable acid addition salts may be prepared

10 from an inorganic acid or from an organic acid. Examples of inorganic acids include hydrochloric, hydrobromic, hydriodic, nitric, carbonic, sulfuric, and phosphoric acids. Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, examples of which include formic, acetic, propionic,

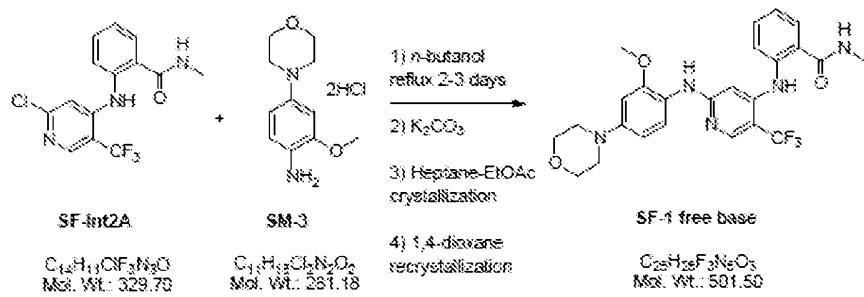
15 succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, 4-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, trifluoromethanesulfonic,


20 2-hydroxyethanesulfonic, p-toluenesulfonic, sulfanilic, cyclohexylaminosulfonic, stearic, alginic, β -hydroxybutyric, salicylic, galactaric and galacturonic acid. Examples of pharmaceutically unacceptable acid addition salts include, for example, perchlorates and tetrafluoroborates.

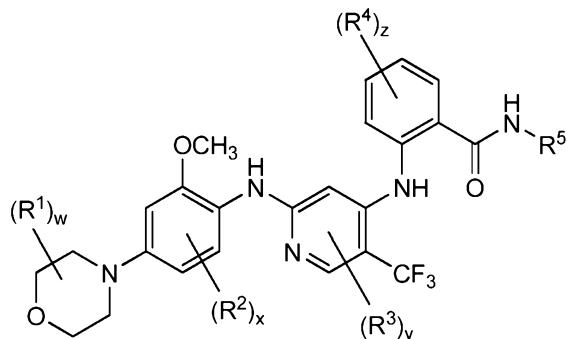
Description

25 Synthesis of SF-1

The synthetic pathway to SF-1 that was selected involves two successive coupling reactions, as shown:


Scheme 1: Overall Synthetic Route to SF-1

In the method disclosed in WO 2008/115,369 both coupling steps were carried out using the palladium transition metal catalyst $\text{Pd}_2(\text{dba})_3$ / xantphos.


5 In various embodiments, the present invention provides an improved method for the final synthetic transformation of a compound exemplary for formula (I), termed SF-1 (compound 6 of WO 2008/115,369), shown in Scheme 2, below.

10 Scheme 2: Optimized Synthesis of SF-1

In various embodiments, the invention provides a method of synthesizing a compound of formula (I)

10

wherein

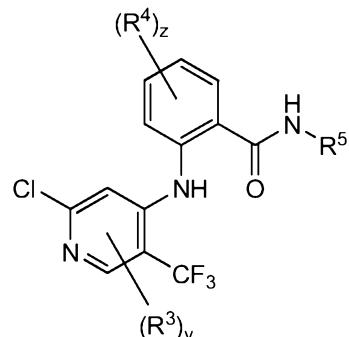
R^1 is independently at each occurrence alkyl, aryl, cycloalkyl,

heterocyclyl, aryl, or heteroaryl;

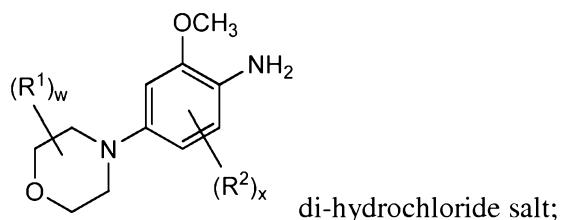
5 R^2 , R^3 and R^4 are independently at each occurrence alkyl, aryl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, or fluoro;

R^5 is hydrogen, alkyl, aryl, cycloalkyl, heterocyclyl, aryl, or heteroaryl;

w is 0 to 4;


x is 0 to 3;

10 y is 0 to 2; and


z is 0 to 4;

including any stereoisomer thereof;

comprising contacting a compound of formula (II)

15 and a compound of formula (III)

under conditions comprising:

(a) a solution of compounds (II) and (III) in a liquid hydroxylic solvent of boiling point higher than about 115 degrees C;

(b) the compound of formula (II) being present at a concentration of no less than about 0.4 M;

(c) the compound of formula (III) being present at a concentration about 10% higher than the concentration of the compound of formula (II);

5 (d) a temperature in excess of 100°C;

(e) a duration of time of at least about 48 hours;

(f) an absence of added bases;

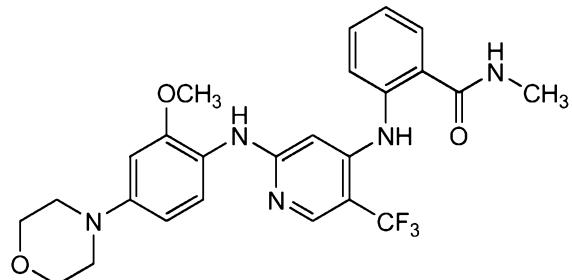
(g) an absence of transition metal catalysts;

followed by precipitation of the compound of formula (I) by addition of a

10 hydrocarbon to the hydroxylic solvent following cooling of the solvent to ambient temperature, then collection of the precipitated compound.

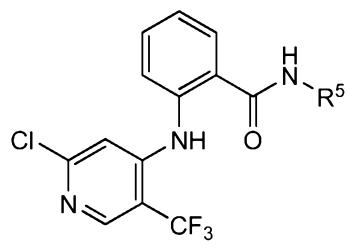
For example, the hydroxylic solvent can be *n*-butanol, methoxyethanol, or ethoxyethanol. More specifically, the hydroxylic solvent can be *n*-butanol.

In various embodiments, the concentration of the compound of formula

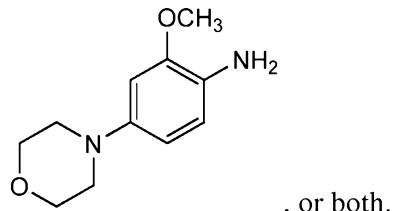

15 (II) can be about 0.5 M.

In various embodiments, the temperature can be about 118-166°C, i.e., at or near the boiling point of a hydroxylic solvent such as *n*-butanol, methoxyethanol, or ethoxyethanol. In various embodiments the reaction can be carried out at the reflux point of the hydroxylic solvent chosen.

20 Various hydrocarbons can be used to bring about precipitation of the reaction product. For example, the hydrocarbon can be heptane.


In various embodiments, the yield of the compound of formula (I) can be at least about 75%. In various embodiments, the purity of the compound of formula (I) can be at least about 98%.

25 More specifically, the compound of formula (I) can be a compound of formula


Accordingly, the compound of formula (II) can be a compound of formula

12

,

or the compound of formula (III) can be a compound of formula

, or both.

Coupling of the 2-chloropyridine derivative SF-Int2A with aniline

5 derivative SM-3 (in the form of a stoichiometrically defined dihydrochloride salt) yields SF-1 hydrochloride, which is recovered as the free base form following workup. The free base was obtained in greater than 70% yield of 99% pure material prior to the final step of recrystallization from 1,4-dioxane. Recrystallization yielded material of greater than 99.5% purity in greater than 10 85% yield. Conversion to the HCl salt was then carried out to provide the active pharmaceutical ingredient in the form of a pharmaceutically acceptable salt.

Optimization of various parameters for this coupling reaction was studied. The art coupling reaction used the transition metal catalyst $Pd_2(dbu)_3$ / xantphos in 1,4-dioxane solvent in the presence of Cs_2CO_3 base. The inventors herein 15 have unexpectedly discovered that use of an alcoholic solvent, rather than an ethereal solvent such as 1,4-dioxane, can bring about the coupling reaction in good yield and purity in the complete absence of any catalyst, particularly in the absence of the expense palladium transition metal catalyst $Pd_2(dbu)_3$ / xantphos.

Investigation of alcoholic (hydroxylic) solvent with a range of boiling 20 points in excess of 100°C was investigated. Alcohols such as n-butanol, methoxyethanol, ethoxymethanol, n-hexanol, and cyclohexanol, and non-alcohols DMF, DMSO, and diethyleneglycol dimethylether were investigated as reaction solvents. The SF-Int2A and SM-3 reagents were dissolved in the solvent at approximately 0.5 M concentration, with a 10% molar excess of the 25 SM-3, and the solvents were heated to reflux except in the cases of DMSO and

DMF, where the reactions were heated to 135°C. Results are shown in Table 1, below.

Table 1: Study of solvent on yield of SF-1

Example	Molecular Name	EP	5 hrs (N2)			19 hrs (N2)			19 hrs (Air)		
			50% Yield	50% Time	Yield	50% Yield	50% Time	Yield	50% Yield	50% Time	Yield
1	DMSO	153	N/A	N/A	N/A						
2	2-Ethoxyethanol	133	32.7	6.08	51.24	21.12		76.7	18.29	0	77.01
3	2-Methoxyethanol	124-125	15.57	19.99	72.24	3.63	43	89.17	0	1.91	91.62
4	n-Butanol	116-118	36.23	17.15	42.76	8	59	81.46	1.18	51	87.36
5	DMF	153	35.14	N/A	39.45	25.7	N/A	38.9	11.44	N/A	36.56

5 As seen in Table 1, the three most favorable solvents were found to be *n*-butanol, 2-ethoxyethanol, and 2-methoxyethanol. In another experiment using cyclohexanol, *n*-hexanol, and diethyleneglycol dimethyl ether, lower yields were observed. In a separate experiment, little or no product was observed to be formed in DMSO or DMF. In the alcohols, there was no significant difference 10 in product yield when the reaction was carried out under ambient atmosphere or under nitrogen gas atmosphere.

The reaction in *n*-butanol was carried out on a 40 gm scale; see Example 1, below.

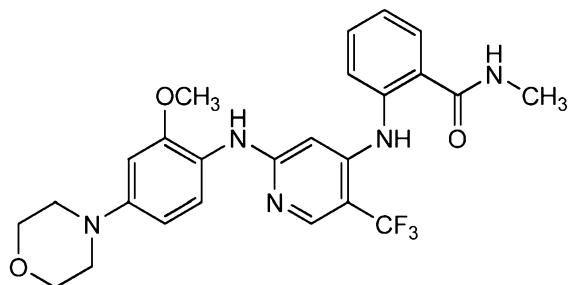
15 In various embodiments, the invention provides a method for further purification of the compound of formula (I), comprising:

(a) first, dissolving and partitioning the compound of formula (I) between aqueous base and a water-immiscible organic solvent, then separating a solution of the compound of formula (I) free base in the water-immiscible organic solvent;

20 (b) then, adding to the solution silica gel, and optionally anhydrous magnesium sulfate, and optionally activated charcoal, then separating the solid material from the solvent to provide a purified solution of free base;

(c) then, adding a hydrocarbon to the purified solution to cause precipitation of the free base; and

25 (d) then, collecting the precipitated free base of the compound of formula (I).


In various embodiments, the aqueous base comprises aqueous carbonate, for example, 10% aqueous potassium carbonate. In various embodiments, the water immiscible solvent can be ethyl acetate, dichloromethane, or any mixture 30 thereof.

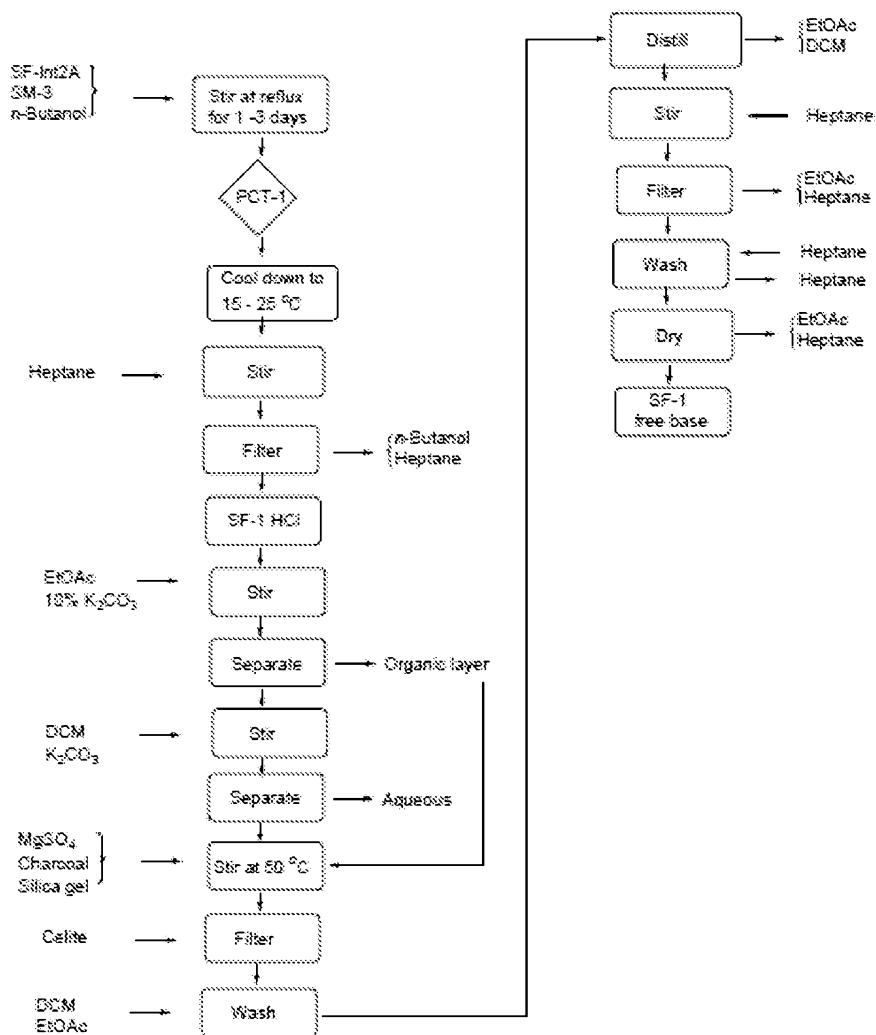
In various embodiments, separating the solid material (silica gel, charcoal, magnesium sulfate) can be carried out by a process comprising filtration or centrifugation, or both.

In various embodiments, the purified free base can be precipitated from 5 the solution by addition of a hydrocarbon, such as heptane. The precipitated purified free base can be collected by a process that comprises filtration or centrifugation, or both.

In various embodiments, the free base of formula (I) is a compound of formula

10

In various embodiments, the yield of the compound of formula (I) can be at least about 70%, and the purity of the compound of formula (I) can be at least about 98%.


Accordingly, further purification of the crude reaction product, in 15 particular to remove color bodies, can be carried out by treatment of a solution of SF-1 free base with solid absorbents. As shown in Scheme 1, below, a flow chart of an optimized synthetic process for decolorized SF-1 free base, the product resulting from the above-described reaction, believed to be a hydrochloride salt of SF-1 as existing in the reaction solvent due to the 20 formation of an equivalent of HCl from the reaction, can be converted to free base form by partition between a water-immiscible organic solvent, e.g., ethyl acetate, and an aqueous base such as carbonate solution. The SF-1 free base, or the corresponding free base of a compound of formula (I), partitions into the organic phase. The aqueous phase can be backwashed with the same or a 25 different water-immiscible organic solvent, e.g., dichloromethane (DCM).

Then, the combined organic phases can be dried and decolorized by treatment with silica gel, optionally with anhydrous magnesium phosphate, optionally with activated charcoal. For example, it was found that on a 40 gm scale (i.e., 40 gm of SF-Int2A), addition of about 200 gm of silica to the organic

extract described above, was effective in decolorizing the solution. Addition of about 40 gm activated charcoal improved the effectiveness of the decolorization, and 40 gm anhydrous magnesium sulfate could be used to thoroughly dry the solution. See Example 2, below.

5 An embodiment of an inventive method is shown in Scheme 3, below. The two reactants are stirred together in a hydroxylic solvent such as n-butanol at reflex for 2-3 days. The progress of the reaction can be monitored by HPLC. Following completion of the reaction, the reaction mixture is cooled and a hydrocarbon such as heptane is added to precipitate the reaction product. The 10 precipitate is filtered, then is partitioned between a water-immiscible solvent such as ethyl acetate and aqueous base, such as potassium carbonate, to liberate the free base form. The aqueous phase can be further extracted with the same or different organic water-immiscible solvent, such as dichloromethane (DCM). The combined organic extracts are then treated with silica gel, for example with 15 about 5x the weight of the starting material of silica gel, which is then filtered to provide a decolorized solution of the SF-1 free base. Optionally, charcoal, and/or anhydrous magnesium sulfate, are added. Then, the solution is filtered, for example through Celite, and the solvent(s) removed from the filtrate to provide SF-1 free base.

Scheme 3: Flowchart for SF-1 synthesis process

The SF-1 or other compound of formula (I) herein prepared by the 5 inventive method can be further purified by recrystallization. In various embodiments of the invention, recrystallization is carried out in 1,4-dioxane.

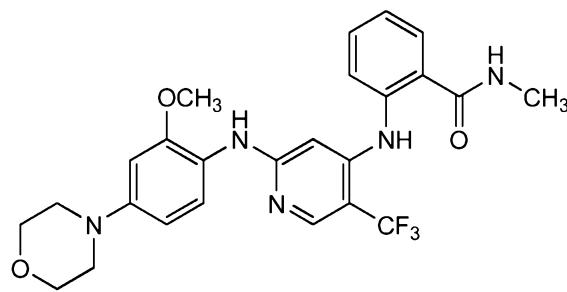
The purification of SF-1 free base by recrystallization from 1,4-dioxane was evaluated using various ratios of compound to solvent, with respect to purity and yield of the recrystallized product. Individual procedures are shown in 10 Example 3, and Table 2, below, shows the yield and purity of the products obtained under the conditions specified in Example 3.

Table 2: Recrystallization of SF-1 free base from 1,4-dioxane

Entry	SF-1 : dioxane (w/v) (Yield%)	Results (A%)		
		8.57 min ^a	8.79 min ^a	SF-1 Free Base
1	1/2 (98% yield)	0.72	0.96	98.32
2	1/3 (97% yield)	N/A	0.87	98.13
3	1/5 (93% yield)	N/A	0.53	99.47
4	1/8 (89% yield)	N/A	0.24	99.78
5	1/10 (87% yield)	N/A	0.24	99.76

As can be seen, variations in purity and yield were observed using variants of the 1,4-dioxane recrystallization procedures, and a higher purity was obtained using somewhat lower concentrations of the crude material in the 5 recrystallization solvent, with only a slight reduction in yield.

Conversion of SF-1 to its hydrochloride salt, and additional purification, were achieved according to various embodiments of the inventive method. In various embodiments, the invention provides a method further comprising converting the free base of the compound of formula (I) to a hydrochloride salt 10 thereof by a process comprising:

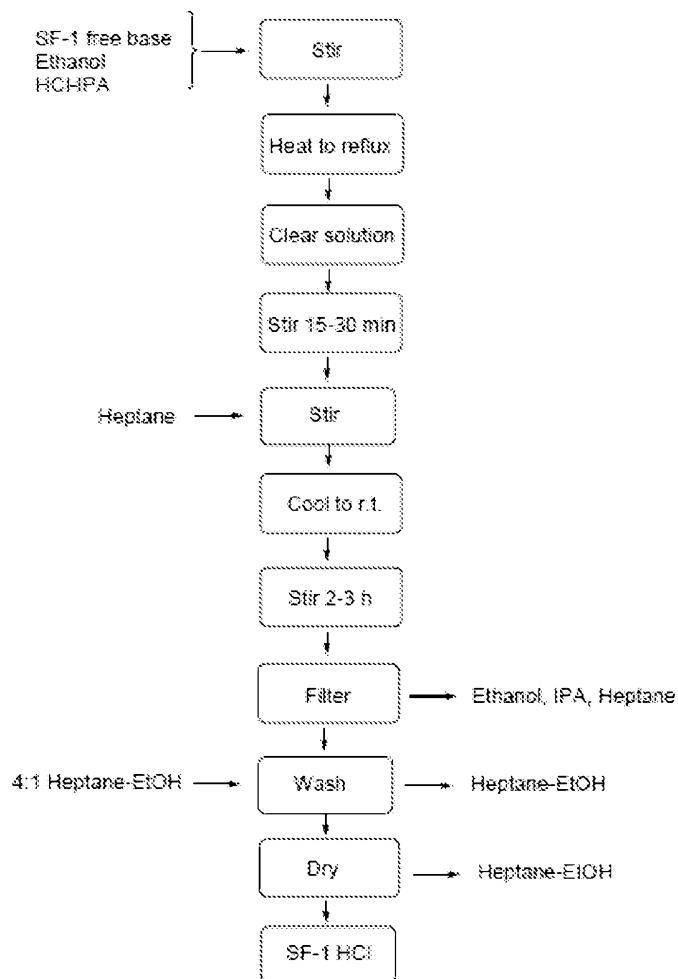

- (a) contacting a first alcoholic solution of the free base and a second alcoholic solution of hydrogen chloride, then
- (b) adding a hydrocarbon to precipitate the compound of formula (I) hydrochloride salt; then
- 15 (c) collecting the compound of formula (I) hydrochloride salt.

For example, the first alcoholic solution can be in ethanol, or the second alcoholic solution can be in isopropanol, or both. In various embodiments, the hydrocarbon can be heptane.

In various embodiments, the hydrochloride salt of the compound of 20 formula (I) can be a mono-hydrochloride salt, i.e., a stoichiometrically defined salt of a pharmaceutically acceptable identity.

In various embodiments, the hydrochloride salt of the compound of formula (I) can be further purified by recrystallizing the compound, for instance, from 1,4-dioxane. The compound of formula (I) hydrochloride salt obtained by 25 a method of the invention can be of at least 99% purity, or of at least 99.5% purity, such as measured by HPLC area percentage. A recrystallization yield of at least about 85% can be obtained. The overall yield of formula (I) hydrochloride salt can be at least about 70%, with a purity of at least about 97%. The compound of formula (I) can be SF-1 hydrochloride, i.e., a compound of formula

18

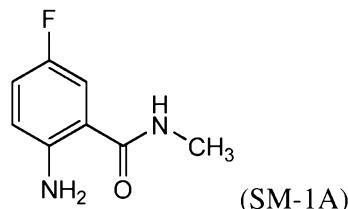


• HCl

which is obtained in at least about 99% purity and at least about 60% overall yield based upon SF-Int2A.

Example 4, below, provides experimental details for the preparation of a hydrochloride salt of a compound of formula (I). Scheme 4, below, is a flowchart of the embodiment of a hydrochloride salt preparative portion of a method of the invention.

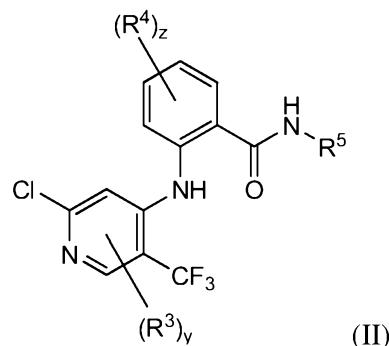
Scheme 4: Flowchart for SF-1 hydrochloride process


Synthesis of SF-1 Analogs

In various embodiments, the invention provides a method of synthesis of other compounds of formula (I) analogous to SF-1.

For example, the inventive method can be applied to the synthesis of a 5 compound of formula SF-2:

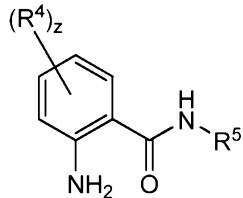
or any pharmaceutically acceptable salt thereof. More specifically, the synthesis of this kinase inhibitor can be carried out as detailed above for compound SF-1, provided that for compound SM-1, a compound of the following formula 10 replaces SM-1 with SM-1A in carrying out the first step as shown above in Synthetic Scheme 1.

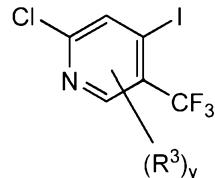


This starting material can be converted to compound (II) as shown below, then converted to a compound of formula SF-2 using the methods disclosed and 15 claimed herein.

Synthesis of SF-Int2A

In various embodiments, the invention provides a method of preparing a compound of formula (II)


20


wherein R^3 and R^4 are independently at each occurrence alkyl, aryl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, or fluoro;
 R^5 is hydrogen, alkyl, aryl, cycloalkyl, heterocyclyl, aryl, or heteroaryl;
5 y is 0 to 2; and
 z is 0 to 4;

comprising:

(a) contacting a compound of formula (IV)

10 and a compound of formula (V)

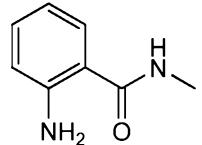
in an ethereal solvent at about 80°C,

under conditions comprising:

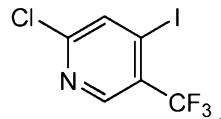
- (a) no more than about 0.5wt% Pd2(dba)3 ;
- 15 (b) no more than about 1.5wt% xantphos;
- (c) no more than about 1.1 molar equivalents of Cs_2CO_3 ;
- (d) a concentration of the compound of formula (IV) of no less than about 0.5 M;
- (e) a concentration of the compound of formula (V) of no less than about 0.5 M;
- (f) for a duration of about 2-3 days.

For instance, the ethereal solvent can be 1,4-dioxane.

In various embodiments, the method further comprises recovering the compound of formula (II) by a method comprising:


- (a) filtering the ethereal solvent; then
- (b) washing the filtrate with a water immiscible solvent to provide a
- 5 filtered solution; then
- (c) washing the filtered solution with aqueous base; then
- (d) reducing the volume of the solution by about 90%; then
- (e) adding a hydrocarbon to precipitate the compound of formula (II).

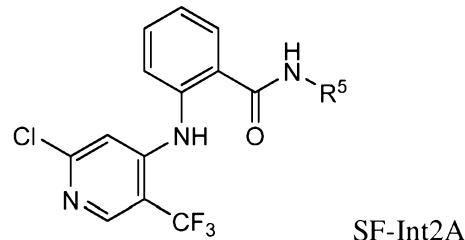
For example, the water-immiscible solvent can be ethyl acetate.


10 For example, the aqueous base can be aqueous carbonate or bicarbonate.

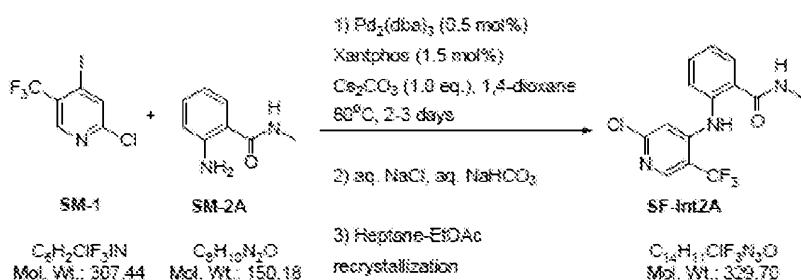
For example, the hydrocarbon can be heptane.

In various embodiments, the compound of formula (IV) can be

In various embodiments, the compound of formula (V) can be


15

In various embodiments, the purity of the compound of formula (II) can be at least about 99%, and the yield of the compound of formula (II) can be at least about 90%.


Exemplary experimental details are provided in Example 5, below.

20

In various embodiment, the invention provides a method of preparing a compound of formula (II) of the formula:

accordingly to the procedures outlined below.

It was surprisingly discovered by the inventors herein that the selection of base used in the reaction greatly influenced the time to reaction completion. Table 3, below, shows time points in a comparison study of Cs_2CO_3 and K_2CO_3 (both solid and aqueous) in the coupling reaction of SM-1 and SM-2A.

Table 3: Time course of coupling reaction in presence of various bases

Time	Cs_2CO_3 (% Yield)	K_2CO_3 (% Yield)	Aqueous K_2CO_3 (% Yield)
3 h	96.5	14	24
18 h	100	61.4	49
42 h	N/A	92	60
66 h	N/A	100	69

As can be seen, conversion is surprisingly complete using Cs_2CO_3 after only 18 hours, while solid K_2CO_3 requires 66 hours, and the reaction is only about 69% done after 66 hours with aqueous K_2CO_3 .

Further studies were conducted to example the molar ratio of Cs_2CO_3 base to starting material SM-1. Tables 4a and 4b respectively show the yield and purity of product SF-Int2A at time points 3 hours and 18 hours over a range of relative molar quantitites.

15 *Table 4a: Conversion of SM-1 at 3 Hours with Various Molar Quantities of Base*

Entry	Ratio	Reaction time (h)	Product (%)	SM-1	Impurity (%)
	SM-1 : C ₈ CO ₃			(%)	(%)
1a	1:1.0	3	97.8	1.5	0.65
2a	1:1.2	3	97.7	1.0	0.82
3a	1:1.4	3	96.4	0.88	2.28
4a	1:1.6	3	95.0	1.0	3.11
5a	1:1.8	3	94.3	0.86	4.85
6a	1:2.0	3	96.2	0.96	2.85
7a	1:2.2	3	93.4	1.47	5.2
8a	1:2.4	3	79.2	0	20.7

Table 4b: Conversion of SM-1 at 18 Hours with Various Molar Quantities of Base

Entry	Ratio SM-1 : Cs ₂ CO ₃	Reaction time (h)	Product (%)	SM-1 (%)	Impurity (%)
1b	1 : 1.0	18	95.4	0.45	4.2
2b	1 : 1.2	18	87.6	0	12.4
3b	1 : 1.4	18	91.15	0	8.85
4b	1 : 1.6	18	90.18	0	9.82
5b	1 : 1.8	18	88.89	0	11.11
6b	1 : 2.0	18	90.67	0	9.32
7b	1 : 2.2	18	76.47	0	23.52
8b	1 : 2.4	18	76.48	0	23.52

5

Experiments were conducted to determine the minimum molar ratio of catalyst to reactants under the reaction conditions previously examined.

Referring to Table 5, entries 1a-5a, and 1b-5b correspond with the short time and longer time points of reactions in Tables 4a and 4b with varying amounts of 10 Cs₂CO₃ and the mole% of catalyst shown. Time points are at 4 hours and 18 hours.

Table 5: Screening of Catalyst Mole%

Entry	Ratio SM-1 : Pd catalyst	Reaction time (h)	Product (%)	SM-1 (%)	Impurity (%)
1a	2 mol%	4	96	2.6	0.9
2a	1 mol%	4	81	36	0.7
3a	0.5 mol%	4	63	36	0.7
4a	0.1 mol %	4	5**	94**	0
5a	0.05 mol %	4	10	90	0
1b	2 mol %	18	88	0	12
2b	1 mol %	18	95	0	5
3b	0.5 mol %	18	97	0	3
4b	0.1 mol %	18	17**	83**	3
5b	0.05 mol %	18	87	0	12

*Note: Impurity = RRT 0.77

**Note: The conversion was low due to a problem with stirring in this experiment.

In Tables 5 and 6, the second column indicates the mole% of the Pd₂(dba)₃ / 15 xantphos catalyst system per mole of SM-1.

The results indicate that no significant advantage in yield or purity is achieved when using in excess of 0.5 mol% of the Pd₂(dba)₃ / xantphos catalyst system in this conversion.

Table 6 shows a second series of experiments using 0.5 mol% and less of the catalyst system in this conversion, using 1 molar equivalent Cs_2CO_3 in dioxane.

Table 6: Product Yield and Purity versus Catalyst Ratio

Entry	Ratio SM-1: Pd catalyst	Reaction time (h)	Product (%)	SM-1 (%)	Impurity ^a (%)
1a	0.50 mol%	14	96.47	2.58	0.94
2a	0.25 mol%	14	95.46	4.54	N/A
3a	0.10 mol %	14	84.69	15.3	N/A
1b	0.50 mol%	24	98.77	0	1.22
2b	0.25 mol%	24	98.12	1.88	N/A
3b	0.10 mol %	24	91.67	8.33	N/A

5

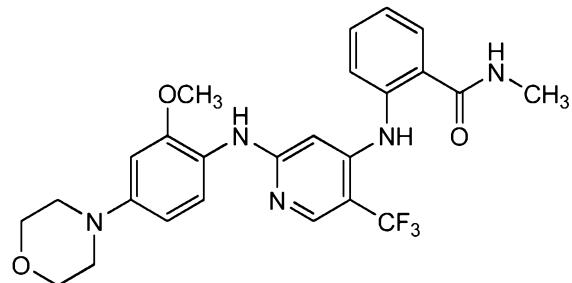
Yields and purities are seen to drop off somewhat when reducing the amount of catalyst below 0.5 mol%.

Table 7 shows the results of a solvent selection study.

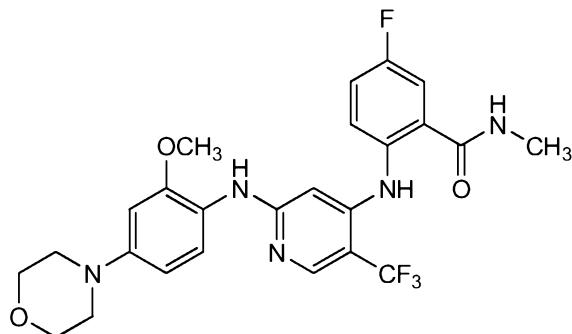
Table 7: Effect of Solvent Selection on Product Yield and Purity

Entry	Solvent	Reaction time (h)	Yield (%) of Product ^b	SM-1 (%)	Impurities (%)
1a	1,4-Dioxane	3	94	5.8	0
2a	<i>n</i> -Butanol	3	79	0	21
3a	Ethylene glycol	3	0	0	100 ^b
4a	DMF	3	65	35	0
5a	DMSO	3	58	26	14 ^c
1b	1,4-Dioxane	18	88	0	12
2b	<i>n</i> -Butanol	18	29		56.5 ^d
3b	Ethylene glycol	18	N/A	N/A	N/A
4b	DMF	18	76	13	11 ^e
5b	DMSO	18	87	0	12

10


At a 3 hour time point, reaction in dioxane is virtually complete, and is very clean, while reactions conducted in solvents *n*-butanol, ethylene glycol, DMF, and DMSO give lower yields and higher levels of impurities.

15


A detailed synthetic procedure using these parameters is provided in

Example 5, below.

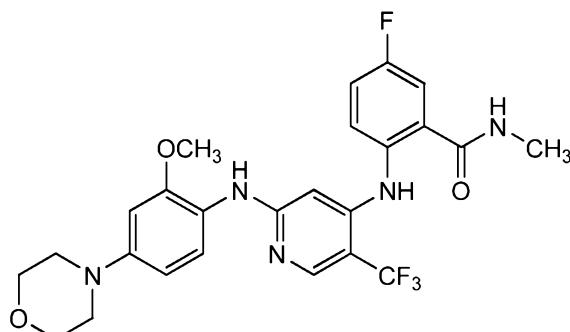
In various embodiments, the invention provides a compound of formula (I) of claim 1 or a pharmaceutically acceptable salt thereof prepared by a method comprising a method of the invention. For example, an embodiment provides the compound of formula

or a compound of formula

or a pharmaceutically acceptable salt thereof. More specifically, the

5 pharmaceutically acceptable salt can be a hydrochloride salt.

Use of SF-1 and Analogs in Treatment of Inflammatory and Immune Disorders and of Arthritis


The inhibition of Focal Adhesion Kinase (FAK) is believed by inventors 10 herein to be an effective therapy in the treatment of an inflammatory or immune disorder, or arthritis.

Accordingly, various embodiments of the invention provide the use of a compound of formula (I) in preparation of a medicament for treatment of an inflammatory or immune disorder, or arthritis.

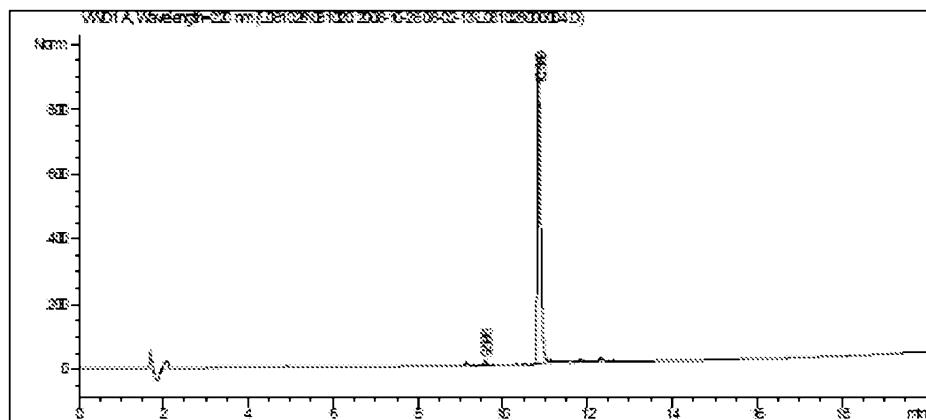
15 In various embodiments, the invention provides a method of treatment of an inflammatory or immune disorder, or arthritis, in a patient comprising administering to the patient an effective dose of a compound of formula (I) at a frequency and for a duration of time to provide a beneficial effect to the patient. For example, the compound of formula (I) can be

or a compound of formula

or a pharmaceutically acceptable salt thereof.

5

Examples


Example 1: Synthesis of SF-1 in n-butanol

OP Step	Chemical Name	Loss	MIN	MAX	Actual	MIN	MAX	Yield
1	SF-1RA	1779-56-15	329.7	3	171.12	40.00		
2	SM-3	LB-008-INC	X0118	11	133.96	37.00		
3	n-Butanol							240
4	Heptane							450
5	EtOAc							100
6	Heptane							100
7	EtOAc							1200
8	K ₂ CO ₃		138.21	3	80.641	84		
9	Water		18.01					800
10	K ₂ CO ₃		138.21					
11	DCM							800
12	Charged							40
13	Me ₂ SO ₄							40
14	Silica gel							200
15	EtOAc							50
16	EtOAc							1200
17	DCM							800
18	Heptane							600
19	Heptane							300

Procedure

Ops	Operation
1	Charge SF-Int2A (40 g, 121 mmol), SM-3 (37.52 g, 133 mmol) and <i>n</i> -heptane (240 mL).
2	Heat the mixture to gentle reflux for 2-3 days under nitrogen atmosphere.
3	Check the reaction by HPLC. After 18 h, there was 13.81% SF-Int2A left. After 48 hours, there was 3.18% SF-Int2A left.
4	Cool down to 15-25 °C. Stir the mixture overnight. Charge heptane (480 mL). Stir the mixture at room temperature for about 1 hour.
5	Filter the precipitate formed. Wash the cake with EtOAc/heptane (1:1, 100 mL) and then heptane (100 mL).
6	Charge the cake with 1200 mL of EtOAc and 10% aq. K ₂ CO ₃ (800 mL) to the reactor.
7	Separate the layers. Keep the aqueous layer in the reactor.
8	Charge 20 g of K ₂ CO ₃ powder to the reactor. Stir until clean. Charge 800 mL of DCM to the reactor. Stir the mixture for 10-20 min.
9	Separate the layers. Combine the organic layers.
10	Charge 40 g of Charcoal and 40 g of MgSO ₄ and 200 g of silica gel to the organic layer.
11	Stir the organic layer at gentle reflux point for about 30 min.

Ops	Operation
12	Cool the mixture down to room temperature and filter through Celite pad (50 g). Wash the cake with EtOAc/DCM (3:1, 2000 mL).
13	Distill the solvent to ~200 to 250 mL of volume left.
14	Charge heptane (600 mL) with stirring.
15	Cool the mixture to room temperature with stirring. Stir the mixture at it overnight.
16	Filter the precipitate formed and wash the cake with heptane (300 mL).
17	Dry the cake to give rise to 44 g (72.5%) of yellow powder. HPLC 1779-76-178. Purity 96.9%.

*Example 2: Decolorization of SF-1 free base*Procedure A:

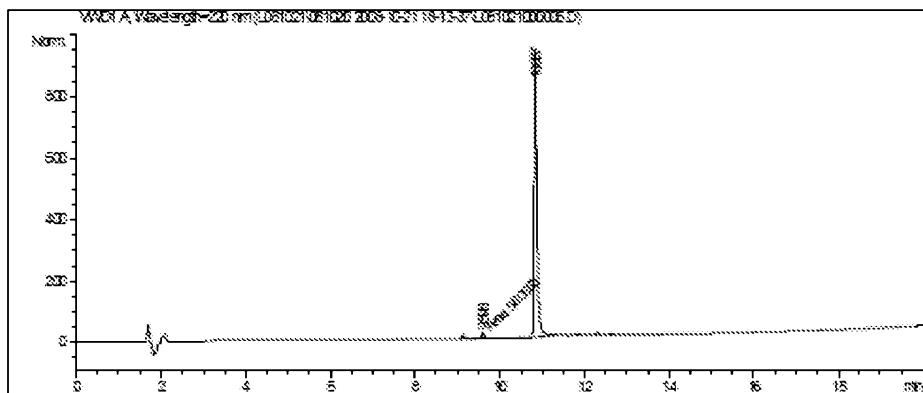
Ops	Operations	Note
1	Charge SF-1 HCl (2 g), EtOAc (60 mL).	Sample from 1779-58-5
2	Charge 30 mL of 10% K ₂ CO ₃ aqueous solution to the reactor with stirring. Continue to stir the mixture for 1 to 2 hours.	
3	Separate the layers. Keep the organic layer in the reactor.	
4	Charge 2 g of MgSO ₄ and 20 g of silica gel to the reactor.	
5	Charge dichloromethane (40 mL) to the reactor.	
6	Heat the mixture to 50 °C for 30 min.	
7	Cool the mixture to 15-25 °C.	
8	Filter through Celite (5 g). Wash the cake with 50 mL of mixture EtOAc/DCM (2:3).	
9	Distill the solvent to 5-7.5 mL. Add heptane (25-32.5 mL) to the reactor.	
10	Cool the mixture to 15-25 °C. Stir the mixture for 1-3 hours.	
11	Filter the precipitate formed. Wash the cake with heptane (20 mL).	
12	Dry the cake under vacuum to give 1.0 g of yellow solid, yield 57%, purity 98.7%.	

Procedure B:

Ops	Operations	Note
1	Charge SF-1 HCl (2 g), EtOAc (60 mL).	Sample from 1779-58-5
2	Charge 30 mL of 10% K ₂ CO ₃ aqueous solution to the reactor with stirring. Continue to stir the mixture for 1 to 2 hours.	
3	Separate the layers. Keep the organic layer in the reactor.	
4	Charge 2 g of MgSO ₄ and 1 g of charcoal to the reactor.	
5	Heat the mixture to 50 °C for 30 min.	
6	Cool the mixture to 15-25 °C.	
7	Filter through Celite (5 g). Wash the cake with EtOAc (60 mL).	
8	Distill the solvent to 5-7.5 mL. Add heptane (25-32.5 mL) to the reactor.	
9	Cool the mixture to 15-25 °C. Stir the mixture for 1-3 hours.	
10	Filter the precipitate formed. Wash the cake with heptane (20 mL).	
11	Dry the cake under vacuum to give 1.2 g of yield solid, yield 69%, purity 98.6%.	

Procedure C:

Ops	Operations	Note
1	Charge SF-1 HCl (2 g), EtOAc (60 mL).	Sample from 1779-58-5
2	Charge 30 mL of 10% K ₂ CO ₃ aqueous solution to the reactor with stirring. Continue to stir the mixture for 30 min to 1 hour.	
3	Separate the layers. Keep the organic layer in the reactor.	
4	Charge 2 g of MgSO ₄ and 1 g of charcoal and silica gel (10 g) to the reactor.	
5	Charge dichloromethane (40 mL) to the reactor.	
6	Heat the mixture to 50 °C for 30 min.	
7	Cool the mixture to 15-25 °C.	
8	Filter through Celite (5 g). Wash the cake with 50 mL of mixture EtOAc/DCM (3:2).	
9	Distill the solvent to 5-7.5 mL. Add heptane (25-32.5 mL) to the reactor.	
10	Cool the mixture to 15-25 °C. Stir the mixture for 1-3 hours.	
11	Filter the precipitate formed. Wash the cake with heptane (20 mL).	
12	Dry the cake under vacuum to give 1.29 g of gray solid, yield 74%, purity 98.3%.	


As procedure C was found to be the most effective, it was scaled up for further study.

Modified Procedure C (10 g scale)

Op#	Operation	Note
1	Charge SF-1 HCl (10 g), EtOAc (300 mL).	Sample from 1779-58-5
2	Charge 150 mL of 10% K ₂ CO ₃ aqueous solution to the reactor with stirring. Continue to stir the mixture for 1 to 2 hours.	
3	Separate the layers. Save the organic layer.	
4	Charge 5 g of K ₂ CO ₃ to the aqueous layer. Charge dichloromethane (200 mL) to the reactor. Stir the mixture for 15 to 30 minutes. Separate the layers, and charge the organic layers to the reactor.	
5	Charge 10 g of MgSO ₄ and 5 g of charcoal and silica gel (25 g) to the combined organic layers in the reactor.	
6	Heat the mixture to 49 °C for 30 min.	
7	Cool the mixture to 15-25 °C.	
8	Filter through Celite (30 g). Wash the cake with 500 mL of mixture EtOAc:DCM (3:2).	

5

Op#	Operation	Note
9	Distill the solvent to 25-37.5 mL. Add heptane (125-162.5 mL) to the reactor.	
10	Cool the mixture to 15-25 °C. Stir the mixture for 2-3 hours.	
11	Filter the precipitate formed. Wash the cake with heptane (180 mL). HPLC: 1779-69-11L	
12	Dry the cake under vacuum to give 7.1 g of gray solid, yield 81%, purity 98.7%. HPLC: 1779-69-128	

10

*Example 3: Recrystallization from 1,4-dioxane*Procedure 1. Ratio of 1:2 (w/v) SF-1 free base to 1,4-dioxane

1. Charge SF-1 free base (1 g, 1779-76-17) and 1,4-dioxane (2 mL).
2. Heat the mixture to 80 °C to give a clear solution.
3. Cool the mixture to 15-25 °C and stir at this temperature for 2-3 hours.
4. Filter the precipitate formed.
5. Dry the compound to give a yellow solid (0.98 g, 98%). Purity, 98.32 A%.

Procedure 2. Ratio of 1:3 (w/v) SF-1 free base to 1,4-dioxane

1. Charge SF-1 free base (2 g, 1779-76-17) and 1,4-dioxane (6 mL).
2. Heat the mixture to 80 °C to give a clear solution.
3. Cool the mixture to 15-25 °C and stir at this temperature for 2-3 hours.
4. Filter the precipitate formed. Wash the cake with 1,4-dioxane (6 mL).
5. Dry the compound to give an off-white solid (1.94 g, 97%). Purity, 99.12 A%.

Procedure 3. Ratio of 1:5 (w/v) SF-1 free base to 1,4-dioxane

1. Charge SF-1 free base (2 g, 1779-76-17) and 1,4-dioxane (10 mL).
2. Heat the mixture to 80 °C to give a clear solution.
3. Cool the mixture to 15-25 °C and stir at this temperature for 2-3 hours.
4. Filter the precipitate formed. Wash the cake with 1,4-dioxane (10 mL).
5. Dry the compound to give an off-white solid (1.86 g, 93%). Purity, 99.47 A%.

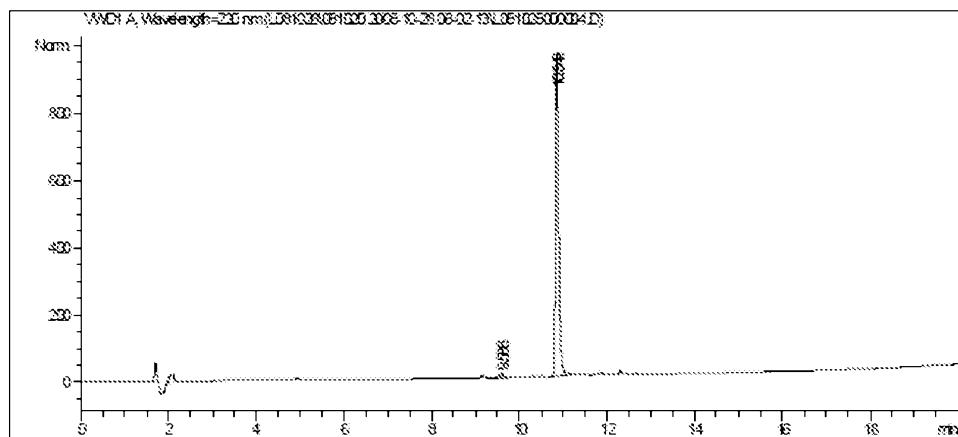
Procedure 4. Ratio of 1:8 (w/v) SF-1 free base to 1,4-dioxane

1. Charge SF-1 free base (1 g, 1779-76-17) and 1,4-dioxane (8 mL).
2. Heat the mixture to 80 °C to give a clear solution.
3. Cool the mixture to 15-25 °C and stir at this temperature for 2-3 hours.
4. Filter the precipitate formed. Wash the cake with 1,4-dioxane (10 mL).
5. Dry the compound to give a white solid (0.89 g, 89%). Purity, 99.76 A%.

Procedure 5. Ratio of 1:10 (w/v) SF-1 free base to 1,4-dioxane

1. Charge SF-1 free base (1 g, 1779-76-17) and 1,4-dioxane (10 mL).
2. Heat the mixture to 80 °C to give a clear solution.
3. Cool the mixture to 15-25 °C and stir at this temperature for 2-3 hours.
4. Filter the precipitate formed. Wash the cake with 1,4-dioxane (10 mL).
5. Dry the compound to give a white solid (0.87 g, 87%). Purity, 99.76 A%.

5


Example 4: Preparation of hydrochloride salt

A 20 gm scale synthesis was conduct by acidification of SF-1 free base dissolved in ethanol with HCl dissolved in isopropanol, followed by 10 precipitation with heptane. The SF-1 HCl salt product was obtained in 84.8% yield and 99.5 A% purity as determined by HPLC.

Op step	Material Name	Loss	MN	eq/mol	mmol	W (g)	V (mL)
1	SF-1 free base	1779-97-20S	501.5	1	39.88	20.00	
1	HCl in IPA			1.0	39.88		
2	EtOH						290
3	Heptane						600
4	EtOH						40
5	Heptane						160

Procedure

Op#	Operation	Note
1	Charge EtOH (290 mL) and HCl in IPA (3.4 N, 11.8 mL, 1 eq)	
2	Charge SF-1 free base (20 g, 40 mmol)	
3	Heat the mixture to gentle reflux to give a clear solution. Stir the mixture for 15-30 min at this point. Charge heptane (600 mL) with stirring.	
4	Cool down to 15-25 °C. Stir the mixture for 2-3 hours.	
5	Filter the precipitate formed. Wash the cake with EtOH-heptane (1:4, 200 mL).	
6	Dry the compound 16.2 g (84.8 % yield) 99.5 A%	
7	Check XRPD (1779-106-6S)	

Example 5: Synthesis of SF-Int2A

SF-Int2A was synthesized on a 200 g scale. The materials used are listed below. The product was obtained in 91% yield with 99 A% purity.

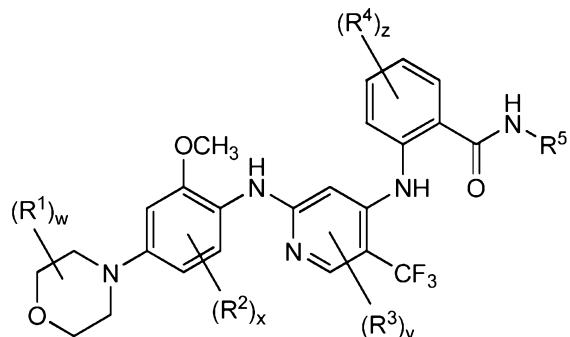
Op #	Material Name	Mr	eq	mmol	W (g)	V (mL)
1	SM-1	307.44	1	0.65	200.00	
1	SM-2A	150.18	1	0.65	97.70	
1	Cs ₂ CO ₃	325.82	1	0.65	211.96	
1	1,4-dioxane	88.11				1200
2	Pd ₂ (dba) ₃	915.7	0.005	0.003253	2.98	
2	Xantphos	578.63	0.015	0.0099	5.65	
3	Celite				50.00	
5	EtOAc					2400
6, 6	10% NaCl					1200
7, 7	7% NaHCO ₃					1200
8	10% NaCl					600
10	Heptane					3000
12	Heptane					600

Procedure

Op#	Operation
1	Charge 200 g (0.65 mol) of SM-1, 97.7 g (0.65 mmol) of SM-2A, 211.96 g (0.65 mmol) of Cs ₂ CO ₃ , and 1,4-dioxane (1200 mL).
2	Charge Pd ₂ (dba) ₃ (2.98 g) and Xantphos (5.65 g).
3	Heat the mixture for 2 – 3 days.
4	Monitor the reaction with HPLC. After 45 hours, there was 0.52% of SM-1 left.
5	Cool the mixture down to room temperature. Filter through a pad of Celite (50 g). Wash the cake with EtOAc (2400 mL).
6	Wash the organic layer with 10% NaCl (2 x 600 mL).
7	Wash the organic layer with 7% NaHCO ₃ (2 x 600 mL).
8	Wash the organic layer with 10% NaCl (600 mL).
9	Distill the solvent to around a volume of 350-400 mL left.
10	Charge 3000 mL of heptane with stirring.
11	Cool down to room temperature and stir the mixture overnight.
12	Filter the precipitate formed and wash the cake with heptane (650 mL).
13	Dry the compound under vacuum to give 195 g, yield 91%. Purity 99%

All patents and publications referred to herein are incorporated by

5 reference herein to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference in its entirety.


The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of 10 such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be

understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this
5 invention as defined by the appended claims.

CLAIMS

What is claimed is:

5 1. A method of synthesizing a compound of formula (I)

wherein

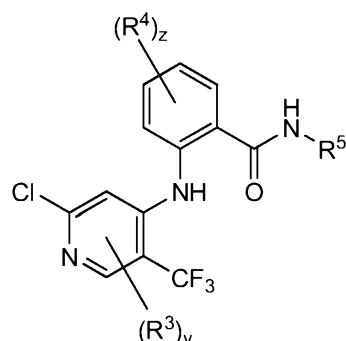
R¹ is independently at each occurrence alkyl, aryl, cycloalkyl,

10 heterocyclyl, aryl, or heteroaryl;

R², R³ and R⁴ are independently at each occurrence alkyl, aryl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, or fluoro;

R⁵ is hydrogen, alkyl, aryl, cycloalkyl, heterocyclyl, aryl, or heteroaryl;

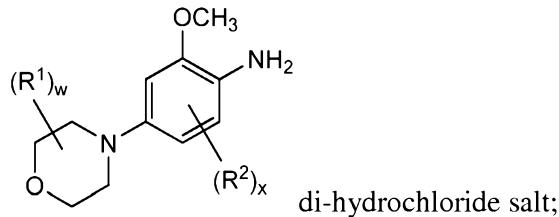
w is 0 to 8;


15 x is 0 to 3;

y is 0 to 2; and

z is 0 to 4;

including any stereoisomer thereof;


comprising contacting a compound of formula (II)

20

Formula (II)

and a compound of formula (III)

Formula (III)

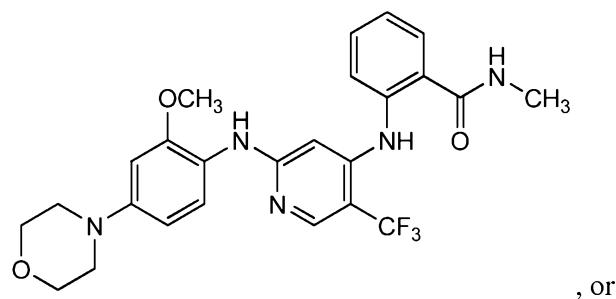
under conditions comprising:

- 5 (a) a solution of compounds (II) and (III) in a liquid hydroxylic solvent of boiling point higher than about 115 degrees C;
- (b) the compound of formula (II) being present at a concentration of no less than about 0.4 M;
- (c) the compound of formula (III) being present at a concentration about 10% higher than the concentration of the compound of formula (II);
- (d) a temperature in excess of about 100°C;
- (e) a duration of time of at least about 48 hours;
- (f) an absence of added bases;
- (g) an absence of transition metal catalysts;
- 15 followed by precipitation of the compound of formula (I) by addition of a hydrocarbon to the hydroxylic solvent following cooling of the solvent to ambient temperature, then collection of the precipitated compound.

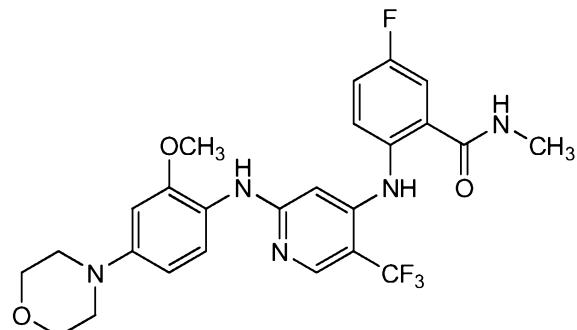
2. The method of claim 1 wherein the hydroxylic solvent is n-butanol, methoxyethanol, or ethoxyethanol.

3. The method of claim 1 wherein the hydroxylic solvent is n-butanol.

4. The method of claim 1 wherein the concentration of the compound of formula (II) is about 0.5 M.

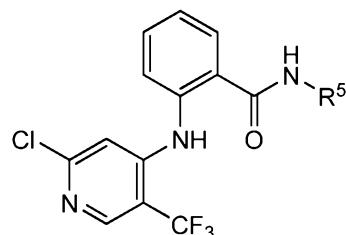

5. The method of claim 1 wherein the temperature is about 166-118°C.

6. The method of claim 1 wherein the hydrocarbon is heptane.

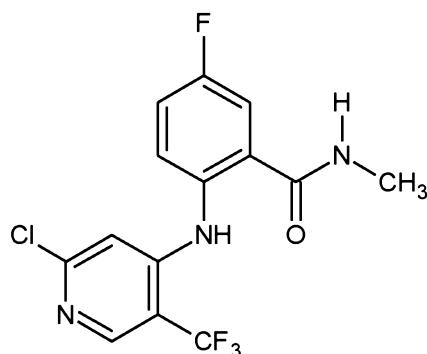

7. The method of claim 1 wherein the yield of the compound of formula (I) is at least about 75%.

8. The method of claim 1 wherein the purity of the compound of formula (I) is at least about 98%.

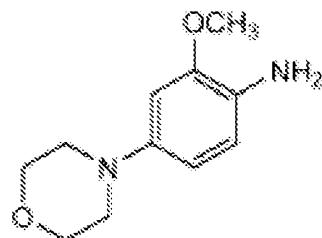
9. The method of claim 1 wherein the compound of formula (I) is a compound of formula


, or

10


.

10. The method of claim 1 wherein the compound of formula (II) is a compound of formula


15 wherein R⁵ is methyl,

or a compound of formula

11. The method of claim 1 wherein the compound of formula (III) is a compound of formula

5

12. The method of claim 1, further comprising purification of the compound of formula (I), comprising:

10 (a) first, dissolving and partitioning the compound of formula (I) between aqueous base and a water-immiscible organic solvent, then separating a solution of the compound of formula (I) free base in the water-immiscible organic solvent;

(b) then, adding to the solution silica gel, and optionally anhydrous magnesium sulfate, and optionally activated charcoal, then separating the solid material from the

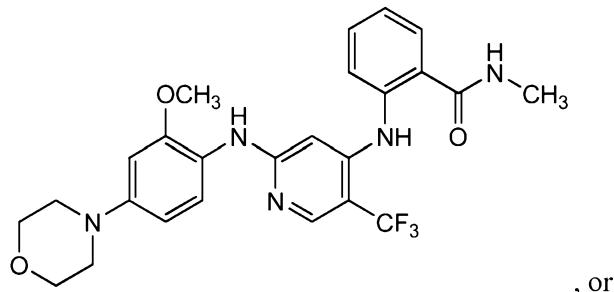
15 solvent to provide a purified solution of free base;

(c) then, adding a hydrocarbon to the purified solution to cause precipitation of the free base; and

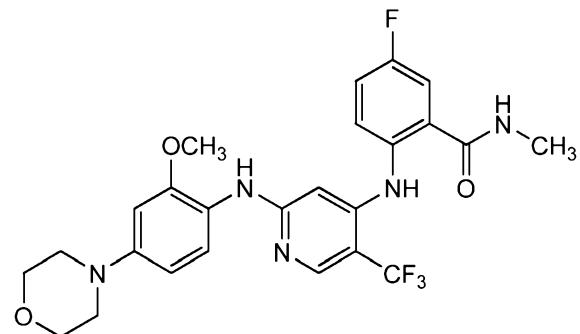
(d) then, collecting the precipitated free base of the compound of formula (I).

13. The method of claim 12 wherein the aqueous base comprises aqueous carbonate.

20 14. The method of claim 13 wherein the carbonate is potassium carbonate.


15. The method of claim 12 wherein the water immiscible solvent is ethyl acetate, dichloromethane, or any mixture thereof.

16. The method of claim 12 wherein separating the solid material comprises filtration or centrifugation, or both.


5 17. The method of claim 12 wherein the hydrocarbon is heptane.

18. The method of claim 12 wherein collecting the free base comprises filtration or centrifugation, or both.

10 19. The method of claim 12 wherein the free base is a compound of formula

, or

..

20. The method of claim 12 wherein the yield of the compound of formula
15 (I) is at least about 70%.

21. The method of claim 12 wherein the purity of the compound of formula (I) is at least about 98%.

20 22. The method of claim 12 further comprising converting the free base of the compound of formula (I) to a hydrochloride salt thereof by a process comprising:

- (a) contacting a first alcoholic solution of the free base and a second alcoholic solution of hydrogen chloride, then
- (b) adding a hydrocarbon to precipitate the compound of formula (I) hydrochloride salt; then
- 5 (c) collecting the compound of formula (I) hydrochloride salt.

23. The method of claim 22 wherein the first alcoholic solution is in ethanol.

24. The method of claim 22 wherein the second alcoholic solution is in

10 isopropanol.

25. The method of claim 22 wherein the hydrocarbon is heptane.

26. The method of claim 22 wherein the hydrochloride salt of the compound

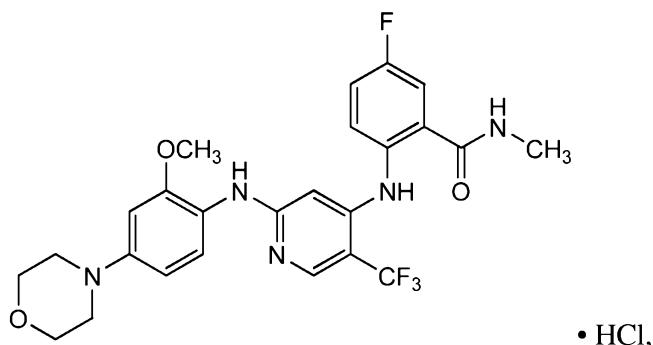
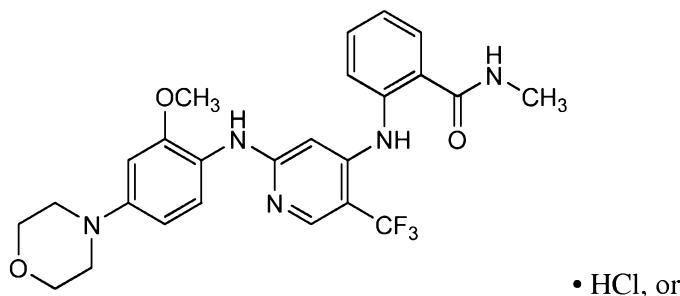
15 of formula (I) is a mono-hydrochloride salt.

27. The method of claim 22 further comprising, after collecting the compound of formula (I) hydrochloride salt, then recrystallizing the compound from 1,4-dioxane.

20

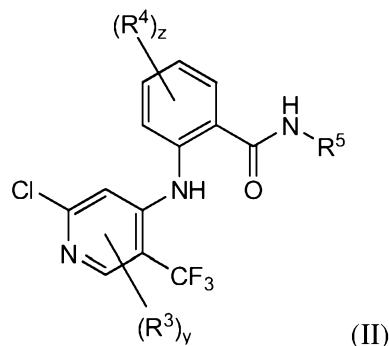
28. The method of claim 27 wherein the compound of formula (I) hydrochloride salt is of at least 99% purity.

29. The method of claim 27 wherein a recrystallization yield is at least about



25 85%.

30. The method of claim 22 wherein the yield of formula (I) hydrochloride salt is at least about 70%.

30 31. The method of claim 22 wherein the purity of the formula (I) hydrochloride salt is at least about 97%.

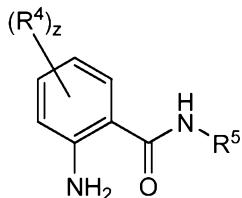

32. The method of claim 27 wherein a compound of formula

40

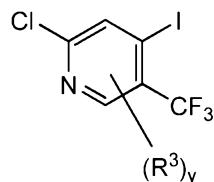
is obtained in at least about 60% overall yield and at least about 99% purity.

5 33. A method of preparing a compound of formula (II)

wherein R^3 and R^4 are independently at each occurrence alkyl, aryl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, or fluoro;


R^5 is hydrogen, alkyl, aryl, cycloalkyl, heterocyclyl, aryl, or heteroaryl;

10 y is 0 to 2; and


z is 0 to 4;

comprising:

(a) contacting a compound of formula (IV)

and a compound of formula (V)

in an ethereal solvent at about 80°C,

under conditions comprising:

5 (a) no more than about 0.5wt% $\text{Pd}_2(\text{dba})_3$;

(b) no more than about 1.5wt% xantphos;

(c) no more than about 1.1 molar equivalents of Cs_2CO_3 ;

(d) a concentration of the compound of formula (IV) of no less than about 0.5 M;

10 (e) a concentration of the compound of formula (V) of no less than about 0.5 M;

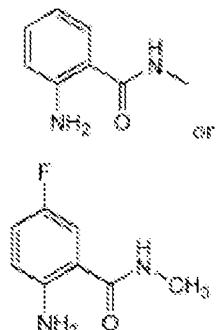
(f) for a duration of about 2-3 days.

34. The method of claim 33 wherein the ethereal solvent is 1,4-dioxane.

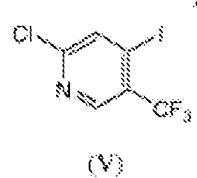
15

35. The method of claim 33 further comprising recovering the compound of formula (II), following heating for duration of about 2-3 days, comprising:

(a) filtering the ethereal solvent; then
(b) washing the filtrate with a water immiscible solvent to provide a
20 filtered solution; then
(c) washing the filtered solution with aqueous base; then
(d) reducing the volume of the solution by about 90%; then
(e) adding a hydrocarbon to precipitate the compound of formula (II).


25 36. The method of claim 35 wherein the water-immiscible solvent is ethyl acetate.

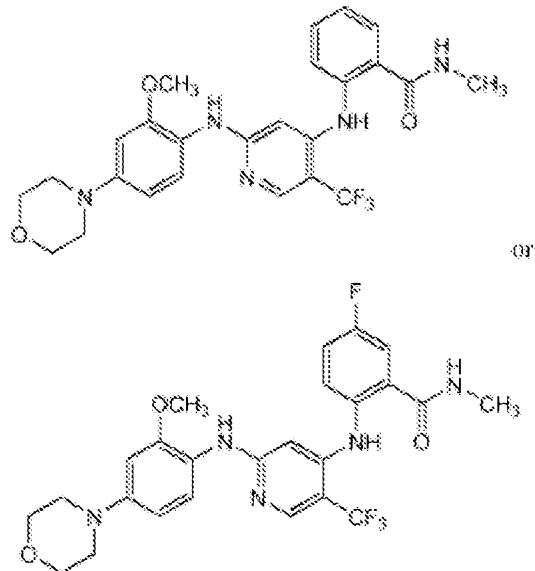
37. The method of claim 35 wherein the aqueous base is aqueous carbonate or bicarbonate.


30

38. The method of claim 35 wherein the hydrocarbon is heptane.

39. The method of claim 33 wherein the compound of formula (IV) is

40. The method of claim 33 wherein the compound of formula (V)

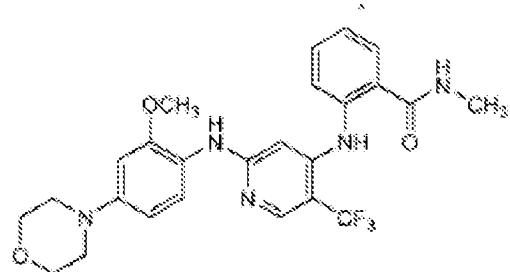


5 41. The method of claim 33 or claim 35 wherein the purity of the compound of
formula (II) is at least about 99%.

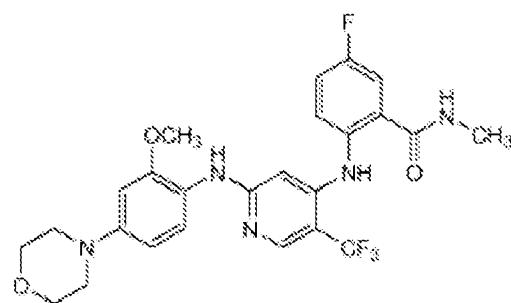
42. The method of claim 33 or claim 35 wherein the yield of the compound of formula (II) is at least about 90%.

43. A compound of formula (I) of claim 1 or a pharmaceutically acceptable salt
10 thereof prepared by a method comprising the method of any one of claims 1 to 22.

44. The compound of claim 43 of formula


or a pharmaceutically acceptable salt thereof.

45. The compound of claim 43 or claim 44 wherein the pharmaceutically acceptable salt is a hydrochloride salt.


46. Use of a compound of formula (I) of claim 1 in preparation of a medicament for
5 treatment of an inflammatory or immune disorder, or arthritis.

47. A method of treatment of an inflammatory or immune disorder, or arthritis, in a patient comprising administering to the patient an effective dose of a compound of formula (I) of claim 1 at a frequency and for a duration of time to provide a beneficial effect to the patient.

10 48. The method of claim 47 wherein the compound of formula (I) is

or

or a pharmaceutically acceptable salt thereof.

15 49. A compound of formula (II) when prepared according to the method of any one of claims 33 to 42.

50. A method of synthesizing a compound of formula (I); a method preparing a compound of formula (II); a compound of formula (I) according to claim 43; use of a compound of formula (I) according to claim 46; a method of treatment according to
20 claim 47; or a compound of formula (II) according to claim 49, substantially as herein

described with reference to any one or more of the examples but excluding comparative examples.