Turbopropulseur d’aeronef.

Turbopropulseur (10) d’aéronef, comportant une hélice de propulsion (26) et un premier corps rotatif (25) qui entraîne ladite hélice par l’intermédiaire d’une boîte d’engrenages (24), ledit turbopropulseur comportant en outre des moyens (40, 41) de décharge d’air d’une veine de compresseur, qui comprennent une sortie d’air raccordée à une entrée d’air d’une turbine à air (42) pour entraîner en rotation un rotor (46) de ladite turbine, caractérisé en ce que ledit rotor est configuré pour entraîner un pignon (48) de ladite boîte d’engrenages.
Turbopropulseur d’aéronef

DOMAINE TECHNIQUE
La présente invention concerne un turbopropulseur d’aéronef, du type comportant des moyens de décharge d’air.

ETAT DE L’ART
Une turbomachine d’aéronef comprend classiquement un moteur ou générateur de gaz comportant d’amont en aval, dans le sens d’écoulement des gaz dans la turbomachine, au moins un compresseur, une chambre de combustion, et au moins une turbine. Le moteur est alimenté en air par une manche d’entrée d’air et une tuyère permet d’évacuer les gaz de combustion sortant de la turbine du moteur.

Dans le cas d’une turbomachine à double corps, son moteur comprend un compresseur et une turbine basse pression ou BP dont les rotors sont reliés ensemble par un arbre BP et forment avec cet arbre un corps BP, et un compresseur et une turbine haute pression ou HP dont les rotors sont reliés ensemble par un arbre HP et forment avec cet arbre un corps HP. Le moteur comprend ainsi une veine d’écoulement d’air destinée à alimenter la chambre de combustion, et une veine d’écoulement de gaz de combustion sortant de la chambre.

Dans le cas d’une turbomachine à soufflante, une soufflante est montée dans la manche d’entrée d’air (et est donc carénée) et est entraînée par l’arbre BP, soit de manière directe soit de manière indirecte via une boîte d’engrenages formant réducteur. Dans le cas d’un turbopropulseur, une hélice externe non carénée est entraînée par l’arbre BP ou une turbine libre, par l’intermédiaire d’une boîte d’engrenages formant réducteur. En général, l’entrée de l’air dans un moteur de turbopropulseur se fait par l’avant et la sortie des gaz de combustion se fait par l’arrière. On connaît toutefois un turbopropulseur du type inversé, dans lequel l’entrée de l’air se fait par l’arrière et la sortie des gaz de combustion se fait par l’avant.
Des moyens de décharge d'air, aussi appelés moyens d'opérabilité, qui sont en général des vannes (VBV qui est l'acronyme de Variable Bleed Valve ou HBV qui est l'acronyme de Handling Bleed Valve) ont pour fonction d'évacuer de l'air vers l'extérieur d'une veine, ce qui constitue une perte d'énergie pneumatique.

Ces moyens de décharge sont nécessaires pour assurer le bon fonctionnement du moteur en particulier au ralenti voire à des régimes partiels (entre le ralenti et le plein gaz pour chaque phase de vol). Cette perte d'énergie pneumatique est souvent couteuse dans tous les cas de figure :
- dans le cas d'une vanne HBV d'un premier moteur existant : la décharge est faite dans le compresseur HP. L'air a été fortement comprimé ce qui représente une forte puissance perdue malgré un débit de décharge moyen ;
- dans le cas d'une vanne HBV d'un second moteur existant ou d'une vanne VBV d'un troisième moteur existant : la décharge est faite juste derrière un compresseur BP ou intermédiaire, dans lequel l'air est moins comprimé que dans le cas précédent. Par contre, le débit déchargé est plus important que sur une vanne HBV prise dans un compresseur HP. La puissance de compression de cet air déchargé reste donc élevée.

Sur le second moteur précité, la puissance consommée par la compression de l'air passant par une vanne HBV peut atteindre 2,5% de la puissance maximale du moteur sur certains cas de vol en régime d'urgence (par exemple en cas d'arrêt d'un des deux moteurs). De manière générale, la consommation de puissance par les moyens de décharge peut aller jusqu'à 30% du débit passant par la turbomachine.

De manière générale, une turbomachine est optimisée pour un point de fonctionnement en plein gaz. Ceci implique donc qu'en régime partiel ou ralenti le fonctionnement de la turbomachine n'est pas optimisé. Notamment, il est nécessaire de rétablir les marges de fonctionnement de la turbomachine en utilisant le système de décharge d'air au niveau d'un
des compresseurs tel que précédemment décrit. Ce prélèvement d'air a pour conséquence d'entraîner une augmentation des températures des gaz en sortie de turbomachine au ralenti. Les températures de sortie de gaz au ralenti sont potentiellement supérieures aux températures de sortie au plein gaz. Ceci pose deux problèmes :

- il est nécessaire d'avoir une turbine libre, un carter de sortie, une tuyère d'éjection des gaz réalisés dans des matériaux capables de supporter ces températures ; ces matériaux présentent les désavantages d'être couteux, et lourds ; pour palier ce problème, dans un souci continu de gain de masse et de coût de construction, un équipement de refroidissement a été mis en place afin de limiter la température de ces gaz ; cet équipement est pénalisant en terme de masse, même si son rapport de masse par rapport aux matériaux termo-résistants est positif ; de plus, cet équipement est pénalisant en terme d’encombrement ;

- d’autre part, au cours de son utilisation, la turbomachine passe plus de temps au ralenti qu’au plein gaz ; ceci a pour conséquence de dégrader le moteur par une usure des pièces importante (entraînant des couts de maintenance importants).

Il serait donc utile de limiter l’impact des décharges au strict nécessaire.

EXPOSE DE L’INVENTION

L’invention propose un turbopropulseur d’aéronef, comportant une hélice de propulsion et un premier corps rotatif qui entraîne ladite hélice par l’intermédiaire d’une boîte d’engrenages, ledit turbopropulseur comportant en outre des moyens de décharge d’air d’une veine de compresseur, lesdits moyens de décharge d’air comprenant une sortie d’air raccordée à une entrée d’air d’une turbine à air pour entraîner en rotation un rotor de ladite turbine à air, caractérisé en ce que ledit rotor est configuré pour entraîner un pignon de ladite boîte d’engrenages.

La turbine à air permet de transformer l’énergie pneumatique de l’air déchargé en énergie mécanique, du fait de l’entraînement du rotor de la
turbine par l'air déchargé. L'énergie pneumatique n'est ainsi pas perdue mais récupérée pour soulager l'opérabilité du moteur et contribuer à des fonctions propulsives. L'invention peut ainsi permettre d'augmenter le rendement énergétique de la turbomachine.

L'invention permet de compenser sur le plan mécanique ou de réduire, voire supprimer, des prélèvements d'air de décharge à certains endroits du moteur. Cette réduction du nombre de prélèvements est bénéfique pour limiter l'échauffement des parties du moteur exposées à l'air déchargé dans la technique antérieure.

L'air en sortie de la turbine a une pression et une température plus faibles qu'au point de prélèvement sur le moteur. Ceci présente divers avantages comme l'utilisation de canalisations d'acheminement de cet air de moindre épaisseur de paroi (puisque l'on a moins de pression), d'où un gain de masse. D'autre part, les décharges sont souvent sources de bruits à hautes fréquences, non couverts par les bruits de l'hélice. L'invention permet avantageusement un gain acoustique notable qui peut aller jusqu'à 2 EPNDB. En effet, l'air expulsé en sortie de la turbine est moins énergétique, ce qui permet de réduire le bruit d'éjection de cet air.

La puissance disponible sur l'arbre de la turbine est ici exploitée pour entraîner un pignon de la boîte d'engrenages qui relie le premier corps rotatif à l'hélice de propulsion. Cette boîte d'engrenages est du type PGB (acronyme de Power Gear Box). On soulage ainsi le turbopropulseur qui verra sa consommation abaissée.

La turbine à air peut ainsi entraîner un des arbres de la ligne de puissance du moteur. Ceci peut nécessiter une ligne d'engrenage spécifique en plus des lignes initiales de la PGB. La décharge pourra être acheminée du compresseur à la PGB. Sur un turbopropulseur du type inversé, il est possible de placer la boîte d'engrenages de type AGB (acronyme de l'anglais Accessory Gear Box) dans l'axe de la turbomachine et non en périphérie. Ceci permet de dégager de la place pour acheminer l'air déchargé jusqu'à la PGB.
Dans cette application, la turbine à air fournit de la puissance à l'hélice et réduit celle à fournir par le moteur. Les gains attendus sont :
- une réduction de la température de sortie du moteur au ralenti (moteur moins sollicité) ; et
- une réduction de la consommation de carburant.

Le turbopropulseur selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
- le premier corps est un corps d'une turbine libre,
- le turbopropulseur est du type inversé,
- lesdits moyens de décharge sont situés au voisinage d'une extrémité arrière du turbopropulseur ; l'extrémité arrière est celle opposée à l'hélice du turbopropulseur, et
- ladite turbine à air est montée sur un carter de ladite boîte d'engrenages.

La présente invention concerne encore un aéronef, comportant au moins une turbomachine telle que décrite ci-dessus.

L'invention concerne encore un procédé d'entraînement d'une hélice de propulsion d'un turbopropulseur tel que décrit ci-dessus, comprenant :
- une étape de décharge d'air de la veine de compresseur de façon à alimenter en air ladite turbine et à entraîner en rotation son rotor, et
- une étape d'entraînement de ladite hélice à la fois par l'intermédiaire dudit premier corps et dudit rotor.

DESCRIPTION DES FIGURES

L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue schématique en perspective d'une turbomachine selon l'invention, qui est ici un turbopropulseur de type inversé,
- la figure 2 est une vue très schématique en coupe axiale d'un turbopropulseur du type de celui de la figure 1, et illustre le principe général de l'invention, et
- la figure 3 est une vue très schématique en coupe axiale d'un turbopropulseur triple corps et illustre une variante de réalisation de l'invention.

DESCRIPTION DÉTAILLEE

On se réfère tout d'abord à la figure 1 qui représente une turbomachine d'aéronef et plus particulièrement un turbopropulseur 10 qui est ici du type inversé, bien que l'invention ne soit pas limitée à cette application particulière.

Les rotors du compresseur haute pression 16 et de la turbine haute pression 20 sont reliés l’un à l’autre par un arbre haute pression ou HP centré sur l’axe A, et forment un corps haute pression ou HP.

Comme indiqué dans ce qui précède, l’exemple illustré est non limitatif et le turbopropulseur peut être indifféremment du type monocorps et à turbine liée, du type double corps et à turbine liée, du type double ou triple corps et à turbine libre, etc. La nature de l’architecture interne de la turbomachine importe peu vis-à-vis du système considéré dans l’invention.

Le turbopropulseur 10 comporte par ailleurs, à l’avant du moteur 12, une boîte d’engrenages 24 dont un arbre d’entrée est entraîné par une turbine libre 25 et dont un arbre de sortie entraîne une hélice externe 26 du
turbopropulseur. La boîte d'engrenages 24 est connue sous le nom de PGB, qui est l'acronyme de *Power Gear Box*.

Le compresseur basse pression 14 est alimenté en air par un carter 28 d'entrée d'air qui est lui-même relié à une manche 30 d'entrée d'air. La turbine 20 est reliée à un carter 32 d'échappement des gaz de combustion, qui est lui-même relié à une tuyaure d'échappement 34.

Le turbopropulseur 10 tel que représenté sur la figure 1 est de type inversé : le compresseur basse pression 14 est situé à l'arrière du moteur et la turbine libre 25 est située à l'avant du moteur, c'est-à-dire du côté de la boîte d'engrenage 24 et de l'hélice 26. Ceci est avantageux notamment par le fait que la turbine libre 25, représentée sur la figure 2, est reliée directement à la boîte d'engrenages 24, sans nécessiter un arbre BP traversant le corps HP.

La tuyaure 34 peut être disposée sur un ou plusieurs côtés du moteur (par exemple à 3h ou 9h, par analogie avec le cadran d'une horloge). Elle comprend un orifice d'entrée de gaz débouchant dans le carter 32 et un orifice 36 de sortie de gaz débouchant sur un côté du turbopropulseur, au voisinage de son extrémité avant. La tuyaure 34 peut avoir en section une forme parallélépipédique allongée dans une direction sensiblement perpendiculaire à l'axe A, ici sensiblement verticale. La tuyaure définit une conduite de passage d'un flux de gaz, appelé second flux de gaz ou flux chaud.

La manche d'entrée d'air 30 est par exemple préférentiellement disposée sous le moteur (à 6h). Elle a une forme allongée, son axe d'allongement étant sensiblement parallèle à l'axe A. Elle s'étend sur sensiblement toute la dimension longitudinale du moteur et comprend un orifice d'entrée d'air situé à l'avant du turbopropulseur et un orifice de sortie d'air débouchant dans le carter 28 d'entrée d'air. La manche d'entrée d'air 30 a par exemple en section une forme parallélépipédique allongée dans une direction sensiblement perpendiculaire à l'axe A, ici sensiblement
horizontale. La manche d’entrée d’air définit une conduite de passage d’un flux de gaz, appelé premier flux de gaz ou flux froid.

Le flux primaire alimentant le moteur comprend le flux froid qui pénètre et s’écoule dans la manche d’entrée d’air 30, et le flux chaud qui s’écoule dans la tuyère 34 et en sort.

Selon l’invention, le turbopulseur 10 comprend des moyens de décharge d’air du flux primaire, qui sont par exemple des vannes de décharge 40, tel que représenté sur la figure 2. Chaque vanne comprend une porte pivotante, qui est mobile entre une première position dans laquelle elle obture un orifice de décharge 41 et une deuxième position dans laquelle elle laisse libre cet orifice. Lorsque la porte de la vanne 40 est dans la deuxième position, de l’air est évacué vers l’extérieur du moteur à travers l’orifice de décharge 41. Ces moyens de décharge sont utilisés pour décharger uniquement de l’air et non des gaz de combustion. Ils sont donc montés en amont de la chambre de combustion 18 et le plus souvent à proximité d’un compresseur, tel que le compresseur BP 14 ou HP 16.

L’air déchargé alimente une turbine à air 42. Pour cela, l’orifice de décharge 41 est relié par une canalisation 44 à une entrée d’air de la turbine à air 42. L’air déchargé alimente la turbine à air 42 pour entraîner en rotation son rotor 46. L’énergie pneumatique de l’air déchargé est ainsi transformée en énergie mécanique par la turbine à air 42. L’air déchargé s’écoule dans la turbine à air 42 et en ressort pour être évacué vers l’atmosphère B avec une pression et une température plus faibles, comme évoqué dans ce qui précède.

Le rotor 46 est configuré selon l’invention pour entraîner un pignon 52 de la boîte d’engrenage 24, et peut directement porter ce pignon 52. Alternativement, le pignon 52 peut être porté par la boîte d’engrenages. La turbine 42 est ici montée directement sur un carter de la boîte d’engrenages 24 pour aider à l’entraînement de l’hélice 26.

Avantageusement, cet agencement permet de profiter de la lubrification de la boîte d’engrenage pour lubrifier la chaîne d’entraînement de la turbine à
air. La chaîne d’entraînement de la turbine à air est également de taille réduite. De plus, l’intégration de cette turbine à air dans le carter de la boîte d’engrenages permet de ne pas ajouter de masse déportée ce qui limite les impacts négatifs de l’ajout de la turbine à air au niveau de la vibration de l’ensemble du moteur.

Dans un autre exemple de réalisation, la turbine peut être montée sur un carter dédié, monté lui-même sur un carter de la boîte d’engrenages. Cet agencement particulier permet de ne pas augmenter la taille du carter de la boîte d’engrenages.

L’air sortant de la turbine à air est conduit par une canalisation et débouché de manière affleurante sur la nacelle.

L’invention permet de décharger l’air en pression et en température ce qui peut permettre de libérer l’air en sortie de turbine à air directement dans la nacelle dans un mode de réalisation alternatif.

Lors de la réduction des gaz pour aller vers un régime partiel ou ralenti, le régime est partiellement abaissé, de l’ordre de 50% de la plage de régime totale du moteur, ce qui réduit la marge au pompage du compresseur. Il est donc nécessaire de décharger de l’air du compresseur pour restaurer sa marge de fonctionnement. Plus le régime est abaissé pour aller au ralenti, plus la marge se réduit et plus le débit de décharge doit être augmenté pour restaurer la marge.

Au ralenti, on vise à avoir une puissance hélice minimale et donc l’apport d’énergie mécanique par la turbine à air est transmis au générateur de gaz qui verra sa température abaissée du fait d’un besoin en carburant plus réduit. En régime partiel, le maintien de la poussée peut être nécessaire et donc la turbine à air participe à l’entraînement de l’hélice et donc réduit d’autant la puissance réclamée par l’hélice au générateur de gaz pour obtenir la poussée désirée. La puissance fournie par la turbine à air peut représenter jusqu’à 20% de la puissance de la turbomachine au régime ralenti.
L'invention permet également d'introduire une notion de récupération d'énergie pneumatique. Cela permet d'amener un apport énergétique supplémentaire, ce qui améliore le bilan énergétique global du moteur. Plus particulièrement, on introduit une turbine à air qui transforme l'énergie pneumatique initialement perdue en énergie mécanique. De plus, l'invention permet de réduire les marges au pompage et donc d'améliorer les performances grâce à une configuration de décharge d'air au plus juste des compresseurs (réduction des marges à prendre en compte).

La figure 3 représente une variante de réalisation de l'invention dans laquelle le turbopropulseur 10' est ici du type triple corps. Son moteur comprend un compresseur BP 14 et un compresseur HP 16, une chambre de combustion 18, une turbine BP 20' et une turbine HP 20''.

Les rotors du compresseur BP 14 et de la turbine BP 20' sont reliés l'un à l'autre par un arbre BP, et forment un corps BP. Les rotors du compresseur HP 16 et de la turbine HP 20'' sont reliés l'un à l'autre par un arbre HP, et forment un corps HP.

La boîte d'engrenages 24 de type PGB est située à l'avant du moteur et comprend un arbre d'entrée entraîné par un arbre solidaire d'une turbine libre 25 située à l'arrière du moteur. Cet arbre traverse l'arbre BP qui traverse lui-même l'arbre HP.

La description de l'invention faite en référence aux figures 1 et 2 est applicable à la variante de réalisation de la figure 3. Le prélèvement d'air, qui a lieu en sortie du compresseur BP 14 sur la figure 3, est donc situé au voisinage de l'extrémité avant ou amont du moteur. Dans le cas des figures 1 et 2, bien que ce prélèvement ait lieu au voisinage de l'extrémité amont du moteur, il est situé au voisinage de l'extrémité arrière du moteur du fait que le turbopropulseur 10 est de type inversé.
REVENDICATIONS

1. Turbopropulseur (10, 10') d’aéronef, comportant une hélice de propulsion (26) et un premier corps rotatif (25) qui entraîne ladite hélice par l’intermédiaire d’une boîte d’engrenages (24), ledit turbopropulseur comportant en outre des moyens (40, 41) de décharge d’air d’une veine de compresseur, lesdits moyens de décharge d’air comprenant une sortie d’air raccordée à une entrée d’air d’une turbine à air (42) pour entraîner en rotation un rotor (46) de ladite turbine à air, caractérisé en ce que ledit rotor est configuré pour entraîner un pignon (46) de ladite boîte d’engrenages.

2. Turbopropulseur (10, 10’) selon la revendication précédente, dans lequel ledit premier corps est un corps d’une turbine libre (25).

3. Turbopropulseur (10, 10’) selon la revendication 1 ou 2, dans lequel il est du type inversé.

4. Turbopropulseur (10, 10’) selon la revendication précédente, dans lequel lesdits moyens de décharge (40, 41) sont situés au voisinage d’une extrémité arrière du turbopropulseur.

5. Turbopropulseur (10, 10’) selon l’une des revendications précédentes, dans lequel ladite turbine à air (42) est montée sur un carter de ladite boîte d’engrenages (24).

6. Aéronef caractérisé en ce qu’il comporte au moins un turbopropulseur (10, 10’) selon l’une des revendications précédentes.

7. Procédé d’entraînement d’une hélice de propulsion (18) d’un turbopropulseur (10, 10’) selon l’une des revendications 1 à 5, caractérisé en ce qu’il comprend :
 - une étape de décharge d’air de la veine de compresseur de façon à alimenter en air ladite turbine à air (42) et à entraîner en rotation son rotor (46), et
 - une étape d’entraînement de ladite hélice (26) à la fois par l’intermédiaire dudit premier corps (25) et dudit rotor.
Documents Considérés Comme Pertinentes

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du Document avec Indication, en Cas de Besoin, des Parties Pertinentes</th>
<th>Revendication(s) Concernée(s)</th>
<th>Classement Attribué à l'Invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 3 659 417 A (GRIEB HUBERT J) 2 mai 1972 (1972-05-02) * figure 1 * * colonne 1, ligne 1 - ligne 13 *</td>
<td>1-7</td>
<td>F02C6/02 F02C1/02 B64D35/00</td>
</tr>
</tbody>
</table>

Domaines Techniques Recherchés (IPC)

- F02C
ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE
RELATIF À LA DEMANDE DE BREVET FRANÇAIS NO. FR 1558784 FA 814240

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 28-07-2016
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FR 2015265 A1</td>
<td>24-04-1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1228676 A</td>
<td>15-04-1971</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3659417 A</td>
<td>02-05-1972</td>
</tr>
<tr>
<td>FR 2577991 A1</td>
<td>29-08-1986</td>
<td>BE 904268 A1</td>
<td>25-08-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1244661 A</td>
<td>15-11-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 86101144 A</td>
<td>20-08-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3605653 A1</td>
<td>28-08-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2577991 A1</td>
<td>29-08-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2171459 A</td>
<td>28-08-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1189987 B</td>
<td>10-02-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H0579812 B2</td>
<td>04-11-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S61234232 A</td>
<td>18-10-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4631914 A</td>
<td>30-12-1986</td>
</tr>
<tr>
<td>US 2014026588 A1</td>
<td>30-01-2014</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1697623 A1</td>
<td>06-09-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005054645 A1</td>
<td>16-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1902389 A</td>
<td>24-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4664304 B2</td>
<td>06-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007510091 A</td>
<td>19-04-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2352800 C2</td>
<td>29-04-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA 91184 C2</td>
<td>12-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005103931 A1</td>
<td>19-05-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009271086 A1</td>
<td>29-10-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005045215 A1</td>
<td>19-05-2005</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No 12/82