US 20120323786A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2012/0323786 A1

Kirsch 43) Pub. Date: Dec. 20, 2012
(54) METHOD AND SYSTEM FOR DELAYED (52) US.CL ittt 705/44
AUTHORIZATION OF ONLINE
TRANSACTIONS
57 ABSTRACT
(75) Inventor: Steven Todd Kirsch, Los Altos Hills,
CA (US)
According to an embodiment of the present invention, a
(73) Assignee: OnelD Inc., San Jose, CA (US) method of authorizing a transaction includes providing a
processor, receiving a request for a proposed transaction from
(21) Appl. No.: 13/524,463 an entity, and retrieving a list of devices associated with the
entity. The method also includes transmitting a notification
(22) Filed: Jun. 15, 2012 related to the proposed transaction to the devices associated

L. with the entity. The method further includes determining,
Related U.S. Application Data using the processor, (a) that an approval is received from all

(60) Provisional application No. 61/497,865, filed on Jun. the devices associated with the entity, or (b) that a predeter-

16, 2011. mined time period has expired, and (c) transmitting an

approval of the proposed transaction to a transaction proces-

Publication Classification sor. Or, determining, using the processor, (a) that arejection is

received from one or more of the devices associated with the

(51) Int.ClL entity; and (b) transmitting a disapproval of the proposed
G06Q 20/40 (2012.01) transaction to the transaction processor.

Secure Transfer of Sensitive Data

102 104

User’s encrypted

. credit card data
OnelD Repository > Amazon.com

Decryption keys
for credit card
(encrypted with
Amazon’s publig
key)

User's Browser

User’s browser has
access to secret
symmetric key used to
determine the
symmetric encryption
key of each field

Patent Application Publication Dec. 20, 2012 Sheet 1 of 18 US 2012/0323786 A1

Secure Transfer of Sensitive Data

102 104

User’s encrypted
credit card data

OnelD Repository

Amazon.com

Decryption keys
for credit card
(encrypted with

Amazon’s public

key)

User’s Browser

User’s browser has
access to secret
symmetric key used to
determine the
symmetric encryption
key of each field

FIG. 1

Patent Application Publication Dec. 20, 2012 Sheet 2 of 18

OnelD System Architecture

202
N
User
204 206
S N
App of User's
Browser Computer or
Phone
208
N
OneIID - >
Service
212
N
OnelD
Repository

FIG. 2

US 2012/0323786 Al

210
N

Website

Load This URI For Me

Patent Application Publication Dec. 20, 2012 Sheet 3 of 18 US 2012/0323786 A1
OnelD Transaction Flow
User/Browser Amazon OnelD App
Requests Amazon
Home Page
-
302
Returns Page With
OnelD Button
304
User Clicks On Login Button
(Has Initial Command to OnelD) >
306
Secure Mutual Auth
-
>
-

>

308

Tell User To Call This

URI

310 >

312

Call The URI (Usually
An Amazon URI)

-
314

FIG. 3

US 2012/0323786 Al

Dec. 20,2012 Sheet 4 of 18

Patent Application Publication

-

v 9Old
0474
\ 4
ERIELS
P IDVAHIALNI
NYOMLIN 9z¥
asy _
Y €——»| 31730 LNdNI
ID1A3A O/I
4474
4——p| IDIAIA 1NdLNO _
3DIA3A IDVHOLS | sng
17454
vEY
H0SS3D0¥d
SALI vivd _
44 IDIAIQ IDVHOLS
43LNdINOD
148%
4 Oct _
H3asn icy
N Em— H0SSID0Hd
L ozt
oty 431LNdINOD

US 2012/0323786 Al

Dec. 20,2012 Sheet 5 of 18

Patent Application Publication

soseqele(
|eulaixg

S "OId

ors
aseqele(aseqele(] |on97]

SINPOW soouslislald uonednusyiny uonew.oju|
O/l - —

- - uoljoesuel |

Nwm«\ SoouaI9jald
a— Alojsodoy —

|9Aa] Anusp

T RE Sy saoualvald

uonoesuel | < —_
aulbu3 10SS9201d ejeq 1830
uonov|as

saousIa)ald

EmL NB.\ “fuey Buikion
WB)SAS UOID9[8S |9AST uoneonuayiny

o1 ®_ 005

Patent Application Publication

Dec. 20,2012 Sheet 6 of 18

Relying Party Device 602

US 2012/0323786 Al

¥ 600a

Network
610

A

_/'604
Data Processor 46_06_> Intel/r(f)ace -
608
\/_\
N—]
—> Memory
N—
User Device 622
_/'624
Ve
Data Processor 46_26_> InteI/r?ace -
628
Authentication AN
Level Selection
-
System Memory
Y \-510

FIG. 6A

Patent Application Publication Dec. 20, 2012 Sheet 7 of 18 US 2012/0323786 A1

Relying Party Device 602) 600b
| 604
606 e
Data Processor |g———» Interface I
608
\’/’\
N—
—> Memory
Network
— 610
User Device 622
| 624
Data Processor 4626_{ VO] ¢
Interface
628
\/_\
N
— Memory
v v
Identity Repository 632
| 634
636 I/O
Data Processor |q——» Intorface |
638
Authentication AN
Level Selection
L
System Memory
d \-510

FIG. 6B

Patent Application Publication Dec. 20, 2012 Sheet 8 of 18 US 2012/0323786 A1

Relying User Identity
Party Device Repository
Transaction
Information >
702
Relying Party
Preferences >
4
70 Transaction
Information
706 >
Relying Party
Preferences -
708
User
Preferences -
710
Signature
<+ ———— — — — — — -
712
Signature
+———————————-
714

FIG. 7

Patent Application Publication Dec. 20, 2012 Sheet 9 of 18 US 2012/0323786 A1

Receiving transaction information associated with _/ 810
a transaction between a user and a relying party

l

812
Receiving relying party preferences /

l

Determining a relying party authentication level /- 814
based on the transaction information and the
relying party preferences

l

816
Accessing user preferences -/

l

Determining a user authentication level based the / 818
transaction information and the user preferences

l

Determining the transaction authentication level /- 820
using the user authentication level and the relying
party authentication level

FIG. 8

Patent Application Publication Dec. 20,2012 Sheet 10 of 18 US 2012/0323786 A1

Receive the transaction information and the relying / 910
party preferences from the user module

l

912
Access user preferences /

l

Determine a user authentication level based on the _/ 914
transaction information and the user preferences

l

Determine a relying party authentication level /- 916
based on the transaction information and the
relying party preferences

l

Determine a transaction authentication level using / 918
the user authentication level and the relying party
authentication level

FIG. 9

Patent Application Publication Dec. 20,2012 Sheet 11 of 18

US 2012/0323786 Al
Remote Device 1002 'S 1000
f1004
Data Processor 4_7006_> Intel/r%ce
1008
\h
N
—| Memory
Network
— 1010
User Device 1022
/-10-2}
Data Processor 4_1026_> n tellr?ace -
1028
Encryption Engine Key
\1030 Storage Y

Data Repository 1032
Va 1034

Data Processor ﬁ)ﬁfi_» Intel/rfoace

103
\

L ».| Encrypted
Repository

FIG. 10

Patent Application Publication Dec. 20,2012 Sheet 12 of 18 US 2012/0323786 A1

Remote User Data
Device Device Repository
Encrypted Data
1102
Request
Information >
1104
Request For
Encrypted Data
1106
Encrypted Data
1108
Information
-
1110

FIG. 11

Patent Application Publication Dec. 20,2012 Sheet 13 of 18 US 2012/0323786 A1

encrypting data associated with the information / 1210
using an encryption key

v

sending at least the encrypted data to the data / 1212
repository

|

1214
deleting the information /

!

receiving a request for the information from a / 1216
remote device

v

sending a request for the encrypted data to the data / 1218
repository

I

receiving the encrypted data from the data / 1220
repository

:

decrypting the encrypted data using the encryption / 1222
key

v

1224
sending the information to the remote device /

FIG. 12

Patent Application Publication Dec. 20,2012 Sheet 14 of 18 US 2012/0323786 A1

’/~13OO

1310
receive encrypted data -/

|

1312
receive a first request for the encrypted data /

l

send the encrypted data in response to the first / 1314
request

FIG. 13

Patent Application Publication

Dec. 20,2012 Sheet 15 of 18

US 2012/0323786 Al

1410

Data
Processor

1420
/.

1417

User
Preference
Database

I/0 Txn Proc
Module Preference
Database Database
\ S
1405
(‘1401
User 1430
Device #j/v
(‘1402
r‘1440
User
Device #2 f 1403 Transaction
User Processor
Device
#N

FIG. 14

Patent Application Publication

1500 ’\

Dec. 20,2012 Sheet 16 of 18

US 2012/0323786 Al

Receive, at a transaction processor, a request / 1510
for a proposed transaction from an entity

l

Obtain a list of devices associated with the

entity

l

Transmit a notification related to the proposed /- 1514
transaction to one or more of the devices
associated with the entity

Yes

Yes

A 4

Complete
transaction

J

1524

l

All devices
approve?

1518

Time expires?

1522
Any device

rejects?
Yes

FIG. 15

Cancel
transaction

f

1520

Patent Application Publication Dec. 20,2012 Sheet 17 of 18 US 2012/0323786 A1

1600 ™

Receive a request for a proposed transaction _/ 1610
from an entity

| Transmit information related to the proposed ! 1612

| transaction to a transaction processor

Retrieve a list of devices associated with the | /" 1614
entity

l

Transmit a notification related to the proposed /- 1616
transaction to one or more of the devices
associated with the entity

l

Yes
All devices
approve?

1620

Yes

Time expires?

\ 4 1624

Transmit disapproval to
transaction processor

Any device
rejects?

Transmit approval to
transaction processor

Yes

J f

1622 1626

FIG. 16

Patent Application Publication Dec. 20,2012 Sheet 18 of 18 US 2012/0323786 A1

Identity Transaction
User
Server Processor
Request
. Request
Transaction
I > Authorization
1710 Preferences -
1712
Transaction
Preferences
-
Notify User Devices 1714
-
1716
Receive
Authorizations -
1718
Receive Rejections?
__________ > Transmit Rejection
1730 = | e e >
1732
Waiting Time
Expired?
Transmit
Authorization
-
1720

FIG. 17

US 2012/0323786 Al

METHOD AND SYSTEM FOR DELAYED
AUTHORIZATION OF ONLINE
TRANSACTIONS

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Patent Application No. 61/497,865, filed on Jun. 16, 2011,
entitled “Secure Transfer of Sensitive Data”, the disclosure of
which is hereby incorporated by reference in its entirety for
all purposes.

[0002] The following three regular U.S. patent applications

(including this one) are being filed concurrently, and the

entire disclosure of the other applications are incorporated by

reference into this application for all purposes:

[0003] application Ser. No. , filed Jun. ,
2012, entitled “Method and System for Determining
Authentication Levels in Transactions” (Attorney Docket
No. 94276-841065(0001210U8));

[0004] application Ser. No. , filed Jun. ,
2012, entitled “Method and System for a Fully Encrypted
Repository” (Attorney Docket No. 94276-842856
(0001220U8)); and

[0005] application Ser. No. , filed Jun. ,
2012, entitled “Method and System for Delayed Authori-
zation of Online Transactions” (Attorney Docket No.
94276-842878(0001230US)).

BACKGROUND OF THE INVENTION

[0006] As many everyday transactions move to an online
environment, a large amount of personal information must be
sent over the Internet. Many experts consider the insecurity of
online identities to be the most important problem to be
solved on the Internet today. Users of social networks, online
banking, e-commerce, online transactions, and/or email are
in constant danger of phishing, malware, and key logging
attacks, as well as massive centralized data breaches that
expose users’ passwords and financial account information.
[0007] Despite the widespread use of transactions over the
Internet, there is a need in the art for improved methods and
systems to secure these transactions.

SUMMARY OF THE INVENTION

[0008] The present invention relates generally to process-
ing a transaction. More specifically, the present invention
relates to methods and systems for delayed authorization of
an online transaction. Merely by way of example, the inven-
tion has been applied to a method of using approvals received
from multiple devices during a delay period to authorize a
transaction. The methods and techniques can be applied to a
variety of information and retail systems.

[0009] According to an embodiment of the present inven-
tion, a method of authorizing a transaction is provided. The
method includes providing a processor, receiving a request
for a proposed transaction from an entity, and retrieving a list
of devices associated with the entity. The method also
includes transmitting a notification related to the proposed
transaction to the devices associated with the entity. The
method further includes determining, using the processor, (a)
that an approval is received from all the devices associated
with the entity, or (b) that a predetermined time period has
expired, and (c) transmitting an approval of the proposed
transaction to a transaction processor. Or, determining, using

Dec. 20,2012

the processor, (a) thata rejection is received from one or more
of the devices associated with the entity; and (b) transmitting
a disapproval of the proposed transaction to the transaction
processor.

[0010] According to another embodiment of the present
invention, a method of processing a transaction is provided.
The method includes providing a processor, and receiving a
request for a proposed transaction from an entity. The method
also includes obtaining a list of devices associated with the
entity, and transmitting a notification related to the proposed
transaction to the devices associated with the entity. The
method further includes determining, using the processor, (a)
that an approval is received from all the devices associated
with the entity; or (b) that a predetermined time period has
expired, and (c) processing the proposed transaction. Or,
determining, using the processor, (a) that a rejection is
received from one or more of the devices associated with the
entity, and (b) canceling the proposed transaction.

[0011] According to an alternative embodiment of the
present invention, a transaction processing system compris-
ing is provided. The system includes an identity server
coupled to a network and including a data processor and a
non-transitory computer-readable storage medium compris-
ing a plurality of computer-readable instructions tangibly
embodied on the computer-readable storage medium, which,
when executed by a data processor, provide transaction pro-
cessing. The plurality of instructions includes instructions
that cause the data processor to receive a request for a pro-
posed transaction from an entity, and to retrieve a list of
devices associated with the entity. The instructions also cause
the data processor to transmit a notification related to the
proposed transaction to the devices associated with the entity.
The instructions additionally cause the data processor to
determine: (a) thatan approval is received from all the devices
associated with the entity; or (b) that a predetermined time
period has expired, and (c) instructions that cause the data
processor to transmit an approval of the proposed transaction
to a transaction processor. Or, the instructions cause the data
processor to determine: (a) that a rejection is received from
one or more of the devices associated with the entity, and (b)
instructions that cause the data processor to transmit a disap-
proval of the proposed transaction to the transaction proces-
sor.

[0012] Numerous benefits are achieved by way of the
present invention over conventional techniques. For example,
embodiments of the present invention provide for increased
security for sensitive or high-risk transactions. Additionally,
embodiments of the present invention allow users to stop
fraudulent transactions initiated on a stolen device. These and
other embodiments along with many of its advantages and
features are described in more detail in conjunction with the
text below and attached figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 is a simplified block diagram illustrating a
transaction according to an embodiment of the present inven-
tion;

[0014] FIG. 2 is a simplified block diagram illustrating a
system architecture according to an embodiment of the
present invention;

[0015] FIG. 3 is a simplified sequence diagram illustrating
an online transaction according to an embodiment of the
present invention;

US 2012/0323786 Al

[0016] FIG. 4 is high level schematic diagram illustrating a
computer system including instructions to perform any one or
more of the methodologies described herein;

[0017] FIG. 5is ahigh level block diagram of an apparatus
for determining an authentication level in a transaction in
accordance with an example embodiment;

[0018] FIGS. 6A-6B are high level schematic diagrams
illustrating authentication level determination systems
according to embodiments of the present invention;

[0019] FIG. 7 is a simplified sequence diagram illustrating
amethod for determining an authentication level according to
an embodiment of the present invention;

[0020] FIG. 8 isasimplified flowchart illustrating a method
for determining an authentication level according to an
embodiment of the present invention;

[0021] FIG.9isasimplified flowchart illustrating a method
for determining an authentication level with an identity
repository according to an embodiment of the present inven-
tion;

[0022] FIG. 10 is a high level schematic diagram illustrat-
ing a fully encrypted repository system according to an
embodiment of the present invention;

[0023] FIG.11is asimplified sequence diagram illustrating
a method for protecting encrypted data according to an
embodiment of the present invention;

[0024] FIG. 12 is a simplified flowchart illustrating a
method for using information in conjunction with a data
repository according to an embodiment of the present inven-
tion;

[0025] FIG. 13 is a simplified flowchart illustrating a
method for storing encrypted data using a data repository
according to an embodiment of the present invention;
[0026] FIG.141sahigh level block diagram of an apparatus
for enabling delayed authorization according to an embodi-
ment of the present invention;

[0027] FIG. 15 is a simplified flowchart illustrating a
method of processing a transaction according to an embodi-
ment of the present invention;

[0028] FIG. 16 is a simplified flowchart illustrating a
method of authorizing a transaction according to an embodi-
ment of the present invention; and

[0029] FIG.17is asimplified sequence diagram illustrating
a method of authorizing a transaction according to an
embodiment of the present invention.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

[0030] Embodiments of the present invention, which may
be referred to as the OnelD system or OnelD, make identity
management simple, secure, and convenient among other
benefits, including achieving a vision of universal PKI. The
OnelD system makes people’s lives easier and more secure
many times in a typical day. The OnelD system may impact
how you do things including, without limitation:

[0031] 1. logging into a website

[0032] 2. filling out a form on-line or off-line
[0033] 3. making a purchase or micropayment
[0034] 4. paying a bill

[0035] 5. voting in an election

[0036] 6. checking into a hotel

[0037] 7. renting a car

[0038] 8. making an airline reservation

[0039] 9. changing your email address

[0040] 10. getting a replacement credit card number

Dec. 20,2012

[0041] 11. changing your bank or being forced to change
your account number

[0042] 12. authenticating your identity over the phone to a
bank or health care provider

[0043] 13. renting skis

[0044] 14. buying lift tickets

[0045] 15.logging into websites from a public terminal
[0046] 16. finding out who has access to your information
[0047] 17.finding out which machine was compromised if

the is a security breach

[0048] 18. eliminating the need to know your loyalty num-
bers for airlines, hotels, cars, etc.

[0049] 19. voting your stock certificates

[0050] Frustrating tasks that used to take hours using cur-
rent methods (such as completing the paperwork to switch
health care providers for one employee) can be accomplished
securely in seconds, and in most cases without typing because
the OnelD system leverages information that has previously
been entered into the system. Among other benefits, the
OnelD system applies both to on-line and off-line tasks.
[0051] For example, if you have a OnelD account, you can
securely log in to a website, even a web site that you’ve never
logged in to before, with a simple wave of your hand without
typing. Similarly, you can make a purchase, pay a bill, or fill
out a form the same way: without typing anything. This new
method is not only more convenient for users, but it is also
orders of magnitude safer than what people are using today
(including people using those hard-to-use RSA tokens).
OnelD is secure against attackers, even if the attacker com-
pletely controls your machine.

[0052] OnelD replaces the need to maintain hundreds of
credentials for a single person (user names and passwords)
with a single digital identity that is based onusing two Elliptic
Curve Cryptography (ECC-160) public key pairs (one pair for
signing and authentication and the other pair for encryption).
That digital identity is then used to authenticate to websites
and other services both on-line and off-line. The authentica-
tion is peer-to-peer so there is no bottleneck or single point of
failure. The use of two different keys (signing vs. encryption)
is relatively rare today, yet it is core to the security and
usability of some embodiments of the present invention.
Accordingly, these key pairs are treated very differently in
some embodiments.

[0053] OnelD should not be confused with today’s enter-
prise “single sign on” which are simply password managers
often lacking the use of any public key pairs at all. Today,
enterprise single signon is basically: enter your password and
we’ll log in to each system using the proper username and
password for that machine or we’ll use SAML or OpenlD or
OAUTH. That is perpetuating the past. Embodiments of the
present invention transition people to the future: a paradigm
shift to easy-to-use, state-of-the-art public key cryptography-
based authentication that changes how people think about
identity. Usernames and passwords will cease to exist (other
than the username and PIN code to log into your OnelD
account which is so secure that you could publish it in the
newspaper and not have to worry that your account will be
compromised!).

[0054] Anexample of an off-line task would be a charitable
donation request sent in a letter. By scanning the QR code in
the letter, a recipient can complete a charitable donation in
seconds, all securely, and without any typing.

[0055] Embodiments of the OnelD system utilize a combi-
nation of novel hardware, software, services, standards and

US 2012/0323786 Al

protocols that build upon existing standards to complete the
ecosystem needed for simple identity management. It begins
where SSL ends.

[0056] For example, today SSL certs exist, but it is not
common for a public website to use SSL client side certs to
perform mutual authentication. The procedure for getting a
cert is cumbersome and insecure (the key pair is generated on
the server, not on my machine, for example). The mechanism
for backup tells me to store the keys on a CD that I could
potentially lose. Once I have the key, and I figure out how to
insert it in my system, there is no friendly way to determine
which certificate to use for which purpose: the user is asked to
select the proper key to use. Nor do most browsers allow for
easy key switching where more than one person is using the
system. It would be impossible to use this approach for a
public computer, for example. The browser on the iPhone
doesn’t allow any certificates to be used at all; there is no
support for client side SSL..

[0057] OnelD protocols put in place the infrastructure to
enable a core set of services and applications that third parties
can leverage to build applications.

[0058] Inanembodiment, using a small, reasonably priced
(e.g., $10) OnelD “magic” device attached to a user’s key-
board, a user can securely log into any OnelD-enabled web-
site, just by waving his hand above the device. No typing is
needed, no biometrics are used. No user names or passwords
are used. OnelD uses secure signature private keys that can-
not be forged, extracted, or duplicated by anyone, including
the owner or an attacker who has complete control of the
user’s hardware and software. OnelD devices are all compat-
ible, but have different forms, e.g., a card, a chip in a mobile
phone or keyboard, data in a TPM, etc.

[0059] OnelD allows you to log in to any OnelD-enabled
website from any mobile device, including iPhones and
iPads. Jail breaking is not required because no browser plug-
in is needed and no additional hardware is necessary (al-
though phones without an NFC chip are more at risk). It is
working on PCs, iPhones, and iPads today demonstrating that
full public key, peer-to-peer mutual authentication can be
done in Apple’s Safari without jailbreaking the iPhone.

[0060] Logging in from public terminals is also secure; in
fact, it is even more secure than using the industry standard
RSA time-varying token method.

[0061] OnelD provides a specific federated identity man-
agement (FIDM) system that is designed to secure and sim-
plify the type oftasks listed below. It is a system that is NSTIC
compliant and compatible and interoperable, but that offers
features and functions that are a super set of the required
functionality.

[0062] Key management (creation, distribution, revoca-
tion) is completely invisible to users. It all happens transpar-
ently under the covers.

[0063] The OnelD architecture is simple, yet extremely
powerful. Most operations are peer-to-peer with no bottle-
neck or single point of failure. It is designed to provide the
utmost in security while actually making things vastly more
convenient for the users. Users can determine the conve-
nience/security tradeoff for each device at any time. Web sites
that want to be OnelD enabled need to do no more work than
they did to add “Facebook Connect” to their site.

[0064] Because it is peer-to-peer, OnelD works in closed
environments where you are cut off from the Internet, e.g., a
desktop application on your own computer can know it is

Dec. 20,2012

really you even when you are off-line. There is no logging in
to a central OnelD server to get your credentials.

[0065] OnelD is designed to operate in today’s insecure
environment. Our designs keep an attacker from performing
any significant transaction even when that an attacker has
complete control of the user’s computer. User data is only
available at endpoints. All private keys are generated and kept
with endpoints. There are special provisions for preventing
attacks, for discovering attacks, and for preventing any irre-
versible damage in the worst possible case.

[0066] Although some embodiments are described as par-
ticular designs, these examples are not intended to limit the
scope of the present invention but to provide exemplary
implementations.

[0067] In some implementations of OnelD, actions that
would have been performed by the client are done instead by
a OnelD web service (the “OnelD service™), which is a com-
ponent of some embodiments. This keeps the system modular
and keeps the interfaces to the remote website exactly the
same. In some embodiments, the split is different since a local
client is not just moving the OnelD server code to the client
because things are done differently to be more secure (such as
unique signature keys on every client). But as far as the
remote site is concerned, it cannot tell whether the user has a
client or not. But the remote site can determine by asking for
a signature from the hardware whether OnelD certified hard-
ware and clients are installed so a security level can be known
by the website.

[0068] The key is to assume endpoints are secure, since if
they aren’t all bets are off. We notity on cell phone of any “key
event” like logging into bank or releasing credit card info or
completing a purchase ifhe downloads our cell phone OnelD
which shows him OTP numbers and also alerts he’s setup like
logging into bank account or gave someone a credit card.
[0069] All the strong operations here are with ECC (e.g.,
Curve K-163), AES-256, and SHA-2.

[0070] Here’s how it works for login. We’ll do a purchase
and info request next as examples. Login button looks like:
http://oneid.com/c?url="http://amazon.com/oneidlogin?ses-
sion=1234" in an embodiment.

[0071] Where the url=xxxx is the URL to call which begins
the PKI mutual authentication conversation and which at the
end will tell me where to go. Note the session=1234 argument
is passed to OnelD so OnelD can make use of it when it calls
the site. What’s nice is that OnelID doesn’t know about ses-
sions at all, since it is the site that determines what info it
needs to include in the URL so when the mutual auth (or
signature if a purchase or info release if it is an info release
request) is done in OnelD, the site will be able to authenticate
the session that is already cookied in the user’s browser.
[0072] OnelD is thus called by the user’s browser with a
command to do (¢ for call the URL in the url=arg). The cookie
in the browser’s request to oneid.com is a symmetric key to
allow OnelD to decode the user’s signature private key. That
way, OnelD isn’t storing anything of value to anyone, which
is good since if someone broke into OnelD, since we don’t
want to reveal everyone’s private key.

[0073] Oneid.com then converses with the remote site to
prove OnelD has the user’s credentials (i.e., we do a full
mutual auth where the challenge is tied to the socket so it can’t
be reused anywhere and since the remote website has our
public key, they can verify the signature on the OnelD in an
embodiment). At the end of the conversation, oneid.com then
gets rid of the decoded private key in RAM, and responds to

US 2012/0323786 Al

the user’s initial request with a redirect toYYY where YYY is
a URL provided by the site at the end of the conversation.
[0074] In the normal case where the user is logged in and
says “keep me logged in” then our page never even displays
and it hops right to the final jump page that the user’s browser
was told to load by the redirect response from the OnelD
server.
[0075] The security is such that OnelD on its own CAN-
NOT log into the website because it lacks sufficient info to
decode the private keys that it has on file for the user so it
cannot prove that it is the user. That extra info is provided in
the cookie of the user’s browser . . . basically a random
number which is the symmetric key used to give to OnelD to
decode the user’s private key and that was established when
the device (in this case the specific browser) was registered
with OnelD.
[0076] Inreality, each browseris holding a unique symmet-
ric key (call them B1 for browser 1, B2 for Browser 2, etc).
And there is just one copy of the private keys, which are both
encrypted using symmetric key A. So oneid.com is holding
several items of the form aes(A using B1), aes(A using B2),
etc. So the Browser key decrypts the key held at oneid.com for
that browserID/OnelD and then the result is used to decode
the private keys. That way, we have a record of which device
is doing what so in the event a key is compromised, we know
which place it came from (which is better than conventional
techniques).
[0077] Using embodiments of the present invention, if the
PC is keystroke logged, the attacker can’t use the username
and password from his own PC. The attacker would have to
also log the cookie in the SSL request. That’s no problem for
any reasonable attacker with access to the PC to do, but at
least we give the user that extra small amount of safety (and
we will let him know of previous logins, and email him when
he logs in from a new place). But the big margin we get is that
both our oneid.com service and our core repository has noth-
ing of value since it is all encrypted. The extra margin on the
user side was a free gift and of course is minimal extra
security. If you want real security, get the client, and use
waveauth which keeps the secrets under lock and key until
you wave.
[0078] If we could use special hardware that might make
key usage very secure on our servers, the big risk is on the PC
. . . getting keystroke logged or an attacker piggybacking on
an open session 1D, all stuff that wave auth handles.
[0079] Note that we could use WaveAuth with the private
keys in a cloud service. If waving my hand generated a signed
statement from the WaveAuth device that] just waved (or tells
OnelD via a shared secret which is easier to implement than
asymmetric crypto), then can be used to tell the OnelD cloud
service to allow a signing operation to take place.
[0080] Here are some of the cases that are satisfied by
embodiments of the present invention:

[0081] 1. New OnelD user

[0082] 2.How is the data like Name, Address, etc stored.

[0083] 3. if user changes his PIN

[0084] 4. ifuser forgets his PIN
[0085] 5. if user forgets his OnelD username
[0086] 6. user changes his OnelD username
[0087] 7.what happens if the cookie with sym key is lost
[0088] 8. new device initialization: what ifthe user wants

to use another browser on the PC or another PC
[0089] 9. new account creation (you don’t already have

an account on the remote website)

Dec. 20,2012

[0090] 10. old account association

[0091] 11. how do we handle attackers who are trying
every 4 digit PIN in the book

[0092] 12.what security is there if someone types 4 digit
PINs from your computer?

[0093] 13. what happens if user notified his browser got
compromised (changing the sym key)

[0094] 14. how do we handle things if there is a web
client and on an iphone so we don’t have to change the
URL on the website

[0095] 15.how do you limit the number of OnelDs, e.g.,
attacker creates millions a day

[0096] 16. what if an attacker changes the user’s PIN

[0097] The following definitions are used for ease of expla-
nation and are not intended to limit the scope of the present
invention:

[0098] Browser=user’s browser

[0099] Client=the version of OnelD that is a downloadable
client that installs in the browser and provides REAL security
and WaveAuth

[0100] Website=remote website that user is trying to log in
to
[0101] Service=the OnelD helper service that in conjunc-

tion with the browser looks like our OnelD browser client to
a website. It stores the signing and encryption key pairs. But
these are both encrypted with a symmetric key so that an
attacker breaking into the service gets nothing of value. This
is not a secure system (since unencrypted data is present
briefly), but a technique to enable people to use this without a
client. If you want additional security, use the client.
[0102] Repository=the OnelD secure repository where
endpoints possessing the private encryption keys can access
any of the info in the repository. Here data is extremely
secure. At NO POINT is data ever unencrypted.
[0103] Info in the repository=data stored in the repository.
The repository has stuff like the Name, Address, etc. as well
as stuff dropped for others like ACL and decryption keys for
each field group. It also has email:OnelD# and username:
OnelD number (dual keyed) so you can help a user if he
forgets stuff and provide resolution of OnelD username-
>UID for storing stuft since names can be reassigned but
numbers are not.
[0104] For simplicity, OnelD numbers start at 0 and incre-
ment from there. Other embodiments generate pseudo ran-
dom 8 byte numbers and check for a duplicate before issuing.
[0105] Embodiments ofthe present invention utilize one or
more of the following common ideas, although they are not
required by the present invention.
[0106] There is one Username/Password to log you in. If
you have a mobile device, you typically stay loggedinand use
a PIN code to unlock you phone for security. You can book-
mark a page to the OnelD website to log you out.
[0107] User accounts can have different key sizes. Free
accounts generally get really small key sizes. Paid accounts
can pick their key size (typically up to a limit).
[0108] In the ideal OnelD world, each endpoint has secret
things that are written once and cannot be used, and reset, but
not read out:
[0109] 1. LSK: the symmetric key that is created when
you login with your Username/password on a DevicelD.
It is a 128 bit hash of the 3 values in some embodiments.
This symmetric key is used to decrypt your private keys
(encryption and signature). Therefore, your private keys
are going to be different on disk on all devices.

US 2012/0323786 Al

[0110] 2. FSK: the Field Symmetric Key used for
encrypting/decrypting both fieldname and value data in
the repository (shared among all endpoints). This is
separate from the LSK. The fieldname/value data for a
user will be identical on all devices. It is all encrypted.

[0111] 3. PrEK: the Private encryption key (shared
among all endpoints)

[0112] 4. PrSK: the Private Signature Key (unique to
each endpoint). This is ideally never revealed to anyone
and stays inside the device. The other two keys are send
encrypted with the public signature key so that can be
sent securely to a new device. This keeps all three secrets
unexposed in the ideal world where all endpoints are
secure. This key will often expire, e.g., [log into a public
terminal, [can provide my username, password, OTP (to
prevent keylogging and to tell OnelD to download me all
the data which I promptly encrypt using username/pass-
word/devicelD before writing to disk so that the private
keys on disk are unique to this machine and not stored in
the clear even though my username/password/devicelD
hash is stored on disk so I don’t have to keep logging in)
and I get a public key signed by OnelD with an expira-
tion date and time. I also download the data from the
OnelD repository and all of that I can decrypt locally.
OnelD is programmed to give me all the fields in the
repository if T have the OTP that matches the OTP lists in
the repository.

[0113] 5. The PIN code for accessing the card (user typi-
cally picks any length he wants)

[0114] 6. His login password (either PIN or password
can be used to login depending on the device)

[0115] 7. OTP list: the OTPs are of length set by the user.
You can have 10 OTP devices. The first digit of the OTP
is the device number that generated it so we can look at
the right list when verifying OTPs. The OTP list is main-
tained at the OnelD server which is trained to allow all
fields to be sent to the recipient and trained to sign a
signature key for that OnelD if you provide this OTP and
tell it how long to make the signature valid for). The user
can use the secure hash (username/password) to decrypt
the PReK key on the server.

[0116] It should be noted that for really “rare” events like
authorizing an OTP app on a cell phone (that app can then
burn an OTP to get more OTPs), we use both PIN and pass-
word reasoning that an attacker will likely be able to get one
but not both.

[0117] The endpoints also have the following non-secrets
stored in the clear:

[0118] 1. the OnelD UID
[0119] 2. the OnelD verified email addresses
[0120] 3. the OnelD login aliases (e.g., primary email,

number, shortname)

[0121] 4. two public keys (for the 2 secret keys), so, for
example, we can give the smartcard the PIN code for the
OnelD by encrypting it with the encryption public key.

[0122] 5. A certificate that the PuSK is associated with
the OnelD. The public signature key certificate is signed
by OnelD and includes 1) the expiration date, 2) the
deviceName that it is stored on, e.g., “Steve’s laptop”, 3)
the OnelD UID that it is associated with. That way if
your private key gets exposed, you’ll know which PC
had the problem. So each device you have has a unique
PuSK. When it issues that certificate, the reason for
including the device name is that some sites may limit

Dec. 20,2012

which signature key(s) can be used, e.g., for your bank,
you may tell them to ONLY accept signatures from your
“Home PC” and the CIA may only allow logins from a
device that they have preapproved, not from any of your
devices.

[0123] 6. A certification of email addresses associated
with the OnelD. This isn’t in the OnelD certificate for
privacy reasons. This certificate is self signed by the
OnelD (any of the ones you own) and stored in the
repository in plain sight (not as an user data field) so it
can be used at login time to associate your OnelD with
email addresses owned by you in case the site doesn’t
recognize your OnelD, i.e., the first time ever you login
with your OnelD to a site, you’ll need to present this to
link your legacy account to your OnelD.

[0124] 7. a statement “the public signature key belongs
to OnelD UID #23432—signed OnelD”

[0125] 8. a statement “OnelD UID#23432432 controls
the following email addresses X, Y, Z—signed OnelD”
(used for associating accounts). A given email address
can only be assigned to a single OnelD so an attacker
can’t read your email and pretend to be you.

[0126] 9. eFieldname: eFieldValue, version which is a
local copy of the info in the repository so that if reposi-
tory is down, everything still works. Itis decrypted using
FSK when required. Endpoints rarely give out info, and
before they do, they check with the repository to make
sure they are giving out the latest data. They basically
send in the eFieldName and FieldVersion and get the
updated eFieldValue.

[0127] The biggest objective is we want any data stored on
disk in the service to be immune from a breakin (we already
know it is vulnerable in RAM since without a smartcard and
client, this is typically the best you can do). Second, we want
to make logins reasonably secure against password guessing
and phishing.

[0128] For each OnelD, the service permanently stores 1)
the encryption key pair (encrypted with FSK), 2) the signing
key pair (encrypted with FSK). The FSK is stored in the
browser so that the service is safe relatively against attack (the
stuff is decrypted during use). These key pairs are is keyed by
his OnelD number. Only the 2 private keys are encrypted
(signing and encryption).

[0129] The browser gets cookied by oneid.com with three
cookies:
[0130] 1. SessionlD: 234nmasdHUIDb$% which

expires whenever the user specified when he logged in
(and removed when the user logs out of OnelD). This
value is base64. Itis an AES 256 key and it was randomly
chosen when the user logged in. It is basically the
decryption key to be able to decrypt an EK that can
decrypt the private keys.

[0131] 2. DevicelD: 3kdfalUJkjjL (this is permanent and
done once; a random value assigned to the device which
is basically a browser in the clientless case, so two
browsers will have different devicelDs)

[0132] 3. the currently logged in Oneid: kksd823nndf
(the UID in base64)

[0133] So at the service, there is a key of OnelD-DevicelD
whose value is a number, the EK “encrypted key”. When the
user comes in with a request, the Session ID is used as a
symmetric decryption key to unencrypt that the EK. The
result is a symmetric key that is capable of unencrypting the
two private keys so they can be used. So that means that

US 2012/0323786 Al

without someone logged in and in the middle of an http
request, there is no way to use those private keys. That way,
the original login credentials are long gone, essentially
replaced with a unique SessionID on each login.

[0134] The service also has an entry of DevicelD: friendly
name so it can show the user a record of logins from each
device.

[0135] The OnelD-DevicelD:EK key-value is created at
login and deleted when the user logs off, or after the time limit
that the user specified, i.e., it is session specific.

[0136] When a user logs in with his OnelD username plus
the PIN plus the devicelD, there is a lookup done using a key
of hash(OnelD+PIN+devicelD) whose value is an EK. That
entry was created when the device was originally registered
and the entry never gets deleted unless the user expires or the
user says he is no longer using the device or if it hasn’t been
used in, for example, 3 months (since it can be regenerated
e.g., from backup tape or from another device that is active).
The devicelD is used to decrypt that key. That key is then used
to unencrypt the signature private key and then we sign some-
thing simple to verify we match what the correct key singed
(this is how we know our login is successful). Next we pick a
random 256 bit number (the Session ID) and use that to
encrypt the symmetric key that was used to encrypt the private
keys.

[0137] The repository keeps all the other fielded data of the
user, e.g., his Username, PIN, First Name, Home.Address,
etc.

[0138] The sessionlD is remembered it for as long as the
user requested. When you logout, this cookie is removed. If
you login as another user, the cookie is replaced.

[0139] Each browser also has a cookie for the name of the
device, e.g., “Steve’s laptop” (the translation to friendly name
is done at the service). This identifies the various devices to
the system. It is a security measure as well since it is com-
bined with the login information so that logins from unknown
devices for that account will be put through a higher level of
scrutiny.

[0140] For any info release that a website requests, we ask
what role the user wants for the info release, e.g., home,
work]l, etc. depending on how many profiles the user has put
in. The profile name is appended to the field name, e.g., if the
site asks for “Phone” then if you select work, it will try to
retrieve work.phone. The site can also request work.phone
directly. If a site requests work.phone and there is no entry,
then we’ll return the entry in “phone”.

[0141] So there is only one signature private key and
encryption private key when using the service. But there are
multiple encrypted symmetric keys so each device can log in.
But these can only be unlocked with a proper combination of
OnelDUID/PIN/device on login, or OnelD/Device/Session.
[0142] Embodiments of the present invention don’t com-
promise the security of the private keys by leaving them
exposed on the service. Encryption keys are used for decrypt-
ing the info in the repository. The encryption keys are held by
the service (if you had a client, it would be held at the client).
[0143] As for the OnelD client case as well, data stored in
the repository is stored in encrypted form where each field (or
group of fields) has a symmetric key to decrypt it that is
derived from the randomly chosen FieldID. So a reader who
possesses the OnelD’s encryption private key can request a
specific field (if you know the field name) or a list of field
names and decode it. The field names are encrypted with the
encryption private key. The fields themselves are encrypted

Dec. 20,2012

with a symmetric key whose value is encrypt(fieldname,
encryption private key). So you can hand out fields to people
by giving them the symmetric key for that field encrypted
using their public key.

[0144] Logging into a Website

[0145] OnelD is given the URL to call to login. It opens up
a normal http:// connection (for example, not a secure one
since there is nothing of value to someone watching so no
need for the overhead). The conversation goes like this:

[0146] 1. Website: shows a login button that looks like
http://oneid.com/login?url=www.amazon.conn/
onelDlogin?session]D=xxx

[0147] 2. Browser: opens connection on port 80 to oneid.
com Service and issues a GET login?url=www.amazon.
conm/onelDlogin?session]D=xxx

[0148] 3. Service: the service has to do a little work to
determine the response to the browser, which normally
is a re-direct back to amazon using a page that is deter-
mined after it has a side conversation with amazon. So
the service has to login to amazon first, referencing the
sessionlD, and after doing that, it will tell the browser to
load the page amazon tells the service. So it will open an
http connection to Amazon and do a GET onelDlogin?
Session]D=xxxxxx & challenge="please sign a hash of
MY IP, my Socket Number, and this random number that
1 just thought of just now, but I’m just giving you the
random number since you know the rest yourself, but I°11
send it to you anyway, just to remove all doubt (just
double check I’'m telling the truth). So all that info means
the info can’t be reused anywhere else. And please sign
that hash with a OnelD associated with your domain
name [used to get to you (e.g., www.amazon.com), ok?
And by the way, since you generated the sessionID your-
self, I’1l consider that a challenge for me, and here’s my
signature of a hash that mutually agreed earlier on of'the
socket #, the session ID, and your IP address. You
already know all that info, so I’m just sending you the
signature you need so we can avoid a round trip (but I’11
include all the elements anyway just for debugging pur-
poses, but you should derive and check it yourself). That
signature was signed by my signature public key, and
here’s signed proof from OnelD that that the signature
public key belongs to OnelD #122 and also here’s
another signed statement from OnelD that OnelD #122
owns the email addresses A, B, and C” so if you can’t
find me via my OnelD, look me up by those emails to
find my account. OK?

[0149] 4. Website: “ok, got all your info and found your
account and verified everything and I set the status for
SessionlD to be logged in so when the user’s browser
hits me in the near future with the page I’ll give you, it
will be logged in. Here’s the signature you wanted
signed by this public key and here’s proof signed by
OnelD that I own this domain. You can then look up the
reputation of my domain to show to the user. I paid extra
for a verified account so you can show the trust mark too
when he logs in to let him know I’m not a scammer. So
if everything looks ok at your end, why do you re-
redirect the user into my site to URL=https://www.ama-
zon.com/welcome.htm. I’ve already cookied his
browser with the session so there is no need to pass that
to you. Just have him load that page assuming my repu-
tation looks good. He’ll then be logged in when he gets
there.

US 2012/0323786 Al

[0150] 5. Service: Unless the site has lots of complaints,
return a “redirect” to the user’s original request to me
with the welcome.htm page amazon gave me (or if no
account was found, amazon would have given me an
error page).

[0151] 6. So this is cool because in a SINGLE regular
HTTP request we did a strong crypto mutual auth!

[0152] New OnelD User

[0153] In normal operation there are two cookies that are
presented to Oneid: symkey which is the symmetric key to
unlock the private key on the OnelD server and login=stk/
1234 which is the user’s OnelD and 4 digit PIN. Using a 4
digit PIN for a symmetric key may present some issues. This
just proves it is the user on that machine. User’s can pick how
many digits they want their PIN to be. To decrypt the secret
key, we need the PIN and the symmetric key. That’s because
if the user has his login expire, the username/PIN is gone, but
the symkey remains. So there’s a level of safety in requiring
both.

[0154] So let’s start with the case where the user has never
seen OnelD before. OnelD basically gets called and there are
no cookies. So the system says to please login with your
username and PIN or create an account. User hits create
account. He’s prompted to enter a username and PIN, the
system generates a random number and then cookies his
browser with the symkey and creates an encryption key for
that OnelD and signs it (just the unique number) with
OnelD’s private signature key, and a specific private key that
is tied to the symkey and PIN and thus tied to that browser on
that machine. That way, when that sig key is used, if it is
compromised, we know EXACTLY where the leak happened
and it’s consistent with the overall OnelD approach is private
signature keys are unique to a device.

Record Structure: how the Data Including Name, Address,
Etc is Stored in the Repository

[0155] The repository has 4 columns: OnelD, Version Fiel-
dID, eFieldName, eFieldValue.

[0156] OnelD is my 8 byte OnelD UID.

[0157] Versionis a4 byte overall version number giving the
overall version number that was in effect when this value was
changed. Therefore, any client can instantly tell whether any
field has changed and ask to get any field value that the client
uses which has a higher version number than the last version
number the client was up to date with, e.g., I can send a
version and list of fieldIDs to OnelD I have rights to and get
back any updates. If the server version number is less tan my
version number, then download all fields again since things
wrapped around (when the version number wraps, all Version
numbers for all fields are set to 0.

[0158] FieldID is a unique, random 4 byte fieldID that is
permanent for all time that is randomly picked when the field
is created. When sites are given an access list, they are given
a set of fieldIDs to use. Also, ACLs use those fieldIDs. The
thing is if the FSK changes, the fieldID is completely unaf-
fected, allowing a user to “rekey” but still allow people with
access to get the new information.

[0159] eFieldName is the name of the field. But the value is
encrypted using FSK for privacy reasons. This means the
owner can easily query by field and easily decode every field
since only the owner knows FSK.

[0160] Fieldnames are a mix of flat (e.g., FirstName) and
hierarchical, e.g., Home.Phone, Home.Street, Home.Fax,
Propel.Phone, Propel.email. Or they can be flat, e.g., Social

Dec. 20,2012

Security Number. The fields are all standardized and well
defined (perhaps CardSpace did a good job of standardizing
field names and their meanings). The eFieldname is not usu-
ally given out. It is there so the owner can determine the right
fieldname corresponding to the request (e.g., joe wants your
home.phone, you can then determine the encrypted name, and
then return to the requestor the permanent FieldID for the
field).

[0161] Fieldvalue is simply the value of the field as a print-
able string, e.g., “123 Spring Street”. It is encrypted with a
symmetric key=AESencrypt(FieldID, FSK). That way, each
field has a unique decryption key that can be handed out to
people authorized to read the field. Everyone will have the
same decryption key for that field. The repository only hands
out field values you have rights to. That way, if someone broke
into our repository and got a copy of the data, they couldn’t
leverage a decryption key for one field to use on another. So an
attacker who asked for your name and got it, can’t then
decrypt everything.

[0162] When giving out data to people, sites will com-
monly ask for nuggets of data, i.e., groups of fields like a
business card has Name, work.address, work.email, etc.

[0163] We can also define nuggets of info, like CardSpace,
from the individual fields, e.g., “business card for Propel”.
These nuggets can be overlapping with each other (i.e., share
fields). That can then be defined as a set of FieldIDs and their
decryption keys as the “value” part. That way, you can define
meta elements. So since a Value can be a text string or a list of
eFieldIDs (some of which might be nuggets and some of
which might be regular fields, the possibilities for building
hierarchies are unlimited though in practice we should likely
just stick to a field value being either a string or a list of
fieldIDs that have values that are strings. Therefore, to give
out a business card, we’d only have to give out the decryption
key for that nugget field since it then has all the fields and
decryption keys in it in the value section. Although nuggets
may not be used, it is a convenient way to leave stuff since you
only have to give out one decryption key instead of 20 or
more. So just like there are standard field names, we can
define standard nuggets.

[0164] The owner can view all info, and hand out the sym-
metric keys to people he likes. Those symmetric keys for each
field could be encrypted with the public encryption key of the
person who is given access and left on the repository for later
pickup and use, e.g., here’s the decryption key for my home
address nugget so when you mail me each month, be sure to
check your mailing address is the latest one.

[0165] Or the symmetric keys could be given, peer to peer
using an SSL sockets. Or we can just transfer the data
requested from endpoint to endpoint, unencrypted (but
encrypted on the socket layer). So if Amazon asks for my
Name and Email, it’s easy enough for me to just send them
exactly what they requested over SSL. That’s really the sim-
plest. Endpoint to endpoint.

[0166] Another way to give out keys is leave them at the
repository. I might leave a signed ACL containing field tuples
of the form: (fieldID, access rights, decryption key) in the
repository for “Jeff” where the decryption keys are encrypted
symkeys for that field that only Jeff can read. That authoriza-
tion can be removed (or listed) by me any time. So I can see
what permissions are out there for my data and can remove
that at any time. This is useful if [want people to always use
my latest email or latest mailing address for example.

US 2012/0323786 Al

[0167] When Jeff comes in, he can examine his ACLs and
know what he can access and can decode the data when he
gets it. Similarly, OnelD repository knows what fields he’s
allowed to get. So Jeff can say “give me a list of people I can
access” or “give me the ACL that Steve left for me.”

[0168] There are two good ways to define nuggets: 1) pre-
define them, e.g., business card, personal card and 2) create
them every time a website asks for a set so that for any request,
the vendor can simply ask for the same nugget he asked for
before so he only has to remember and use a single symmetric
key to decode the nugget then use the individual field keys in
the data he gets.

[0169] Inan embodiment, the system does a “peer to peer”
info release so if you ask for fields 1, 2, 3, then we get
confirmation from the user and then give you want he autho-
rized.

[0170] If user changes his PIN?

[0171] Ifuser goes directly to the OnelD site he can change
his PIN (we also show a link to change your info on the login
screen when he logs in so can see what info we kept on file for
you and can change any of it like your email, password,
picture, preferred screen names, preferred user names, etc.)
[0172] The way the PIN operation works is we get his old
pin and new pin. Once we have the old PIN, we can decode the
signature private key and the encryption private key, and then
re-encode these keys using the username/new PIN/old sym
key. The user data (e.g., Name, Address, etc.) is left alone . .
. encrypted with the encryption key.

[0173] What if user forgets his PIN?

[0174] Same procedure as you forgot your username (see
next). We’ll mail you the “PIN hint text” that you wrote when
you made your PIN (or changed it).

[0175] Ifthe user changes or forgets his OnelD username?
[0176] There is a forgot PIN or forgot password link on
every login page. Type in your email (or email us) and we’ll
email you back the OnelD associated with that email address.
We store that in plaintext on our site (but not that the public
can see).

[0177] What happens if the cookie with the browser sym
key is lost?

[0178] Without that sym key, your signature private key
(OnelD can sign a new one) and encryption private keys held
by the OnelD service are unreadable.

[0179] There are two options:
[0180] 1. you authorized a second device
[0181] 2. you asked for and wrote down your symkey

somewhere (or stored it on a USB)
[0182] For case 1, it’s easy. You just do a new device pro-
cedure on your PC, using the old device to authorize it.
[0183] For case 2, we let you enter in that number and
cookie the browser.
[0184] Otherwise, you start over from scratch entering all
your data. Ifyou can verify any of your email address, we will
let you use your OnelID UID number so all your websites will
not have to be updated (they only store your UID 8 byte
number)
[0185] New device initialization: what if the user wants to
use another browser on the PC or another PC?
[0186] Each new device has to get a copy of the encryption
private key from an existing authorized device.
[0187] There are two ways to do that:
New account creation (you don’t already have an account)
Old account association

Dec. 20,2012

What security is there if someone types 4 digit PINS on your
computer?

What happens if user notified his browser got compromised
(changing the sym key)

[0188] How do we handle things if there is a web client and
on an iphone so we don’t have to change he URL on the
website

[0189] Four ways:

[0190] 1. on the website, if the client was installed, you
could generate a oneid:xxx style of request instead ofthe
http:// style which would directly call the client.

[0191] 2. There is javascript in your button code which
makes the right call depending on whether the plug in or
app is installed.

[0192] 3. plug-in will cause any web requests of the form
www.oneid.com/c to go to the client. For the iphone, if
OnelD is installed, it uses the same method as Onavo: a
profile which is a web proxy server that acts as a com-
plete pass through proxy EXCEPT for a www.oneid.
cony/c request where it will return a page saying “calling
OnelD” (or just not return might work better visually)
and for those it will call the OnelD client in the iPhone
(which will then call safari when done).

[0193] 4.Thesimplestand easiest way is for www.oneid.
cony/c to know that this device has the plug-in installed
(when plug is installed it will tell oneid.com) and when
the service is called, simply redirect to the oneid: proto-
col so it is handled locally. This involves a quick hit to
our server on every oneid request.

[0194] 5. WaveAuth for the browser can of course look at
the URLs and interpret them as oneid: calls before call-
ing them. This is similar to #3.

How do You Limit the Number of OnelDs, e.g., Attacker
Creates Millions a Day

[0195] user has to enter their physical street address. We
check IP against the address they provide.

[0196] We look for anomalies on an IP, e.g., never got a
registration before, now getting 10/day.

[0197] If either of those isn’t clean, we require SMS veri-
fication where we send them a code to type in to their SMS
number. Each SMS number can only be used once a month.
[0198] If they don’t have SMS, they can pay us $1 via
paypal and we’ll give them an account. The paypal account
cannot have been used before.

How do You Handle all the CPU Cycles You Need for all this
Crypto?

[0199] Free accounts get really weak keys so computation
is fast, e.g. small ECC and AES keys. That also helps our
websites since they don’t have to burn cycles on strong crypto
either.

[0200] Ifyougeta Premium,you get 160 bit ECC, ability to
remember credit cards, more storage of fields remembered,
etc. You get additional aliases for your account: a friendly
name of your choosing, and a numeric name of you’re choos-
ing to use over the phone.

What if an Attacker Changes the User’s PIN

[0201] User uses the web to prove it is him by showing he
controls the email and SMS numbers. We can then restore his
records to what they were before the PIN change (we always
backup his records to disk on a PIN change and only allow one
PIN change a day) and have him immediately change his PIN.

US 2012/0323786 Al

That way, he can decode all his data again. We don’t know his
PIN . .. only that it changed without his consent.

How Authenticate Over the Phone, e.g., Auto Attendant.

[0202] Use your OTP. Give the person your OnelD number
(or name if speaking to someone) and you’re next OTP. They
can type that in and you’re authenticated.

How does a Site Stay Current with Info if they Notice it
Changed?

[0203] Site has fieldname:(value, fieldID, version) for each
field it gets. It can ask the repository if the FieldID/version is
out of date (fieldID is the encrypted fieldname). If it is, it can
request an update for those fields by just dropping the field.
When you login, you’ll see all the requests and can mass
approve them, encrypting the answers with the public key of
the recipient.

[0204] So basically, the repository has two functions: holds
the user’s data, and also acts as a dropbox so people can
communicate requests asynchronously between each other.

What’s Difference Between Free and Paid Account?

[0205] Free: Typically uses preferred email address as
login, no SMS used, can’t bypass captcha’s on site, etc.
[0206] Paid: SMS verified, $1/mo, add a shortname and a
number, can restore account if hacked, can store credit card
numbers, bypass captchas, get access to special sections on
sites, etc.

Disabling the Account

[0207] Since if an attacker controls your machine, he can
pose as you (unless you get our hardware solution), it’s
important to have some safety measures put in place to put
your account on hold until you clean your machine.

Access Control

[0208] ACL with read, write and expiration of those rights.
One or more of the following may be applied:

[0209] 1. Data isn’t public

[0210] 2. Can leave in repository using http leave for h
[0211] 3. Kdfis double encrypt the fieldname

[0212] 4. Keep acl list in the repository for everyone. If

have to rekey, just re-do the value.
[0213] 5. If attacker asks for lots of data on a user from
the repository,

[0214] 6. If attacker stole someone’s rights, he could see
updates

[0215] 7. Site stores the decryption keys for each field

[0216] 8. Repository stores, at the signed request of the

OnelD, ACLs for anyone with permanent access like:
OnelD 234 has read access to fieldID numbers 1, 3, 16,
128 until Dec. 13, 2011

[0217] 9. Where the expiration can also be never (so user
can remove it at any time)

[0218] 10. Each field has a 4 byte permanent ID # which
is randomly chosen when the field is created.

[0219] 11. User canre-key the info at any time. Ifhe does
that, he’ll leave the new keys for each site for them to
pickup. When the site picks them up, they are removed
from the server to save space. Those keys are stored in
the storage space of each site who should always snarf
them once a day.

Dec. 20,2012

[0220] 12. Here’s what a field decryption list looks like:
OnelD 234 can use decryption keys X, Y, Z for the fields in the
ACL. These are 256 bit keys, and they are AES encrypted
using a random 256 bit key that is encrypted using the public
key of OnelD 234. So when you check in, please take this and
store it on your site for future use so you can always access the
user’s data.

Security

[0221] If anyone asks for lots of fields for lots of OnelDs,
but it is not the right “time of month” for the monthly billing,
that should generate a red flag.

Javascript Implementation of this

[0222] Amazon has a page that refers to a s file at OnelD
as part of their page and it can also call a function in that page
as part of the amazon page.

[0223] That page might in fact be a pure static page, so it
can be cached in the browser so that no server hit is required.
[0224] That js file can talk to OnelD servers and use cook-
ies stored in the user’s browser associated with OnelD, but it
cannot see the cookies on Amazon, but when the amazon page
called my function, it might have passed in an argument (like
“I want his credit card number”).

[0225] So that javascript then uses my OnID.com cookies
holding my secret keys and the encryption and signature can
be done inside my browser while it is talking to onelD and
executing that javascript. So it can ask OnelD for some stuff
in OnelD’s repository so the browser can decrypt it and pass
it directly to Amazon.

[0226] An advantage of this approach is that the
BROWSER is decrypting all the info from the repository, and
then that info is passed directly to the site via the return from
the javascript result. That means, in some embodiments:

[0227] 1.OnelD server NEVER sees any decrypted per-
sonal information,

[0228] 2. anyone breaking into our server gets nothing,
even if they have full access to our site and can read
everything in RAM; the only way they can win is modi-
fying the js file; they cannot even reverse engineer the
user’s password because the login to OnelD itself from
the browser Is via a signed. So none of the silly hashing
the password and seeing if the password matches.

[0229] 3. OnelD canbe totally down for weeks and it still
works

[0230] 4. Works on all devices

[0231] 5. No download required

[0232] 6. Only risk factor is username/PIN stored in so

you may have to “logout” if using an insecure terminal
[0233] 7. You grab your data when using a NEW
machine (so OnelD must be up for that to happen)
[0234] 8. If download an app and use our hardware, you
can get a lot more secure
[0235] So even though I have a server involved, the huge
win is that no unencrypted stuff is ever on the OnelD server .
.. it is all at the endpoints and passed directly to the amazon
and ideally the login to OnelD is all via public key encryption
too.
[0236] When you login to OnelD you cookie your browser
with the decrypted keys you need and when you logout, those
keys are gone. It should be noted that HTMLS5 local storage
gives you SM of local storage per domain.
[0237] So when you login to OnelD, you basically are
storing your secure hash of your username/password into the
browser cookie (or in the HTML 5 region). This is an AES key

US 2012/0323786 Al

that is then used, on the fly, to decrypt any data stored in the
HTML 5 region. OnelD gives you the encryption, signature,
and FSK you need; but just the signature key for your device
(since each device has a different signature key), but it is
actually better to generate the signature private key on the
device and then ask onelD create a certificate of the signed
Public key for that amount of time. So we’d store the private
signature keys of each user on the device so they don’thave to
regen it each time. Then on login, you get a cert from OnelD
that the public signature key is valid until expiration date X.
[0238] The login key basically allows you to decrypt your
FSK and PrEK and PrSK. Once you have that, you can easily
access all your key value fields.

[0239] When you log out, we remove the login: <256 bit
hash of username/password>, which is an easy way to make
all the data “unreadable”. Also, we have a key giving the last
time we checked the OnelD server for updates and a key for
the “overall version number” of the data. That key is updated
whenever ANY field changes so if anything is updated, we
can then ask for all fields with a higher version#. We check for
updates once a day (or user can set this frequency).

[0240] Inaddition, thereisadate codeontheloginandifwe
see that date has expired, we’ll delete the key. This field is
encrypted like any other key. This is another protection
mechanism provided by embodiments of the present inven-
tion.

[0241] Each browser gets a DevicelD # (the same for all
users on that device), and there is a unique private signature
key for each OnelD/DevicelD so that if there is a key com-
promise, you can find out which device is to blame.

[0242] Ifanother user logs in, all your data is deleted. But if
you logout, just your Login credentials (the 256 bit hash
which is your AES key to all your data). That means in the
normal case where you own the PC, that OnelD can be totally
unavailable and everything still works just fine since everyone
has cached the .js page and all operations are local (it’s just
that the updates to the fields don’t happen if anything has
changed).

[0243] In the javascript code, the fields are decrypted only
on demand when needed since an iPhone can be slow com-
pared to a PC.

Security and Convenience

[0244] Embodiments of the present invention provide the
following promise: Once you enter your credit card number
into our system, we can’t read it, you can’t read, but anyone
who is trustworthy that you want to give your card to can read
it no problem.

[0245] The way that works is that when you log into OnelD,
only the first half of the hash is sent to OnelD along with your
username. That way, the service at no time has sufficient info
to decrypt any fields, only you do because you have the
complete hash which is then used to decrypt an AES key
which is then used to decrypt all your other keys. The Field-
name/Value part is encrypted with those other keys so there is
very little work on login . . . get the field/value data as is, and
then use your username/password to decrypt the AES key
which is used to decrypt your private keys.

[0246] In implementations, you are never given the Field-
Value data itself for fields marked “secure.” If it matches the
value stored on OnelD, you get to download all the fields
EXCEPT for fields marked as “secure”. Those stay on the
server except for the fieldID and encrypted fieldname. So
when amazon wants your credit card, you can easily generate

Dec. 20,2012

a decryption key for them since it is derived from your sym-
metric key and the FieldID. So you send those decryption
key(s) to amazon. Then either the service is told to deliver the
encrypted fieldvalue to amazon, or amazon asks the reposi-
tory for the field showing the signed ACL it just got from you
where you said Amazon is allowed to retrieve my secure data
fields X and Y. We know Amazon is trusted because 1) they
paid a $1K registration fee and 2) people are notified when
their info is released and if there are abuse complaints, we
cancel the account and 3) the javascript code only releases to
the site that hosted the javascript so an attacker posting a
malicious website cannot fool the user since the attacker can’t
modify the javascript code downloaded from OnelD. Due to
the $1K charge, it is simply uneconomical for people to steal
people’s credit cards by creating a “bogus” ecommerce site
that asks people to enter their credit cards since after a few
complaints they are shut down and lose their $1K deposit.
There are simply cheaper ways to get credit cards than this
(and we also pre-qualify them before we give them a certifi-
cate that authorizes their OnelD to be able to grab data from
the repository, even after they have a signed ACL from the
user).

[0247] If you want to convert a secure “write only” field
into read/write, you simply request that and the field value is
wiped out and you start from scratch so we keep our promise
to you that the field is write only for you, i.e., unreadable for
you or for us; never in plaintext at any time on either your site
or ours. So an attacker breaking into your computer cannot
get your credit card information. Nor can he do it by breaking
into OnelD. He’d have to break into both. That’s really hard
to do for more than a few accounts. So even in the worst case
scenario, only a few credit cards are lost. A benefit is that you
didn’t need any special hardware on your system to accom-
plish this!

[0248] So an attacker who seizes your machine gets noth-
ing of value, just the ability to give your secure info to trusted
site who are told not to give anything sensitive back to you
when you ask, e.g., only the last 4 digits of the credit card, for
example. Ifthey don’t do that, we don’t certify them and don’t
release data to them. Otherwise, an attacker could get control
of your machine, do a transaction at a merchant that doesn’t
meet the certification requirement of not showing the data you
gave them, and then the attacker can read your data. As long
as we are diligent about certifying websites to accept secret
data (that they can’t reveal it to you and get rid of it after using
it) your data is quite secure.

[0249] Using this method, for example, it’s impossible for
the website attack at Citigroup to have succeeded (where the
attackers modified the URL to get different accounts) because
the data simply isn’t there for the attackers to swipe. So it’s
impossible to have had that error for merchants using oneid or
the oneid site; such a mistake couldn’t have been coded even
if they tried.

[0250] It’s often convenient to use an OTP password, e.g.,
some banks require an OTP for large transfers.

[0251] You can have multiple OTP generator apps. Each
one gets its signature key endorsed with OTP enabled for that
OnelD so it can download a new set of random OTPs from the
server. So once it authenticates, OnelD knows to give it the
stuff after it shows the certificate. Each OTP generator, if you
have more than one, should have a different number of digits
so there is no confusion and all digits are thus useful.

[0252] To enable/disable an OTP device, you use an admin-
istrative password. Otherwise an attacker might be able to

US 2012/0323786 Al

keystroke log you when you log into a public terminal and
may then be able to pose as you which could be problematic.
Since enabling and disabling OTP is really rare, an attacker
will really never see this. And it should be non phishable since
you should only enter your admin password when YOU ini-
tiated the action.

[0253] So when you want to give someone you trust “what
they want”, you just give your OnelD name and an OTP value.
That authorizes them to get the info from our server. They
then queue a request for you to give them the decode keys to
the fields they need. The next time you log in, you’re
prompted for this and can give them access (since only you
know how to generate the keys). So the OTP means you aren’t
annoyed by random info requests, but more importantly, it
proves to the recipient you are who you claim to be, e.g., you
are filling out a form, you can’t just type in your OnelD since
anyone could do that and then the site would be trying to ask
for the wrong person’s info.

[0254] You can for example, check into a hotel with just
your OnelD and OTP (although it likely simpler to start
OnelD and tap your phone to the reader which, since it is a
trusted site without any complaints (the site presents a recent
certificate of its complaint rate signed by OnelD before you
release the info), will just give it the info it wants, and then
show on your screen exactly what info was requested and sent
to the reader.

[0255] OTP is also used for certain bank account transac-
tions, e.g., when you try to wire>=$1000 somewhere that you
haven’t wired or paid to before.

[0256] Since people will mark their sensitive stuff as
secure, there isn’t a lot of value to an attacker to break into
your account, but they will try anyway.

[0257] We distinguish between an old login and a new
login. It is the new ones we want to limit. The old logins are
those where the username+devicelD has been successfully
used before to login. The new logins are when there is no
record of this device ever having logged in for this user
before.

[0258] In most cases, users are logged in and everything is
peer to peer (e.g., logging into a website). So even if OnelD
goes dark, users can still log in to any OnelD website for as
long as their signature key is valid (and assuming they didn’t
log out or someone else didn’t log in).

[0259] There are two ways to discourage attacks on new
logins:
[0260] 1. for IPs with large absolute number of failures,

we simply use the mod of the hash value to return one of
1 million decoy accounts and then sites instantly know
the account was “stolen” but pretend it is a regular user.
That way, the spammer is just getting totally useless info
that is completely bogus.

[0261] 2. The other way is to force any new login to do
some work, where work is factor a large prime that we
create on the fly. The greater the absolute number of
failures today from that IP, the harder the problem we
give them. And they have to solve the problem before we
prompt them for a username and password. So since they
may be operating from a college campus and we don’t
want to upset any legit users, old logins happen imme-
diately, and new logins can take as much as 60 seconds
on a bad site (we tell the user what is going on and why
the delay). Therefore an attacker gets less than a million
attempts per day per machine. To crack the average
password of 10 characters, will take a trillion years. So if

Dec. 20,2012

an attacker has 1 billion machines full time, he can break
one account every 1000 years.
[0262] Additional Security Features

[0263] 1. The username/password is secure hashed and
then half of the hash is used locally to decrypt the private
keys downloaded from OnelD, the other halfis sentup to
OnelD to tell it to “log in” this DevicelD and enable it to
do transactions (like releasing a credit card encrypted
info to a website). That means if an attacker steals info
on your computer, he cannot even reverse engineer a
proper login. And he can’t keystroke log you since you
probably never log out. Since the credential is split in
half, nobody has complete info except at the moment of
login to OnelD, which is a very rare event.

[0264] 2. There is a sequence number associated with
each OnelD-DevicelD. Every time you login some-
where, the browser will update the sequence number.
The website should pass that sequence number to OnelD
to track. Then if OnelD gets a sequence number from the
past, it will put the signing certificate associated with
that device on a revocation list so no website will accept
it. This is because we can’t tell the legit one from the
clone. The user will have to re-initialize the device from
scratch (that’s always allowed, no admin password is
needed) and get a new device 1D, and then log in to
OnelD to get the private keys. Thus, anyone who steals
a copy of your files won’t get very far without being
detected and stopped.

[0265] 3. Ifyourdevice is lost or stolen, you can log into
OnelD and revoke the certificate of the device so it
cannot be used anymore.

[0266] 4. When you log into a computer at café or public
terminal, you can specify how long you want the signa-
ture credential certificate to be valid for. And on logoff,
your login hash is removed so nobody can decrypt your
data.

[0267] 5. When a site asks for information, e.g., to asso-
ciate an existing account with your new OnelD a site will
want your email address, then the OnelD javascript code
will prompt you if it is OK to release that info. So you
always control release of your credit card and other info.
You can set a parameter to bypass this (you always
answer yes if the OnelD of the site doesn’t have any
complaints. OnelD will still show you what is releasing
even if you bypassed approval, e.g., using AJAX.

[0268] 6. If you do stuft like change your shipping
address or make a $ transfer to someone you haven’t
previously transferred money to, the website will nor-
mally ask you for a OTP to validate (it is up to the
merchant).

[0269] 7. When you log out, your username/password
hash value is removed. This makes all the data useless to
anyone.

[0270] Secure Hand Wave Authentication and Digital Sig-
nature
[0271] In the current state of the art, web logins are done

typically done by typing a username and password. Purchases
are done by selecting items, filling in shipping and payment
information.

[0272] Embodiments of the present invention enable the
authorization of secure operations with public key just by
waving your hand. Unlike the current art, here (1) in one mode
of the invention, the user action initiates a security sequence
(such as logging into a website), it is not initiated by an

US 2012/0323786 Al

application asking for a key and (2) this does real public key
cryptography rather than a shared secret hash, e.g. responding
to a challenge with a response generated by using a signing
private key imbedded in the device, and (3). There is no OTP
that is generated and typed into a form on the web page and (4)
in the preferred mode, the authorization is done via a way that
doesn’t require contact and (5) in the preferred mode, the
wave sensor is built into the keyboard, (6) the secret key used
in the operation authorized by the user is the signature key
whereas the encryption key, is typically stored in the PC on
disk and generally unlocked with a PIN code (7) the signature
is used to prove identity, rather than being an OTP which must
be used with an existing user name and password (8) the
oneid: button in the HTML calls the OnelD plug-in which
knows how to interact with the website to do (9) there is no
physical contact needed to authorize an authentication. (10) it
can authorize a set # of authentications/signatures or for a set
time (e.g., for next 2 seconds allow any private key operation
to happen (10) placing the device near the keyboard or beside
the keyboard, rather than a USB slot, is ausability benefit (11)
it can enable other operations on the smartchip that are
enabled for a certain length of time, such as using the encryp-
tion private key that may be used multiple times (although in
most cases the encryption private key will reside in the com-
puter memory for convenience, it is certain possible in a high
security scenario to only enable the encryption keys at the
same time as the signature keys, but put more strict limits on
use of the signature key (12) the wave is debounced such that
the chip is enabled for 2 seconds at a minimum and can be
extended basically for 2 seconds after the last motion is
detected so there is a continuous single enable.

[0273]

[0274] 1. We are dealing with a smart card that can be
removed. The smart card has no integrated button on it,
but it is a standard smart card that has SPECIAL pro-
gramming on it so that when it is placed in a SEPARATE
reading device from the smart card which has a special
communication channel such that an integrated keypad
press (in this case the wave) can be distinguished by the
card from commands being sent to the card from the
USB port.

[0275] 2. In the case of a smart chip integrated into the
unit, the same thing applies: there is generally a different
path from the embedded switch to the chip so the chip
can distinguish where the switch came from. This spe-
cial channel is currently known because it is how inte-
grated PIN pads work. We are basically saying “get rid
of'the entire PIN pad” and instead replace it with a single
PIN pad button and 1) the button can be a capacitive
button or proximity or reflective light button or some
other contactless button and 2) pressing the button will
enable a single signature and 3) multiple button presses
within a small amount of time, .e.g. <1 second will be
ignored and 4) if a crypto operation is not requested
within 4 seconds of the most recent button press, the
authorization goes away 5) if there are multiple button
presses, e.g., 1 per second, it will NOT increase the
queue of allowed signatures so you must consume a
private key operation before a new one can be autho-
rized, 6) if an crypto request comes in after a crypto
request has been used up or times out, the requestor is
notified of the 4 possible states: OK here’s your answer,
already used and you are within the time window, timed
out and unused, timed out and already used so that the

Here are some other ways this differs:

Dec. 20,2012

requestor can take appropriate action, e.g., notifying the
user that an attacker has front run the requestor which
should be cause for alarm.
[0276] The whole operation looks almost magical to an
observer: navigate to a website, wave your hand, and you are
logged it vs. navigate to a website, type in username, pass-
word, position mouse in the OTP field, press button on the key
which then acts like a keyboard to fill in the number on the
web form.
[0277] Embodiments ofthe present invention utilize one or
more of the following overall concepts:

[0278] 1. The main big idea of some embodiments is to
tie a physical motion (a button press, touch sensor,
motion sensor, proximity sensor, fingerprint reader, etc)
to enable a smartchip to perform a single public key
signature or authentication (or open a short time window
to allow authentications to happen or allow a certain
small number of authentications to happen for a limited
amount of time). This is done in hardware and cannot be
overridden in software, e.g., the wave applies power to a
smartchip or smartcard reader which is programmed to
only give one auth per wave. The advantage is that a
remote attacker can thus never have an auth done
because it requires a physical presence at the machine.

[0279] 2. The second concept is to use a browser plug in
(or built in) to tie the wave to make it also “press” screen
buttons displayed in the web browser so you can perform
an action that appears on screen (such as login, purchase,
or donate) with just a wave. So a wave will power the
device (which enables a single auth) and then press
screen buttons which will then initiate a transaction
sequence which requires an authentication as part of the
sequence.

[0280] 3. The third concept is that a wave (or a button
press on a button on a website) initiates a public key
mutual authentication process with a remote site which
then sends a challenge to the local computer which
optionally alerts the user (e.g., with a light that goes on)
requires a physical action to complete the transaction.

[0281] 4. Package as a USB device that plugs into the
side of the keyboard (or a nearby USB port) so it can
easily be “added to” an existing keyboard so people who
want additional security can add it any time even if they
didn’t order it originally. This enables PC manufacturers
to allow for the inclusion of a secure device at very low
cost, without having to bundle it into every keyboard. In
the future, it could be built into the keyboard, rather than
an add-on device that plugs into the keyboard or USB
port.

[0282] 5. Making the USB keyboard add on a smart chip
with a switch (button or proximity or touch). It can also
be packaged to read NFC cards such as the SmartMX. Or
it can be a combination of the two where there is an
imbedded chip, but it will use the external chip if there is
one to be read and let that take precedence. Or it could
allow the software to select which one is to be used.

[0283] 6. Pressing the button will apply power to the chip
(or card) for the next 1 seconds (or some short amount of time)

[0284] 7. Each time it is powered up, the chip will allow
asingle public key signature or authentication operation.
The objective is that a single button press “authorizes” a
single (or small number of) private key operation
because that is what the program on the smart chip is
programmed to do on a power up.

US 2012/0323786 Al

[0285] 8. The signature that is allowed to be given is in
response to an authentication or signature request from a
remote website.

[0286] 9. The signature that is given corresponds to the
identity of the person sitting at the computer. So this is
transmitting my identity to the remote website, e.g.,
“OnelD#12312321”, and not a specific username and
password for the remote site

[0287] 10. There is no queuing of requests for signature.
After the chip is enabled, the chip will answer the first
request it gets for a signature and deny any other
requests.

[0288] 11. The OnelD software in the browser can be
designed so that the user can determine what a button
press means as far as the browser actions taken. For
example, it could do nothing but power on the chip
which means that the browser, which had been waiting
for a signature (and telling the user to push the button or
swipe his hand), to continue on with the transaction. Or
the browser software could treat the button push as a
command to press the currently displayed “onelD” but-
ton, and automatically confirm any other pop-ups that
might happen in the browser or in the browser plug in or
in the app. OnelD is identity manager that will, when
called, initiate a conversation with a remote website
using the signature ability of the smart chip that was
enabled by the button. This gives a very magical “one
swipe” logs you in or purchases the item on the page (or
the Oneid: button that is visible that invokes the app or
plug-in). So the recognizing of the HTML coding pat-
tern to determine which button to press on the browser is
unique, as is calling a one id “app” which does a crypto
transaction with an external website when activated by
the button and/or signature by the private key in the
smart chip.

[0289] 12. There can be an optional light(s) on the
device, e.g., card getting power, authentication/signa-
ture was just completed. This light can be driven by the
software driver. This software drivers knows the state by
virtue of talking to the smartcard, rather than having to
interface to the switch itself. This simplifies the design.
The switch powers the smart chip and the state of the
smart chip (on vs. encrypting) can be used to tell the
lights what to do.

[0290] 13. With more expense, you can use a reader that
can judge distance so a specific motion can activate the
device.

[0291] 14. For extra security and convenience, the above
techniques can be combined with a Bluetooth or WiFi
device such as a mobile phone or with an RFID card. The
point would be to further identify the user to the chip in
the keyboard doing the encrypting or the reading of a
card placed in a reader that is powered by the hand wave.
For Bluetooth, you can adjust the sensitivity of the
reader on the PC so only Bluetooth devices nearby can
be read (e.g., using a class 3 bluetooth reader instead of
a class 2 reader or some devices allow you to adjust the
sensitivity such as on the new Lenovo laptops). The
software can look for the MAC address of the Bluetooth
device associated with the account the person is logged
in as. So the computer can just “ping” the Bluetooth
device to establish that the correct person is really there
before doing an authentication on the smart chip (i.e., the
Bluetooth MAC address can be pinged, in addition to

13

Dec. 20,2012

logging in as “Steve” with a PIN code). For more secu-
rity, the software can use the authentication keys store on
the phone, which will be available when the software on
the phone is running and that app has been unlocked with
a PIN code. Thus, the secret key in the keyboard isn’t
necessary for signature anymore, but the button is still
needed so that an attacker can’t request signatures from
the mobile device and the secret key is then still needed
since it proves the button was pressed. Another option is
since communication with Bluetooth is secure and there
are generally ways to look up things in the phone direc-
tory is to lookup “OnelD” contact in the contact list and
use the contents to determine how to log the person into
the computer. So if the user hits a “Login with OnelD”
button at Amazon, ifno user is logged into the oneid app,
then the app should ask the Bluetooth phone for the
OnelD and PIN. This assumes the devices have been
paired previously.

[0292] 15. Reasons for allowing exactly one signature to
be made when the button is pressed are 1) no more than
one signature is generally needed on a transaction and 2)
if you granted multiple signatures, an attacker can pig-
gyback on your button press.

[0293] 16. A reason for requiring a button press (or hand
wave) is because a remote attacker cannot perform a
physical action. Therefore, even the simplest action pro-
vides an incredible amount of security. The requirement
is that the action must be tied hardware wise to enable a
digital signature.

[0294] 17. Waving your hand can either mean (user gets
to choose), just do the auth that is prompted for in the
OnelD client, or “press the OnelD button on the web
page, click confirm for any OK/cancel confirmers” that
pop-up in the client to confirm the operation, so that a
simple handwave can complete a purchase. There is also
the option about what to do if there are multiple oneid:
style buttons on the web page: pick the first one on the
page, pick the first one that is visible on the screen, pick
the button that is denoted in the HTML (with a comment
or tag) as the default button.

[0295] 18.Inanother embodiment, the client can remem-
ber key words for your websites, so if you type in bank,
then wave your hand, it will log into your bank (basically
bank is tied to the URL for your bank and it then looks
for the oneid:login? link on that page and executes fit,
confirms all the confirmers and logs you in). So the net
effect is: “bank<wave hand>" and you are logged into
wellsfargo.com

[0296] 19. You could package this also as a keyfob like
the RSA token generator. The keyfob would have a
smartmx in it and when you pressed a button on the
keytob, it would use Bluetooth to do a single signature
that is being requested, e.g., the keyfob would contact
the PC, ask for what needs signing, sign it and send it
back all via Bluetooth or NFC or UHF or Wifi or IR or
some other local communication method.

[0297] 20.Forindicator lights, having a light go “on” (or
flash) when a “wave” is needed and “off”” when the wave
is complete makes it easy to use in applications that
might not be able to give a screen indication, e.g., you are
in an email program and there is a “‘donate $10” button .
.. if you hit it, the light should go on and then you wave
your hand (or press the button) to perform the authenti-
cationand remove the light. Or you can do atask baricon

US 2012/0323786 Al

which lights up to tell you to wave and if you click on the
icon, it will explain which authentication is being
requested which is useful if the light just turns on and
you had no clue how that happened. Also, the software is
designed to keep the light on for at most N seconds (e.g.,
20seconds) and if you don’t wave, the requested authen-
tication is denied and it returns an “auth fail” to the
application (e.g., the onelD plugin in the mail program
or the OnelD server on the desktop). So if you hit the
“donate” button in your email, the light turns on (or
flashes) for 20 seconds. If you wave your hand, the
donation gets made. If you fail to wave, the donation
doesn’t complete and you owe nothing. You remain in
the email application.

[0298] 21. The wave doesn’t have to work by applying
power. It just has to ensure only one signature is granted
per wave. It could also work like existing NFC readers
with an integrated PIN pad which ensures that the PIN
pad talks directly to the card and the card can absolutely
know that the numbers came from the PIN pad and not
from software emulation.

[0299] 22. Another possible scenario is in a web browser
location bar, you type enough characters to be unam-
biguous of a short alias for a website you want to go to
and then an indicator will turn green signaling that
you’ve typed enough and it is time for the handwave to
be doneto logyouin, e.g., “ban” would be unambiguous
match for “bank” and would go to www.wellsfargo.com,
hit the OnelD login? Button and log you in.

[0300] 23.You could implement this by adding a capaci-
tive sensor to a DT5000 USB drive from Kingston where
the PIN stuff is entered via a secure channel.

[0301] 24. Another way to do it without integrating the
wave sensor with the smartcard is that the wave device is
signed by OnelD and the WaveDevice does a mutual
auth with the smart card (which is looking for a wave
device signed by OnelD) and then the smart card can
trust the input from the wave device when it tells it to
enable an encryption, i.e., it says “a button was pushed
on a secure keyboard.”

[0302] 25. Apple iPhones and iPads have proximity and/
or light sensors so those could be use to enable a signa-
ture to be done on those devices. On the other hand,
iDevices are reasonably secure so just pressing the
Login With OnelD should be sufficiently secure.

[0303] 26. There is a clientless version of the OnelD
protocol. That protocol is very secure; only legit web-
sites can get your data. The wave method described here
is then an extra security mechanism since it prevents an
attacker from logging in to any site using your creden-
tials. So the private signature key would be stored in a
smartcard (or equivalent) and enabled with the wave.

[0304] Perhaps the most interesting case is the use of Wave-
Auth on the local PC, but with the private keys in a cloud
service. [f waving my hand generated a signed statement from
the WaveAuth device that I just waved (or tells OnelD via a
shared secret that is easier to implement than asymmetric
crypto), this can be used to tell the OnelD cloud service to
allow a signing operation to take place. In this case, the PC
code that handles the private keys could be hardened to make
it “look” like a locked-down smartcard, i.e., put a guard at the
door to the hardware.

Dec. 20,2012

Case 1: Low Security, High Convenience

[0305] Keyboard has USB device that plugs into it contain-
ing a SmartMX chip and a touch sensor. Note: plugging into
the keyboard is convenient only because it shortens the cable
run. This can also be built into the keyboard.

[0306] You’d log into the OnelD app in the web browser
with your OnelD and PIN. You’d set the timeout to forever so
you’d always be remembered, but if in a insecure location,
you can set the login to timeout after a certain period of time
(requiring you to re-login), or after a certain period of inac-
tivity. Set the wave action to press the OnelD buttons and
confirm all OneID “OK/Cancel” decisions as “OK.” Then
you just navigate to a website supporting OnelD, wave your
hand, and you’re logged in. This worked because OnelD app
noticed the card got powered, so it started hitting the button on
the browser, initiated contact with the remote website, and
then requested an authentication from the SmartMX. The
chip also required your OnelD name and PIN to be sent to
before it would give an authentication. It gives one authenti-
cation per power up. Another way is to mouse click the OnelD
buttons on the website yourselfto login and then when you hit
the “wave your hand to authenticate,” you wave your hand.

Case II: Higher Security

[0307] For higher security, you’d pair your Bluetooth
device with the OnelD app so that the app knows your Blue-
tooth MAC address. Then you’d only ask the chip for an
authentication if the correct device for the present login name
is present. Bluetooth connection isn’t needed. Just a ping can
be done to the device, which saves power. That means once
you log in, if you walk away from the terminal, someone
using the terminal can’t do an authentication because they
won’t have the Bluetooth device.

Case I1I: Even Higher Security

[0308] Since Bluetooth MAC address can be easily deter-
mined and easily forged, we can have the Bluetooth phone run
an app (optionally PIN protected) that will do a PKI style
authentication so we can guarantee it is the device associated
with your account. You’d have the SmartMX in the keyboard
communicate with the Bluetooth and the keyboard only
issues a signature if the Bluetooth device can mutually
authenticate with it that they both have a signed OnelD cer-
tificate with your OnelD so they both store secret keys asso-
ciated with your OnelD #, e.g., they present certificates to
each other like “Alias Steve has permanent
OnelD#000002343200 and public key Abder234f associated
with device “Steve PC keyboard”—signed by OnelD”. The
OnelD device stores your secret signing key and your PIN,
both of which are never disclosed. If you need to change your
PIN, you simply present a certificate signed by from another
OnelD device to change your PIN.

Case IV: Portability

[0309] For portability (e.g., going to a public terminal),
you’d login to OnelD with your username and password, and
you’d use your RFID card so instead of a smart chip imbed-
ded in the device, there is a smart card reader. Set your OnelD
SmartMX card in the reader. The OnelD app will read your
username from in. Type in your PIN code. Now you’re logged
in. In response to a OnelD button on the screen, or a prompt
from OnelD asking you to wave, wave your hand over the

US 2012/0323786 Al

reader to cause it to power up and provide the requesting
website with a signature. When you leave, you take your card.
Nobody can log in as you unless they have your card, and
know your PIN. No online attacker can do anything since they
can’t press any buttons whether or not the card is there. This
case is appropriate for the use of one reader since it handles all
the cases, e.g., works at a hospital (where dozens of people
might use a computer) as well as at your home. It also “feels”
more secure without being inconvenient. And for home use,
you simply leave the card in the reader and set the PIN to
never time out. Thus, you have total convenience and security.

[0310] Embodiments of the present invention can be
accomplished by means of a smart card reader (which reads a
card capable of doing crypto and storing at least one private
key which could be an NFC card or a contact card) with an
integrated motion sensor designed to detect motion directly
above the sensor such as an IR Reflective Sensor (e.g.,
Phidgets 1102) or a “bump sensor” (e.g., Phidgets 1103) such
as those made by Phidget (1102—IR Reflective Sensor 5 mm)
or touch sensor such as the Phidgets 1129. The iPhone has a
proximity sensor and that technology could be used. This
allows you to detect a hand wave.

[0311] It is not critical to this invention that the physical
triggering be done with a hand wave. It could be done by
pressing a button (such as a button on the keyboard) or by
triggering a capacitive touch sensor, for example.

[0312] The smart card reader is able to talk to a smart card
capable of doing public key cryptography. The hardware and
software on the card combination is designed so that the
signature private key stored in the smart card will only per-
form a single signature operation for each hand wave, and not
more than 1 signature every N seconds where N is a small
number like 1 or 2. This effectively “debounces” the wave. In
some embodiments, the digital signature will only be per-
formed if there is a request pending at the time of the hand
wave. If there is more than one pending request, all requests
can be denied and the user is notified of this. This helps inform
the user that his computer might be compromised.

[0313] The restriction can be done in several ways with the
preferred method being the terminal makes a secure connec-
tion to the smart card and identifies itself as the “terminal.” If
the external system is compromised and tries to do the same
thing, the card rejects it because the hardware connection got
there first. The ways to do this are well known since smart
card readers with integrated PIN pads have been used previ-
ously. Encryption/decryption operations using a separate
encryption private key housed on the card are typically
always allowed. Ideally, the hand wave detection is also dis-
closed to the operating system which can act on it when it
occurs, e.g., via the USB interface of the smart card reader.

[0314] In typical operation, a user browses to a page and
selects a link or button that requires a locally generated digital
signature (with includes authentication operation), e.g., a
URI of the oneid:login?url=http://www.amazon.com/login
which would call the OnelD application to perform a mutu-
ally authenticated login. This request for a digital signature
normally originates in a browser plug-in or external applica-
tion that knows how to do cryptography, but it could also be a
page request that requires client-side SSL authentication.

[0315] The browser plug in explains to the user why the
signature request is being made and who is making it, e.g., a
mutual authentication process or a purchase transaction and
sends the request to the smart card reader. There is a button to

Dec. 20,2012

cancel the request in the browser and instructions to confirm
the request by activating the motion sensor on the reader.
[0316] When the request for signature arrives at the smart
card reader, the smart card accepts the request but refuses to
actupon itunless it receives a confirmation from the hardware
in the reader (that cannot be changed by software on the
computer) that such a authentication is allowed. When the
user waves his hand over the sensor, this provides that autho-
rization to perform a single signature. In some implementa-
tions, a smart card reader with a motion sensor can be used.
[0317] This enables the user to log in with just a wave of his
hand. A major benefit of this approach is that an attacker who
has control of the machine but not physically present has no
known way to log in to any website. So an operation that
appears to be insecure (the hand wave or finger swipe) is
actually one of the most secure ways to log in to a computer.
[0318] As an extra safety and security measure in an
embodiment, an indicator LED on the reader turns on when a
wave is being requested for a digital signature or authentica-
tion and would do something and turns off when either the
requested operation is completed or has been aborted (e.g.,
the user has canceled the request or it has timed out). This
should match the indicator on the browser plug-in showing
the same thing. So the light means “the computer is request-
ing a wave.” Waving your hand will turn off the light and
perform the digital approval indicated in the browser.

[0319] Other packaging options are possible, including,
without limitation:

[0320] 1. mouse with an approval button (which could be
an existing mouse button) and embedded smart card chip

[0321] 2.keyboard with a smart card reader or embedded
smart card chip and a special key to approve or initiate a
signature transaction, possibly with an imbedded light
that blinks when an authorization occurs.

[0322] Thekey point is that the button press causes a power
on of the smart chip containing a private key for a predeter-
mined time (e.g., 2 seconds), which only does up to one
authentication operation per power-on cycle.

[0323] Someembodiments of the present invention employ
one or more of the following concepts:

[0324] 1. The system uses full public key cryptography
by arranging for a hyperlink or button selection in the
browser to invoke a separate app that runs on the device
itself (it can also be put in a plug in that is solely con-
tained in the browser). Therefore, embodiments of the
present invention will work on an iPhone, which doesn’t
allow browser plugins. When auser clicks alog in link or
“order” link, it will switch to a different app on your
iPhone in this example. The web page calls the crypto
app by using a URL of the form oneid: (i.e., custom
protocol) or via a custom file type (e.g., .oneid)

[0325] 2. The crypto app, instead of running a fixed
protocol connects to the URI provided in the incoming
request, and then gets instructions starting from that
point.

[0326] 3. Embodiments are peer to peer between end
points so there is no single point of failure. Exception
handling can be done in the client and the client can tell
you stuff about the website if a third party reputation
service is available

[0327] 4. each identifies to one another using a OnelD
[0328] 5. mutual authentication
[0329] 6. the crypto app knows how interface to device to

get authentication, for example, using a hand wave

US 2012/0323786 Al

[0330] 7. no shared secret required, no preregistration.
[0331] 8. net effect is user can click on a button and
instantly log in;

[0332] 9. user logs into app

[0333] 10. user can drop smart and to get username; type
in PIN

[0334] 11. the processing can be quite modest, e.g., just

mutual authentication using public key crypto. Because
the session ID is passed into the client, and the session
ID is used in the conversation on the secure channel
between the client and the web service, the web service
can then associate.

[0335] 12. Not all embodiments require the installation
of a client, but can use a similar process based on the
same protocol, providing a compatible client-less inter-
face to the overall system.

[0336] A OnelD button that tries calling the OnelD proto-
col canbe used and if it fails, calls ajump page at oneid, which
allows the user to login if he has an OTP to give us temporary
authentication. So our site logs him in using that session ID
that he passed to us and using the temporary credentials
authorized by the OTP. So we still use OUR public key
protocol, it’s just that the login is done from our site using HIS
session ID.

[0337] OTP, when enter it, you also enter how long you
want it to be active on that machine for, e.g., forever, 1 hours,
etc. So it is a separate box to select the length of time when
you get the credential (which will be stored on the OnelD
helper service).

[0338] Embodiments of the present invention accomplish
one or more of the following objectives

[0339] 1. secure: mutual authentication and encryption

[0340] 2. peer to peer trusted authentication w/o requir-
ing third party

[0341] 3. single sign on (you sign on to the OnelD app or
browser plug into enable it and then from then on the app
is used to authenticate you at websites until you “log
out” of the app (or remove your authentication device
such as cell phone or smart card)

[0342] 4. various types of transactions including: login,
transactions, information

[0343] 5. works on iPhone or other devices for which a
browser plug-in isn’t allowed or doesn’t do client side
SSL authentication

[0344] 6. while not required to conduct a transaction, if
third party is available, can supply additional info to the
user on trust of the site, get latest list of revoked certifi-
cates

[0345] 7. only the endpoints see the decrypted info

[0346] 8. flexible so not a fixed protocol so, for example,
during login, if there is no account it can establish one
and then log you in. So there are a set of requests that
either side can initiate and the user can be involved and
affect the control flow.

[0347] 9. fast and easy to use, e.g., if user wants to con-
firm login each time he can, or just confirm the login to
sites he’s never been to before; user can set preferences
in the app

[0348] 10. totally peer to peer with no third party depen-
dencies, including at start up. The OnelD repository
doesn’t have to be up for the app to start.

[0349] 11.flexible protocol allows for the server request-
ing things like requiring a secure authentication that
proves a person was present to do the authentication.

Dec. 20,2012

[0350] 12. can be used to log into applications as well,
e.g., to log into dropbox on the iPhone, or to authenticate
on the iPhone when it asks for you password

[0351] 13. Allows for user to set options for when he
wants to require a confirmation, e.g., only on login to a
new site or to all sites, $ transactions>$xx, etc.

[0352] Embodiments of the present invention provide one
or more of the following benefits:

[0353] 1.ifplugin is installed in browser, displays useful
information

[0354] 2. it does real public key crypto
[0355] 3. it does mutual authentication
[0356] 4. separates security so if authentication app is

compromised, it cannot be used to do actions on behalf
of the user (such as banking transactions); the auth app
can only do authentication since it has no idea what the
sessionlD is

[0357] 5. unlike conventional methods that rely on a
trusted third party, some embodiments of the present
invention are completely peer to peer between the
browser and the web server and do not depend on a third
party being present

[0358] 6. can directly interface to a secure element (such
as a TPM chip, cell phone with SmartMX, or SmartMX
card) to do the authentication, encryption, and decryp-
tion

[0359] 7.internal or external attacks at the OnelD reposi-
tory are irrelevant since it doesn’t play a part in the
transactions.

[0360] Some embodiments utilize one or more of the fol-
lowing concepts:

[0361] 1. logging into the app rather than to each site
using a web browser. So you only have to login once
with your OnelD alias login (e.g., Steve) and a PIN code
or password

[0362] 2. the login to the browser isn’t a login that
unlocks a bunch of user names and passwords, but
instead provides access to at least one private public key
that is used to authenticate (login) and sign (make pur-
chases).

[0363] 3.the app is capable ofhaving a conversation with
the server, in which public key mutual authentication is
done and the flexibility that the exceptions are handled.
In the most general case, either side can initiate requests
of the other

[0364] 4. User can be prompted to make decision and
confirm, e.g., do you really want to purchase this item?

[0365] 5. User (usually) need to press a button or make a
physical motion to unlock the private key used for
authentication and signing so it is secure

[0366] 6. In the conversation, the server can tell the app
it wants a secure login and have the app check to make
sure that the necessary hardware is installed. Alterna-
tively, it could instruct the app that it wants to force the
user to have to click OK to complete the authentication
(rather than just rely on an “auto approve all confirmers
setting or a hand wave operation or special button that
might be programmed to push buttons automatically).
There could be further instructions from the server to the
browser like “close the session if the user has been
inactive” or require the user to enter the user’s PIN code
(known to the app usually, but could also be the PIN code
of the site) in order to increase the security of the login.

US 2012/0323786 Al

Many things are possible with a structure where there is
sequence of commands that is not predetermined.

[0367] 7. All the remote sites say where to go after every-
thing is finished rather than have it baked into the start-
ing URL or some pre-defined configuration.

[0368] 8. The button on the website that invokes all this
can use filetype or protocol to cause the proper plug in to
be invoked or app to be run (or transferred control to)

[0369] 9. The button on the website can be kept quite
simple. It’s basically a “starting command” to the app,
e.g., a URL means “lead this page” from the app. That
page can then start the conversation with the app.

[0370] 10. The app is smart because it knows how the
language used to have a conversation (i.e., the requests
allowed and how to respond to those requests like “sign
this for me” or “prove who you are by answering this
challenge™) and to do things like actually talk to the
hardware to get something signed by a private key (or
how to get it out of the file and decode it for signing). It
can also monitor the hardware for activity on a smart
card (such as power up) and likely knows how send the
smart card commands usually through the driver in the
operating system. As a result, the app can do things that
javascript on a web page is not capable of.

[0371] 11. The app is generally shared between applica-
tions on the desktop, so the browser plug-in isn’t usually
justapure self-contained plug-in, but a “front end” to the
app so it interfaces the browser with the app while at the
same time providing a nice GUI inside the browser for
the user to use.

[0372] 12. Even ifthe user is only using desktop apps to
do OnelD functions, we may still use the browser to
display the GUT to the user, or the app may have its own
GUI (it will have its own GUI for the iPhone and iPad
since no browser plugins are allowed)

[0373] 13. Thus, this method provides public key secure
operations even on an iPhone and iPad.

[0374] Embodiments of the present invention may work as
follows:
[0375] 1. App gets control when user hits the “login with

OnelD” button and passes in an initial command to
execute which is typically a URL to call which typically
will contain a unique authID; the authID is like the
SessioniD, but typically has limited abilities and only
the remote server knows the mapping from authID ¢
sessionlD, not the OnelD app. It allows the server to
connect the OnelD session to the user session.

[0376] 2. App opens a socket to the server calling the
URL supplied initiates the oneid operation requested by
the site (such as login). A login request will do mutual
auth all within that same socket connection (it will not
try to encrypt the authID to prove its identity since that is
not sent over the same channel; it must do the entire
mutual auth within one socket pair); displays progress
info and reputation of the remote OnelD to the user

[0377] 3. App resolves any exceptions with the remote
server and does any POST operations (like POSTing the
Name: Address: Email: info if this was an info request
over the secure channel that was set up with https: and
using HTTP keep alive to do the back and forth) as per
the request type we started with but what is said between
the parties can be about anything, e.g., authentication
only, doing a microtransaction, sending information, or
signing something like “please bill $5 to my Visa card

Dec. 20,2012

ending in 1001 and credit it to the vendor with OnelD
Amazon for purchase of book entitled ‘Great Expecta-
tions.””

[0378] 4. When the remote server is ready to provide
access (or has gotten the information securely), the web-
server returns the URL for the OnelD app to use to call
the server, e.g., the welcome back page, typically with
no arguments appended at all. This is because the remote
server has all the info it needs before that URL is even
called and associated it back the original SessionID.
Safari loads that URL as it would normally. Therefore,
your credit card info, etc. never even appears on any
form . . . it is just sent under the covers magically to the
site and associated with your session.

[0379] 5. The remote site can communicate with OnelD
to do stuft during the conversation like tell OnelD when
the user was last logged in, etc. It normally ends the
conversation by instructing OnelD to “transfer control to
Safari and tell it to load this URL”. But it could just as
well say “Pass control to dropbox:welcome,” e.g., if the
login request came from dropbox on the iPad. That way,
there is a lot of flexibility in the interchange where both
parties can ask the other party to do stuff, e.g., the remote
website might even tell OnelD to call a different pro-
gram at the end. It’s entirely up to the command set
protocols we set up for a OnelD conversation, rather
than being a fixed, hardwired protocol that is exactly the
same every time. Cookies can be set by either party, for
example.

[0380] 6. Reasons for not passing the browser’s Ses-
sionlD can include: 1) only the original requesting
browser can make use of the capabilities that were added
by this authentication, and 2) the OnelD authentication
app, because it only has the authID, cannot perform any
operations other than authentication (e.g., it cannot
examine your shopping cart since it doesn’t know your
SessionlD, etc).

[0381] 7. This method doesn’t strictly require use of a
OnelD repository at all. For example, if the site accepts
a class 1 certificate signed by a trusted entity certifying
the person’s email address, which can be used as login
credentials to a site.

[0382] All of the above can be used for offline use as well,
e.g., reading QR a QR code initiated request to call OnelD
passing it a URL which can start a transaction sequence, e.g.,
requesting information from OnelD to send registration
information or buy a ticket to an event, or purchase an item or
simply log into a website.

[0383] At the end of the conversation with the website (or
other mobile app) referenced in the QR code, instead of
OnelD terminating by telling the mobile browser to load a
specific web page, the remote website may simply request
that OnelD display a “thank you for your purchase” message
on the screen and end right there.

[0384] The protocol between the OnelD app and the server
could very well have a request from the webserver to ask the
user for information that the user has previously entered into
OnelD as to which credit card to use or which address to ship
the item to, or a donation amount to fill out. This enables static
QR codes, for example, to complete relatively complex trans-
actions without requiring the user to type anything but to
select from information pre-registered in the OnelD app.
[0385] In addition, the protocol can allow for the remote
website to request that the user authorize a charge on his

US 2012/0323786 Al

credit card. The OnelD app would prompt the user to confirm
this, typically in a more noticeable way since money is being
spent (possibly requiring a pin code to be typed), and then
when the user hits OK, the signed request for payment is sent
to the remote website which can then present it to the credit
card company for payment.

[0386] The protocol can be used distributing trialware soft-
ware or other digital content (music, video, soft books) and
knowing who is purchasing/accessing it by asking for their
authenticated email address before completing the transac-
tion.

[0387] The protocol for purchasing normally asks the user
(if the $ amount is high enough) to confirm the transaction.
This decision should then be communicated to the remote
website, which will then tell the OnelD application which
page to load in each instance and those pages can be selected
based on the specific type of failure that the server is experi-
encing. This allows for a much richer user experience than the
current state of the art where a hyperlink to complete a trans-
action typically will pre-specify a success link and a failure
link.

[0388] In general, the purchasing protocol triggers a user
confirmation of a purchase with optional selection of items,
some of which are pre-stored in the identity and some of
which are supplied in the conversation or in the initial link.
For example, the user might be prompted to confirm the
transaction is OK while also selecting the shipping address
(home or work), which credit card to use (e.g., work or home
VISA), and well as which color and/or size to choose. All of
these options (with the confirmation) can be displayed
[0389] To the user in the OnelD application and then com-
municated by the OnelD application to the website before
returning control to the place the remote server requests.
[0390] The same method can be used for regular logins. For
example, today password managers on the iPhone exist as a
separate application that you go to first, which then calls the
website page to login. With the methods provided by embodi-
ments of the present invention, assuming the site allows it in
the negotiated protocols, a OnelD type of application could
log in using existing stored username/password credentials
for that site, rather than public key authentication. A site could
allow both styles of login via the exact same hyperlink so a
user could log into the site using whatever methods were
available to him.

[0391] 1. To ease transition, if the mutual auth fails
because it doesn’t have the association to your account
yetbecause this is the first time logging into that site with
OnelD, it can then have the OnelD app prompt you for
your username/password or ask if you want to create a
new account. Either way, from then on, it is the last time
you’ll ever need that since the site can use your OnelD
for authentication going forward since you proved you
hold that OnelD and proved you have rights to that
account.

[0392] 2. the OnelD app does whatever it is told by the
remote site and rarely “takes control.”” Generally the
remote site drives, but either side can issue commands to
the other, just like a normal conversation.

The site can demand a secure authentication, e.g., a secure
chip that when asked to sign a value with certain attributes
that indicate the authenticator should only sign if someone
can prove he is physically present.

[0393] In addition, the protocol can allow for the remote
website to request that the user authorize a charge on his

Dec. 20,2012

credit card. The OnelD app would prompt the user to confirm
this, typically in a more noticeable way since money is being
spent (possibly requiring a pin code to be typed), and then
when the user hits OK, the signed request for payment is sent
to the remote website which can then present it to the credit
card company for payment.

[0394] Embodiments of the present invention provide a
method for distributing software or other digital content (mu-
sic, video, soft books) and knowing who is purchasing/ac-
cessing it by asking for their authenticated email address
before completing the transaction.

[0395] The protocol for purchasing normally asks the user
(if the $ amount is high enough) to confirm the transaction.
This decision should then be communicated to the remote
website who will then tell the OnelD application which page
to load in each instance and those pages can be selected based
on the specific type of failure that the server is experiencing.
This allows for a much richer user experience than the current
state of the art where a hyperlink to complete a transaction
typically will pre-specify a success link and a failure link.

[0396] The protocol for purchasing normally asks the user
(if the $ amount is high enough) to confirm the transaction.
This decision should then be communicated to the remote
website who will then tell the OnelD application which page
to load in each instance and those pages can be selected based
on the specific type of failure that the server is experiencing.
This allows for a much richer user experience than the current
state of the art where a hyperlink to complete a transaction
typically will pre-specify a success link and a failure link.

[0397] In general, the purchasing protocol triggers a user
confirmation of a purchase with optional selection of items,
some of which are pre-stored in the identity and some of
which are supplied by the remote website. The system can use
existing stored username/password credentials for that site,
rather than public key authentication. A site could allow both
styles oflogin via the exact same hyperlink so a user could log
into the site using whatever methods were available to him.

[0398] 1. So a site which supports mutual auth will do
that. but if the mutual auth fails because it doesn’t have
the association to your account yet because this is the
first time logging in, it can then have the OnelD app
prompt you for your username/password. From then on,
it is the last time you’ll ever need that since the site can
use your OnelD for authentication going forward since
you proved you hold that OnelD and proved you have
rights to that account.

[0399] The following examples demonstrate benefits avail-
able using the OnelD system:

Activity OnelD System

Log into website Enter one PIN at the beginning of the day (or
whenever there are long stretches with no
keyboard activity). Log in to any OnelD-
enabled web site with a wave of your hand.
Impervious to attacks since there are no
passwords to steal. An attacker can steal your
PIN, but the PIN only works on your
registered machines and only if you wave
your hand. The OnelD repository can go
completely offline and you’ll still be able to
log in everywhere.

US 2012/0323786 Al

19

Dec. 20,2012

-continued -continued
Activity OnelD System Activity OnelD System
Forgot username and/or You create your account with your OnelD Change your address Update your address in your OnelD record.
password and you log in with your credentials. When anyone tries to access it that you’ve
Fill out an on-line form Wave your hand. previously approved, they’ll get the latest
We use standardized field names so all the data.
fields fill in correctly all the time (unlike Change your bank Let your new bank know the friendly names

Fill out an off-line form

Check into hotel

Buy something on-line

Buy a ticket to an event

Vote in an election

Lost your wallet

RoboForm).

Either tap your OnelD to the reader or tell the
person (or write on your form) your OneID
name, e.g., “Steve.” When the form is
processed, you’ll get a request sent to your
phone asking if it OK to release the
information requested (and to request any
information not already in your profile).
Click on the OK button. Or if the company
normally has gotten those fields from people
without problems, you can tell OnelD to
release those fields automatically. You can
also require a special “release code” to be
presented by the requestor which you
generate in the OTP generator in your OneID
app (the secret symmetric keys to your info
are all encrypted in the repository using the
recipient’s public key).

Or you can pre-approve info release to the
OnelD of the vendor. Only verified OnelDs
(who pay for service) can even ask for your
information, not random OnelDs. If you
want to send your info to a friend, just type
their OnelD (since they cannot request it from
you since they don’t have the paid, bonded
stature of a hotel, ecommerce site, etc).

Tap your OnelD at the front desk, enter your
PIN code, and see your room number on the
display. Go straight to your room. Tapping
your OnelD card also unlocks the door; no
PIN code required this time since you did it
when you entered. An attacker cannot replay
your card number and PIN code because the
card has no number to replay. Your
registration info was all filled out when you
tapped the card at the registration desk and
authorized the information release by typing
your PIN code, indicating you trusted the
reader to read your card. Your card also
verified the credentials of the reader and that
the reader was authorized by the hotel to read
your card and it wasn’t a dummy reader put
in by an attacker.

Wave your hand to confirm the purchase and
release all required information to the
website. No typing required.

Wave your hand to confirm the purchase and
release all required information to the
website. No typing required.

Registering to vote can be done online. Each
election, you get a signature private key
which has been transparently deposited into
your OnelD repository so you had to do
nothing. That key expires after the polls
close.

Fill out your ballot on-line. Click done. The
vote application will ask your local OneID
device for the proper signature key to use;
this is transparent to you. So you do nothing
but wave your hand to sign it with the proper
key.

Use any OnelD device to show your OneID
devices. Hit cancel device. Your lost OneID
card is now useless.

Your identity is still the same everywhere. It
was only the card that was compromised.
And that lost card couldn’t have been used
since they didn’t know the PIN. The card has
a counter: 3 invalid PIN attempts erase the
card.

Purchase a news article
on the Internet

Recurring payments

Airport security and/or
cop pulls you over

Identity verification
when you call the bank
to ask a question about
your account.

Airport check-in

Sign up for loyalty

program

Business bank log in

Ride the subway or train

Buy a sandwich at a
merchant

you use to refer to your credit cards (e.g.,
“Visa card”). The new bank will update your
registration at VISA. You never had your
card number on any device anyway . . . you just
store the names of your credit cards on your
device so there were no changes needed.
Click on the article. Wave your hand. When
you agree to pay, you can put a time limit on
the authorization to bill your card

All your recurring authorizations are stored in
the repository. When the credit card
company processes a recurring authorization,
they will check with your repository as to
whether the authorization is still valid. If it
isn’t there anymore, the authorization is not
honored. The biller can automatically ask
you to approve a new authorization. If you
decline and they keep bothering you, you can
blacklist the merchant.

You can also simply revoke the signature by
putting the promise to pay on a signed
document revocation list.

Since all recurring payments have an
expiration date, the revocation list doesn’t
grow without bound.

Tap your OnelD card with picture on the
NFC reader in his cell phone. The card will
have a state government signature on your
Name, Address, Phone, and Picture. The
agent can also view your picture stored on the
card since it is signed by the government.
There is no risk of forgery. One less card to
carry.

Give the banker a One Time Password
generated from your OnelD device (e.g.,
mobile phone app or browser app). This
proves it is you.

Tap your OnelD card. The airline can find
your frequent flyer number from your unique
OnelD number.

Scan the QR code on the signup sign using
any QR code reader application. Hit OK on
your phone to join.

OR

Tap your phone to the NFC reader. Click
OK.

Enter your OnelD PIN into the OneID
browser plug-in and wave your hand,
providing two factor security.

Provide a common interface to a cash wallet
that all subway systems can use (we sign their
public keys for their machines so they can
add and remove cash) so that money put on
the card can be redeemed anywhere as OneID
cash. So you can deposit funds in the
Washington Metro, and take a ride on the
BART. Each transaction made goes to

OnelD which settles everyone up on a
predetermined schedule (e.g., each month).
Tap your OnelD card or cell phone. The
system can automatically figure out the best
way to pay and credit your loyalty program.
It will even offer to sign you up for the
loyalty program if you aren’t a member. The
merchant won’t have a PCI compliance
problem because you aren’t going to tell
anyone your card number. Neither your
OnelD card nor you know your card number;
it’s never sent, not even in encrypted form!

US 2012/0323786 Al

-continued

Dec. 20,2012

-continued

Activity

OnelD System

Your secret key
becomes known to an
attacker

OnelD’s secret key used
for signing becomes
known

Product warranty
registration card

Find out who has access
to your information

Purchase music

Purchase software

Check on a website’s
credibility

Fill out a form with your
child’s information such
as insurance forms or
entering their
information on a
website (e.g., airplane
reservation)

Company holding your
stock certificate is trying
to locate you

If the merchant doesn’t have an NFC reader
installed, you can still pay with OneID. Just

use any QR code reader and read the QR code

on the register you are at (or the hand held
terminal they bring to your table or the QR
code printed on your bill). You’ll see the bill
appear on your cell phone. You can add a tip
if you want. Click OK. You paid and got
your loyalty points. And an electronic receipt
is stored in your phone. The register will also
know you paid. Works with legacy POS
terminals with no hardware changes required.
Revocation is pushed within seconds
automatically and your client generates a new
key pair and it is signed by OnelID all in
response to a single user action.

We can detect a OnelD private signing key
compromise as soon as it happens and
automatically revoke our key and generate a
new one. This is because everyone is using
our APT and libraries. No fraudulent
transactions will happen because we always
double check the public key with the
repository as a second safety measure. Thus,
any attack to discover our public key is
worthless. This means the physical security
needed to protect our private key is greatly
reduced.

Scan QR code on the card with iPhone. Tap
OK. You're registered. Since the
manufacturer has your OnelD UniqueID#,
and that number never changes, the
manufacturer can contact you at any time in
the future to notify you of a product recall.
You can block their OneID messages if you
want easily by removing their OneID from
your access list in the repository

You can list out all the OneID’s who can
access your data, look at when they most
recently accessed your data and how many
times. You can also block them by deleting
their access rights. They cannot object.
Digital proof of ownership for all your music
can be stored in your OneID

Digital proof of ownership for all your
software can be stored in your OnelD. The
licenses move with you, rather than being
attached to a machine. So if you get a new
PC, there is no issue as long as your OnelD is
the “owner™ of that machine. This
dramatically simplifies software licensing.
So a software license is simply a digital

signature that you own the software signed by

the manufacturer’s OneID.

Comments and statistics can be associated
with the OnelD of a website so you can see
when the OnelD was created, how many
purchases have been done, whether the
OnelD has be “verified for authenticity”, etc.
You can also see comments by other OnelDs
about this site.

Fill in their OneID.

Your child can authorize you to “sign” on
their behalf. The signature will point out the
OnelD of the owner, the signer, and proof of
the signature authority.

So you can attach the approval of their
information release to your account so you’ll
be able to approve for them (in addition to
them approving themselves if they are old
enough).

If you had registered your OnelD, they can
always find you if you choose to let them.

Activity

OnelD System

You want to surf the
web anonymously

You are a small vendor
and you send an invoice
via email

You are a charity or
politician seeking
donations

You just got a new iPad

Erase your cookies. If you need to log in
somewhere, have your OnelD app create a
self-signed anonymous identity signed
anonymously right in the app. It never gets
registered as an official OneID or signed by
OnelD. OnelD knows nothing about it which
is critical to preserving your anonymity. You
can switch to it at any time. You can also
transfer it to your other OnelD devices
through the repository. This creates an
anonymous identity that only you know that
is consistent but cannot be traced back to you.
Explain to your customers a new easy way to
pay. Send them a hyperlink that looks like:
oneid:pay?to=JoesPlumbing&arnt=50.00USD
They click on it, approve the payment, select
the funding source (bank ACH, PayPal, credit
card or pre-paid cash), click Pay.

For on-line requests, you just wave your hand
to make the donation or click a button then
wave your hand).

For paper solicitations, just create a simple
QR code on your page. When read by any
iPhone reader app, it will call OnelD which
will prompt the user for the amount he wishes
to donate. Your site can specify suggested
amounts. For email, just include a “donate
with OneID” button and the same thing occurs.
Also, OnelD can set up a website to make the
creation of this easy for the charity. Just go

to our site, hit the login with OnelD link, fill
in the description of your charity/campaign
and the suggested donation amounts, and
you’re done! We’ll set up the required
interaction with the OnelID desktop client.
No changes are required to your website and
no programming is required. Just include the
static QR code on your letter or the link we
give you for on-line use.

Run the OnelD app to generate a new key
pair. All you do is enter your OnelD, e.g.,
“Steve” and name your new device, e.g.,
“Steve’s iPad2” and your 4 digit PIN. Then
hit the button to request authentication from
one of your other devices. This request will
be active for 1 hour or until it is used. The
PIN code cuts down spam authentication
requests. You then go to your other device
and approve the request. It uses the OneID
repository to do the peer to peer
communication. When you see the request
pop up from Steve’s iPad, you just hit
“Approve” which causes the old OneID
device to tell OnelD to sign the new signing
public key of the new device. And it also
sends, via the repository, the symmetric
encryption keys for the field data in the
repository encrypted with the new device’s
public key. The new device then generates
and signs its own encryption key pair. If you
choose, you can also “self-sign” if you left a
self-signing authorization in the repository
(which generally is entered with a small “use
count” so it can only be used a few times.
Enter the password to unencrypt this
authorization and you can self authorize your
device.

US 2012/0323786 Al

-continued

Dec. 20,2012

-continued

Activity

OnelD System

Activity

OnelD System

Web site has a button to
post to your facebook
account

Logging in from a
public terminal

You aren’t sure if your
computer is controlled
by an attacker

Constantly being logged
out of a site because of a
timeout

Voting your stock
shares (proxyvote)

One time passwords

website uses a single
oneid:postToSocialNetwork?text=. . . style of
link. OnelD will then prompt you telling
what is going to be posted, and YOU get to
choose to which network(s) (default ones are
checked). So you are in control every time,
not the remote website. Nothing gets posted
without your express request. The site likes
this too: one interface to all social networks.
Spam is eliminated where bogus applications
post on your wall without your consent.

Use your OnelD card in a OnelD certified
card reader. Login with your OneID name
and PIN. When you are done, take your card.
Simple and secure.

You can also treat it like a new device. So
you’d basically try to login in, it would say
“You need to authorize from another OneID
device you own (like your cell phone).”

You can also use the OTP method,
generating an OTP using the app on your
phone.

If you treat as a new device, you can limit the
time period of validity to just the amount of
time you are using it.

You can also limit the use of your temporary
credentials that you generate very narrowly to
a specific website. You can even limit the
dollar amount that can be transacted by this
temporary signature. By contrast, with an
RSA token, not only is it inconvenient, but it
gives an attacker a limited time-window to
use your credentials anywhere in the world,
thousands of times.

Websites that ask for your signature, also
notify onelD that you logged in. So even if
your machine is compromised, you can check
the logs on another device where you can
trust it and see where you’ve “been.”

Wave your hand to re-login.

The reason you are auto logged out is to
prevent attackers from using your session key
so we don’t eliminate that.

You agree to vote via email.

When you get the email, you simply wave
your hand to vote with the directors.

Our One Time Passwords are amazingly
flexible. You can generate an OTP on any of
your OnelD devices and use them (along with
your OnelD) for a variety of operations. You
can specify, for example:

Length

Type: computer generated (numeric,

alpha, or base-64) or user specified (you

can type in the one you want!)

Allow N Uses (so not really a “one time”
password” if this is > 1);

Transaction must be less than $X

Do a regular Authentication

Force a Person Present Authentication

(PPA) endorsement of the authentication
(i.e., this is a significant transaction like a
money transfer or change of notification
options and can only be generated by a
human)

Information permission: can specify

which fields or categories are allowed or
give access to all categories, e.g., health,
contact info (name, address & email),
financial info (credit cards)

Absolute Expiration date/time so the OTP
has to be used within a time window.

This is a strict requirement. It is not an

OR to the other clauses.

Pay at Peet’s for coffee

View an encrypted
document

Relative expiration time so it can expire 5
minutes after first use

The specific OnelD of the receiver (so the
information is encrypted with ma

symmetric key that is encrypted with the
receiver’s OnelD public key so only they
can read the info and make use of the info

so even if the OTP is used by an attacker

it is useless. If this is not specified, the

first person to make use of it wins, e.g.,

you are saving time typing in the OneID

of the receiver since you know nobody is
going to overhear you give the number.

But if you fill out a form, the OnelID of

the receiver is great because it means that
the OTP is useless to someone who sees

you fill out the form.

Can be used only for the OnelIDs of the

first N OneIDs to cash in the OTP

For public terminals, you’d generate an OTP
with all rights to everything, but a limited
time window. Or if you are just doing one
site, you’d just give it power to auth to just
one site.

Tap OnelD card and enter PIN. This is much
safer than a ATM card because the card
cannot be cloned like an ATM card. So
someone cannot lift your identity; they must
steal your card and know your PIN.

Tap OnelD phone with NFC (no PIN needed
since you unlocked the phone’s app). Bring
up OnelD, optionally enter $ limit, click pay
button, and a QR code appears. Have your
QR code scanned. This generates a statement
“pay to bearer up to $20 out of my cash
account. This is serial # 12 of my payments
to prevent replay. Signed, OnelD Steve.”
The merchant takes that, adds in the amount,
and presents to OnelD for payment OK (that
you have the money). Your OnelID account
will show your new cash balance. An
advantage is that you don’t need your wallet,
it is super fast to pay, you have transaction
history on the phone so no paper receipts, you
didn’t have to carry an extra smart card, and
it is extremely secure.

Loyalty credit (or joining loyalty program)
can be done in the same transaction.
Integration point would be the POS vendor
which reads the QR code (or equivalent info
if NFC chip or SmartMX card) and performs
the requested action, e.g., charging the credit
card, cash account, (or passing the charge
card number out to the payment processor)
and passing the OneID number to the loyalty
program provider so the user can get credit as
if he swiped a loyalty card and a credit or
prepaid card.

People can give you symmetric decryption
keys that are sent to you encrypted with your
public encryption keys. Those are matched to
a document (so you can think of a document
getting a unique docID too that it could
randomly generate). So the app you are using
could lookup that unique DocID in your
repository and thus decode it. So it’s a
convenient way to people to pass secrets to
you instead of, because in the new way, it is
all done for you under the covers. The app
just lets you enter which OnelDs to give the
secrets to and the rest is all done like magic
with no user involvement assuming the app is
OnelD enabled. The owner of the document

US 2012/0323786 Al

22

Dec. 20,2012

-continued -continued
Activity OnelD System Activity OnelD System
has the decryption keys he generated under skip the captcha, 4) if people complain about
his account so he can revoke access to anyone you, we lower your “free of captcha” count
at any time. per day and you’ll be required to pay money
Required to type an Wave your hand which is the most secure (or and 5) the site should remove your earlier
OTP to access certain hit the Login with OneID button). posts
applications Sign on to wifi Network Login with you OnelD automatically (upon a

Avoiding a captcha

If you have logged into a site with a premium
OnelD the site can let you avoid the captcha
for several reasons:

(1)Premium OnelDs are relatively hard to get
(require paypal payment, unique SMS,

new Internet connection, it can use a pre-
defined way to log you in . . . then you just
confirm the charge plan you want in the
popup dialog).

address matches credit card) 2) we track
abuse complaints on your OnelD, 3) we limit
the number of times you can post per day and

[0400]

The following table illustrates how various OnelD-

specific operations can be performed.

Activity

OnelD Operation

Spam elimination

Interaction with other
companies

T am filling out a plane
reservation or health with kids

Delegation and hierarchy

I want to get a OnelD

You want to change your OnelD
from “Steve” to “spamguy”

You want to sign into a website
you’ve never been to before

You’d sign your emails with your OnelID. You can then look
up the reputation for that OnelD in the repository. Bad
reputation or unverified account or no bond posted==> filter
the existing way. Verified identity and known reputation and
no spam complaints and bond posted and money paid to open
the account and the account is >1 month old, put the email
into the inbox. This is compatible with existing standards.
The email filter makes one call to OnelD to get the reputation.
Your OnelD alias can be resolved by any authorized provider
to find the repository for your OnelD.

Each OnelD can add the OnelD of others to be signature
proxies for the OnelD (and have all the field decryption keys).
That means you can just list their OneIDs on the form, and all
the approval requests will come to your account and you can
release the information on their behalf. The transaction
record shows that you made the release (and from which
device and when) and on whose behalf.

If the form wants to know who your wife and children all,
those OnelDs can be stored in your record so you need not
type them in. However, if you are traveling with 2 of your 3
children, you can specify which children.

For online forms, the site can verify you own the OnelID and
you have power to release the info for your children. That’s
done by interacting with the client.

For offline forms, the sytsem can generate an OTP (which can
only be redeemed by the OnelD of the site you are giving it to
if you are worried in an embodiment).

With OnelD I can delegate. For example, I can digitally sign
a statement that I give rights to view my health care
information to Aetna but only for getting information from
BlueCross before Jul. 1, 2011.

My kids can give me signing authority on their behalf so I can
act as them in limited or full scope. They can revoke that at
any time. I can set things up to create a OnelD relationship
structure of my wife and kids, so if I form ask for info about
my spouse and kids, it is all there, along with signed
permission from them to access their health records for the
purposes of disclosing information. Information disclosure
means they leave me the symmetric keys to their fields in the
repository, but of course, those keys are only decodable by
me.

The OnelD site will list who provides OnelD names, clients,
and repositories.

No problem if the name is available. When a website records
your OnelD in their database, they are always using your
UID, not your alias. Change your name as often as you like.
If a site wants to show your OnelD alias on a webpage, they
should use your UID to look it up, and not use the name you
supplied when you registered.

You just hit the Login with OneID button even if you've
never been to the site before.

When you set up your OnelD account, you’ll be asked to
provide all your email addresses (which we’ll verify), and
give us a list of preferred usernames, and screen names.

US 2012/0323786 Al

23

-continued

Activity

OnelD Operation

Switch OnelD providers

The smartCard reader is busted
on your computer so you can’t
login anywhere

You lost your OnelD card

Register a new OnelD device

Off-line form fill out: Proving
you own this OneID when
filling out a form, i.e., how does
the form provider know you are
using YOUR OnelD and didn’t
supply someone else’s?

When we auto generate accounts for you, because we
interface to legacy systems that don’t know about identity,
we’ll try first finding your account with your email address
and if that fails, we’ll prompt you to see if you want to create
anew account there. This all works because the OneID
protocol is extremely flexible allowing for this type of
exception handling, and more, to be done in the OnelD client.
Open the client. Select Switch Provider. Pick the new
provider from the list. Click done.

You can generate a new signing keypair right on your
computer. Give it a limited time window, e.g., 4 days till you
get your smart card reader repaired or replaced. Authenticate
it like the iPad example using another device (like your
phone), or the special password.

3 invalid PIN attempts will wipe the card and you’ll need to
give the PIN code before you can use it for anything. You

can also revoke its public key by reporting it stolen.

If you later find your card, you’ll have to create a new signing
key for it since the revoke list is not revocable. But doing that
is a simple operation which the software will do for you
automatically when you try to use the key.

Install the software and give the device a name. Log in with
your OnelD and PIN. Click “Request approval.” Go to any
existing OnelD device tied to your account and click
“Approve.”

An attacker cannot generate the same request and flood you
with requests to authenticate because he doesn’t know your
PIN (and wouldn’t be approved anyway) and each OnelD has
a limit to the number of registrations they can make per week
(and because it is relatively hard to get >1 OnelD per person).
Each device has its own private key pair (one for signing, one
for encryption). The signing secret key is generated on each
OnelD device and stays in the device (so you know which
device signed things in case of a compromise). Only the
owner can generate authentications from the device.

Signing key never leaves the device or are backed up. If lost,
they are regenerated and then authenticated against your
OnelD, all with the push of one button.

Encryption private keys are sent using the pubic signature key
of the receiver. This is the only time signature keys are used
for encryption.

Normally, the person asking you to fill out the form is verified
bonded and trusted by OnelD. So they’ll request your
information, and if your clients allow it, they can
automatically release your field decryption keys to them so
they can then request info from the repository. Otherwise,
you approve the request (either by trusting them to take the
fields they want or specifically limiting the fields they have
access to) and it will notify them that they can get the data.

In the OnelD app, fill in the OnelID of the organization giving
you the form to authorize them to view your information.
This creates a signed access control list for that OnelD to
access your info and contains the decryption key that can only
be read by them for the fields you specify.

Another approach is to use the OnelD app to generate a one-
time-password that you write in on the form that they will use
to access your data.

Generally, the repository entry is left with the keys for all
your fields. When the site makes the field request, the
decryption codes for the fields they didn’t want are then
deleted from the repository. You are then sent a notification
of the fields they were given access to. If they abuse their
trust with you and access more fields than they told you they
would then you can make a complaint against their OnelD.
When you generated the OTP (which can only be used by
them) or granted them access, you’ll normally be able to see
the number of OnelD complaints against them in the last 30
days, so you can decide if they are trustworthy. You can also
select field by field what they have access to if you are
concerned. It uses the same method to leave the symmetric
decode keys for each field for them to retrieve and decode
using their private key.

Dec. 20,2012

US 2012/0323786 Al

24

-continued

Activity

OnelD Operation

Sharing the encryption private
key

Why you can publish your
OnelD username and PIN in the
newspaper and not have to
worry about it

QR code scan for a purchase

Shopping cart/cross-site
checkout

Signing up for a Twitter account

How can you do a purchase
with just one signature?

Merging your contact lists, e.g.,
on your Phone, can you merge
your facebook friends into the
phone app

Change your roles at any time

Signature keys are never shared or disclosed; they stay within
the device. The encryption keys must be synced on different
devices so that if someone sends us stuff (e.g., in the
repository), any OnelD device needs to be able to decipher it.
Therefore, on device initialization, a signature key pair is
generated, the device is then authenticated by another device,
and then the private key for encryption is left for the new
device in the repository by encrypting it with the signature
public key of the new device. This is the only time the
signature public key is used for encryption. The reason this is
not simply done peer to peer is because both devices can be
behind firewalls. Therefore, the key transfer done via the
repository, is done by encrypting using the public key of the
recipient.

If an attacker keylogs your username and PIN, he can’t use it
because his device is not authorized so he doesn’t have any of
your secrets. Every OnelD device, when authorized, gets the
secrets needed to decrypt all the fields stored in the
repository, many of which are cached on the card. It is
virtually impossible to do a phishing attack to get your PIN
since it is entered in the browser and not a web page.

Even if you had the PIN, an attacker could only use from a
previously authorized device and even then he will find that it
doesn’t work when he uses it because he can’t do the wave
since he’s not physically present on the machine that has a
reader with a SmartMX containing your credentials

Scanning a QR code containing a OnelD: then calls the
OnelD app and it negotiates with the remote website and can
ask things to complete transaction like how many, what color,
where do you want it shipped, how fast do you want it, and
how do you want to pay for it (visa, paypal, etc), all in the
OnelD app so a purchase can be completed effortlessly
without typing.

The advantage of a OnelD shopping cart is you can put stuff
from all over the web into your OnelD shopping cart, and
then check out. Both “add this item to OneID cart” and
“checkout” could be OnelD buttons.

The information supplied in your OneID for your username
preferences could result in a name conflict on Twitter. To
allow for cases such as those, the protocol allows the remote
site to ask questions and get answers, all within the context of
a mutually authenticated, secure channel.

Another option is to do the exception handling after control is
returned to the site and leave any user interaction requests to
those items that come up after OnelID app is entered and
before a signature is requested from the chip.

There are two cases: (1) already logged in and (2) not logged
in. If you are already logged into a website, the remote site
shouldn’t ask you to authenticate. Therefore you can just sign
the purchase. If you are not logged in already, you can simply
sign the purchase with your OneID. So you’ll remain not
logged in (so you can’t see your account, get personalized
recommendations, etc.). Therefore, a single hand wave is all
that is required regardless of whether you are logged in or not.
You use OnelDs on your contact cards, you can determine
which cards to merge and which to not merge.

Sometimes you want to be your personal self. Other times
you want to be your Propel self, or Abaca self.

This can often be different from website to website, and can
change even on the same website (e.g., personal flight on
United vs. Business flight). Therefore, as you navigate to
different domains, the status bar will show which “role” you
are in on the current site.

The browser has Logged in as: Steve Profile: Home where
profile says which set of info to use. So if you have a field
like Personal.Phone, if you are in Home mode, it makes it
look like you have a field Phone. So sites can request either
Home.Phone, Work.Phone, or Phone. If they request the
Phone field, the Profile name is tacked on to the field name
requested and that field is retrieved if it exists. Otherwise, it
will request the exact field name you specified. That way, you
can easily change your contexts.

Dec. 20,2012

US 2012/0323786 Al

-continued

Dec. 20,2012

Activity OnelD Operation

OnelD login if he doesn’t have
a client installed

You can’t know whether they have OnelD installed on an
iPhone since browser doesn’t tell you. So a OnelD button can

be used that tries calling the OnelD protocol and if it fails,
calls a jump page at OnelD which allows the user to login if
he has an OTP to give us temporary authentication. So our
site logs him in using that session ID that he passed to us and
using the temporary credentials authorized by the OTP. So
we still use OUR public key protocol, it’s just that the login is

done from our site using HIS session ID.

Also, on the logon page, you get to select which “profile” to
use (home, workl, work2, etc) for this site, how long the
session should last (i.e. how long you are logged into the
browser for, and you have a choice of entering a OTP or a
permanent password, the latter being more risky.

Can also have the OnelD button and a “trouble logging in?”

link

[0401] Some embodiments of the present invention can
utilize a keyboard reader with an imbedded NXP chip. The
system can keep the programming on the imbedded
SmartMX chip extremely simple, for example, allow it to
generate new private keys, and then ask it to encrypt and
decrypt, supplying the OnelD shortname and PIN each time.
It should be able to maintain a list of at least 20 private keys
(since 10 people might log into that computer). It can hold the
symmetric decryption keys for each field in the repository as
well as a local cache for the most common fields (including
picture) so most things can be done peer-to-peer. The NFC
reader can include a touch pad that powers on the reader and
can have different cord options.

[0402] According to an embodiment of the present inven-
tion, a smart card reader includes a motion sensor in which
activating the motion sensor will cause the hardware in the
smart card reader to allow a single pending authentication or
digital signature operation to be completed by the smart card.
The smart card reader can also include an indicator light that
turns on when a digital signature or authentication is actively
pending. Additionally, a browser plug-in can show the users
details of why a signature is being requested and by whom
and request the user to complete the transaction by activating
the motion sensor in the attached smart card reader.

[0403] In other embodiments, a smart card chip integrated
into the unit can be used instead of a smart card reader.
Alternatively, the smart card reader could be integrated into a
mouse, a keyboard, or the like. One of ordinary skill in the art
would recognize many variations, modifications, and alterna-
tives.

[0404] According to another embodiment of the present
invention, a method for interfacing a website or desktop or
enterprise application with a secure identity management
application on a personal computer or mobile device (includ-
ing iPhone) is provided. The method includes performing
secure authentication including the requestor calling an iden-
tity manager with an initial instruction, the identity manager
executing the instruction, which leads to a conversation,
which includes authentication of at least one party to the
other, and one of the parties determining on what the identity
manager should do to terminate the session.

[0405] In an embodiment, the identity manager is a web
browser plug-in that is capable public key authentication. The
1D manager can prompt for confirm/deny and the ID manager
can prompt the user to fill in missing information. Addition-
ally, the requestor can be an app on the iphone and the identity

manager app can perform public key authentication of the
caller. In a particular embodiment, a known set of requests
from each site can be made rather than a static protocol.
[0406] According to a specific embodiment of the present
invention, a peer to peer login method is provided where the
side conversation the parties determine us the final URL at the
end (it could be a URL or URI or anything else). Embodi-
ments include a method for secure transmission of informa-
tion between a requestor and a message for secure micropay-
ments, a message for auth, a message sending information, a
signed request for a credit card company to make a transfer of
funds to a merchant, a QR code scan initiated request to call
OnelD passing it a URL which can start a transaction
sequence, or the like. The transaction sequence can be initi-
ated from a QR code reader which reads the QR code, deci-
phers a oneid: protocol request, and calls oneid: in order to
process the transaction. The QR code being scanned causes it
to loginto the website in the QR code, but with the credentials
in the OnelD app. The QR code being scanned causes it to do
a transaction on the website in the QR code, but with the
credentials in the OnelD app. The OnelD app can be asked by
the remote website to query the user as to which credit card to
use. The OnelD app can be asked by the remote website to
query the user as to which address to ship the item to. The
OnelD app can be asked by the remote website to query the
user as to how much to donate. The OnelD app can be asked
by the remote website to choose from information that has
previously been supplied to and stored in the OnelD applica-
tion such as shipping address or credit card number. The
OnelD app can be asked by the remote website to sign an
authorization which attests to the user agreeing to charge a
credit card owned by the user. A private key can be stored in
a secure location and the requestor can verify the authentica-
tion. Inan embodiment, a physical action (e.g., a button press)
is required to get a certain type of authentication. The authen-
tication can include client authentication.

[0407] The user can be notified on certain activities based
on the user’s preset notification preferences. These prefer-
ences can include logging into a new website. The prefer-
ences can define the $ value of a transaction exceeding a
preset number. The user can establish certain apps that require
him to type in a pin code, e.g., find my iphone. In some
implementations, there is a timeout after which the user has to
type a PIN code. Additionally, certain transactions can
require a button press to confirm and certain transactions can
require a PIN code to confirm

US 2012/0323786 Al

[0408] Each user may have a unique identification number
(UID) that need not change over time. The UID may also have
an alias associated with it, e.g. a first name, such as “Steve.”
Each user device assigned to a UID may have an ECC public-
key signature pair. This may be stored on a certificate with the
UID signed by the identity repository or any authorized cer-
tificate authority. The UID may also have a common public
encryption key shared by all devices owned by the user. Any
site that recognizes the alias should resolve the alias to the
UID and remember that as well.

[0409] Each device has a unique name, e.g., “Steve’s
iPhone” that may be familiar to the user. Each device also has
a unique-to-the device public/private key pair. The identity
repository key pair can be received from a peer, and also in the
event of a key compromise, the new key pair can be sent
securely. Each device has the current OnelD key pair. There
are awide range of fully compatible device options, including
the following without limitation: a magnetic stripe, QR code,
bar code card (usually coupled with an iPhone app to enable/
disable the card, and the key pair is done via a proxy appli-
cation not hosted by US), server software only (Facebook®
login), client software only (allows Facebook style peer-to-
peer), RFID sticker for cell phone, (including RFID reader,
driver, and client software), a TPM chip in a laptop, an iPhone
running OnelD software using Bluetooth, a $2.00 NXP
SmartMX card with $10 NFC reader (optional integrated PIN
pad), and/or an iPhone5 with NXP SmartMX embedded in
phone.

[0410] Regarding the OnelD secure repository, customer
information can be 100% secure from disclosure, even if
attacker knows all the algorithms, all of the private keys, and
has root access to all of the servers. The user can pick their
repository vendor. Large companies may decide to be reposi-
tory vendors. Each OnelD signature key pair is generated on
the user’s machine, consistent with the overall design phi-
losophy. The user’s encryption key can be shared; and can be
initially transmitted using the public signature key of the new
device. The Identity Repository is used for both synchronous
and async communication between OnelD devices.

[0411] Regardingthe OnelD secure repository, there can be
two requirements. First, the owner should be able to find out
what field names are present. Second, the owner should be
able to quickly retrieve a field by name and decrypt it. Only
one number is chosen at random. The others are derived. A
random symmetric key (#1) may be chosen and used to
encode all the field names. That random symmetric key is
encrypted using the public encryption key of the OnelD
owner.

[0412] Additionally, each field name and value can be
encrypted using a second symmetric key (#2) which is
derived from encrypting the fieldname with the owner’s pub-
lic encryption key. Therefore, the database can have 4 fields:
OnelD UID, the encrypted (#1) field name, the encrypted (#2)
field name, the encrypted (#2) field value, using the respective
encryption keys. In order to retrieve something from the
repository, two things can be required. First, an access control
list (ACL) signed by the owner should be presented to the
repository to tell the repository which fields to return and
what rights a user has on each field (read, write). Second, the
symmetric keys should be communicated securely to autho-
rized endpoints using the public encryption key of that end-
point.

[0413] Any approved repository should be able to route a
request. Given a OnelD shortname or UID, any repository can

Dec. 20,2012

look up the correct repository currently servicing it from any
OnelD supplier. OnelD requests are normally sent to the
server that created the UID (encoded in the UID top digits). If
the UID isn’t located there anymore, that server could return
to any repository to which the UID moved, and the client
should remember that repository for future requests.

[0414] For example, if “Nancy” wants to give her informa-
tion to “Greg”, all she needs to do is authorize “Greg” to have
read access to her Name and Phone for 3 months (or until she
changes her mind). Because the ACL and decryption keys are
in the database, they can be removed at any time by the owner.
The owner can see the entire list of people who have access
and what their access privileges are. If the owner’s private
encryption key changes, the information for all readers can be
re-generated by the repository.

[0415] The design philosophy of the system includes an
architecture for ideal security that also allows users to choose
to trade security for convenience on any device and at any
time. The repository will support any desired user configura-
tion, no matter where a user wants to be on the trust spectrum.
To illustrate, Facebook is convenient, but it isn’t secure and
there is no user option to make it secure. Facebook knows all
your information. In contrast, OnelD does not, cannot, and
never will know a user’s personal information. This repre-
sents a significant upgrade over existing solutions.

[0416] The OnelD system is designed to manage a user’s
identity in a way that is secure, easy to use, incorporates
on-line and off-line availability, presents a unified interface
(i.e., only one place required to change information), allows
for granular permissions (per field, r/w, time), has revocable
access, allows the user to change their private key at any time,
and notifies users when their identity is compromised. The
system is also reliable, in the sense that the repository is
distributed, and users have direct access to login (i.e., no
repository need be involved if a client is installed). The OnelD
system is also designed to manage a user’s information
securely and conveniently. New information needs to only be
entered once, and standardize field names are used so that
consumers of information have a consistent way of referenc-
ing information. Additionally, the OnelD system is designed
to secure a user’s rights. This may extend to music, purchase
receipts, and software license keys, and/or the like.

[0417] New features of the OnelD include a secure reposi-
tory, with an ACL and a decode list stored either in the
repository or stored externally. OnelD transactions may be
carried out on an iPhone in a peer-to-peer fashion. The OnelD
system, or “ecosystem”, can include a keyboard key/wave
authentication scheme. Also presented is a new method for
doing credit card transactions using flexible one-time pass-
word (OTP) options and multiple OTPs. When registering a
new device, the new device asks old devices for approval.
Critical changes to a user’s security configuration may result
in a delayed approval for verification purposes. When logging
into new sites, the system may require login confirmation and
a showing of a reputation comprised of a creation date, a
number of logins, positive and negative comments from other
users, etc. OnelD enables micro-payment methods.

[0418] Hotel, rent-a-car, and airline check-in procedures
may be simplified using the OnelD system to select allowable
information and restricting a check-in reader to showing that
it is a OnelD vendor-trusted reader, or to allow the user to
supply his/her OnelD and an OTP. Different public keys may
be used for each device, but each device may be authenticated
with the same UID. The OnelD may be used as a universal

US 2012/0323786 Al

loyalty card, where if the UID does not match the reward
program’s registered number, the reward program can contact
OnelD for a translation. OnelD may be used as a QR code
scanner fill-in form information. OnelD may be used to login
to websites using the OnelD and an OTP in the website’s
existing form fields. For example, the website may attempt a
lookup as a standard user, and if this fails the website may try
a OnelD lookup. Because logins will be easy and secure, and
form filling will be simplified, e-commerce may become
more accessible to some users. In addition to micro-pay-
ments, credit card transactions may be replaced with a digi-
tally signed authorization to, for example, “bill my VISA
Card.” Also, over-the-phone and in-person transactions may
be authenticated using the OnelD system.

[0419] The OnelD system may be gradually implemented
throughout the financial economy. Implementation may
begin with “Secure and Simple Single Sign On” that is peer-
to-peer with no third party dependencies in a way that works
oniPhones, iPads, and other mobile computing devices. Next,
login and information transfer (possibly including OTPs) can
allow existing Username/Password boxes to be used without
a client installed. This may also include push notifications to
clients so that the OnelD system can see what sites a user was
logged into and from what location (translating IP addresses
to locations for the user). Next, major credit cards, such as
VISA, MasterCard and/or Amex, could accept OnelD signed
transactions sent via a new direct OnelD payment gateway.
Next, PC manufacturers could be interested in implementing
the “OnelD approve” button on their keyboard. Royalty free
licenses maybe granted to entice manufacturers so that others
will follow. OnelD may include a reference design to be
licensed to manufacturers to make limitation easy. The APIs
will be simple and easy to use, which leads to cheap developer
training and support, large code bases of example code, etc.
because adoption is easy, and does not require hardware or
software purchases, major websites could support the login
and form filling services provided by the OnelD system.
Additionally, the system may support smart cards, NFC, and
PDA hardware.

[0420] Although the basic service may be free of charge,
upgraded service (for example, $10 per year) may allow a
user to reserve any free alias, engage in micro transactions,
pay with a digitally signed credit card, and other advanced
services. Additionally, account creation may be limited by
requiring CAPTCHA and/or SMS authentication to prevent
spammers from creating accounts. The client can also send
OnelD the MAC address of the machine so that OnelD can
limit signups from each machine. For IPs with an abnormally
high number of signups per week compared with their mov-
ing average trend, a payment of $1 may be required per
account. Alternatively, these could require a credit card and/
or address and check that it matches the user’s IP address.
Users may need to decrypt encrypted data with a weak public
key that will take a day of compute time, and that should be
completed within a set period of time, such as one day, or the
process could start over from scratch. Also, accounts could
only be created for people in good standing at the website,
e.g., people who have ordered something at Amazon.

[0421] Other applications may include ACH transfers,
using a secure authorization, and partnering with clearX-
change. Additional applications may include: secure approval
of over the phone authentications, auto fill and submission of
four entity registration cards, voter registration and voting,
ticket purchases for movies and events, instant enrollment

Dec. 20,2012

into loyalty card programs, moves and changes of address or
contact information, a QR code reader for bills, donation
requests, and event registration sent via US mail or for order-
ing products seen in a magazine, alternate logins (using
OnelD and OTPs), and credit card tokenization. OnelD may
also be used to authenticate healthcare transactions by pro-
viding a healthcare provider with OnelD and a PIN code.
Alternatively, iris or vein patterns could be stored in associa-
tion with the OnelD and read by the healthcare provider. The
OnelD alias is essentially for parties to uniquely verify that
you are who you say you are instead of saying your name and
birth date which can be overheard easily compromised.

[0422] While there are hundreds of use cases for the OnelD
system, implementing each of them may not be feasible.
Instead the system can be designed to create an ecosystem
(like the Apple iPhone) where lots of parties can contribute
and make money. For example, core applications and proto-
cols may be created that are easy to implement, and provide
simple documentation, example code, and application notes.
The installed base of OnelD identities and sites and services
may be leveraged by new customers. Furthermore, a OnelD
vendor directory listing third-party OnelD apps, along with
compatible hardware and consultants may be provided. Stu-
dent groups may also be funded, along with entrepreneurs and
venture capitalists to fund development of dedicated OnelD
applications.

[0423] To generate revenue, a yearly fee may be charged for
a OnelD identity that is relatively small in the beginning, but
increases over time to match the value delivered. Websites
may also be charged to use the directory provided by OnelD,
and sensitive data requests may cost an additional fee. Roy-
alties may also be collected on certified devices, such as
readers, smart cards, she files, NFC devices, and/or the like.

[0424] There is a demonstrated long felt need in this area
without a solution. For example, Charley Kline stated that
“there is not one really good SSO identity system, tied in with
a micro payment system, etc.” Similarly, Jean Schmitt, Man-
aging Partner at Sofinnova Partners, stated that “software is
desperately needed in the identity/security space. Inside
Secure nor NXP for that matter are going to really make it
unless someone from the software side solves to problem of
‘usability with security.” I see many security companies, but
usability is an afterthought. And I don’t have to say, ‘usability
but no security.” Software is the missing ingredient, my com-
pany is going public, but it will not be big until someone gets
the software right”—Jean Schmitt, Managing Partner at
Sofinnova Partners.

[0425] Mobile payment systems are a disaster waiting to
happen. Computerworld, Jun. 1, 2011 pointed out that
Google wallet is insecure. Intuit’s QuickBooks Payroll suf-
fers outages and user data losses. Intuit’s QuickBooks Payroll
service was also hit with an outage that has prevented small
businesses from paying workers via direct deposit.

[0426] Additional products and services that may be
offered by the OnelD system may include the equivalent of a
German ID card for the rest of the world. Websites may use
the “Sign in with OnelD” button, or a similar “Fill this form
with: OnelD” button. OnelD may be compatible with smart
cards, key fobs, and RFID readers, and may be used in stores.
Vendors that now use barcodes two swipe to join reward
programs may switch to OnelD. Additionally, personal infor-
mation such as address, email, credit card may be changed
using a central repository.

US 2012/0323786 Al

[0427] Because the OnelD repository can be encrypted all
the time, personal data should not be found unencrypted at
any time on any machine. The only data remaining unen-
crypted can be specifically requested to be so by the user.
Unencrypted permissions may be revoked at any time.
[0428] Additional products and services can be offered in
conjunction with the virtual identity using OnelD. For
example, free moves can be offered for changes, or when the
user enters a OnelD in a form. Warranty registration can be
completed with OnelD app to protect against identity theft.
Credit card information may be transmitted securely for web-
sites that do not want to remember credit cards, along with
e-commerce sites seeking to make transactions easier for
users. Generally, OnelD benefits merchants, consumers, and
others involved with transactions. Also, the system is scalable
and capable of servicing millions of customers.

[0429] In one embodiment, the system may offer transpar-
ent mapping to an existing card. For example, when a point-
of-sale device recognizes a OnelD card, the system can
resolve the transaction by mapping this to an existing card
accepted by the vendor. This makes adoption of the OnelD
system transparent to vendors.

[0430] One key feature of several embodiments is that user-
names and passwords may no longer be necessary. By sliding
a OnelD card into a reader, there is a one-time pin code
required if the user has never used that were before to protect
against a lost or stolen card being used without authorization.
Similarly, with websites, clicking on the OnelD-enabled
input will automatically log the user onto that site. In some
cases, there may never be a need to log in to the OnelD
system. This eliminates the threat of keystroke loggers, and
would require that the card be physically stolen. This tech-
nology is ideal for public terminals.

[0431] Pressing a button on the website will request cre-
dentials. The client asks user to confirm release and whether
to remember the authorization or not. After the initial login,
user logins can happen automatically without requiring addi-
tional inputs. If given permission, the website can access to
credit card information and personal information. A profile of
trusted sites can be stored in the repository so it works from
every machine. Unlike with the Facebook login, the OnelD
repository can be off-line, and this process still works even
with sites the user has never been to before.

[0432] The OnelD system may be used as a sign-up mecha-
nism for a loyalty program. In one embodiment, the user may
scan a QR code on the “sign up” graphic with the OnelD app.
The user may then confirm the release of the info to complete
the process. Because the OnelD card is linked to a user’s
account, it may be used and displaying vendor. If a user
forgets the OnelD card, the user may simply tell the cashier
the alias of the user’s OnelD (“Steve”), thus it is not necessary
to remember numbers. For even faster signup, the user may
swipe (or tap) the OnelD card. This will enroll the user and
give the user purchase credit at the same time. If auser doesn’t
have a OnelD card already, the user may pick one up at the
counter and swipe it with the current transaction and register
it on their phone or at a later time. Merchants may benefit
because they don’t have to pay for the card and they know a lot
of people won’t put their card in their wallet due to space
issues.

[0433] For example, the user may pick up a OnelD card
from a store display, swipe it, and register the card at home.
For the next store, the user may swipe the card and confirm
that information may be released on any OnelD device (e.g.,

Dec. 20,2012

via a pop-up on the mobile OnelD app, or when the user gets
home on their computer). If the user forgets the car, the user
may simply tell the cashier the OnelD alias. Rewards may be
restricted based on authentication.

[0434] The OnelD system may also be used to check-in to
various services. A user may swipe their OnelD secure card or
tell the agent their OnelD alias. The user may then go into the
OnelD app on their phone (requiring a PIN if so configured by
the owner) and tap their phone to confirm the request for
information.

[0435] The OnelD system may also be used for web-based
micro-payments. In one embodiment, the seller asks the
buyer for a signed money transfer. The buyer then signs the
money transfer for the item and indicates which “bank” to ask
for the money. The seller presents the “bank™ with a signed
money transfer that was directly signed by the buyer’s OnelD
device. If the buyer’s bank OKs the transfer, then the mer-
chant ships product. In another embodiment, a hyperlink
wants to charge the user a fee. The user’s OnelD browser
plugin client prompts the user to confirm the request (the URL
switches to a separate app if using an iPhone). the user clicks
OK in the client, and the client sends the site a signed money
voucher with the OnelD, the amount, the payee’s OnelD, and
a sequence number to prevent replay attacks or detect unau-
thorized clones. The Site cashes in the money and, if it suc-
ceeds, gives access to the content.

[0436] In another embodiment, web-based micro-pay-
ments may be done via pre-pay, e.g., $100 at a time using
ACH to keep costs low for the consumer. A merchant may
wait for the transaction to clear and confirm with user in
several different ways that he/she won’t do a chargeback. The
transaction may be treated like a pure cash transaction, so
buyer may have to ask seller for a refund. The system might
only allow very trusted sellers to take a buyer’s money so the
merchant’s risk is that the buyer’s machine is attacked. This
feature may be coupled with other benefits for both parties.
Consumers may pay a reload fee depending on a reload
source (and amount of reload), thus the service is free to
merchant and very cheap to consumers. Also, OnelD canbe a
gateway to other payment mechanisms, so if a site imple-
ments these methods, they can cover numerous different
micro-pay schemes. A merchant pays a fee to apply to be
approved for micropayments, and their revenue may be
placed into an escrow by OnelD.

[0437] Micro-payments may also be accomplished using
installed client. The user may click on link on website which,
if user agent supports OnelD is,

[0438] OnelD:pay?to =amazon&amt=5.
23USD&for=book&tid=23423272&rd=http://xxx.
com/micropurchase

The “tid” can guarantee that no double billing takes place.
After clicking, a browser client pops up a window so that the
user can confirm the payment. The signed payment is sent to
the site appended to the “rd=URL”. It includes the name of
the OnelD compatible and authorized cash vendor to ask for
the funds. A unique expiration date/time on the payment can
guarantee uniqueness (a cash vendor then only has to remem-
ber unique time codes for very short time window). The site
verifies it can cash in the payment and then releases content or
gives an error page (“money failed” or “looks like you hit
cancel”). Payment is then credited to the account associated
with the OnelD of the seller. If user agent doesn’t have a
OnelD client installed, the link presented to the user for

US 2012/0323786 Al

micropayments should resemble Facebook’s protocol so that
the user gets a window to confirm the request and complete
the transaction.

[0439] Some embodiments may require prerequisites for
web-based micro-payments. First, there could be a compel-
ling reason for a merchant to implement this system, so
OnelD is designed to make it easy for sites to implement and
merchants are not charged a fee. Merchants may be qualified
to ensure that there is no unauthorized charging taking place
that would anger customers. Funds could be cleared before
they’re allowed to be spent. Also, chargebacks may be limited
to the merchant.

[0440] In order to mitigate fraud in micro-payments, the
buyer can register a dispute w/funding source (ACH or CC)
and can ask the merchant for a refund, but it could be treated
like a cash transaction. The buyer can require cell phone
notification on every micro-transaction if he wants or if
exceeds a dollar limit per day. The OnelDs that are payment
enabled should be “hard to get” so the user’s data can’t be
verified to match their credit card and the money can be
withdrawn from their bank account when their IP address
matches the address on their credit card. Also, shipments of
hard goods should go to a user’s registered address.

[0441] Inone embodiment, credit card numbers could only
be linked to a single OnelD account if the user wants OnelD
to sign that the user owns it. That way, no one can ever “steal”
someone else’s credit card if they’ve already registered it.
[0442] The OnelD system may be used in additional appli-
cations. For example, a user may change their address, phone,
email, or credit card, by updating only one set of information.
Identities may be easily verified. For instance, the user may
prove to a bank that they are who they say they are by telling
them their OnelD alias and confirming on their phone or PC.
Websites may be logged into using a smartcard. An SSO may
be used for all websites, even those that have not been visited
before by simply clicking to agree to give the website the
required information. Sensitive personal information could
be stored in a secure repository which only authorized people
could access pieces of Authorization can be revoked at any
time. Users could tap their OnelD card on a reader to transmit
their personal information instead of filling out a long form.
Security breaches like SONY could be prevented from hap-
pening again, and users would not have to worry about their
bank account or PayPal account being cleaned out. Micro-
payments could be made from a user’s pre-paid accounts.
Finally, users no longer have to give out personal information
to an untrusted stranger to authenticate their identity.

[0443] When filling web forms, the following example may
be illustrative. United Airlines asks for a user for their name,
address, etc. The user clicks the “fill in with OnelD” button in
their browser. If any info isn’t in the OnelD repository, user is
prompted to enter it so it can be used in the future (is only
entered once). The information requested is then transmitted
to United Airlines. Alternatively, the OnelD could be fielding
using the alias, and the request could be confirmed using
smart phone or other similar device.

[0444] To register warrantees, a user may use the OnelD
app on their phone to scan a QR code on the registration form.
This may offer the advantages of larger distribution, less
competition, and may offer large benefits to the user and
manufacturer.

[0445] Similarly, credit cards may be eliminated. The user
may select on their phone what they want their OnelD card (or
phone) to “be” right now. It could be one or more things. To

Dec. 20,2012

log of all registered websites, the user may remove their
OnelD smart card from the reader and the client will remove
the session cookies.

[0446] If someone attempts to steal a OnelD identity, the
user can be notified when their OnelD is used from a new
computer, used on a new vendor, or used to withdraw a large
amount of money. The user can then confirm, deny, or “dis-
able that device.” Users can instantly add new notification
devices, but to remove any notification device may require a
PIN and a 48 hours lag so a thief cannot remove the user’s
OnelD device from the notification list without detection. For
large transactions, users can require approval of one of their
OnelD devices and require an approval time window. Any
denial within that time window can trump any approval, so a
thief cannot approve large transactions without detection.

[0447] In another embodiment, a OnelD identity may be
used to access physical locations, such as a building. The
building security system may request the OnelD, and a user
may respond with a OnelD or an alias. At this point, access
can be granted without requiring a badge swipe. Enrollment
can be done at this time or the phone. Ifa user’s OnelD is lost,
it can be managed through the OnelD system.

[0448] In another embodiment, the OnelD may be used to
acquire a boarding pass for a flight. The user may touch their
OnelD card to the NFC reader for access. This assumes that
the user supplied their OnelD when they made their reserva-
tion.

[0449] In another embodiment, services such as BOKU
that allow users to buy online with their mobile phone number
may also use the OnelD system. In other words, BOKU/
OnelD lets users buy online and in the real world with their
1D, e.g., the OnelD alias.

[0450] In another embodiment, the OnelD may be used to
access corporate networks. A user may place a OnelD regis-
tered phone near a NFC reader on their PC and type a PIN
code into a web browser plug-in. This allows an SSL client
side authorization to use the authentication in the phone. A
change in corporate applications may require SSL client side
auth. In an alternate embodiment, the OnelD Bluetooth
authenticator on the phone may be used to interface to and
existing Bluetooth reader on the PC.

[0451] In another embodiment, the OnelD may be used to
update a user’s personal information when changes occur. If
the user changes their work address, primary email, cell
phone, etc. it is usually a painful process to update all the
people in a user’s contact list. Using OnelD, users can track
their changes in mailing address, email, etc. as long as they
allow it and can see who has permissions, and revoke those at
any time because the ACLs are all stored on the OnelD server.
Magazines may track users; however, most others aren’t
equipped for this type of operation.

[0452] It should be noted that governments are already
using universal ID systems, e.g., the German 1D card. Addi-
tionally, private retailers are also using payment cards. For
example, the Starbucks card is used by more than 50% of
people with cell phones. Nectar has proved that merchants
will get on board a common standard if it is easy to use and
offers advantages.

[0453] Although some people are focusing on mobile pay-
ments; nobody is focusing on unified identity and authenti-
cation. Entrust focuses on identity-based security, but it isn’t
consumer focused and it needs to be designed for each type of
market.

US 2012/0323786 Al

[0454] This area represents a long felt need in the industry.
Technology and standards are now ready and affordable: A
$2.00 SmartMX recently emerged (supporting public key).
RFID standards and cheap RFID readers are prevalent. Cli-
ent-side SSL. may be clunky, but cheap RFID readers and
cards that do public key encryption are now available and
make it easy to carry an identity around with it first, and are
much more secure. Readers have integrated PIN pads. Addi-
tionally, consumers are ready: to eliminate passwords and
multiple cards in exchange for a highly secure and convenient
system. Costs are also low. There are gains to be made on the
manufacturing volumes created by the German government
for reading their ID cards and the variety of readers that have
been perpetuated.

[0455] In some embodiments, the aliases may be sold like
domain names. Annual fees may be charged to renew a private
key. Repository storage fees from consumers and licensees
may be required. Merchants may be charged a fee per card use
or per time period. Personalized RFID cards may be sold with
pictures, designs, and/or the like. These may be charged when
banks sell identity authenticated OnelD cards. Fees may be
charged for RFID cards. These may also be charged for
OnelD enabled RFID readers and software. These may be
charged to loyalty programs each time a new user is added via
aOnelD authentication or operation; however, this fee may be
waived if the OnelD card was purchased in the merchant’s
store. Fees can be charged for filling out credit card informa-
tion. Yearly maintenance fees may be charged for popular
aliases, such as “Steve”. Fees may be charged for each four
NT or loyalty registration using the OnelD mobile app.
[0456] Many other fee charging arrangements may also be
made beyond this listing. For example, websites may be
charged a flat fee to use a OnelD login. Merchants may give
customers a discount if OnelD is used to make a purchase.
Merchants may be paid for each OnelD sign up, and debited
the same amount for each OnelD consumed a guarantee that
they will break even. OnelD cards may be provided in lieu of
store credit cards.

[0457] Additional advantages offered by the OnelD system
may include a secure distributed repository with field based
ACL, thereby providing 100% visibility on who can access
information, and the ability to instantly revoke access rights
for anyone at any time. Decoy records may be used at the
repository. An out-of-band pre-approval process may be
required in high-value transactions with a response interval.
Authentication of off-line transactions using a card or alias
may be confirmed using a mobile device. A smart QR code
reader app using stored standardized fields may be used to
read data.

[0458] Therepository can be secure all of the time. Because
the data is encrypted, it could be published without danger.
Additionally, the endpoints could be more secure than they
are now. If a thief were to break into a merchant system, all
they would find is a list of OnelD UIDs. All private keys can
be encrypted. If a thief were to break into the OnelD reposi-
tory, all they would find is encrypted data and no private keys.
[0459] A PIN code may be required to supply an extra
security layer. If a card is lost or stolen, a PIN can prevent the
new “owner” from assuming the true owner’s identity.
Because private secrets are locked in a TPM module, the PIN
unlocks the secret so it can be used for a limited time period.
The PIN may also be used for maintenance tasks, such as
deactivating a card, revoking and/or changing the secret key,
authorizing new devices, or changing notification options.

Dec. 20,2012

[0460] Any registered OnelD devices with a screen can
authorize another OnelD device for a user. Since peer to peer
connections between OnelD devices are hard, the system may
use the device’s public key pair to transfer credentials. To
authorize a new iPhone device, a user may start the OnelD
app and deposit a request on the OnelD server. Any of the
other OnelD devices can retrieve the request and grant the
approval.

[0461] In one embodiment, the repository can track statis-
tics between buyer and sellers. For buyers, they could get the
number of times they were trusted by a particular seller, or the
number of times they were rejected by a particular seller (e.g.,
bad credit card, credit card declined, etc.). For sellers, they
could track the number of successful transactions, or the
number of refund requests.

[0462] In a secure form-filling application, the customer
may go to a website of an organization, including but not
limited to, charities, e-commerce sites, political donations,
etc. Using OnelD, the sites can avoid problems associated
with storing customer data (like the SONY problem) while at
the same time making it easy for user to make donations or
purchases. The site might not already have a customer’s
stored credit card information, so the user may click on the
OnelD fill-in button on the browser for local fill-in of infor-
mation. This minimizes work the site has to do, and doesn’t
compromise security much (since if the PC isn’t secure, a
spammer can just load his site and extract all info). In
response, the browser bar asks (1) whether to automatically
fill in this info on this domain in the future, and (2) whether to
also submit it for the current transaction. For example, a user
can go to their bank URL and be automatically logged in.
[0463] From a technical perspective, the login button on
seller’s website is a simple hyperlink to a page within their
own site that requires SSL client-side authentication, such as
https://'www.seller.com/login. Using the OnelD client in the
browser, it can do an SSL client side auth using a public key
set based on who the user is currently logged in as. The status
bar can show the user who they are logged into the browser as.
The login requires a user’s OnelD and password. The web-
server passes on the info in the certificate, which contains the
OnelD UID of the user and his current email addresses. These
are matched to user records to find the user’s account so he
can be “cookied” for subsequent requests. If no account is
found, the user can be directed to an account creation page to
fill out which he can do with OnelD. That account creation
page also has a box for the user’s OnelD UID so that the user
can authenticate unambiguously in the future even it his email
address has changed.

[0464] In an alternate embodiment, the login button on
seller’s website is a simple hyperlink which has a challenge
unique to the website (which the seller can change as often as
they like or just leave static), such as http://www.sellercom/
login?challenge=234232. If the OnelD client is installed in
the browser, it can request that URL from the server, and
append the answer to the challenge based on who the user is
currently logged in as. The client also appends the signed
OnelD certificate of the user who is logged in. All of this data
may be represented by one long string which is passed, along
with the challenge, to the OnelD API to authenticate for the
user.

[0465] The status bar on the browser can show the user who
he/she is currently logged into the browser as. Logging into
the browser might require your OnelD and/or password OR
PIN and/or NFC phone or OnelD smartcard. These options

US 2012/0323786 Al

can be configured by the user. The seller can use the OnelD
API to authenticate that the challenge is correct and that the
credentials are correctly signed, then uses the OnelD UID of
the user and his current email addresses in the certificate.
These can be matched to user records to find the user’s
account (by trying the UID first). If everything is verifying to
be correct, the user can be logged in.

[0466] In an embodiment for logging in to a hardware
device, such as a PC, a user can use a PIN code to authorize a
PCto read the OnelD device (i.e., a smartcard, NFC phone, or
Bluetooth app). The PIN length may be chosen by the user.
The OnelD client can be installed in the user’s browser, and
may only be required to be installed a single time. When a
user uses their computer, they can put their phone or wallet
near the NFC reader. For Bluetooth devices, 30 ft. may be
considered “near”. The user can click the login button on any
participating website, and they are instantly logged in. The
user can also choose to optionally auto login in whenever
visiting the site in the future. The browser status bar might
show the current login state. To instantly log off all websites,
the user may simply leave, taking their cell phone with them.
The user might be able to set a desired delay period for the
time-out, or auto log-off.

[0467] Instead oflogging into each site, a user will log into
the browser to activate his identity. The browser login can
authenticate the identity of the user with the remote site.
Once, logged in to a browser, the user can use the one-click
form filling feature, use micro-payments done with digitally
signed cash, and change the user’s information all in one
place. Off-line authentication will use the alias (“Steve”) and
a smart phone app to confirm. A wide range of plug-compat-
ible secure “devices” (NFC phone, smartcard, Bluetooth
phone app, etc.) can be selected by the user to hold their
private key. The user can change various options and devices
to fit each situation. Additionally, information can be released
granularly, where a user is in control of releasing every field.
Critical transactions can require approval without dissent by
the user within a time window specified by the user. All
transactions (authenticate, micro purchases, information
releases) can take place between endpoints without any cen-
tral dependency/bottleneck as is done in other solutions, such
as Facebook, Minno, etc. Info that is released can be cached
in the endpoints, and updates can be pushed to the endpoints
from the repository.

[0468] Because using forms by sending the encrypted fields
requested could be considered overkill, there may not need to
be “super security” on the PC. However, if a spammer has a
user’s PC, he can send the user’s information anywhere
unless the user has required a PIN code for every new desti-
nation, even though this could be easily keyboard logged.
Also, the massive programming changes on a site would be
prohibitive.

[0469] LikePayPal, ifauserknows someone’s OnelD, they
can send them money. Similarly, users can pay bills if the
biller lists a OnelD alias on the bill. In one embodiment, the
user can simply enter his/her OnelD and the amount to pay the
bill. Content providers may also benefit from certain features
of the OnelD system. For example, the system may make it
easy for anyone to charge for their content by showing teaser
text and a OnelD micropay URL to get to the rest of the
article. Content providers could also require a OnelD to pur-
chase shareware software, or may charge per minute access
rates. Content may include online articles in online newspa-

Dec. 20,2012

pers, blogs, etc., videos, music, charity or political donations,
club event signup, and a payment mechanism for ActBlue,
Evite, etc.

[0470] To deal with field name conflicts in a form-filling
embodiment, there are a set of standardized OnelD field
names to minimize the amount of work a user must do to fill
out a form. If a site uses a non-standard name, that name can
be stored both globally and relative to the site. On lookup of
a field, the system can look for a match starting from site
specific names, ranging to the most general names.

[0471] In one embodiment, the OnelD UID is an 8 byte
word. The first 2 bytes represent the creator of the UID. The
remaining 6 bytes are randomly chosen and checked to deter-
mine whether they are already in use. Therefore, each creator
has their own name space.

[0472] If offline authorization generates too many invalid
pending authentication and/or information release requests
for a particular user, the user can optionally fill in a OTA field
next to the OnelD field. This situation may arise due to
attacker executing a dictionary attack. The OTA is generated
from the OnelD mobile app, and the user can specitfy the TTL
on each OTA. Then, the user can tell OnelD to prioritize the
numerous authorized requests.

[0473] Regarding warranty registration, a user may scan a
card with the OnelD app to read a QR code with a product
name and serial number. The user may then fill in their OnelD
alias and mail it in. The user may also fill in their OnelD alias,
along with a two week OTA code and mail it to register.
[0474] Once a user gives a site their information, the site
can, at any time, simply ask the OnelD repository for all the
keys or key. Values may be limited to those that the site is
entitled to get, or the site may simply ask for certain standard
fields, e.g., a ZIP code.

[0475] Because thousands of sites have implemented Face-
book login, the OnelD system in one embodiment may dupli-
cate this, so ifthere is no client installed, it will use the method
used by Facebook logins. The Facebook technique works
from an Apple iPhone.

[0476] One problem solved by the form filling embodi-
ments is that websites will use the same name and expect
different values. For example on a login, some forms want a
username, while others want an email. If the OnelD system is
not corrected by the site, it may use the official field values as
defined. If the system is corrected, is may instead use those
values on that domain.

[0477] Using OnelD, sellers get a permanent connection to
user’s new email address, etc. if they change it. Sellers can
have access to user’s credit card info (if they allow it) so that
their records stay up to date. Most sellers may compete with
Facebook and other login services, and don’t want to help
promote them. Sellers may be granted access to trusted infor-
mation about the users (e.g., how many “bad” things have
been reported for the user by other sites). Multiple OnelDs
can be hard to get, so if they use it to log in they likely aren’t
a spammer. OnelD authenticates the user so they are less
likely to be a spammer and more likely to be a legitimate user.
If'the user has the client installed and has a smart card or NFC
phone, the user can be immune to keystroke logging, which is
key for bank logins. Email and other information needed by
seller can be matched, and multiple emails can be verified
using a user’s OnelD. The interface is similar to Facebook’s,
and both API and end user experience are therefore easy to
implement. Standardized field names may facilitate a larger
number of fields, so the seller can learn more about the users.

US 2012/0323786 Al

Users get to decide what they’1l give to the seller, so the seller
can ask for a lot of demographics. OnelD supports micropay-
ments onaseller’s site if they logged in with a OnelD. Ifauser
has the One ID client, they can login even if OnelD is down.
All stored information can be very granular, so a seller can ask
for exactly what they want to access. OnelD provides every-
thing sellers need to link to existing account or create a new
one, including preferred screen name preferences. Unlike
Facebook, there is no single point of failure. For example, the
Facebook login is insecure, and is vulnerable to keystroke
logging, phishing, bad actors at Facebook, attacker attackers
who break into Facebook, and guessed Facebook passwords.
[0478] The software for OnelD may be given to major
banks to market. Therefore, banks will be enabled to promote
OnelD instead of competing with it. A common fee structure
may be established so that merchants can accept OnelD-
authorized cash. For example, four fees may be used, includ-
ing buy in, cash out, seller, buyer fees. Sellers typically won’t
care about who they are getting the cash from if the fee to the
seller (and cash out) is a fixed percentage.

[0479] In one embodiment, the invoice may comprise the
following URL: “OnelD:pay?to =Amazon&amt=5.24US
Dé&desc=“USB 3.0 500 GB hard
drive”&order##=23432423 &jump=http://stslkklfsklfaksfl-
skdkfs”. If an attempt to make the purchase fails, the browser
can stay on the same page. If the attempt is successful, the
browser can call that URL with signed copy of the invoice
(without a jump). Then, the website verifies, tells the payment
vendor to make the cash transfer, and delivers the content
ordered.

[0480] In determining which micropayments should
require a PIN, the card might only authenticate for the bearer
if the bearer types in the PIN code either in the phone app or
the integrated keypad on the reader, or in the browser. In some
cases, that PIN is sent to the SmartMX. This is a two-factor
authentication. One exception might be to authorize micro
purchases (like a parking meter or a subway) so long as these
charges are under some maximum threshold set by the owner
between PIN authorizations. For example, the smart card will
do up to 20 monetary transactions for up to collectively $50
without having to be PIN authorized again. Users might even
allow the system to do some limited number of authorizations
without a PIN. In one embodiment, entering a single bad PIN
could cause the card to stop doing all authentications until the
correct PIN is entered. Entering five consecutive bad PIN
codes could erase the private key on the user’s device. For
smartphone, a PIN requirement could also be time based,
such that the PIN-less authorization is disabled after 12 hours.
[0481] There are at least four options for the login process.
(1) A smartcard on reader with a PIN pad, (2) Smartcard on
reader without PIN pad where the PIN is typed in a browser;
(3) if the user’s phone’s NFC has been set by the OnelD app
(which requires a PIN), just setting the phone near the reader
is sufficient; and (4) A user may type a username and PIN in
the browser plug-in—the username identifies the OnelD key
pair to use, and the PIN decodes the private key so it can be
used. After using one of these four options, the user may then
hit the login with OneID button, and the browser will instantly
log the user in.

[0482] OnelD is uniquely positioned to succeed with
micropayments because websites are more sophisticated,
consumers are buying content, and content providers e.g., NY
Times, Washington Post, Wired, etc. are charging for content
that was previously free. If a user loses their card and some-

Dec. 20,2012

one finds it, they may not be able to use it without a PIN. In
one embodiment, five consecutive PIN errors will erase the
private key on the card/device; however, the user can restore
it from the client if it was saved with the user’s private key in
the repository (in encrypted form).

[0483] Smartcards can be used offline, and can be set using
the client so it will only do a limited number of authentica-
tions and a limited dollar amount of transactions with a max
dollar limit if a PIN is not present. This way, a user can use it
on the subway, or to authenticate himself/herself at a hotel
securely. If stolen, the use counters can quickly disable the
card from authenticating. The private key can be recovered
and restored from the repository if the user opted to save this
with OnelD. The user can be prompted with a prompt of their
choiceto recall their password. The answer can be the decryp-
tion of the private key. If answer is wrong, an attacker will be
unable to decrypt the user’s data. Generally, passwords
should be strong. This way, if a user loses their private key
because they didn’t back it up, they can still access all of their
data.

[0484] In one example, a user visits a doctor’s office. The
doctor asks if he can see the user’s insurance card. The user
canreply by saying “I trust you. I can give youaccess to all my
data for 10 minutes. My OnelD is Steve and I’ve granted
‘DoctorMarcusWelby” universal access to my data for 10
minutes.” In other situations, the user could restrict the doctor
to just items with a “medical” tag. Alternatively, the user
could have touched a phone to the doctor’s NFC pad, and then
hit “approve” on the OnelD app to transfer the doctor the
information requested. A QR code also be scanned, and then
the user could hit “approve” to release the info requested by
the URL.

[0485] Advantages to the OnelD system include the fact
that all operations can be peer-to-peer, so they are faster than
other alternatives. There is no single point of failure. Login
credentials cannot be guessed. The system could be immune
to phishing because there is no username/password. The sys-
tem could also be immune to keystroke logging because there
are no keystrokes. The system could also be also immune to
break-ins and rogue employees because the repository con-
tents are encrypted and the keys are unknown to the OnelD
repository. If a smart card or NFC phone is used, the system
is even more secure than an RSA key fob and more convenient
since no typing needed.

[0486] Attacks may be detected. A SmartCard/NFC chip
can be programmed with a one way counter that increments
each time an authentication is done. Counters can be specific
to a type of authentication, e.g., OnelD web login, OnelD
purchase authorization, etc. By monitoring these counts,
users and the system have clear visibility into whether a PC or
mobile phone is compromised by an attacker on the PC/phone
calling the authorization device.

[0487] Inone embodiment, the OnelD system may be used
to register and vote in elections. A user may register their
OnelD with the registrar. The user may then go to the state
website and click “login with OnelD” and vote. Alternatively,
a user may go to any other PC (you own or someone else’s)
and login with OnelD to vote. After voting, the user may
select to “lock” the vote, so that it can be permanently locked
in and nobody can change it.

[0488] For making micropayments, a user does not need to
be logged into the site to make a purchase. For example, an
article has price and a buy button, e.g., 10 cents and a button
that says “Buy with OnelD.” The user may click on the buy

US 2012/0323786 Al

link and send to OnelD a sellerOnelD, a price, a description,
a unique itemID, and a callbackURL. The buyer’s client
checks the purchase notification authorizations for the sell-
er’s claimed OnelD. If the user confirms the purchase, then
the buyer’s OnelD agent calls the callback URL and authen-
ticates that the callback URL can authenticate the seller’s
OnelD. After doing that, it either appends the buyer’s signa-
ture of the money request, or includes it in the headers. The
buyer also appends the OnelD device name that made the
request, and the purchase sequence number for that device.
These are part of the signature, and they prevent replay
attacks.

[0489] Next, the seller redeems the money transfer (after
the OnelD is authenticated on the transfer with OnelD, and
the signed money transfer is passed), and if the buyer has the
required funds, the buyer’s signature is good, and the seller
can authenticate with the cash server, the transaction will be
approved. The seller then delivers a signed receipt for the item
number back to the buyer along with a URL for where to
present the receipt to obtain the content or goods. The receipt
also has an expiration date for the purchase, if desired. The
OnelD repository makes sure the public keys haven’t been
invalidated in granting the money transfer. Also, the buyer is
pushed (or can pull) a receipt of the purchases from all devices
associated with his OnelD.

[0490] For micropayments, the OnelD paylink is simply a
URI of the form “OnelD: to =GreatPics&amt=5.
00USD&desc="Rome
picture”&itemID=23423423&itemURL=xhttp://. . .” Using
aunique item ID prevents double purchases. The client can do
a mutual authentication, and if it is OK, it will generate a
signed payment that either includes that as an argument or in
the request header when it calls the item URL. The Site will
try to cash in the signed payment, and if it is successful, the
Site will deliver the goods and send receipt to the buyer. Ifnot,
the Site returns an error page. Since the client (iPhone app or
browser plug-in) is linked to OnelD, the client’s cash balance
and transaction log will update to reflect the new transaction.
The Site can’t use the browser’s request to see if OnelD is
installed, since might be on a smart phone. This is why a
separate “Buy With OnelD link” is used.

[0491] A micropay proxy may be used so that anyone can
be able sell content without having to modify their webserver.
A proxy can handle most of the heavy lifting on behalf of the
customer so that the system works as normal, but the URLs
provided are at the proxy, rather than at the seller. The final
content is on the site, but in a secret location, such as search
results of a news archive, or large images corresponding to
thumbnails on an adult website. In one embodiment, each
web page is encrypted using a symmetric key.

[0492] In one particular micropayment example, a user can
buy an article on the NY Times, and they should be able to
come back to the article repeatedly and not have to pay. The
big question traditionally has been, “who remembers the
purchase?” This has traditionally been the site because there
was no mechanism for the buyer to do this. OnelD keeps this
convention because the purchase that is made can be compli-
cated, (buying three articles or one hour of access). The site
needs to remember each buyer’s purchases. Since the buyer
can be identified by their OnelD, this is quite easy. Attempting
to purchase an item that the OnelD system already has access
to is also easily detected. The seller simply never cashes the
cash requested if the buyer has already purchased the item. In
addition, all the receipts are stored in the repository and

Dec. 20,2012

pushed to all clients. If a client tries to buy an item for which
he has an unexpired receipt, it is treated as already purchased
so that there is no user confirmation required. The buyer
simply presents his signed, unexpired receipt for that item to
the seller. To buy hourly access to all content, the transaction
may give the content the same item number and issue a receipt
for that item that expires, for example, in one hour.

[0493] To make micro-payments, a user may set confirma-
tion preferences on purchase links on a per OnelD seller
basis. This will silently auto confirm purchases if they are
below the user’s thresholds. The user can change the defaults
at any time. For example, the user may set preferences to
require confirmation for purchase amount over a threshold
dollar amount, cumulative purchases for a day, or week, over
athreshold dollar amount, or a total number of purchases over
a threshold number.

[0494] When setting purchase limits, the user can see
everything about the seller’s OnelD that he has authorized for
public viewing. This may include the date the seller joined,
how many times the user has logged into the site before with
an alert for zero, the name, address, phone, etc. of the seller
and whether OnelD has validated the seller’s identity (e.g., is
this the real Amazon, or another site with a similarly spelled
URLY?), the seller’s domain name and whether the domain
name is validated by OnelD, the number of transactions
made, the number of refund requests, the buyer rating of the
seller, the buyer’s comments with the buyer’s OnelD (good
and bad listings like ratings), and the number of OnelD iden-
tity-validated accounts who recommend the seller.

[0495] For pornography sites, the limits may be high to
make browsing convenient. Such sites can then make all
thumbnails free and conveniently charge on a per image basis
for content. Sites can also charge for an hour of access or for
10 days of access or “buy 100 images for only $1”. Those
deals are managed by the provider; the client just filters the
payment request notification threshold that require manual
confirm. Buyer doesn’t have to worry ever again about unau-
thorized charges on his credit card from companies like
CChill.

[0496] In the micro-payment context, the system may pro-
vide for “no questions asked” instant refunds. The system can
terminate the charging privileges of any vendors with a high
rate of refund requests. If a user uses a refund request, either
in volume or amount, the system can limit or terminate the
user’s privileges. This feature may work best with soft goods
due to the refund policy.

[0497] The OnelD will work on a platform; however some
platforms may require a login for use. A logging operation
may begin with the user clicking the “Login With OnelD”
button to access oneid:login?http//site.com/oneid_login.htm.
The OnelD client then does a 4-way mutual auth with the
server (using SSL client auth) and gets back a URL with an
OTP to call to login. The OnelD client then passes that URL
back to the web server, which makes the request and is given
back a session login cookie along with the just like is done
now with a standard login. Just like micropayments, if OnelD
is up (whichis usually the case) the person can see the validity
of the site he is logging into before he hits the login button.
This eliminates phishing attacks. The user can say “trust this
site in the future and log in without prompting when I hit the
“login with OnelD” button on the site. Statistics for the site
include how many times the user has logged into site before.
This feature prevents phishing from “look-alike sites.” Site
statistics also are available for this device, and globally for all

US 2012/0323786 Al

other user’s devices (via the counter in the repository). An
alert can be triggered if the OTT has already been used.
[0498] The OnelD system provides authentication, and the
random challenge-response should be part of the same con-
nection, or all the authentication should fail. Because some
smart phones don’t do SSL with client auth, the OnelD pro-
tocol has to deal with that case. A lot of sites that a user may
log into do not use SSL for performance reasons, e.g., Face-
book, LinkedIn, Yahoo mail, etc. Therefore, the smart phone
app/browser plug-in could do the authentication handshake
within a single TCP/IP socket in order to get the authentica-
tion token from the site using OnelD credentials, e.g., SSL,
client-server auth or equivalent (“keep alive” http would
work).

[0499] One key feature is that a user cannot simply buy
stuff, give refunds, and then change their identity to repeat the
process over and over again. If a user enables charge privi-
leges, the system makes sure that the user is a real unique
person that the system has never seen before. For example, the
system could determine whether a credit card address
matches an address on file, whether the DOB matches birth
records. The system could also send mail to a user’s physical
address, require a credit card, bank account, corporate email
account at a trusted domain, send an SMS verification to a
unique SMS number; use Facebook and/or LinkedIn verifi-
cation, or use some other type of verification by people who
can vouch for the user.

[0500] In the context of a loyalty charge card, a user may
swipe the OnelD universal mag stripe/barcode/QR code loy-
alty card to get loyalty credit, and charge a purchase at the
same time. In some transactions, no PIN or signature would
be required. Swiping the OnelD card will automatically join
the loyalty program if the user wasn’t already a member. This
feature can be disabled, requiring a phone transaction, or
something similar to join the program. Merchants who agree
to support the OnelD card also agree to distribute it. Credit
cards are stored in order of preference. The store chooses the
first one on the list they accept, so a user can put their credit
cards in their preferred order. There is a special provision for
HSA cards.

[0501] Using the OnelD card as a loyalty card offers ben-
efits to the buyer. Buyers authorize each new store location
once. Someone who finds a user’s phone does not know
which stores have been authorized, and thus does not know
where to use it. Any swipe requiring a confirmation done
without a confirmation will disable the card from use any-
where until the card is re-confirmed. Therefore, it will be
instantly disabled on first abuse. Additionally, a POS system
should display a picture of the authorized card holder when
card is swiped. Purchases are faster and easier because they
require only one card to swipe and no signature or PIN num-
ber ifit is used a preauthorized location. A single card works
for RFID, mag stripe, QR code, and barcode readers. Further-
more, reward points can be managed from a single app, and a
user is not required to fill out a form to join a loyalty program.
[0502] Using the OnelD card as a loyalty card also offers
benefits to the seller. Higher signup rates to loyalty program
may result because users are not required to fill out forms.
Customers can be tracked even if they move. Card printing
expenses are eliminated. Customers are happier because only
one card is required for multiple loyalty programs (the seller
does not have to convince a user to carry yet another card).
Because multiple loyalty programs can be tracked with a
single card, sellers may cross promote to users.

Dec. 20,2012

[0503] The OnelD system allows users to specify an alias
for their UID. For example, an alias may be “Steve”,
“SteveKirsch”, “StevenTKirsch”, “StevenTKirsch”, “stkir-
sch”, or “spamguy”, “Kirsch@propelhockfield@mit”. In one
embodiment, an alias does not include spaces, and case does
not matter. Popular aliases, including common names, may
cost users more money. An alias may be changed at any time,
and the old alias may be auctioned to the highest bidder,
eliminating poaching incentives that plague trademarks. Gen-
erally, only one alias is allowed per OnelD, which gives more
people a chance to use their preferred alias. As a default, free
accounts will use the user’s primary e-mail address as the
alias. For paid accounts, a user may choose a second alias,
such as their twitter name. Also, paid accounts may be
allowed to use shorter numeric aliases such as “123”, making
it easier to enter an alias on a phone.

[0504] Using current solutions, banks and financial institu-
tions require multiple passwords for authentication. For
example, the Silicon Valley Bank requires three different
passwords using three different methods. It is secure against
keystroke logging and screen captures, but takes more than 60
seconds to complete the login process. This is prohibitive to
most customers.

[0505] In order to use a OnelD card when the system is
off-line, certain information may need to be stored on the
card. Any remaining information can be stored in encrypted
form in the identity repository. Information that may be stored
on the card can include a cash balance, a list of unsynched
off-line deductions and reversals, the OnelD alias, the OnelD
UID, the name, addresses, phones, emails, pictures of the
user, a list of the user’s top three preferred credit cards, and an
ECC key pair. Other information may be stored on the OnelD
card that is not listed here.

[0506] Inordertokeep data available within the repository,
data may be distributed. For example, the system could
spread data over 10 machines in 10 different data centers,
with each item replicated 3 times. Non-sensitive data may be
stored on partner servers. Sensitive data is kept in the OnelD
repository. Although the fieldname is obscured, a byte deter-
mines 8 properties of the data, e.g., that it is “sensitive”. If the
system detects that a large amount of sensitive data is being
accessed at a time when it shouldn’t be (e.g., at the billing
time for that customer), access is cut off so security breaches
are eliminated.

[0507] To implement the OnelD smartcard, BasicCard is a
very cheap option, with a small amount of RAM and built-in
ECC. This is sufficient to store “basic info” on the card. It is
also a cheap development system and based on SmartMX.
NXP SmartMX is an industry compatible path and is pro-
grammed in Java, and thus very compatible. To facilitate
payments, ClearXchange may be used. This is like PayPal,
but run by the banks themselves without fees. Therefore,
money may be sent person to person using their email address
or cell phone as a OnelD proxy. OnelD adds value by authen-
ticating the sender. One advantage is that even if the user’s
computer is hacked, and the attacker knows all the user’s
passwords, OnelD will deny the attacker access to make a
transfer. OnelD requires a PPA for any clearXchange transfer
that goes to a person that the user hasn’t already sent money
to before. The PPA is required if the user sets up their account
to enable this and, and consequently it cannot be easily reset.
The money transfer can be sent via the web, or it can be done
with a phone call, giving the person an OTP which has a PPA
endorsement.

US 2012/0323786 Al

[0508] In yet another embodiment, authorization by per-
sonal presence is added. Authentication includes verification
that the person requesting the transfer is really the person,
even if the persons computer has been hacked and is con-
trolled by an attacker, including watching a PC screenshot,
and keyboard logging every username and password of the
user. The OnelD guarantees that the transaction was initiated
by the person, and not by the hacker even with complete
control of'the PC. Personal presence authorization may use an
NFC reader with a OnelD button or a cell phone without the
button.

[0509] One thing an attacker can never do is physically
move something. Personal presence authorization (PPA) is an
authentication request that only gets processed if the user hits
a button on the reader. Once a party asks for a PPA, no more
cryptographic authorization occurs until the button is
pressed; all subsequent transactions are blocked.

[0510] A PIN may be used on a computer to verify that the
computer can read the OnelD card. The computer can store
the PIN away. Therefore, in a browser plug-in, a user could
enter their OnelD and PIN to “log in” to the browser. A user
can put their smart card or cell phone near the reader (or it has
a TPM chip). For any significant transaction, the button may
be required to be pressed before the transaction happens. The
button is directly connected to the reader and is sent to the
smart chip on the phone or card in such a way that software on
the PC can never send that. Therefore, a single button on the
reader provides a large amount of security since an attacker
can never physically press it.

[0511] In embodiments where hardware NFC readers are
used, the NFC reader can be integrated into the keyboard to
save cost and save a device. The NFC reader could have a
button or a capacitive sensor for PPA authentication. For
example, the Reiner reader could be used: a user slides their
card. Other less expensive NFC readers also exist, such as the
ACR122. In one embodiment, an NFC reader is used with an
integrated single key for PPA where the button sends it to the
chip in a way that is different than by software.

[0512] Cases exist where a requester might ask for a PPA.
For example, a user may log into a new site they have never
been to before, transfer money to someone they have never
transferred money to before, change (add or remove) a noti-
fication or approval device, create a new device, change the
type of transactions that require a PPA (a user may tell OnelD
to require a PPA for all micropayment signatures), change
PPA parameter, like timeout (within reasonable limits, e.g., 2
seconds to 60 seconds) or whether to shut down until the
button is pressed. and/or log into a sensitive site like a bank.
[0513] Secure approvals may also be used. If the user does
something sensitive like make a large money transfer to
someone they have never sent money to before, their financial
institution should require “secure approval.” This means that
the system may push notify all notification devices and wait at
least N hours for a denial, or until at least M notification
devices have approved. This means even if an attacker logged
into the user’s bank and tried to wire funds, the attacker would
fail. Alternatively, a user can allow it to be approved by any
single device other than the one initiating the change. Thus, to
approve a new device, the user may need two existing devices
to approve it, or just use one to approve it and wait the preset
interval.

[0514] Several cases exist where a secure approval may be
required. For example, the user may change (add or remove)
a notification or approval device, create a new device, change

Dec. 20,2012

time limits for waiting for authorization, change the mini-
mum number of devices required to approve a “secure
approval,” and/or change the number of devices that can
concur to short circuit the wait time.

[0515] A PPA request is a standard authentication request,
but the challenge sent can start with “PPA”, which is a signal
to the authenticator to require personal presence before
authenticating this transaction. Personal presence means the
button could be pressed after the request is received and
within a certain time limit that is configurable. The user can
also configure whether all subsequent transactions after a
PPA that times out should be denied until the button is
pressed. The time limit and subsequent request handling is all
stored in the smart chip and can only be changed on a request
that is confirmed with a button press within 10 seconds after
the change request is made. The reason for the authentication
request is shown in the client, .e.g., new website, bank web-
site, money transfer, micropayment, info transfer, and/or the
like.

[0516] The OnelD system may operate using a protocol. In
many cases, there is a OnelD app running in the phone or on
the PC. In one embodiment, the browser plug-in for Firefox,
etc. links to the application. This way, the plug-in can show
the user exactly what authorizations are happening and show
the user if a PPA is being requested by any application on the
user’s PC (rather than just for web applications). Therefore, it
looks like there is a lot going on in the plug-in, but it’s really
just a GUI front-end to the underlying app on the PC, which
can be called by anyone (e.g., programs). For smart phones it
is similar. The OnelD app is a separate app and any app on the
iPhone can use it since it calls the protocol and the callback is
a URL

[0517] In our system, OTP are more than just passwords.
They can be configured any way the user wants. A OnelD
with a OTP is very powerful. For example, it can be used to
log the user on, or only used to give information to a specific
person. User options for generating an OTP may include
(most of these are used simultaneously): length, type (com-
puter generated (numeric, alpha, or base-64) or user speci-
fied), maximum of N allowed uses (this is not really a “one
time” password” if this is greater than one), limitations that
the transaction could be less than a dollar amount, whether a
regular authentication is used, whether a PPA endorsement of
the authentication is used (i.e., is this a significant transaction
like a money transfer or change of notification options and
can only be generated by a human?), information permissions
that can specify which fields or categories are allowed or give
access to all categories, e.g., health, contact info (name,
address, and email), financial info (credit cards), absolute
expiration date/time so the OTP has to be used within a time
window (this is a strict requirement; it is not an “OR” to the
other clauses), relative expiration time (so it can expire 5
minutes after first use), the specific OnelD of the receiver (so
the information is encrypted with a symmetric key that is
encrypted with the receiver’s OnelD public key so only they
can read the info and make use of the info so even if the OTP
is used by an attacker it is useless; if this is not specified, the
first person to make use of it wins, e.g., you are saving time
typing in the OnelD of the receiver since you know nobody is
going to overhear you give the number; however, if the user
fills out a form, the OnelD of the receiver is great because it
means that the OTP is useless to someone who sees the user
fill out the form), whether it can be used only for the OnelDs
of'the first N OnelDs to cash in the OTP, for public terminals,

US 2012/0323786 Al

whether a user device should generate an OTP with all rights
to everything, but a limited time window, or if the user is just
visiting one site, they would just give it power to authorize
just one site.

[0518] A user can have as many OTPs outstanding as they
want. This means that they can carry a permanent full rights
password for use on machines they trust, and a one-time use
expiring password on machine that they do not trust. A user
can combine restrictions; for example, an OTP can expire
within 24 hours, or within 5 minutes of first use, whichever
one comes first. The OTP generated is just a key in a hash table
(the key is the OnelD OTP). The ACL and signed permissions
are stored in the OnelD repository, and then after it has been
accessed, the key is erased. OTPs are rare and are usually
user-generated, so requiring a PPA endorsement before it is
used by a receiver is generally desirable. OTPs generated
using a confirm key on the NFC reader can be tagged with the
PPA endorsement. OTP passwords can be configured to be
just a static password of the user’s choosing by making all
rights infinite, and by specifying that the user wants to set the
OTP string. Therefore, the user is in total control of the
security vs. convenience tradeoff.

[0519] In one embodiment, a user should only store their
private key in specialized hardware such as a TPM or NXP
SmartMX. With OnelD, if a user has authorized multiple
devices, each with their own public key set, there is no need to
keep a copy of their private key. A user should have a PIN
associated with that device to convince it to do authorizations
for the user, so if a user loses their card, someone can’t pose
as the user. It’s best if the PIN pad only shows the PIN to the
secure device and nothing else, e.g., integrated into the reader.
The card should erase its private key after a few invalid PIN
attempts to prevent anyone posing as the user. An NFC reader
should have at least one button that the smart chip can read.
This proves a person is there so a user can do PPA, which
prevents an attacker from using the secure authentication
device to perform actions. A PPA may be required for any
sensitive transactions, such as adding or removing a device,
adding removing notification device, or wiring money to
untrusted locations. The system can generates the key pair on
the user’s machine, and if the user wants to bank one of the
encryption key pairs, the system may symmetrically encrypt
the pair before sending it to another party with the answer to
a challenge. A device can use two keys: one for signing, the
other for authentication. If a user does not do any of these, the
damage is still mitigated due to the delayed approval process
for significant transactions. If a user believes their account has
been compromised, e.g., an OTP has failed; the user may take
steps to invalidate the keys that have been compromised. The
user will be referred to this checklist in the client app. There
are various traps, like transaction sequence numbers for each
encryption and authentication, and each device gets a trans-
action history it can check for duplicate sequence numbers or
sequence numbers that are far in the future or in the past.
These should be flagged to the user for a “one-time” acknowl-
edgment.

[0520] Sensitive transactions like bank transfers of money
out of your account can be delayed. These transactions may
be posted to a user’s OnelD, and pushed to all of the user’s
notification devices. Any single device can cancel the trans-
action. There is a wait period to allow the cancellation to
happen. The wait period is user settable and can be changed at
any time (as long as the user waits for the current wait period).

Dec. 20,2012

[0521] Ifauser keeps a backup encryption key pair copy in
the repository, a long password should be used with a time
lock it, e.g., 5 minutes past the hour. The time lock should be
atime that only the user would know and will not forget. The
repository will notify all the user’s devices of all attempts to
get the backup key. Each attempt costs $1 and should be paid
from a PayPal account that hasn’t been used more than once
for this purpose. This keeps the attackers from spending all
day trying to knock on this door. Interestingly, the repository
never knows if the user got the right answer. Only when the
user uses the key to decrypt your data will the user know. The
repository just decrypts the keys using the answer provided
by the user. For the user’s security, the repository purposely
doesn’t know if the answers are correct or not. A user is not
allowed to back up their authentication key pair (there is no
need, and it’s a security risk). But the user can provide mul-
tiple security questions and answers. The user only needs to
backup one of their encryption key pairs. That is sufficient to
recover all your information. Then, by proving that the user
can respond to the authentication challenges they set up for
their account (e.g., verify at least three of SMS, email
addresses, phone numbers, answers to security question(s)),
OnelD will sign the signature key pair that the user just
generated for their OnelD. Adding or changing a question is
a secure operation and requires PPA and a secure authentica-
tion method. If the user cannot authenticate, he/she will need
to create a new OnelD UID. If the old one is not paid for, it
will be removed (which is undesirable for you since it will
look like a new person to all web sites, banks, etc.).

[0522] Inonescenario, an attacker takes over a user’s com-
puter, and lurks until the user is going to do something requir-
ing an PPA. The attacker then uses the button push to log into
the user’s bank and wire all of their money to an associate.
The attacker hopes that the user thinks it is a bug and the just
PPA {failed. The attacker hopes the user retries their transac-
tion before the bank logs him/her out. Then, the user uses the
second PPA to authenticate the bank transaction. At this point,
the attacker takes over the browser client so it displays the
user’s transactions and not the attacker’s transactions. To
defend against this attack, the user may set notification pref-
erences for wires to people they have never wired money to
before to: (1) require confirmation on two different devices;
(2) notify all devices, and/or (3) wait a time period, such as
eight hours (or until three devices have approved the transac-
tion).

[0523] In another example, a company such as Apple asks
the user to enter their ApplelD and password. However, the
user is confused about their iTunes ID vs. their ApplelD.
Unfortunately, Apple didn’t give you an option to log in with
your OnelD. The user may just enter their OnelD and use their
phone or computer to generate an OTP created for authenti-
cation. Then, the user may enter those in the username and
password fields.

[0524] In another example, Apple will first try to look up
the login as an Apple account. If there is no match it will look
up the login using OnelD. If it finds it there, it will find the
account associated with the OnelD and log the user in. Note
that there could be a name conflict, and that this still works,
since it is only required that the username/password combi-
nation be unique. For example, Steve/23432 might log you
into SteveK, whereas the Apple user Steve/Jobs will log into
account Steve. OnelD will notify the user of the login in case
someone tried to steal their account. Usually this is just in a

US 2012/0323786 Al

transaction log the user can review unless they chose to be
notified, e.g., “notify me whenever someone logs into Wells-
FargoBank.”

[0525] To address the problem of spam, OnelD accounts
cost, for example, $10/yr., and every attempt is made to limit
accounts to one per person. Each OnelD has a spam com-
plaint counter associated with it. If a user wants to zero their
spam counter, it costs, for example, $10. Since everyone has
a OnelD, it becomes reasonable to require that every incom-
ing email be digitally signed by a certificate issued by OnelD
using existing S/Mime methods. Requiring use of the OnelD
signature is critical because unlike a normal digital certificate,
OnelDs are (1) relatively hard to get and (2) the system is able
to track the spam reports against that One ID. The email client
has a plug-in that displays a spam button and can report the
spam complaint against that OnelD sender back to the OnelD
authority that issued the OnelD to that user to increment his
spam count. Abusive reporters are ignored which prevents
blackmail attacks on legitimate senders. Legitimate bulk
senders pay a fee and receive a perfect reputation so long as
the complaint levels are within normal limits. The receiver
sets a threshold for what sender reputations are able to get into
his inbox. The reputation evaluation is done when the user
accesses his mail so that the user gets the benefit of prior
reports. If everyone uses this technique, and everyone reports
spam, and everyone has a spam threshold of 10 complaints,
then a spammer has to pay around $1 per message to get his
message out, making it completely economically infeasible
to send any more spam. Since the spammer doesn’t know
which receivers are filtering email by signature, the spammer
has to sign all his messages to be safe. Therefore, the mail
server can look up the reputation of the sender and filter out
unwanted messages before even reaching the client.

[0526] Another way to solve the spam problem even more
simply is to charge a fee for every relationship certification
issued by OnelD between a sender and receiver. Each proven
new person (registered at a bank or notary) gets a finite but
large set of, for example 500, free relationships. After that,
relationships cost a fixed fee per recipient, or each receiver
sets the fee for a relationship. Notaries or banks may be used
to validate the OnelD is associated with a real person who has
proven their identity and not already in the system.

[0527] In yet another embodiment, the best solution is to
establish a fixed fee for each one-way relationship estab-
lished. For example, if Steve wants to email Bob, Steve
should purchase (for a small fixed fee, e.g. 10 cents) a OnelD
mail certificate, signed by OnelD that never expires this
becomes a zero sum game where the proceeds of the certifi-
cate that are credited to the receiver won’t work because
spammers will sign up for all sorts of Amazon, etc. mass
mailings and drain the money out of legitimate retailers to pay
for sending spam. Therefore, if a user clicks “spam,” OnelD
can collect the fee, split it with an ISP partner, and revoke the
certificate. The recipient can specify a permanent revocation
of the certificate so that he can never be bothered by that
mailer again, or simply choose, for that sender’s OnelD only,
to specify a higher than normal fee to get a new certificate, or
require that a one-time use certificate be purchased for each
mail sent at a certain price. The sender can then decide
whether to pay the new one-time or per use fee that the user
demands, stop mailing the user, or simply mail the user less
often. Since OnelDs are hard for people and companies to get,
a company can’t simply just use a different OnelD to bother
the same user for the default price. This provides a huge

Dec. 20,2012

amount of spam control for a user, and legitimate users actu-
ally make a profit. However, all the “credits” are kept inside
the system, so spammers can’t cash out (which reduces the
incentive for gaming). In order to bootstrap adoption, the
system can specify that mail without a signature is handled
the current error prone way. Email with a signature is handled
the new way. Therefore, for best delivery, users should
attempt to purchase a certificate for everyone on their list, and
OnelD will only charge the user for people who have opted in.
This way, everyone at Yahoo, for example, can be opted into
the system since there is no downside. Companies like Yahoo
like being on the leading edge. The SMIME can be stripped
before delivery and replace by a notation that Yahoo checked
the security.

[0528] In yet another embodiment for combating spam,
because the relationships are purchased from OnelD to
OnelD, a user will never want to switch their OnelD since
they will lose their investment. OnelDs are relatively hard to
get; users should prove that they are a unique person. A
spammer cannot sign up millions of people a day like he can
now. The system can just add the OnelD-OnelD certification
to the existing certification that the user is now using when
they send mail out. Therefore, a user only has to hash the
content once. If someone cancels a certification, and a user
mails them again, the cost for that certification goes up by a
factor of two. So, it gets exponentially more expensive for
someone who a user doesn’t like to keep mailing the user,
which gives the sender a huge economic incentive to take the
user off their lists. The certifications expire in a year, which
also means they won’t keep mailing people who never
respond.

[0529] Unfortunately, a lot of senders will gladly pay $0.10
to reach a user just once, since that is less than the cost of a
postage stamp. This was the problem with Goodmail. To
avoid this, the higher your complaint rate, the system can (1)
cancel all of a user’s certificates (2) make new certificates
twice as expensive to buy, and/or (3) limit the rate at which a
user can buy certificates. Mailing rights are only sold to
companies that are not “fly by night”, i.e., just created. The
system can also “test mail” a random selection of the recipi-
ents to see if they approve of the relationship before the
certifications are issued. Therefore, a user pays a fee up front
for the system to validate their list based on the size of the list.
If the complaint rate of the random sample is high, the user
loses their entire investment. Otherwise, the system can turn
them all in to certificates for the user. This avoids any com-
plaints from users, even the first time. Companies like Yahoo
will love this, since it should reduce spam, yet allow legiti-
mate senders to have an incentive to clean up their mailing
lists. Sender likes this because their email can be marked a
legitimate rather than as potential spam.

[0530] The OnelD solution for spam includes a bonded
sender, an acquired by return path (that basically says that the
system should let through anything from these IPs), and
Attention Bond Mechanism protocol such that recipients can
claim the bond (which means spammers can set up accounts
and get money that way), and/or recipients sending back a
challenge.

[0531] Major transaction types include a login/authenticate
transaction. This may include an input (OnelD of site, Ses-
sionlD, Callback URL) and an output (call callback URL
with user signed {SessionID, userOnelD} tacked on at end of
the URL). Also included are information transfers. These
may include inputs (SessionlD, OnelD of site, Info

US 2012/0323786 Al

Requested, Callback URL) and outputs (call callback URL
with user signed {SessionID, userOnelD} and information so
that the site can associate the account with the OnelD). Also
included are money transfers. These may include inputs (Ses-
sionlD, OnelD of site, Invoice (part#, desc, amt-currency,
billerOnelD), Callback URL) and outputs (call callback URL
with user signed {SessionID, Invoice, PayerOnelD}, which
once received, Site signs it, uses https to OnelD with the { }
and both signatures). If money is in the person’s account, the
receipt is stored in the repository and pushed to OnelD clients
of the buyer so the buyer can see how much he has left in his
account and where all the money went. Each of these trans-
action types can be accomplished using smartphone or web
browser. Login/authenticate never relies on access to reposi-
tory, but if there is network access, the repository can tell
someone the reputation of that OnelD after authenticating
that the remote OnelD is authenticated. Mutual authentica-
tion of OnelDs protects both parties. Authentication of the
user is done with the signature of the input, so the plug-in/app
just authenticates the remote site. Generally, https:// callback
URLs are preferred for security reasons.

[0532] Form special fast cash transactions, such as parking
meters, subways, vending machines, etc., no Internet connec-
tion is required. Only OnelD devices which are permanently
secure (such as non-reprogrammable SmartMX) are eligible
for this type of transaction. OnelD loads cash, and there is a
protocol for anyone who is approved by OnelD for withdraw-
als. This can extract funds as well as post reversals (up to the
amount they withdrew). The card keeps a list of transactions.
An LRU cache of transactions are on the card, along with
current balance. Payment is only made if the biller cashes in
his signed IOUs. Companies with high complaint rates are
terminated from the system, e.g., who extract more than they
should. Cards are reloaded when connected to the Internet,
but can auto reload themselves a certain number of times
depending credit risk of the person.

[0533] Regarding the OnelD reputation system, “OnelD
verified” means that a user really is “Bill Gates” or “Ama-
zon”. Otherwise, the system rates OnelDs on trust with, for
example, a 5 star rating system. A user gets more stars if they
have been around for a long time with lots of positive feed-
back and very little negative feedback (like eBay). A ratio is
not used because ratios can be gamed with lots of phony
accounts.

[0534] In order to prevent phishing attacks, a login and
password are not used. Attackers can still phish for a credit
card, but there are three protections in OnelD. First, credit
cards are marked as sensitive. Sensitive data is only trans-
ferred to people who OnelD trusts (with a signed trust level in
their certification). Second, users can see the trust level of the
seller before he releases the information. Third, the release of
trusted data can require a PPA by default (but the user can
override this if he/she has approval by more than one device).
This will likely reduce the chance of something bad happen-
ing by at least two orders of magnitude.

[0535] Ifauser private key is compromised or lost, each of
the users OnelD devices has its own unique friendly name,
and its own unique public key pair, because some ofthe user’s
devices may be insecure (e.g., your PC has a private key
encrypted with a PIN). The private key is written once and
destroyed. It can never be read. A user can just create a new
device, then use one of their existing devices to confirm that
the new device is theirs using a secure confirmation method.
The entry will be replaced for the friendly name with the new

Dec. 20,2012

public key. Therefore, if an attacker succeeds in making his
key the official one, the user will know immediately since
their key will stop working. Since the user will have older
OnelD devices than the attacker, the system can tell who is the
real owner and who is the attacker.

[0536] In one embodiment, a user can set the same PIN
code on all of their devices, or a different PIN code on every
device. This configuration is their choice. In order to change
a PIN, the user needs to enter their old PIN. After a certain
number of failed attempts, for example five, the private key is
erased. In addition, each OnelD device has an administrator
PIN used to change the user’s administrative options (like
PPA approval, or number of invalid PIN requests before a card
is wiped). This should be different than the main PIN. If the
user forgets the administrative PIN, the user can restart the
device from scratch.

[0537] Ifauser loses all of their devices, the user’s data in
the repository is replicated four times in four different geog-
raphies. The user may just enter their OnelD and answer their
security question. In one embodiment, the system may charge
$1 per guess sent via PayPal. This keeps the spammers from
spending their time on the OnelD site. Also, the price keeps
going up by $1 each time a wrong guess is attempted within
the same day. A user can have multiple security questions for
$1 per attempt. The system will also not tell the user if the
attempt is wrong. If it’s wrong, the system will give the user
a private key to unlock decoy data.

[0538] Ifauserforgets their OnelD alias, the user may send
the system an e-mail from any of their email accounts, and the
system can email the user back the answer. The user can also
send the system a text message from their cell phone number
on file with the system, and the system will send this user their
OnelD. Generally, a user can’t call in since the caller ID can
be forged.

[0539] The following can be characteristics of data in the
repository. Since each of the user’s devices has a separate key,
the repository stores the key for the master symmetric key in
the database encrypted with the user’s key. The repository
will decrypt and send information to the user so that only the
user can read it. This works using exactly the same way as
giving information to a third party works. The repository may
also have permissions that are bitmapped (read, write). Only
owners can give out ACLs. For Read operations, the requestor
can read the value; for write operations, the requestor can
write the value. These are orthogonal, so a user can allow
someone to write a value, but not read it. The ACL is signed
with the private key of anyone who OnelD has certified owns
this UID.

[0540] The repository uses a key, value layout. There is one
data file for each OnelD UID. The file format is [key:value]
pairs of [FieldID:Value]. The FieldID is the field name of this
field encrypted with a symmetric key specific to this field that
was randomly chosen when the field was created. Field names
are used with dots to do a hierarchy, for example, Home.
Phone: 5551212. Values are comprised of the value of the
field encrypted with the same symmetric key.

[0541] Any transaction for accessing a user named Joe’s
data within the repository, for example, the UID of Joe could
be comprised of: {access rights, (fieldID, encrypt(field
decode symmetric key, Mypublic key), (fieldID,, decoder-
Key), . .. }. There is no need to keep signatures, since OnelD
wouldn’t put them in the database if they weren’t signed by a

US 2012/0323786 Al

key associated with the UID. This data never goes outside the
database. The ACL can be supplied with the request or be
waiting in the database.

[0542] For data at the repository, it would be ideal to keep
the ACLs off the main server and distribute that responsibility
to the client. The issue is if a user re-keys the data due to a
compromise, the repository would need to generate new
access keys for everyone. Without the ACLs available, the
repository does not know which keys it has to generate and for
whom.

[0543] In an example, a data pair owned by OnelD UID
1234 may beused. The first name of the user could be “Steve.”
The person who first creates the field picks a random sym-
metric key (e.g., “456”) and encrypts both the field name and
the field value with that symmetric key. Therefore, the data in
the repository will be stored in a file (or database record)
named “1234” with a value of 234df: 23423maskf223. Then,
a client who knows how to decode the data (because he
created it) will take {234df,456} and encrypt that with the
public key of the specific OnelD device that the user wants to
give the data to. The user also creates an ACL listing all the
field names {234df, 20idf, . . . }, read/write/share, and signs
that entire ACL listing with 1234°s iPhone private key. Then,
the user passes the ACL to the repository. The repository
verifies access rights and gives us the values of those fields.
Ideally, each of the owner’s devices to have separate unique
key pairs, but the public key and his OnelD UID are signed by
OnelD, so that each device authenticates as the OnelD UID
even though they use different public key pairs. This provides
the system with a lot of flexibility. A user can lose a device,
and the repository never has to send a new device that user’s
secret key. If the user’s secret key is compromised on one
device, the user can look-up the public key of the compro-
mised device and put that public key on a stop list. Every user
should periodically tail rsync the latest stop list.

[0544] In a worst-case scenario, a user loses all of their
devices. The user can answer a security question for a dollar
cost per attempt. I[f the user gets any of their questions correct,
the answer is used to decrypt a symmetric key that was left for
the user (each answer generates the same symmetric key).
This symmetric key is then used to decrypt a table of FieldID:
(symmetric key, access rights) for that field that was left for
the user by the owner.

[0545] Forform filling applications, such as political and/or
charitable donations, organizations may want to make it as
easy as possible for existing customers to donate but don’t
want to store credit cards. They may want to make process
painless for new users, while making it secure. A OnelD
solution includes adding a “Secure Fill-in with OnelD” but-
ton. Also, the system may allow a user to enter his OnelD and
an OTP in lieu of filling out the form (boxes could be shown
for that). Form-filling candidates may include e-commerce
sites, political sites, charitable sites, event registration, Event-
Brite, and/or Evite.

[0546] When using OnelD on a public computer, the
OnelD buttons are really JavaScript in the page which will, if
the client has the plugin installed (or it is a phone), do the
OnelD method, or else it will redirect to the OnelD proxy
service that executes the transaction in HTML as the client
does (kind of like Facebook connect). If there is a browser
client installed and NFC reader, the user can login with their
OnelD and PIN and use the credentials of the phone or card.
Alternatively, if there is a browser client installed but no NFC
reader, the user can login with their OnelD. They may select

Dec. 20,2012

the option to provision a new device. On their OnelD phone
app, they can approve the new device, but with a time limit. It
will self-destruct at both client and server after that time limit,
but only one self-destruct is sufficient. This guarantees secu-
rity. Finally, if there is no browser client, the site will redirect
to a helper site (like the Facebook login). Therefore, the user
can enter their OnelD and a time limited OTP with full rights.
The site mimics the browser plug-in. The OTP can be a
password that the user has previously set up.

[0547] Generally, a user cannot guarantee both availability
and correctness simultaneously. For example, financial fields
(such as cash balance) are done for correctness, so at least
three of the four servers should be up to update financial
information. The requests are temp-failed until that is true.
Almost everything else is done for availability. Data is written
to at least one place, and if other sites are down, the update
request is queued. An old date code cannot override a newer
date code. In that case, the source updates from the oldest date
code.

[0548] Inone embodiment, a mobileapp or browser plug-in
can use the OnelD method. The app gets control when user
hits the “login with OneID” button and passes in URL to call,
which typically will contain a unique authID. The authID is
like the SessionID, but it has limited abilities and only the
remote server knows the mapping from authID—ssessionlD,
not the OnelD app. It allows the server to connect the OnelD
session to the user session. Next, the app opens a socket to the
server calling the URL supplied, and initiates the OnelD
operation requested by the site (such as login). A login request
will do mutual authentication all within that same socket
connection (it will not try to encrypt the authID to prove its
identity since that is not sent over the same channel; it should
do the entire mutual auth within one socket pair). The device
can display progress information and reputation of the remote
OnelD to the user. The app resolves any exceptions with the
remote server and does any fancy “Post” operations (like
posting the name, address, and e-mail, if this was an infor-
mation request over the secure channel that was set up with
https, and/or using HTTP keep alive to do the back and forth)
as per the request type the transaction started with.

[0549] When everything is complete, and the remote server
is ready to provide access (or has gotten the information
securely), the webserver returns the URL for the OnelD app
to use to call the server (the welcome back page) typically
with no arguments appended at all. This is because the remote
server has all the info it needs before that URL is even called,
and already associated it back the original SessionID. Safari
loads that URL as it would normally. Therefore, the user’s
credit card info, etc. never even appears on any form. Instead,
it is just sent in the background to the site and associated with
the session. The remote site can communicate with OnelD to
do things during the conversation, like tell OnelD when the
user was last logged in, etc. It normally ends the conversation
by instructing OnelD to “transfer control to Safari and tells it
to load this URL”. That way, there is a lot of flexibility in the
interchange where both parties can ask the other party to do
things, e.g., the remote website might even tell OnelD to call
adifferent program at the end. It is entirely up to the command
set protocols that are set up for a OnelD conversation. Rather
than being a fixed, hardwired protocol that is exactly the same
every time, cookies can be set by either party, for example.
Reasons for not passing the browser’s SessionlD are (1) only
the original requesting browser can make use of the capabili-
ties that were added by this authentication, and (2) the OnelD

US 2012/0323786 Al

authentication app, because it only has the authID, cannot
perform any operations other than authentication (e.g. it can-
not examine your shopping cart since it doesn’t know the
SessionlD.

[0550] OnelD includes verified identities. The system
issues OnelDs to licensed notaries and signs that they are
validated. (In other words, OnelD is a notary.) Any validated
notary can then legally verify an identity and attest that the
information provided in a OnelD is true, i.e., a user signs their
name, sex, DOB, and birthplace. Alternatively, the system
could set up OnelD iris AOptix authentication stations in
major airports. Users insert their OnelD cards into the
machine and enroll themselves. This proves they are a unique
human being in a way that is not forgeable, but unless there is
also a human there, it doesn’t prove an identity.

[0551] To defend against OnelD’s private keys being
exposed, servers should, when it is important, check with
OnelD to verify that the certificate being used is authentic and
not generated by an attacker who obtained OnelD’s private
key. Doing this on each transaction is expensive and adds
latency. Instead, the preferred method is that OnelD can dis-
tribute a list of OnelD numbers and a hash of their public
signature key using “rsync” which in general will download
just the new keys, so it is very efficient. In the event of a
private key compromise, the clients are notified on check-in
to OnelD. They can provide their old public key, and the
system can give them a new certificate. The system also lets
everyone know OnelD’s new signature public key. On a first
login of the OnelD on a site, the site can cookie the user with
a secret password (or vice versa) that the OnelD will encrypt
and remember is required for future logins. Either technique
provides complete protection in the event that OnelD’s sig-
nature private key is compromised. We can encourage the use
of both methods. This reduces the value of an attack on
OnelD’s private key. This way, the system can easily handle
what would otherwise be a catastrophic failure.

[0552] Exposure of the OnelD private key can happen via a
software attack or a physical attack. The system gives mer-
chants a list of revoked public keys and a hash table so they
can look them up. The file can be added to, so the merchant
can just rsync the file at the end, which is very efficient. In the
event of our private key being compromised, we simply put
our public key on the revocation list and issue a new cert
signed by RSA or another trusted root for our new public key.
Then, whenever a user’s certification is used and rejected, the
system can give them for free, a new certification signed with
the new key because the system kept a backup of every public
key it has already certified. Therefore, a user’s key pair is the
same, the system just re-signed it with the new public key.
This problem is a much easier one because the system can
specify the rules of engagement/ecosystem/protocols/stan-
dards when someone uses a OnelD certification (how you
automatically get a new signature). This is not possible in the
free-for-all type of system we have now. Therefore, the sys-
tem requires some rules, and in exchange the system gets
virtual immunity from a private key exposure, which in most
cases would be a disaster requiring lots of manual effort to fix.

[0553] When the user’s signature key is compromised, the
user should contact OnelD so that the key can be removed
from the list. The system can then generate a new one. Either
one of the user’s other devices can vouch for the user, and the
system will sign it. Otherwise, the system has to start from
scratch and verify the information that is on file.

Dec. 20,2012

[0554] The OnelD repository is replicated in four places
and all four places have local off-site backup. In the event of
a data center outage, the other places operate independently.
There is a single grand master which only the OnelD servers
can contact. It just has the “version number” of the latest data
for each One ID and which servers have it. All read requests
make sure they have the latest data. If they don’t, they ask one
of'the servers that does. If those servers are all down, they give
the outdated information and flag to the user that the infor-
mation might be outdated due to a system failure.

[0555] The repository is nearly immune to attack because it
is hard to attack without the repository noticing. The worst
attack would be to corrupt the list of revoked keys and revoke
every key. Alternatively, an attack could sign certificates the
repository shouldn’t sign. However, these are easily detect-
able by constant outside monitoring pretending the repository
is a customer.

[0556] In one embodiment, the OnelD system architecture
may include a user who communicates with the OnelD ser-
vice through either a browser or an app on the user’s computer
or smart phone. In turn, the OnelD service may communicate
with a website and the OnelD repository. The OnelD reposi-
tory may also communicate with the website.

[0557] In one embodiment, the OnelD transaction flow
may be comprised of a request sent to the Amazon homepage.
The Amazon homepage a return a page with a OnelD button.
The user may then click on the login button (which is an initial
command to OnelD). The system will then securing mutual
authorization, and tell the user to call this URI. The URI will
load, and called the URI (which is usually an Amazon URI).
[0558] The OnelD system could replace PCI compliance
with a new method for credit card transactions. A transaction
is where the cardholder digitally signs the purchase transac-
tion. Then, the merchant just has a list of signed invoices
reading, for example “bill my VISA credit card $5.00 and
send it to Amazon please—yours truly Joe Cardholder.”
Therefore, there are no credit cards to hold on to. The mer-
chant sends an authorization request to VISA to get paid
instead of sending a credit card number.

[0559] Inone example, instead of selecting Visa and enter-
ing your card number, etc., a user could log into VISA and
enter their OnelD in order to tie their OnelD to their existing
card(s). During a transaction, the user could select using
OnelD. The OnelD browser client shows the amount, a trans-
actionlD, description, and the payee. The user can change the
default credit card. The user will only see credit card types
that are accepted to the merchant, and click “OK.” The trans-
action is signed with the buyer’s OnelD and sent to the mer-
chant who sends to VISA. VISA processes it and sends it to
OnelD if it was approved. OnelD pushes the transaction to all
devices. Therefore, there is no more PCI compliance needed,
and no more credit card numbers to store. VISA could give a
preferred rate on this type of transaction, and a lower rate for
the merchant if the consumer uses a OnelD smartcard with a
reader with a person present button. Therefore, using this will
save the merchant money and provide ease of use for con-
sumers.

[0560] Keyboards may be equipped with a OnelD key. A
light on the OnelD keyboard key turns on when a secure
operation is requested. Normal signatures do not turn on the
light. Press the OnelD key once to enable the TPM chip in the
keyboard to securely sign ONE thing on the user’s behalfand
turn off the light. One press is one secure signature. The
browser client will tell the repository what was just signed.

US 2012/0323786 Al

Secure signature requests are rejected by the TPM chip if not
approved within 60 seconds. Certain web sites will require a
“secure authentication” to login (like your bank or an ecom-
merce site). Most web sites will require a “secure authentica-
tion” to charge a credit card. A user can tell if someone has
control of their PC and is front-running their transaction if
they press the button and the secure operation expected to
happen does not succeed. The user can then go to a OnelD
client on another (non-infected) computer and view the trans-
action log to see what transpired and have the attacker
expunged from the machine. Alternatively, keyboard manu-
facturers could include an NFC reader sot where a user could
put their smart card in the reader. The card could be left there,
the numeric keys on the keyboard could serve as the PIN, and
the “one button confirm” key on the keypad keys could do
double duty (going to the system and directly to the smart
card).

[0561] The button on a wireless NFC reader can power to
the reader, and transmit an authorization wirelessly whenever
the button is pressed. A user can do a wired version too, but
this is low power drain, like a wireless keyboard. The simplest
secure hardware solution may include a NFC reader with one
button, or a SmartMX card. When a user logs into a site,
instead of clicking the mouse on the “confirm” button, the
user can simply hit the button on the NFC reader. This button
is read by the software to enable one authentication to happen.

[0562] Using the OnelD secure reader, a secure login or
payment may be approved with a wave of a user’s hand. The
user simply waves their hand over the reader to do the autho-
rization. The user is then transferred to a web page, and there
is just a single OnelD button exposed. The client will show
what happens if the user waves their hand based on what
function the button calls for (e.g., login, buy, etc.). Waving a
hand will press that button and enable exactly one authenti-
cation (with a maximum of one authorization every 2 sec-
onds). Therefore, a user does not even have to click a button.
A user should set a PIN timeout for safety if their workplace
isn’t secure, or if they don’t take their card or phone will them
when they leave. The following are authentication device
preferences: a simple smart-card reader like cyberJack, a
smart-card reader with ‘pay now’ button, a secure element in
phone with PIN entry through phone GUI, a smart-card
reader with full PIN pad, a smart-card reader with little dis-
play and ‘pay now’ button,

[0563] Mobile users are a great initial target because pass-
word managers do not work on smart phones very conve-
niently at all. Typing a credit card number into a phone is very
painful. There is an easy way to distribute an app and get paid.
Generally, sites realize how hard it is to use the site from a
mobile device, and the smart ones are usually looking for
ways to make the user experience better. It’s easy for a site to
add a second way to log in. The OnelD app will allow the site
to create the user if he doesn’t already have an account,
leading to more business.

[0564] In one example, a user with an iPad may have hun-
dreds of apps, with each requiring a username and password.
Additionally, software may prompt users to accept certain
agreements. Users should have the choice in the security
versus convenience trade-off, not the software maker. After
entering usernames and passwords, some users may discover
that they are receiving solicitations from other sources, sug-
gesting that their information was shared without their per-
mission.

Dec. 20,2012

[0565] Ifa signature gets stolen, OnelD will tell you which
signature got compromised and when it happened. With
OnelD software only and no TPM, an attacker could compro-
mise a user’s security somewhat, but he’ll be stopped at the
unique secure approval process. But, if the user spends $10 to
get a special OnelD smart card reader with the OnelD button,
they are virtually guaranteed to completely safe. They can
even leave the card in the reader if their home/work is secure.
OnelD may even have an insurance policy to compensate
users for any loss up to $100,000 if it was due to a fault with
the OnelD software. In contrast, if the attackers break into a
Yahoo account, there is no way to know that the breach
occurred, or protect the account.

[0566] The sooner users sign up, the greater the name avail-
ability is. Users cannot transfer their alias to someone else. If
they give it up, it goes back into the available pool. This
prevents name squatters from registering millions of names
and then trying to soak people to reclaim their name.

[0567] In one embodiment, the system may charge one
dollar for an app, and $2 for an in-app purchase to register
their signing public key for that device in the repository to
keep spammers out. In other words, if a user has N devices, it
will cost $(2N+1). All keys last 1 year, and are set up to renew
and annually to charge a funding source that the user sets up
in the app. Therefore, the system can ask for funding infor-
mation at that time. If a user don’t renew their key, the system
can remove their data, but, keep their OnelD on file and
available for them to reclaim for 12 months before it expires.
[0568] According to the OnelD legacy protocol, the OnelD
app does whatever it is told by the remote site, and rarely
“takes control.” Generally the remote site drives, but either
side can issue commands to the other, just like a normal
conversation. To ease transition, if the mutual authentication
fails because it doesn’t have the association to the user’s
account yet (because this is the first time logging into that site
with OnelD), it can then have the OnelD app prompt for a
username/password, or ask if the user wants to create a new
account. Either way, from then on, it is the last time they will
ever need to do this, because the site can use the OnelD for
authentication going forward. The user has already proved
that the user holds that OnelD and proved that they have rights
to that account.

[0569] The one ID app can generate two key pairs, and have
the public signing key signed by OnelD and registered.
OnelD certifies that the person has the unique, randomly
chosen OnelD 8 byte number it assigned. Mutual authentica-
tion and logging is possible. Additionally, legacy login asso-
ciation is also provided, which prompts for username/pass-
word for first time if there is no OnelD association found. A
name, shipping address, and credit card information may be
provided to the remote site. Also provided are any other fields
the site asks for, by prompting and remembering it. If there is
already a field with the same name, the system will show the
user how it is going to fill it out so that the user can correct if
needed. In the future, the system will use the site specific field
name if it exists, e.g., site.fieldname, or else use the generic
name. There will be a set of standardize field names that sites
should try to use whenever possible to eliminate the amount
of duplicate information that could be entered. The system
will also auto-complete typing from any previously typed in
values, so if one site uses “email” and another uses “e-mail”,
itwill be easy to fill in. The system will change the value of the
generic name to the most recently used value of that field, e.g.
If a user types stk@x.com for his email, and that doesn’t

US 2012/0323786 Al

match the email we have stored, we’ll change our generic
value and the site specific value. Info stored on one device is
synced to the others. The system will show basic information
about the site a user is visiting, e.g., date OnelD created,
positive and negative comments, and overall rating.

[0570] Certain sign-up restrictions may apply. A user could
also supply their name, home address, primary email address,
secondary email address, phone number, and SMS number to
identify themselves. Emails cannot be reused on more than
one OnelD. A funding source (PayPal account or credit card)
cannot be used more than five times ever. An IP could match
the user’s claimed address. If an IP has lots of stolen credit
cards and chargebacks, the system can disable that IP for new
account registration and suggest that they use a different
location. iPhone data (as shown in “Ad hoc™) can only gen-
erate a few IDs. A user can pick whatever case-insensitive
alias they want as a shorthand to refer to their OnelD UID.
Early registrants get the first pick.

[0571] The system can keep a copy of the public signature
keys that were issued in case they need to be re-issued in case
of a compromise. If a user loses their signature key on a
device, the user could either (1) use one of their devices to
approve a new public signature key (and wait for the required
time period for objections if you have more than one device),
or (2) pay $10 and prove to the system that the user is who they
say they are by proving that they control at least N the
resources the system has on file for the user, such as their
email addresses, phone number, SMS, physical address,
answers to security questions, etc.

[0572] In the best possible scenario for an attacker, the
attacker controls the screen and makes everything looks “nor-
mal” to the user. He uses the user authorizations to log into
their bank and withdraw funds while they are thinking they
have just logged into Facebook. This is virtually the only
scenario that will work, and it is practically speaking impos-
sible to pull off without detection. It will also not escape the
post-transaction approval notifications even if the attacker
was successful. There is no way to avoid that. In contrast, the
most practical attack involves an attacker waiting for the user
to log into their bank or PayPal account. When they are login,
the attacker opens up a window hidden to the user, leveraging
the session cookie. The attacker anticipates when the user is
about to do a transaction requiring digital approval.

[0573] Inyetanother embodiment, the system may be used
to buy a raffle ticket and register it, by just the user’s card.
[0574] Only signed approved readers can read auser’s card.
Users will receive a post mortem of what they read because
the smart card will remember it in an LRU list which gets
uploaded to the repository. If we get a lot of complaints, the
system will revoke their card read certificate or charge them a
big penalty to keep their certificate. Since the system is care-
ful about who can read a card, user information should be
safe. The system can even push the hash codes of the most
egregious offenders into the card if needed. People with read
permission get to read a card like it is a business card. Others,
such as car rental companies, get to read your driver’s license.
So the read permission bitmap varies depending on what
information the reader typically requires from the user. The
bitmap has a bit corresponding to each field of standard infor-
mation. Most people have the bit for reading “business card”
style information. Tapping at a hotel will typically give out
both, but users can control whether they want the card to give
that out, or whether they want to have the hotel ask the
repository for the information, in which case, they will be

Dec. 20,2012

prompted on the phone to encode the symmetric keys for
those fields using the OnelD of the hotel so they can pass the
information requested to the hotel via the repository. The
standard information that users give out normally is on the
card and given out peer-to-peer with just a touch. This way,
users can blacklist specific companies if they feel abused. For
other fields, these are typically only possible to give out with
a cell phone or a computer where the fields are prompted for
and given out. Those devices have more memory to store the
symmetric keys for each field. Fields are typically given out
(and encrypted) in groups, e.g., personal business card, busi-
ness card, medical, emergency.

[0575] A “tap” canbe used. The cell phone tap is easy since
everything is approved on screen. With the smart card, it isn’t
so obvious what a “tap” means, but probably it means differ-
ent things to different readers, e.g., hotel vs. parking meter.
Standard sections would make things much more manage-
able. So, the repository has a list of OnelDs who have access,
and their access bitmap to 64 sections of the data. The readers
keep the symmetric keys required for each section. Users can
change their symmetric key on any section at any time. Any
change of a key or content will update the revision number of
that data so a vendor can do an “if-changed-since-rev-X”
request. If someone wants to email a user, they request the
user’s email address from the repository and decode it with
the section key.

[0576] To get access to the data, the vendor presents his
signed access rights for each section, sends the data, and
decodes it using the decode keys remembered for each sec-
tion. There is a version number change when the symmetric
key changes, so in that case the vendor has to queue a request
for the user to drop the vendor a copy of the new keys so that
vendor can read the newer version of the data. The browser
client checks these regularly and the user can set the client to
auto approve these, or simply approve them all in batches,
e.g., once a week it can review the list of update requests.
Most people will auto approve them, so the client encrypts the
symmetric key for each of the requestors, drops them at the
repository, and then the next time the vendor requests that
data, he’ll get it (and it can be removed from the repository).
The repository can keep a record for the user of the last N
OnelDs accessing auser’s data. Users should be able to buy a
raftle ticket by touching their OnelD card.

[0577] The hand-wave authorization can be coupled with a
ComputerProx TF2000 ultrasonic presence sensor for addi-
tional physical presence requirement if needed. Also, Key
Source International has SonarLocID which may also be
compatible. They have an RFID reader and a proximity sen-
sor.

[0578] OnelD offers a paradigm shift by reducing many
logins to a single log in, many cards to a single card, many
sessions of entering data into a single data entry section, and
a single virtual identity. Instead of using card identities in
transactions, transactions use a single virtual identity. Users
can select between low convenience and high security and
manage this trade-off. The OnelD identity is the same on all
of'the user’s devices. OnelD also includes hardware products,
such as a SmartMX card, a NFC reader with a touch button,
and products that enable “hand wave authentication” which is
a convenient way to have extremely high security that is fun
for a user. Eventually, major PC makers and Logitech will
develop keyboards with SmartMX and a OnelD button that is
built in.

US 2012/0323786 Al

[0579] OnelD also solves the “two quarantine” problem. If
auser has to e-mail accounts and two quarantine accounts, the
user’s browser is constantly logged into the wrong quaran-
tines, which can be very frustrating. Using OnelD, the user is
authenticated when the browser tries to access any of the
accounts. Because it is the same person associated with every
account, the browser authenticates an identity, not an account.
[0580] A user’s reputation, or trust rating, should be reli-
able. Legitimate people won’t want to change their OnelD.
Therefore, he reputation can be attached to it. If a user knows
a person’s OnelD, the user will be able to check the reputa-
tion. A OnelD verified identity will guarantee this is the
person, and that he can’t get a new number for life, i.e., an
eBay identity that users can’t escape from. Users can make
their information private; however, anyone doing business
with a user with private information should be wary. This is
like eBay seller reputation, but attached to a person’s real
identity. Therefore, craigslist transactions and eBay transac-
tions can be safer because people will know who they are
dealing with.

[0581] With Google Wallet, users select, then tap. That’s
great for transactions; however, OnelD does things the other
way. Users tap to get the starting URL. Then, the system has
a discussion with that URL, including prompting the user for
options, acceptable credit cards, showing discounts, etc. This
is via a PKI authenticated channel. We can terminate at any
time, or let the remote end tell us where to go.

[0582] Various hardware options include, but are not lim-
ited to: a USB NFC card reader with wave sensor (this is an
easy addition to add a button, which applies power to the
reader for 2 seconds), a USB integrated smartMX with wave
sensor, a wireless version of above options (users may have to
have a button), and/or keyboards with integrated smartMX
and wave sensor (or a OnelD OK button).

[0583] FIG. 1 is a simplified block diagram illustrating a
transaction according to an embodiment. According to this
embodiment, an identity repository 102 is implemented using
the OnelD repository. The identity repository 102 sends a
user’s encrypted credit card data to a merchant 104. The
merchant can be an online realtor, such as Amazon.com. A
user module 106 operating on a user device sends decryption
keys for the encrypted credit card data. The encryption keys
are encrypted with a public key of the merchant 104. The user
module 106 can comprise code running within a web browser.
Inthis case, the user’s browser has access to secret symmetric
keys that are used to determine the symmetric encryption key
for each field.

[0584] FIG. 2 is a simplified block diagram illustrating a
system architecture according to an embodiment. The system
architecture 200 includes a browser 204 and/or an app 206
operating on a mobile device of the user. A user 202 commu-
nicates with, or provides inputs to, the browser 204 and/or the
app 206. In turn, the browser 204 and/or the app 206 commu-
nicates with a web service 208. In this embodiment, the web
service 208 comprises the OnelD service. The web service
208 communicates with a website 210 and an associated
identity repository 212. In this embodiment, the identity
repository 212 may be implemented using the OnelD reposi-
tory. The website 210 may also communicate directly with
the identity repository 212.

[0585] FIG. 3 is a simplified sequence diagram illustrating
an online transaction according to an embodiment. In this
embodiment, a user operating a web browser requests a
homepage, such as the Amazon homepage (302). The Ama-

Dec. 20,2012

zon Web server returns a webpage displaying an input field
for an identity service/repository (304). Here, the identity
service/repository may be operated by OnelD. The input field
may comprise a OnelD button. The user then clicks on the
OnelD button which sends an initial command to a OnelD
app (306). The OnelD app engages in a series of transactions
with the webpage to secure a mutual authorization (308).
After securing a mutual authorization, the webpage sends a
message to the OnelD app to tell the user to call a URI that is
returned (310). The OnelD app sends a message to the user’s
browser indicating that the browser should load the included
URI (312). The user’s browser then calls the URI, which in
this case may comprise an Amazon URI (314). As used
herein, the term “app” may refer to an application operating
on a mobile computing device, such as an app from Apple’s
App Store operating on an iPhone.

Determining Authentication Levels

[0586] Embodiments ofthe present invention relate to tech-
nologies to facilitate determining an authentication level for a
transaction. Technologies related to embodiments of the
present invention provide a method and system for determin-
ing a most secure authentication level required by a user, and
for determining a most secure authentication level required
by a relying party, from a plurality of possible authentication
levels. Also provided are methods and systems for selecting
between at least two authentication levels, one of which is
determined according to user preferences and the transaction,
the other of which is determined according to preferences of
a relying party and the transaction.

[0587] Most online transactions involve establishing the
identities of the parties involved.

[0588] Often, one party is required to prove their identity to
the other party before a transaction can be carried out or
completed. For example, when logging on a bank’s website,
a customer is often required to provide a username and pass-
word to prove to the bank that the customer is the true owner
of'the account being accessed. Unless the customer’s identity
can be proved, the bank will not allow information associated
with the account to be exchanged. In another example, a
purchaser in an online retail transaction may be required to
access stored payment information maintained by a seller.
Unless the purchaser’s identity can be proved, a seller may
refuse to complete the transaction or transfer ownership of the
purchased product to the buyer. In examples such as these,
proving to one party the identity of the other party is referred
to as authentication.

[0589] Authenticating a party’s identity may take various
forms. In the example above, a username and password were
provided by the party seeking to prove their identity. Other
examples include providing a token or one-time-password.
Generally, one party in the transaction is relying on the
authentication process to prove the identity of the other party
in the transaction. As used herein, the “relying party” refers to
the party in a transaction that is relying on the authentication
process to prove the identity of the other party. For example,
the relying party can include a bank or a seller that is relying
on the authentication process to prove the identity of the
account holder or purchaser.

[0590] Traditionally, the relying party performs the authen-
tication and determines the requirements of the authentica-
tion process. In other words, the party in a transaction seeking
to prove their identity to the relying party does not set the
terms of the authentication process. Instead, the relying party

US 2012/0323786 Al

in the authentication process sets the terms of the authentica-
tion process. For example, when logging on to an online bank
account, the bank determines what credentials an account
holder must provide in order to authenticate their identity.
When logging into a private network, such as a VPN, the
operator of the private network determines the process for
authenticating a user. Therefore, the party opposite of the
relying party in a transaction is not given any input for deter-
mining the authentication process, but is instead at the whim
of the relying party’s process.

[0591] Embodiments of the present invention implement
an improved mechanism for allowing both parties in a trans-
action to influence the authentication process. Accordingly,
multiple authentication levels are made available for different
types of transactions. As used herein, an “authentication
level” can include requirements for authenticating a party’s
identity in a transaction. These requirements can include pro-
viding a password, providing a PIN number, performing a
physical gesture with a user device, or approving the transac-
tion on a second user device (such as a smart phone or tablet
computer), or the like. Additional types of authentication
levels are discussed in more detail below.

[0592] In one embodiment, an architecture is set up to
receive or access preferences of the relying party, along with
preferences of the opposite party, or “user”. The relying party
preferences and the user preferences can include conditions
for the transaction, such as a dollar amount, along with a
reference to an authorization level that should be used when
those conditions are met. For example, a user preference
might include a condition that a single purchase costs over
$100, with a reference to an authorization level requiring a
password to be entered.

[0593] According to various embodiments, a relying party
authentication level may be determined using the relying
party preferences and information associated with the trans-
action itself. Similarly, a user authentication level may be
determined using the user preferences and the information
associated with the transaction. A final authentication level to
be used in the transaction (a “transaction authentication
level”) may then be determined. The transaction authentica-
tion level can involve a third party (referred to as an “identity
repository”), additional user devices, and/or various pass-
words and PIN numbers.

[0594] The embodiments described herein include meth-
ods and systems that can be implemented using a computer
system. FIG. 4 is high level schematic diagram illustrating a
computer system including instructions to perform any one or
more of the methodologies described herein. A system 400
includes a computer 410 connected to a network 414. The
computer 410 includes a processor 420 (also referred to as a
data processor), a storage device 422, an output device 424,
an input device 426, and a network interface device 428, all
connected via a bus 430. The processor 420 represents a
central processing unit of any type of architecture, such as a
CISC (Complex Instruction Set Computing), RISC (Reduced
Instruction Set Computing), VLIW (Very Long Instruction
Word), or a hybrid architecture, although any appropriate
processor may be used. The processor 420 executes instruc-
tions and includes that portion of the computer 410 that con-
trols the operation of the entire computer. Although not
depicted in FIG. 4, the processor 420 typically includes a
control unit that organizes data and program storage in
memory and transfers data and other information between the
various parts ofthe computer 410. The processor 420 receives

Dec. 20,2012

input data from the input device 426 and the network 414
reads and stores code and data in the storage device 422 and
presents data to the output device 424.

[0595] Although the computer 410 is shown to contain only
a single processor 420 and a single bus 430, the disclosed
embodiment applies equally to computers that may have mul-
tiple processors and to computers that may have multiple
busses with some or all performing different functions in
different ways.

[0596] The storage device 422 represents one or more
mechanisms for storing data. For example, the storage device
422 may include read-only memory (ROM), random access
memory (RAM), magnetic disk storage media, optical stor-
age media, flash memory devices, and/or other machine-
readable media. In other embodiments, any appropriate type
of storage device may be used. Although only one storage
device 422 is shown, multiple storage devices and multiple
types of storage devices may be present. Further, although the
computer 410 is drawn to contain the storage device 422, it
may be distributed across other computers, for example on a
server.

[0597] The storage device 422 includes a controller (not
shown in FIG. 4) and data items 434. The controller includes
instructions capable of being executed on the processor 420 to
carry out the methods described more fully throughout the
present specification. In another embodiment, some or all of
the functions are carried out via hardware in lieu of a proces-
sor-based system. In one embodiment, the controller is a web
browser, but in other embodiments the controller may be a
database system, a file system, an electronic mail system, a
media manager, an image manager, or may include any other
functions capable of accessing data items. Of course, the
storage device 422 may also contain additional software and
data (not shown), which is not necessary to understand the
invention.

[0598] Although the controller and the data items 434 are
shown to be within the storage device 422 in the computer
410, some or all of them may be distributed across other
systems, for example on a server and accessed via the network
414.

[0599] The output device 424 is that part of the computer
410 that displays output to the user. The output device 424
may be a liquid crystal display (LCD) well-known in the art of
computer hardware. But, in other embodiments the output
device 424 may be replaced with a gas or plasma-based
flat-panel display or a traditional cathode-ray tube (CRT)
display. In still other embodiments, any appropriate display
device may be used. Although only one output device 424 is
shown, in other embodiments any number of output devices
of different types, or of the same type, may be present. In an
embodiment, the output device 424 displays a user interface.
[0600] The input device 426 may be a keyboard, mouse or
other pointing device, trackball, touchpad, touch screen, key-
pad, microphone, voice recognition device, or any other
appropriate mechanism for the user to input data to the com-
puter 410 and manipulate the user interface previously dis-
cussed. Although only one input device 426 is shown, in
another embodiment any number and type of input devices
may be present.

[0601] The network interface device 428 provides connec-
tivity from the computer 410 to the network 414 through any
suitable communications protocol. The network interface
device 428 sends and receives data items from the network
414.

US 2012/0323786 Al

[0602] Thebus 430 may represent one or more busses, e.g.,
USB (Universal Serial Bus), PCIL, ISA (Industry Standard
Architecture), X-Bus, EISA (Extended Industry Standard
Architecture), or any other appropriate bus and/or bridge
(also called a bus controller).

[0603] The computer 410 may be implemented using any
suitable hardware and/or software, such as a personal com-
puter or other electronic computing device. Portable comput-
ers, laptop or notebook computers, PDAs (Personal Digital
Assistants), mobile phones, pocket computers, tablets, appli-
ances, telephones, and mainframe computers are examples of
other possible configurations of the computer 410. For
example, other peripheral devices such as audio adapters or
chip programming devices, such as EPROM (Erasable Pro-
grammable Read-Only Memory) programming devices may
be used in addition to, or in place of, the hardware already
depicted.

[0604] The network 414 may be any suitable network and
may support any appropriate protocol suitable for communi-
cation to the computer 410. In an embodiment, the network
414 may support wireless communications. In another
embodiment, the network 414 may support hard-wired com-
munications, such as a telephone line or cable. In another
embodiment, the network 414 may support the Ethernet IEEE
(Institute of Electrical and Electronics Engineers) 802.3x
specification. In another embodiment, the network 414 may
be the Internet and may support IP (Internet Protocol). In
another embodiment, the network 414 may be a local area
network (LAN) or a wide area network (WAN). In another
embodiment, the network 414 may be a hotspot service pro-
vider network. In another embodiment, the network 414 may
be an intranet. In another embodiment, the network 414 may
be a GPRS (General Packet Radio Service) network. In
another embodiment, the network 414 may be any appropri-
ate cellular data network or cell-based radio network technol-
ogy. In another embodiment, the network 414 may be an
IEEE 802.11 wireless network. In still another embodiment,
the network 414 may be any suitable network or combination
of networks. Although one network 414 is shown, in other
embodiments any number of networks (of the same or differ-
ent types) may be present.

[0605] A usercomputer 450 can interact with computer 410
through network 414. The user computer 450 includes at least
a processor 452, a storage device 454, and an input/output
device 456. Other hardware may also be included in user
computer 414. The description related to processor 420 and
storage device 422 is applicable to processor 452 and storage
device 454. As an example, the user computer 450 can be a
personal computer, laptop computer, or the like, operated by
an individual or as a part of an automated system.

[0606] According to some embodiments, the various sys-
tems used in a transaction may be implemented using the user
computer 450 or the computer 410 in FI1G. 4, or a combination
of'the two. For example, in a transaction between a user and
a relying party, the user device may be implemented by the
user computer 450, and the relying party device can be imple-
mented by the computer 410. In transactions that additionally
include an identity repository, the identity repository can be
implemented using the computer 410. For example, using the
user computer 450, an account holder can interact with com-
puter 410 operated by a bank through the network 414 to
access account information. Additionally, using the user com-
puter 450, the account holder can interact with another com-
puter 410 operated by an identity repository.

Dec. 20,2012

[0607] FIG. 5 is a high level block diagram 500 of an
apparatus for determining an authentication level in a trans-
action, referred to as an authentication level selection system
510, in accordance with an example embodiment. In an
embodiment, the authentication level selection system 510
can be an element of a computer system operated by a relying
party, a user, or an identity repository. While not illustrated in
FIG. 5, such computer systems, in accordance with embodi-
ments of the present invention, typically contain other sys-
tems that which can interact with the authentication level
selection system 510 shown in FIG. 5. In some embodiments,
such systems may further include other ancillary systems that
are not necessary for understanding the present invention.
[0608] Referring to FIG. 5, the authentication level selec-
tion system 510 receives multiple inputs. For example, rely-
ing party preferences can be received by the authentication
level selection system 510, which can be stored in a prefer-
ences database 526. The relying party preferences can be
received from the relying party as a part of a transaction.
Alternatively, the relying party preferences can be received
prior to the transaction taking place as a part of initializing
communications between the relying party and a user device.
User preferences may also be received by the authentication
level selection system 510, and stored in the preferences
database 526. The user preferences may be received as a part
of the transaction, or may be previously received, such as
when a user installs software on the user’s computer, or when
registering with the identity repository. In one embodiment,
identity repository preferences may also be received and
stored in the preferences database 526. In other embodiments,
preferences may be established automatically using default
settings, and may be overridden by expressly entering
replacement or additional preferences. The preferences can
also be established on behalf of the parties to the transaction.
For example, a parent may establish preferences for an
account used by a child.

[0609] The preferences database 526 stores data associated
with the preferences of each party in a transaction. For
example, the preferences database 526 may store a plurality
of relying party preferences, each corresponding to an indi-
vidual website. The preferences database 526 can also store
preferences for multiple users. For example, several family
members using a family computer can each have their own
account, which can be associated with different user prefer-
ences for each user. The identity repository preferences can
similarly be stored in the preferences database 526 individu-
ally for each identity repository. In some embodiments, mul-
tiple identity repositories using a common interface are avail-
able, and each identity repository can have its own
preferences.

[0610] The authentication level selection system 510 can
also include an authentication level database 518. The authen-
tication level database 518 stores authentication levels that
may be applied to transactions. The authentication levels in
the authentication level database 518 can be populated by the
identity repository, by a user, or by a relying party. In one
embodiment, authentication levels can be received as part of
the transaction from one of the parties involved. Also, authen-
tication levels may be preloaded as a part of installing or
developing the authentication level selection system 510.
[0611] The authentication level selection system 510 can
also include an I/O module 522 configured to interface with
external databases 540. The external databases 540 can pro-
vide preferences and authentication levels in addition to those

US 2012/0323786 Al

provided by the parties of the transaction. In one embodiment,
transactions may be subject to government regulations or
technical standards that include specific authentication level
requirements and/or preferences. The external databases 540
can include databases operated by governments, charities,
professional organizations, standard-setting organizations, or
the like. Preferences and authentication levels retrieved by the
1/0 module 522 may be used as inputs in a manner similar to
the preferences stored in the preferences database 526 and the
authentication levels stored in the authentication level data-
base 518.

[0612] Although external databases 540 are illustrated in
FIG. 5, these need not be required by embodiments of the
present invention. In some embodiments, sufficient informa-
tion related to determining an authentication level is main-
tained internally within the authentication level selection sys-
tem 510. In some embodiments, data from both internal and
external sources is integrated to provide data that balance
security and convenience; however, this is not required by the
present invention.

[0613] Utilizing the illustrated inputs, a data processor 512
and a selection engine 514 interact with the illustrated data-
bases to facilitate the authentication level selection system
510, resulting in a transaction authentication level to be used
in the transaction. The data processor 512 accesses informa-
tion stored in the authentication level database 518 and the
preferences database 526, which can be one of several data-
bases utilized in conjunction with other system elements. As
described more fully throughout the present specification, the
1/0 module 522, the data processor 512, the authentication
level database 518, the preferences database 526, and/or the
external databases 540 can be utilized to receive the illus-
trated inputs and determine the transaction authentication
level.

[0614] FIG. 6A is a high level schematic diagram 600«
illustrating various devices configured to determine an
authentication level for a transaction according to an embodi-
ment of the present invention. In this embodiment, a relying
party device 602 includes at least a data processor 604, an I/O
interface 606, and a memory 608, along with possibly other
components. The relying party device 602 may be imple-
mented using the computer 410 from FIG. 4, or another
similar computer system. The relying party device 602 can
comprise a Web server operated by a bank, social network,
member organization, retailer, wholesaler, government, or
the like.

[0615] The relying party device 602 can be configured to
take requests from multiple users, and can engage in various
transactions with the multiple users concurrently. The
requests and transactions involving users are received
through the I/O interface 606, which is connected to a net-
work 610. The description of the network 414 in FIG. 4 is also
applicable to network 610. In one embodiment, the relying
party device 602 engages in transactions and receives
requests over the Internet from users or customers of the
relying party.

[0616] A user device 622 includes at least a data processor
624, an 1/O interface 626, and a memory 628, along with other
components. The user device 622 may be implemented by the
user computer 450 or the computer 410 from FIG. 4, or
another similar computer system. In some embodiments, the
user device 622 comprises a personal computer, a laptop
computer, a tablet computer, a smart phone, a PDA, a thin
client, a workstation, a terminal, or the like. In this embodi-

Dec. 20,2012

ment, the user device 622 further includes the authentication
level selection system 510 from FIG. 5. The authentication
level selection system 510 can be implemented in the user
device 622 using the existing components, or may be imple-
mented using specialized hardware and/or software.
Although the authentication level selection system 510 is
shown in FIG. 6A as a separate module, it can be combined
with other modules or components within the user device
622.

[0617] The user device 622 communicates over the net-
work 610 through the I/O interface 626 to engage in transac-
tions with the relying party device 602. In this embodiment,
the relying party device 622 sends the transaction information
and the relying party preferences to the user device 622
through the network 610. The authentication level selection
system 510 resides on the user device 622, therefore the user
device 622 determines the authentication level that will be
used for the transaction. Although not shown in FIG. 6A the
opposite configuration is also used by other embodiments. In
other words, the authentication level selection system 510 can
operate on the relying party device 602, which will determine
the authentication level for the transaction. In this embodi-
ment, the user device 622 may send user preferences to the
relying party device 602.

[0618] FIG. 6B is a high level schematic diagram 6005
illustrating various devices in another configuration for deter-
mining an authentication level for a transaction according to
an embodiment of the present invention. This embodiment
differs from the embodiment of FIG. 6A by including an
identity repository 632. The identity repository 632 may also
be referred to as an identity server, or a data repository. The
identity repository comprises a computer system configured
to store data associated with the user identities, and in some
embodiments, to aid in authenticating identities and imple-
menting/enforcing authentication levels. In one embodiment,
the identity repository may be implemented by the OnelD
online identity management system. The OnelD system may
include an app designed for smart phones and tablet comput-
ers that may be downloaded from an online app store. The
OnelD system is described extensively elsewhere in this dis-
closure. In one embodiment, the OnelD system app running
on a mobile device can be referred to as a user module oper-
ating on a user device. In another embodiment, the user mod-
ule comprises code running in a web browser ona user device.
In some embodiments, the identity repository is remotely
located, such that it is physically separate from both the user
device and the relying party. In one implementation, the iden-
tity repository is separated by a significant geographic dis-
tance from the other entities.

[0619] In this embodiment, the identity repository 632
includes at least a data processor 634, an I/O interface 636,
and a memory 638, along with possibly other components.
Additionally, the identity repository 632 can include the
authentication level selection system 510. In this embodi-
ment, the identity repository 632 determines an authentica-
tion level for the transaction. Therefore, the user device 622
sends the user preferences, the relying party preferences, and
the transaction information to the identity repository 632
through a network 612. The description of the network 414 in
FIG. 4 is also applicable to network 612. Network 612 may be
the same as network 610, or network 612 and a network 610
may be separate networks. For example, network 612 could
be a payment system network, and network 610 could be the
Internet. In one embodiment, the relying party device 602

US 2012/0323786 Al

does not communicate directly with the identity repository
632, but instead uses the user device 622 as an intermediary.
However, in other embodiments each of the devices involved
in a transaction can communicate with each other indepen-
dently.

[0620] FIG. 7 is a simplified sequence diagram 700 illus-
trating a method for determining an authentication level
according to an embodiment of the present invention. As
illustrated in FIG. 7, transaction information is sent from the
relying party to the user device (702). In some implementa-
tions, this is preceded by back-and-forth communications
between the relying party and a user device, that can include
browsing a website, selecting items for purchase, selecting an
account to access, or the like. In an alternate embodiment (not
shown), the transaction information is sent from the user
device to the relying party. In this case, the transaction infor-
mation can comprise a purchase order from the user specify-
ing the details of the transaction.

[0621] The relying party transmits the relying party prefer-
ences to the user device (704). The relying party preferences
may be sent in the same data package as the transaction
information, or may be sent separately. In one embodiment,
the relying party preferences are sent far in advance of the
transaction information. For example, when a user registers
with a website, the website could send the relying party
preferences to be stored on the user device. Therefore, itis not
required by embodiments of this invention that the relying
party preferences be sent near the same time as the transaction
information. Also not shown in FIG. 7, the relying party can
transmit additional authentication levels to the user device for
use in the transaction.

[0622] According to the embodiment shown in FIG. 6 A the
authentication level selection system 510 operates on the user
device 622. At this point in the sequence diagram 700, the
user device may have the minimum information necessary to
determine an authentication level. According to the embodi-
ment shown in FIG. 6B, the authentication level selection
system 510 is operated by the identity repository 632. In this
embodiment, the user device transmits the transaction infor-
mation to the identity repository (706), along with the relying
party preferences (708). As was the case with the transmis-
sions between the relying party and the user device, some
embodiments do not require that the transaction information
in the relying party preferences be transmitted near the same
time. However, in other embodiments these are sent as part of
a single data packet.

[0623] Optionally, user preferences are transmitted from
the user device to the identity repository (710). In one
embodiment, the identity repository stores user preferences
in a local database, and it is not necessary to retrieve them
from the user device for every transaction. User preferences
need only be transmitted if the identity repository does not
store them, or if the stored version is out-of-date. In one
embodiment, user preferences are transmitted with every
transaction in order to standardize the communication proto-
col and simplify programming. If identity repository prefer-
ences are used, they are typically stored locally by the identity
repository, and thus do not require additional transmissions.
At this point in the sequence, the identity repository may have
the minimum information necessary to determine an authen-
tication level for the transaction.

[0624] Inoneembodiment, the identity repository enforces
the determined authentication level by providing a signature
that is transmitted to the user device (712), the relying party

Dec. 20,2012

(714), or both. For example, if a bank (the relying party)
prefers that a password is required for high-value transac-
tions, and an authentication level is selected that requires a
password, then the identity repository will only sign the trans-
action if a correct password is received from a user or user
device. In embodiments where the user device enforces the
authentication level, the user device can similarly sign the
transaction.

[0625] FIG. 8 is a simplified flowchart illustrating a method
for determining an authentication level according to an
embodiment of the present invention. The method 800 can be
performed by the relying party, the user device, and/or the
identity repository. The method 800 includes receiving trans-
action information associated with a transaction between a
user and a relying party (810). The transaction information
can be sent from the user device to the identity repository,
from the relying party to the identity repository, or from the
relying party to the user device, depending upon the embodi-
ment.

[0626] Inone embodiment, the transaction comprises veri-
fying the identity of the user to the relying party. For example,
the transaction can comprise a social network verifying the
identity of an account holder during a sign-in procedure. The
transaction can also comprise a purchase made by the user
from the relying party. In other embodiments, the transaction
comprises electronically signing documents, ratifying elec-
tronic agreements, sending e-mails, transferring money, mak-
ing payments, or the like. Generally, the transaction can com-
prise any online transaction between two parties.

[0627] The transaction information comprises any infor-
mation specific to the transaction itself. In one embodiment,
the transaction information comprises a description, cost,
and/or quantity of goods sold. In another embodiment, the
transaction information comprises an account number. In
other embodiments, the transaction information can comprise
payment methods, shipping addresses, billing addresses,
usernames, cumulative totals, e-mail addresses, contact infor-
mation, credit card numbers, routing numbers, signed docu-
ments, dates, devices involved in the transaction, user permis-
sions, or the like. Generally, transaction information can
comprise any data associated with the transaction. Therefore,
this list of examples is merely exemplary and not meant to be
limiting.

[0628] The method also includes receiving relying party
preferences (812). As stated above, some embodiments do not
require that the relying party preferences be received concur-
rently with the transaction information. Therefore, the relying
party preferences could be stored in a database locally on the
computer system performing this method. The method addi-
tionally includes determining a relying party authentication
level based on the transaction information and the relying
party preferences (814).

[0629] To determine the relying party authentication level,
the relying party preferences can include information related
to devices owned or operated on behalf of the user, or devices
authorized for the user, with limits on how devices can be
used in the transaction. For example, a desktop computer in a
secure work area may have a higher transaction value limit
than a mobile device. A mobile device with a password-to-
unlock feature may have a higher transaction value limit than
an unlocked mobile device. One of ordinary skill in the art
would recognize many variations, modifications, and alterna-
tives.

US 2012/0323786 Al

[0630] The relying party preferences can include informa-
tion related to preferences established by the relying party or
on behalf of the relying party, including transaction value
limits, time periods during which transaction are initiated,
geographic locations where the transaction is initiated, histo-
ries of returns or invalidated transactions, user reputations,
number of transactions within a particular time period, or the
like. The relying party preferences can also include cumula-
tive data, including thresholds for the number of items in a
single purchase, cumulative costs of items in a single trans-
action, cumulative amount spent in a particular time period,
and/or the like. Therefore, the relying party preferences can
comprise a cost threshold for a single transaction, a cumula-
tive cost threshold for transactions during a time period, or a
time limit since a password was provided to a user device.
These preferences are used to define almost every aspect of a
transaction, such that a relying party can set specified authen-
tication levels that add security to high-value transactions or
transactions where the risk of fraud is high. It should be noted
that if preferences received from a party contradict prefer-
ences already stored on the device executing this method, the
more conservative or secure preferences can be used in the
transaction.

[0631] Relying party preferences can also include condi-
tions related to types of transactions. For example, purchasing
certain types of goods, such as jewelry, cars, software, col-
lectibles, or the like, that are more likely to be involved in theft
and fraud can require higher levels of authentication. The
preferences can also include conditions on payment options.
For example, purchasing items with a credit card may require
a first authorization level, while paying for items with a debit
card may require a second authorization level. The prefer-
ences can also include conditions on methods of shipping, or
shipping locations. For example, shipping items to a PO Box
orto an address different from the billing address may require
a higher authorization level.

[0632] Each of'the relying party preferences can be associ-
ated with authentication levels. If the condition embodied by
the preference is met, then the specified authentication level
(or a higher authentication level) should be used in the trans-
action. An authentication level can comprise requiring an
indication that the transaction is approved to be received by a
user module operating on a user device. For example, a user
may be required to provide input indicating that they have
reviewed the transaction and approve. An authentication level
can also comprise notifying additional devices that are asso-
ciated with the user. For example, a notification can be sent to
a user’s cell phone or tablet computer for a transaction that
was initiated on the user’s desktop computer. An authentica-
tion level can comprise requiring a PIN or password to be
received by one or more of the additional devices associated
with the user. An authentication level can comprise a waiting
period between initiating the transaction and final approval.
In one embodiment, an authentication level may require
human contact by a representative of the relying party. In
another embodiment, an authorization level can require a
third-party to authenticate the transaction, such as the identity
repository.

[0633] In order to determine the relying party authentica-
tion level based on the transaction information and the relying
party preferences, each of the conditions embodied by the
relying party preferences is evaluated. The authentication
levels associated with these conditions are candidates for use
in the transaction. In one embodiment, the candidate authen-

Dec. 20,2012

tication level that is the most secure is selected as the relying
party authentication level. If none of the conditions embodied
by the relying party preferences are met, then a default
authentication level can be used. Generally, authentication
levels that require more devices, more passwords, more time,
more inputs, or the like, are considered more secure than
those requiring less.

[0634] The method may additionally include accessing
user preferences (816). In one embodiment, the user prefer-
ences are retrieved/received from the user device. In another
embodiment, the user preferences are stored on the device
executing this method. Furthermore, the method includes
determining a user authentication level based on the transac-
tion information and the user preferences (818). The above
description of the relying party preferences applies equally to
the user preferences. Likewise, the process of determining a
relying party authentication level described above applies
equally to the process of determining a user authentication
level. One having skill in the art will understand that certain
differences between the two types of preferences may exist.
For example a user preference may include conditions on the
type of relying party involved in transaction, i.e. logging into
abank account may require a higher authentication level than
logging into an e-mail account.

[0635] The method also includes determining the transac-
tion authentication level using the user authentication level
and the relying party authentication level (820). The transac-
tion authentication level comprises the authentication level
that should be used for the transaction to go forward. Note that
by using both the user authentication level and the relying
party authentication level, this method allows both parties to
influence the transaction authentication level. In one embodi-
ment, the transaction authentication level is selected based on
which of the user authentication level and the relying party
authentication level is most secure. For example, if a bank
requires only a password to be entered, but a user requires that
a PIN be entered from the second user device, then the user’s
authentication level will be required for the transaction
because it is more secure.

[0636] FIG.9is asimplified flowchart illustrating a method
for determining an authentication level with an identity
repository according to an embodiment of the present inven-
tion. The method 900 is executed by an identity repository.
The method includes receiving the transaction information in
the relying party preferences from the user module (910).
Note that both the transaction information and the relying
party preferences may have originated at the relying party.
However, in this embodiment the relying party does not com-
municate directly with the identity repository, so the infor-
mation is sent first to the user device, then to the identity
repository. The method also includes accessing user prefer-
ences (912). In one embodiment, the identity repository
stores user preferences, along with other personal informa-
tion in an encrypted form in a database. The user device may
send an encryption key that can be used to decrypt the user
preferences for the purpose of providing authentication for
the transaction. Once the transaction is over, the decrypted
information can be erased from the identity repository.

[0637] The method additionally includes determining a
user authentication level based on the transaction information
and the user preferences (914), determining a relying party
authentication level based on the transaction information and
the relying party preferences (916), and determining a trans-
action authentication level using the user authentication level

US 2012/0323786 Al

and the relying party authentication level (918). It should be
noted that these portions of method 900 are similar to those
recited above for method 800. As such, the above description
applies equally to this portion of method 900. Because the
method 900 is being carried out by the identity repository,
identity repository preferences may also be incorporated.
Identity repository preferences are similar to the other types
of preferences discussed in this disclosure, and may be used
in a similar fashion.

[0638] It should be appreciated that the specific steps illus-
trated in FIG. 8 and FIG. 9 provide particular methods of
determining an authentication level for transactions accord-
ing to embodiments ofthe present invention. Other sequences
of steps may also be performed according to alternative
embodiments. For example, alternative embodiments of the
present invention may perform the steps outlined above in a
different order. Moreover, the individual steps illustrated in
FIG. 8 and FIG. 9 may include multiple sub-steps that may be
performed in various sequences as appropriate to the indi-
vidual step. Furthermore, additional steps may be added or
removed depending on the particular applications. One of
ordinary skill in the art would recognize many variations,
modifications, and alternatives.

[0639] It will be understood in light of this disclosure that
the examples and embodiments described herein are for illus-
trative purposes only and that various modifications or
changes in light thereof will be suggested to persons skilled in
the art and are to be included within the spirit and purview of
this application and scope of the appended claims.

Fully Encrypted Repository

[0640] Embodiments ofthe present invention relate to tech-
nologies that facilitate a fully encrypted repository. Technolo-
gies related to embodiments of the present invention provide
a method and system for storing encrypted data separately
from an associated encryption key. The encryption key can be
stored on a user device, and the encrypted data can be stored
on a remotely located data repository, the relevant contents of
which are completely encrypted.

[0641] Online transactions are becoming increasingly
more popular and convenient. From online purchases, to
social media, to e-commerce, to Internet relationships, online
transactions usually require at least some form of personal or
business information to be transferred. In most cases, online
transactions require web forms to be filled out, payment
options to be provided, and/or identifying information to be
verified. Although used for different purposes, and in differ-
ent environments, the information provided by users for each
of these transactions is often very similar. For example, users
may find themselves repeatedly filling out web forms with
their addresses, credit card information, purchasing prefer-
ences, or usernames and passwords. Repeating the data entry
process for each transaction can generate mistakes and frus-
trate users.

[0642] Additionally, because information provided by
users is often typed into a web form with the keyboard, the
process is susceptible to fraud and theft. Keyboard loggers,
viruses, and other types of malware can be configured to
search a user’s computer for personal and financial informa-
tion that can easily be exploited. Compounding the problem is
the fact that many users choose to store their personal and
financial information on their computers. While this is con-
venient for users, it creates an easy target for hackers that are
able to infect a user’s computing device.

Dec. 20,2012

[0643] Embodiments of the present invention implement
an improved mechanism for storing, accessing, and using
personal and financial information. Instead of storing this
information on a user’s computing device, the information
can be stored remotely at a data repository. Furthermore, the
information is not stored in the clear, but rather first encrypted
before it is sent to the data repository. The key used to encrypt
the information is stored separately from the encrypted data.
[0644] Inoneembodiment, the architecture is set up so that
the encrypted data is stored at the data repository, while the
encryption key is stored locally on the user device. This
creates an arms-length separation between the data and the
means for accessing the data. Even if the user’s device were
compromised, the attacker would not have access to the
encrypted data because it is securely stored at the data reposi-
tory. More importantly, an attacker breaching the data reposi-
tory would not gain any useful information because any data
stored therein would be encrypted, and the associated encryp-
tion keys would be stored on the individual user devices. This
prevents massive data compromises from resulting from a
single security breach at the data repository. In one embodi-
ment, the data repository is a fully encrypted data store, and
any data stored thereon is encrypted. The associated encryp-
tion keys are stored remotely in other locations and on other
devices that are not controlled or operated by the data reposi-
tory.

[0645] Inoneimplementation, three parties interactto use a
fully encrypted repository system. First, a software module
operating on a user device can generally receive information
from a user to be used in transactions. Second, a data reposi-
tory can store encrypted data associated with the information
ataremote location. Third, aremote device, often operated by
a merchant, bank, or other similar party, can make a request
for the information from the user device. The encrypted data
can be decrypted and sent from the data repository, to the user
device, and then to the remote device. Each of these three
parties and their respective devices will be described in more
detail below. Note that in other implementations, other parties
may also be involved, and may communicate with each other
in different ways that will be clear in light of this disclosure.
[0646] FIG. 10 is a high level schematic diagram illustrat-
ing a fully encrypted repository system 1000 according to an
embodiment of the present invention. In this embodiment, a
user device 1022 includes at least a data processor 1024, an
1/O interface 1026, and a key storage 1028, along with other
components. The user device 1022 may be implemented by
the user computer 45 or the computer 410 from FIG. 4, or
another similar computer system. For instance, data proces-
sor 1022 may be implemented by processor 420 or processor
452 from FIG. 4, and so forth. In some embodiments, the user
device 1022 comprises a personal computer, a laptop com-
puter, a tablet computer, a smart phone, a PDA, a thin client,
a workstation, a terminal, or the like.

[0647] Theuser device 1022 is configured to receive inputs
from a user, comprising information to be used in transac-
tions. Alternatively, the user device 1022 receives informa-
tion from various public databases, or by extracting informa-
tion from past transactions and/or e-mails sent by a particular
user. While the user device 1022 can receive this information,
storing it on the user device would leave the information
vulnerable to unintentional or malicious disclosure. In this
embodiment, the user device 1022 also includes an encryp-
tion engine 1030. The encryption engine 1030 can be imple-
mented in the user device 1022 using the existing compo-

US 2012/0323786 Al

nents, or may be implemented using specialized hardware
and/or software. Although the encryption engine 1030 is
shown in FIG. 10 as a separate module, it can be combined
with other modules or components within the user device
1022. In one embodiment, the encryption engine 1030 is
implemented by a software routine that instructs the data
processor 1024 to encrypt information. The key storage 1028
may be implemented using any storage device, such as stor-
age device 422 or storage device 454 in FIG. 4, and may be
represented as a database. Key storage 1028 stores the
encryption keys used to encrypt the data associated with the
information for a transaction.

[0648] The user device 1022 communicates through a net-
work 1012 using the I/O interface 1026. Communicatively
coupled to the network 1012 is a data repository 1032. The
data repository 1032 may also be referred to as an identity
server or an identity repository. The data repository com-
prises a computer system configured to store data associated
with the user information in a fully encrypted form. In one
embodiment, the data repository is implemented by the
OnelD® online identity management system. The OnelD
system includes an app designed for smart phones and tablet
computers that can be downloaded from an online app store.
The OnelD system is described extensively elsewhere in this
disclosure. In one embodiment, the OnelD system app run-
ning on a mobile device is referred to as a user module
operating on a user device. In another embodiment, the user
module comprises code running in a web browser on a user
device. In some embodiments, the data repository is remotely
located, such that it is physically separate from both the user
device and a remote device. In another embodiment, the data
repository is separated by a significant geographic distance
from the other entities involved in the transaction.

[0649] The data repository 1032 includes at least a data
processor 1034, an /O interface 1036, and an encrypted
repository 1038, along with possibly other components.
Using the /O interface 1034, the data repository 1032 com-
municates through network 1012 with the user device 1022.
The description of the network 414 in FIG. 4 is also applicable
to network 1012. In this embodiment, the encryption engine
1030 is operated by the user device 1022. Therefore, user
device 1022 encrypts data associated with the information,
stores the encryption key in the key storage 1028 on the user
device 1022, and sends the encrypted data through the net-
work 1012 to the data repository 1030 for storage. The user
device 1022 then deletes the information from any of its
storage devices. In some embodiments, the user device 1022
deletes the information and the encrypted data. In this con-
figuration, the keys are stored at the user device 1022, and the
encrypted data is stored by the data repository 1032 in its
encrypted repository 1038. This configuration separates the
key storage 1028 from the encrypted data stored in the
encrypted repository 1038, and also does not require trans-
mission of encryption keys across the network 1012 where
they could be intercepted and exploited.

[0650] In an alternative embodiment not shown in FIG. 10,
the encryption engine 1030 can be implemented by the data
repository 1032. In this embodiment, the user device 1022
sends the encryption key with the information over the net-
work 1012 to the data repository 1032. The data repository
1032 then encrypts data associated with the information using
the encryption key and stores the encrypted data in the
encrypted repository 1038. The encryption key is then per-
manently deleted from any storage devices in the data reposi-

Dec. 20,2012

tory, so that in order to decrypt the encrypted data the encryp-
tion key must be resent from user device 1022. This
configuration may be advantageous for resource-intensive
encryption algorithms that are better run on the data reposi-
tory 1032 compared to the user device 1022.

[0651] Also in this embodiment, a remote device 1002
includes at least a data processor 1004, an 1/O interface 1006,
and a memory 1008, along with possibly other components.
The remote device 1002 may be implemented using the com-
puter 410 from FIG. 4, or another similar computer system.
The relying party device 1002 can comprise a Web server
operated by a bank, a social network, a member organization,
a retailer, a wholesaler, a government organization, or the
like. The remote device may also be referred to as a relying
party.

[0652] Theremotedevice 1002 canbe configured to engage
in transactions with the user device 1022, using the I/O inter-
face 1006 to communicate through network 1010. Network
1012 may be the same as network 1010, or network 1012 and
a network 1010 may be separate networks. For example,
network 1012 could be the Internet, and network 1010 could
be aprivate LAN. As a part of a transaction, the remote device
1002 may request information from the user device 1022,
such as credit card information, a billing address, a name, etc.
Alternatively, the user device 1022 may send this information
to the remote device 1002 without requiring an explicit
request. Such may be the case when the user device 1022
submits purchase orders, or other similar orders, to remote
device 1022.

[0653] Note that in this embodiment, the remote device
1002 communicates with the user device 1022, and the user
device 1022 in turn communicates with the data repository
1032. However, in other configurations each of the remote
device 1002, the user device 1022, and the data repository
1032 are able to communicate with each other individually
and independently, without restriction.

[0654] FIG. 11 is a simplified sequence diagram 1100 illus-
trating a method for protecting encrypted data according to an
embodiment of the present invention. As illustrated in FIG.
11, the user device sends encrypted data to the data repository
(1102). In some implementations, this will be preceded by the
user device receiving information from a user, or from some
other source. In this embodiment, the user device first
encrypts data associated with the information, and then sends
the encrypted data to the data repository. Note that in the
alternative embodiment discussed above, the user device
could instead send the information and encryption key to the
data repository, where the data repository would handle the
encryption.

[0655] A remote device sends a request for information to
the user device (1104). Typically, the request for information
from the remote device need not be contemporaneous with
the user device sending the encrypted data to the data reposi-
tory. Also, multiple remote devices may send requests for
information to a single user device. In other words, a single
user device can engage in transactions with multiple remote
devices, and may need the same or different information for
each remote device. In one configuration, the user provides
information to the user device and the encrypted data is sent
to the data repository in one session. Thereafter, each subse-
quent request for information from a remote device accesses
a common set of encrypted data at the data repository.
[0656] The user device sends a request for the encrypted
data to the data repository (1106). This request can be con-

US 2012/0323786 Al

temporaneous with the request for information from the
remote device, and may be part of completing an online
transaction. In one embodiment, the entire contents of the
encrypted data are requested by the user device. In another
embodiment, the user device only requests data from specific
field-value pairs within the encrypted data. In response, the
data repository sends the encrypted data to the user device
(1108). If only a portion of the encrypted data was requested
by the user device, then only that portion will be returned to
the user device. In other embodiments, the entire contents of
the encrypted data are sent to the user device. Note that
according to an alternative embodiment described above,
instead of requesting encrypted data, the user device could
instead send the encryption key to the data repository. The
data repository could then decrypt the data and send the data
associated with information (or the information itself) to the
user device, thereafter deleting the encryption key.

[0657] The user device receives the encrypted data, recov-
ers the information for the transaction from the encrypted
data, and sends the information to the remote device (1110).
Inone embodiment, only a portion of the information needs to
be sent to the remote device. Therefore, the user device selects
the relevant portions of the information and sends them to the
remote device.

[0658] FIG. 12 is a simplified flowchart illustrating a
method 1200 for using information in conjunction with a data
repository according to an embodiment of the present inven-
tion. The method 1200 includes encrypting data associated
with the information using an encryption key (1210). The
information comprises any information describing a charac-
teristic of a user, a user system, or any other information that
may be useful in a transaction. In one embodiment, the trans-
action information comprises an account number. In other
embodiments, the transaction information can comprise pay-
ment methods, an address associated with a user, shipping
addresses, billing addresses, usernames, money spent, reward
or loyalty numbers, e-mail addresses, contact information,
credit card numbers, routing numbers, signed documents,
dates, devices involved in the transaction, user permissions,
shopping histories, reputations, user ratings, other purchased
items, business associations, family members, friends and
associates, major cars or appliances owned, subscriptions,
prescriptions, frequent purchases, medical histories or infor-
mation, favorite retailers, or the like. Generally, transaction
information can comprise any information that can be asso-
ciated with a transaction. Therefore, this list of examples is
merely exemplary and not meant to be limiting.

[0659] Data associated with the information may include
portions of the information, or may rearrange or alter the
format of the information. For example, the data associated
with the information can reorganize the information into a list
of field-value pairs. Additionally, the data associated with the
information can append values to certain fields in the infor-
mation, such as appending the indicators “AMEX” or
“VISA” to a credit card number. The data associated with the
information can also remove information that is redundant or
stored elsewhere on a computer system. For example, the data
could store a single address if the billing address, shipping
address, work address, and/or home address are the same. In
one embodiment, the data associated with the information
comprises the information itself without addition or subtrac-
tion.

[0660] In one embodiment, the information is used in a
transaction between a user and the remote device. The trans-

Dec. 20,2012

action can comprise the user making a purchase from the
remote device, or from an operator of the remote device. The
transaction can also comprise authenticating the identity of
the user to the remote device, such as logging into an account.
The encryption key can be a symmetric encryption key or an
asymmetric encryption key. One having skill in the art will
readily recognize many different encryption algorithms that
can be used to encrypt the data.

[0661] The method also includes sending at least the
encrypted data to the data repository (1212). In one embodi-
ment, additional information is also sent with the encrypted
data to the data repository, such as user’s account number
with the data repository, or other identifying information so
that the data repository can store the information in the correct
location. The encrypted data can be sent over a secure net-
work connection, or it can be sent in the clear because it is
encrypted, depending on the embodiment.

[0662] The method also includes deleting the information
(1214). For security reasons, the information is not main-
tained on the user device in an unencrypted form. In one
embodiment, the information resides in secure memory on
the user device, such that other applications are not allowed to
access information. Additionally, the information can be
deleted by repeatedly writing random data in the informa-
tion’s memory location, such that no representation of the
information can be found on the user device, including in
freed/unallocated memory. In one embodiment, the method
further includes deleting the encrypted data from the user
device. Like the information, the encrypted data can be stored
in secure memory and deleted using procedures similar to
those described above. This prevents both the encryption key
and the associated encrypted data from being stored on the
same device.

[0663] The method further includes receiving a request for
the information from a remote device (1216). The request
may be received as part of logging into a website, part of
initiating or completing a transaction, or as part of establish-
ing a relationship with a party associated with the remote
device. In one embodiment, the request for information can
be implied, either by custom or by previous transactions. For
example, a website may advertise an online bill pay service
that requires users to fill out a form and submit the form by
e-mail. It will be understood by a user that they will need to fill
out the form and return it in order to participate in the online
bill pay service. Therefore, by making public expectations
known, the user may be considered to have received a request
for information from the website. Similarly, if a user is
expected to provide information to a remote device that is
operated by employer on a regular monthly basis, this expec-
tation may be considered receiving a request from the
employer to provide information. Therefore, receiving a
request for the information need not be a formal request, but
can be interpreted to broadly include other implied forms of
inviting information.

[0664] The method additionally includes sending a request
for the encrypted data to the data repository (1218). In
embodiments where the encryption takes place on the user
device, the request does not need to include the encryption
key. In one embodiment, the data associated with the infor-
mation comprises a field and a value. The user module oper-
ating on the user device is configured to encrypt a field asso-
ciated with the request from the remote device. The encrypted
field is then sent with the request for the encrypted data to the
data repository. The data repository is further configured to

US 2012/0323786 Al

retrieve the encrypted data by comparing the encrypted data
to the encrypted field. For example, to represent a name, the
data associated with the information includes a field-value
pair of <name><“Steve’>. If the remote device only needs the
user’s name, then the user device can encrypt the field value
of “name” and send this to the data repository. The data
repository can then compare the encrypted “name” fields with
the other encrypted fields in the encrypted data and return
only the associated encrypted value (“Steve”). In another
embodiment, the user device simply requests all of the
encrypted data.

[0665] The method further includes receiving the
encrypted data from the data repository (1220). Note that
depending on the request, this can include the entire contents
of the encrypted data, or any encrypted values that are asso-
ciated with specifically requested fields. The method also
includes decrypting the encrypted data using the encryption
key (1222). If the entire contents of the encrypted data were
sent from the data repository, then the user device can selec-
tively decrypt only the needed portions of the encrypted data.
Otherwise, the entire contents of the encrypted data can be
decrypted. The method also includes sending the information
to the remote device (1224). In one embodiment, sending the
information to the remote device comprises automatically
filling out an online form by populating fields in the form with
matching fields in the information. For example, a button can
be provided with an online web form, that when selected by a
user, automatically carries out the method of FIG. 12 to popu-
late the form data with the user’s information that is stored at
the data repository in an encrypted form.

[0666] In one embodiment, the data repository will only
release the encrypted information to an endpoint, such as a
user module operating on a user device, if rules associated
with particular fields are met. Each field/value pair can have
one or more rules associated with its release from the data
repository. If a request from a user module comprises mul-
tiple fields, then the rules for each field may need to be
satisfied. If rules for some fields are satisfied while rules for
other fields are not satisfied, then the data repository has the
option of releasing only the fields with rules that were satis-
fied. For example, if fields A, B and, C were requested by a
user module, and only the rule(s) associated with A are met,
then the data repository can only send the encrypted value
associated with A to the user module. Therefore, the data
repository can both store and enforce rules associated with
each field. It should be noted that other embodiments may
release fields without regard for rules, or may send all
requested fields if any single rule is met.

[0667] Many different types of rules for releasing values
associated with fields are used by various embodiments. In
one embodiment, a user module can prove that it is operating
on a valid device. A valid device may include devices that are
registered with the data repository. The user module could
send a hash of a device specific ID that is “salted” with a
deterministic value that can be compared to a value at the data
repository. In another embodiment, a user may be required to
supply a PIN on an out-of-band device, such as a smart phone,
tablet computer, mobile computing device, or the like. In
another embodiment, the user may be required to prove to the
data repository that the user knows a password associated
with a virtual identity by using asymmetric proof supplied by
the data repository. Elsewhere in this disclosure, these rules
may be referred to as “authentication levels,” and can include
any of those requirements discussed herein. If multiple fields

Dec. 20,2012

require multiple rules to be satisfied, or if there are multiple
rules associated with a single field, then the data repository
may determine that some rules supersede others. In one
embodiment, only the most secure rule is required to be
satisfied. In another embodiment, rules requiring a PIN or
password may obviate rules requiring mere acknowledgment
of a transaction. In other words, the data repository can ana-
lyze multiple rules and determine that only a subset of those
rules needs to be satisfied in order to release all of the values
associated with the requested fields.

[0668] Inone embodiment, the rules for releasing values to
a user’s device are specified by the user. In another embodi-
ment, the rules for releasing values may also be influenced or
determined by the data repository itself. In another embodi-
ment, the remote device may also determine rules associated
with certain fields. It should be emphasized that in one
embodiment, the data repository includes only encrypted
data, which includes encrypted fields and encrypted values.
User devices request data from the data repository by encrypt-
ing one or more fields (or field names, or other identifiers of
the fields that are stored at the data repository in encrypted
form) and sending the encrypted fields to the data repository.
The data repository then compares the encrypted fields with
encrypted fields previously stored by the user at the data
repository. If matches are found, the encrypted values asso-
ciated with the encrypted fields are returned to the user mod-
ule. The encrypted values are then decrypted at the user
module. If the values/fields were encrypted using symmetric
encryption, then the same encryption key used to encrypt the
field/values can be used for decryption. If asymmetric
encryption was used, then a decryption key associated with
the encryption key can be used to decrypt the value/fields.
This disclosure may, in places, refer to data that is decrypted
using an encryption key. If asymmetric encryption is used,
then the “encryption key” refers to a decryption key, which is
often a private key. It should be noted that in other embodi-
ments data is not necessarily encrypted in field-value pairs,
but is instead stored in different formats, and in different
ways.

[0669] Furthermore, in one embodiment no encrypted data
is stored on the user device. Data may be stored in RAM or in
secure memory, and may be erased immediately after it is
encrypted and sent to the data repository. In one embodiment,
field names may be stored on the user device so that they can
be encrypted and sent to the data repository in order to request
the associated values.

[0670] The description of the method of FIG. 12 makes
reference to a user device. This description applies equally to
a software module, or user module, operating on a user
device.

[0671] Theuser module may be provided by an entity asso-
ciated with the data repository. For example, the OnelD sys-
tem described elsewhere in this disclosure may be associated
with the data repository, and can provide an app to operate on
a mobile computing device that will interact with the data
repository. Additionally, the OnelD system can provide code
that runs in a web browser on a user’s desktop computer, or
like device.

[0672] FIG. 13 is a simplified flowchart illustrating a
method 1300 for storing encrypted data using a data reposi-
tory according to an embodiment of the present invention.
This method describes the operations that may be carried out
by the data repository on the other end of the transaction
described in the method of FIG. 12. The method includes

US 2012/0323786 Al

receiving encrypted data (1310). The encrypted data can be
received as described above. In one embodiment, the user
device prevents the encryption key from being stored in the
data repository. This can be accomplished by ensuring that
the encryption key is not transmitted to the data repository.
The data repository can comprise a fully encrypted data store.
Thus, no information received from a user, including encryp-
tionkeys can be maintained in the clear on the data repository.
In these embodiments, the data repository is not capable of
decrypting information received from a user device. The data
repository may be remotely located from both the user device
and a remote device. Often, this will entail a server operating
at a physical site that is not associated with either the user or
the operator of the remote device. The method also includes
receiving a first request for the encrypted data (1312), and
sending the encrypted data in response to the first request
(1314).

[0673] It should be appreciated that the specific steps illus-
trated in FIG. 12 and FIG. 13 provide particular methods of
using an encrypted repository according to embodiments of
the present invention. Other sequences of steps may also be
performed according to alternative embodiments. For
example, alternative embodiments of the present invention
may perform the steps outlined above in a different order.
Moreover, the individual steps illustrated in FIG. 12 and FIG.
13 may include multiple sub-steps that may be performed in
various sequences as appropriate to the individual step. Fur-
thermore, additional steps may be added or removed depend-
ing on the particular applications. One of ordinary skill in the
art would recognize many variations, modifications, and
alternatives.

[0674] It will be understood in light of this disclosure that
the examples and embodiments described herein are for illus-
trative purposes only and that various modifications or
changes in light thereof will be suggested to persons skilled in
the art and are to be included within the spirit and purview of
this application and scope of the appended claims.

Delayed Authentications

[0675] Embodiments of the present invention provide
methods and systems for enabling delayed authorization of
online transactions. After the initiation of a proposed trans-
action, a predetermined time period is provided in which
notifications are transmitted and communications can be sub-
sequently received to reject the proposed transaction.

[0676] Sensitive transactions (e.g., bank transfers of money
out of your account) can be delayed using embodiments of the
present invention to provide for enhanced security for users.
As described more fully throughout the present specification,
these sensitive transactions may be posted to a user’s OnelD
account and then notifications related to the transaction can
be pushed to one or more of the user’s devices. The devices
can authorize the transaction and any single device can cancel
the transaction. As described herein, a predetermined time
period is provided during which the transaction is delayed in
order to facilitate a waiting period during which cancellation
of the transaction can occur. The waiting period is user-
definable in some embodiments and can be modified, for
example, changed at any time as long as the user waits for the
current wait period.

[0677] FIG.141sahigh level block diagram of an apparatus
for enabling delayed authorization according to an embodi-
ment of the present invention. As illustrated in FIG. 14, mul-
tiple user devices 1401, 1402, and 1403 interact with an

Dec. 20,2012

identity server 1405 through a network 1430. The user
devices, which can also be referred to as control devices or
access devices, can be associated with a single user or entity
or multiple entities. Thus, in an implementation, a child with
user device #1 (1401) could interact with the system, with
notifications being provided to the child’s parent with user
device #2 (1402). A transaction processor 1440, which can be
a financial services provider, a merchant, a charity, a govern-
ment agency, or the like, interacts with the user devices 1-N
(1401-1403) and the identity server 1405 through network
1430.

[0678] The identity server 1405, also referred to as the
OnelD service includes an input/output module 1420, a data
processor 1410, a memory 1412, and a user device database
1416. The system also includes a user preference database
1417 and a transaction processor preference database 1419.
As described more fully throughout the present specification,
the various databases can be utilized to manage notifications
related to requested transactions. Other databases and sys-
tems may be utilized by the identity server as appropriate to
the particular application.

[0679] The data processor 1410 can be a general purpose
microprocessor configured to execute instructions and data,
such as a processor manufactured by the Intel Corporation of
Santa Clara, Calif. It can also be an Application Specific
Integrated Circuit (ASIC) that embodies at least part of the
instructions for performing the method in accordance with
the present invention in software, firmware and/or hardware.
As an example, such processors include dedicated circuitry,
ASICs, combinatorial logic, other programmable processors,
combinations thereof, and the like.

[0680] The memory 1412 can be local or distributed as
appropriate to the particular application. Memory 1412 may
include a number of memories including a main random
access memory (RAM) for storage of instructions and data
during program execution and a read only memory (ROM) in
which fixed instructions are stored. Thus, memory 1412 pro-
vides persistent (non-volatile) storage for program and data
files, and may include a hard disk drive, flash memory, a
floppy disk drive along with associated removable media, a
Compact Disk Read Only Memory (CD-ROM) drive, an opti-
cal drive, removable media cartridges, and other like storage
media.

[0681] Data on users, including devices associated with
users and their capabilities, users’ preferences for security
levels for authorization, and transaction processor prefer-
ences can be stored in the databases utilized by the identity
server 1405. Additionally, external databases (not shown) can
be utilized as appropriate to the particular application.

[0682] Embodiments ofthe present invention provide secu-
rity for transactions, even in the context of one or more of a
user’s devices being compromised. Referring to FIG. 14, if
devices 1401 and 1402 are compromised, for example, under
the control of a malicious third party, these devices could be
utilized to initiate a fraudulent transaction. Because device
1403 is not compromised and still under the control of the
authorized user, the user is able to receive the notification of
the proposed transaction and can utilize device 1403 to reject
the proposed transaction.

[0683] In some embodiments, approval from one or more
of the user’s devices is required in order to complete the
processing of the proposed transaction. Although a malicious
third party controlling some of the user’s devices could com-

US 2012/0323786 Al

municate an approval from one of these compromised
devices, the user would be able to object to the proposed
transaction.

[0684] In some embodiments, the predetermined time
period is varied depending on one or more factors, including
the value of the transaction, the time period since the last
transaction, or the like. In various embodiments, the prede-
termined time period ranges from several minutes to several
hours to several days or longer periods. As an example, the
predetermined time period could be set at 6 hours for trans-
actions under $1,000, 12 hours for transactions between
$1,000 and $5,000, and 24 hours for transactions over $5,000.

[0685] As an example, an address change transaction can
be performed as follows. A user device, for example, a desk-
top computer, is used to initiate an address change at a bank’s
website. For this particular transaction, a waiting period of 24
hours is set by either the bank, the identity server, or the user.
Preferences for any of these entities can be stored at the
identity server or using other suitable memory systems. When
the bank receives the request to change the address, a notifi-
cation is sent to the identity server indicating the request for
the address change transaction. A notification is returned to
the user device, indicating that the request has been received
and will be processed in 24 hours if either all user device
approve the transaction or none of the user devices reject the
transaction within the 24 hour window. Notifications related
to the address change are also transmitted to the user’s other
devices, including mobile devices.

[0686] Assuming that a malicious third party initiates the
request using the user’s computer and controls one or more of
the user’s additional devices, the malicious third party can
approve the address change using the devices under their
control. However, if the user is still in control of one of their
devices, the user can reject the transaction in response to the
notification received at the device under the user’s control.

[0687] If, upon expiration of the waiting period of 24 hours,
no rejections have been received, then the transaction will
proceed, effecting the desired address change. Thus, embodi-
ments of the present invention provide for powerful authori-
zation control systems since, even if all but one of a user’s
devices are compromised, the user still possesses the ability
to reject proposed transactions initiated by malicious entities.

[0688] According to some embodiments of the present
invention, the security level imposed by the system is deter-
mined as the highest security level provided by any of the
devices. As an example, if a transfer of $10,000 from a bank
account is requested by a user using their mobile device, the
security level imposed will be the highest security level pro-
vided by the user’s mobile device, the user’s desktop com-
puter, the user’s tablet computer, etc.

[0689] The user device database 1416 stores data on
devices that are associated with a user, which may be referred
to as associated with a user’s identity. During performance of
the methods described herein, any of the devices associated
with the user can be involved in the transaction approval
process.

[0690] Insome embodiments, the transaction provider can
determine that the transaction is a high security transaction
and can initiate the notification of the user’s other devices of
the transaction. In other embodiments, data stored in the
identity server 1405, for example, in either the user prefer-
ence database 1417 or the transaction processor preference

Dec. 20,2012

database 1419 can be used to determine the time period asso-
ciated with the waiting period, the devices that are to be
notified, or the like.

[0691] As an example, when a transaction request is
received at the transaction processor 1440, a notification
related to the transaction can be sent to the identity server
1405. The identity server, in turn, will determine the notifi-
cation preferences, using, for example, the user preference
database 1417 and/or the transaction processor database
1419, and determine the devices that are to be notified, using,
for example, the user device database 1416. Notifications will
then be sent through the network to the user’s devices or other
suitable devices, notifying the user that the transaction will be
processed if not rejections are received within the predeter-
mined time period (e.g., 24 hours).

[0692] Transaction processors are not limited to financial
institutions, but can include stores, charities, banks, govern-
ment agencies, or the like.

[0693] Although only devices associated with a user are
illustrated in FIG. 14, other embodiments can utilize other
devices that are associated with other users. In this example,
when a first person initiates a transaction, notifications can be
delivered to that person’s devices, as well as other devices
associated with another person, for example, a parent, a
spouse, a co-signor, or the like. Thus, notifications, approvals,
and rejections are not limited to devices associated with only
one person or entity.

[0694] The user device database 1416 can include informa-
tion related to devices owned or operated on behalf of the
user, devices authorized for the user, with limits on authori-
zation for various devices. For example, a desktop computer
in a secure work area may have a higher transaction value
limit than a mobile device. A mobile device with a password
to unlock may have a higher transaction value limit than an
unlocked mobile device. One of ordinary skill in the art would
recognize many variations, modifications, and alternatives.
[0695] The user preference database 1417 can include
information related to preferences established by the user or
on behalf of the user, including transaction value limits, time
periods during which transaction values are raised, for
example, the evening if this is the time that at the user typi-
cally pays bills and conducts financial transactions. The user
preference database can also indicate when notification of
other users is appropriate for a particular transaction. Addi-
tionally, for certain transaction types, the user may set a
preference for security that is higher than the security prefer-
ences set as default values by either the identity server or the
transaction processor, thus enabling the user to override the
security preferences and increase the level of security, the
waiting time, or the like. Thus, one or several entities can set
the security rules so that when a high value transaction is
requested (e.g., a $10,000 money transfer), the waiting period
is set at the default value or increased or decreased as appro-
priate. One of ordinary skill in the art would recognize many
variations, modifications, and alternatives.

[0696] It should be noted that if a user preference stored in
the device contradicts the user preferences stored in the user
preference database, the more conservative user preference
will typically trump the other user preference. Since a mobile
device can be hacked, with the hacker shortening the time
period associated with a transaction, the original longer time
period stored in the user preference database 1416 would be
used to ensure that security is not impacted adversely by the
reprogramming of the user device.

US 2012/0323786 Al

[0697] The sensitivity of the transaction, which can drive
the waiting time, the number of devices notified, including
devices other that those associated with the user, and the like,
can be determined based on inputs from the user, from the
identity server, by the transaction processor, combinations
thereof, or the like.

[0698] Inan embodiment, once the user requests the trans-
action, (implying approval on the part of the user), the trans-
action will not proceed until either the identity server or the
transaction processor fail to receive a rejection (i.e., a nega-
tive approval) within the predetermined time period.

[0699] In some implementations, the value of the transac-
tion, the time at which the request was received, or the like can
be compared to the user preferences, the transaction proces-
sor preferences, and/or the identity server preferences to
determine the notifications that are sent. As an example, the
user preferences may specify that notifications for transac-
tions under $100 only have to be sent to the user’s mobile
phone and not to otheruser devices. The transaction processor
(e.g., a bank) may not apply the waiting period for transac-
tions less than $500 and the identity server may not apply the
waiting period for transactions less than $250. When the user
initiates a transaction for $50, then neither of the rules asso-
ciated with the transaction processor or the identity server are
impacted and only a single notification is sent to the user’s
mobile phone based on the user’s preferences. When the user
initiates a transaction for $1,000, notifications will be sent to
more devices than the user’s mobile phone and the waiting
periods defined by the user, the identity server, and the trans-
action processor will both be examined to find the longer of
the various waiting periods.

[0700] Table 1 illustrates thresholds and actions suitable for
use with embodiments of the present invention. As shown in
Table 1, for transactions under $100, the user and identity
server preferences trump the transaction processor prefer-
ences, with notifications only being sent to the user’s mobile
phone. For transactions greater than $1,000 but less than
$10,000, the user preferences are trumped by the other pref-
erences that result in the notification of all user devices.
Notifications are not limited to user devices as illustrated by
the notification of a spouse’s devices for transactions over
$10,000.

TABLE 1
Transaction Identity
Transaction User Processor Server
Value Preferences Preferences Preferences
<$100 Only mobile No notifications ~ Only mobile
phone notified phone notified
$100-$1,000 Only mobile No notifications ~ Only mobile
phone notified phone notified
$1,001-$10,000 Only mobile All user devices ~ All user
phone notified notified devices
notified
>$10,000 Alluser devices All user devices All user
notified + notified devices
Spouse’s devices notified
notified
[0701] Although transaction value is illustrated in Table 1,

similar preferences can be defined for the predetermined time
period, the time at which the transaction is initiated, the
frequency with which transactions are initiated, cumulative
transaction value as a function of time, and the like. In some
embodiments, specific authorizations from specific devices

Dec. 20,2012

may be required, for example, not only notification and lack
of rejection from the user’s mobile phone, but an affirmative
approval from the user’s mobile phone. As noted above, the
various preferences can be inter-related with higher value
transactions being associated with longer waiting times, etc.
One of ordinary skill in the art would recognize many varia-
tions, modifications, and alternatives.

[0702] FIG. 15 is a simplified flowchart illustrating a
method of processing a transaction according to an embodi-
ment of the present invention. The method 1500 includes
providing a processor and receiving a request for a proposed
transaction from an entity (1510). The entity can be a user, a
company, a customer, or the like and the request can be
received at a transaction processor such as a financial institu-
tion. The method also includes obtaining a list of devices
associated with the entity (1512).

[0703] Inanembodiment, the request is received at a trans-
action processor and in order to obtain the list of devices
associated with the entity, the transaction processor transmits
a request to an identity server and receives the list of devices
from the identity server in return. In other embodiments, the
transaction processor maintains a list of devices associated
with the entity, which can be provided by the entity, cross-
referenced with the identity server, or the like. In an example,
the request is received from a first device of the devices
associated with the entity (a desktop computer) and the rejec-
tion is received from a second device of the devices associated
with the entity (a mobile phone). The transaction processor
may transmit a notification related to the request for the
proposed transaction to the identity server.

[0704] The method further includes transmitting a notifica-
tion related to the proposed transaction to the devices associ-
ated with the entity (1514). The notification can include infor-
mation including the transaction request, the amount of the
transaction, information on past transactions, and the like.
The method includes determining, using the processor, (a)
that an approval is received from all the devices associated
with the entity to which the notifications were sent (1516) or
(b) that a predetermined time period has expired (1518). The
predetermined time period can be a function of a value of the
proposed transaction. If either of these conditions are met,
then the proposed transaction is processed (1524).

[0705] Alternatively, a determination could be made, using
the processor, that a rejection is received from one or more of
the devices associated with the entity (1522). In this case, the
proposed transaction is canceled (1520).

[0706] It should be appreciated that the specific steps illus-
trated in FIG. 15 provide a particular method of processing a
transaction according to an embodiment of the present inven-
tion. Other sequences of steps may also be performed accord-
ing to alternative embodiments. For example, alternative
embodiments of the present invention may perform the steps
outlined above in a different order. Moreover, the individual
steps illustrated in FIG. 15 may include multiple sub-steps
that may be performed in various sequences as appropriate to
the individual step. Furthermore, additional steps may be
added or removed depending on the particular applications.
One of ordinary skill in the art would recognize many varia-
tions, modifications, and alternatives.

[0707] FIG. 16 is a simplified flowchart illustrating a
method of authorizing a transaction according to an embodi-
ment of the present invention. The method 1600 includes
providing a processor, receiving a request for a proposed
transaction from an entity (1610), and retrieving a list of

US 2012/0323786 Al

devices associated with the entity (1614). The list of devices
associated with the entity can be predefined by the entity.
[0708] In an embodiment, the request is received at an
identity protection system, or an identity management sys-
tem, that is coupled, through a network to a variety of users
and a variety of transaction processors such as merchants,
websites, and the like. In some embodiments, the method can
include transmitting information related to the proposed
transaction to the transaction processor.

[0709] The method also includes transmitting a notification
related to the proposed transaction to the devices associated
with the entity (1616) and determining, using the processor,
(a) that an approval is received from all the devices associated
with the entity (1618) or (b) that a predetermined time period
has expired (1620). The predetermined time period can be a
function of a value of the proposed transaction. If either of
these conditions are met, then an approval of the proposed
transaction is transmitted to a transaction processor (1622),
such as a financial institution. In some embodiments, a noti-
fication related to the proposed transaction and information
related to the predetermined time period is transmitted to the
transaction processor before transmitting the approval of the
proposed transaction to the transaction processor.

[0710] Alternatively, if the determination is made that a
rejection is received from one or more of the devices associ-
ated with the entity (1624), then a disapproval of the proposed
transaction is transmitted to the transaction processor (1626).
[0711] In embodiments in which the request is initially
transmitted to the identity server, the identity server can
implement the security rules, enforcing the cooling off period
or waiting period before authorization for the transaction is
transmitted to the transaction processor. As an additional
level of security, the identity server could notify the transac-
tion processor of the request and the length of the waiting
period near the time the request is received. In this example,
the transaction processor could then verify the expiration of
the waiting period when the authorization is subsequently
received by comparing the time the notification of the request
was received and the time that the authorization was received.
[0712] It should be appreciated that the specific steps illus-
trated in FIG. 16 provide a particular method of authorizing a
transaction according to an embodiment of the present inven-
tion. Other sequences of steps may also be performed accord-
ing to alternative embodiments. For example, alternative
embodiments of the present invention may perform the steps
outlined above in a different order. Moreover, the individual
steps illustrated in FIG. 16 may include multiple sub-steps
that may be performed in various sequences as appropriate to
the individual step. Furthermore, additional steps may be
added or removed depending on the particular applications.
One of ordinary skill in the art would recognize many varia-
tions, modifications, and alternatives.

[0713] FIG.17is asimplified sequence diagram illustrating
a method of authorizing a transaction according to an
embodiment of the present invention. As illustrated in FIG.
17, a request for a transaction is received from the user at the
identity server (1710). In some implementations, the transac-
tion request is sent to the identity server in conjunction with
the transmission of the request to the transaction processor,
which can be a bank, a store, a charity, or the like.

[0714] The identity server transmits a request for authori-
zation preferences to the transaction processor (1712), which
responds with its transaction preferences (1714). Typically,
the request for authorization preferences will include some

Dec. 20,2012

information related to the requested transaction since, as
described above, the security preferences can depend on the
value of the transaction, and the like. The identity server
compares the transaction preferences from the transaction
processor with transaction preferences associated with the
user as well as transaction preferences associated with the
identity server, all in the context of the transaction request that
was received. As an example, the transaction preferences for
the particular transaction as specified by the transaction pro-
cessor can be more conservative than other preferences,
including the number of devices to be notified, the waiting
time period, specific authorizations that are required, or the
like.
[0715] Depending on the outcome of the above compari-
son, user devices are notified with information related to the
requested transaction (1716). In some implementations, noti-
fication of the proposed transaction is delivered to multiple
devices associated with a user. In some embodiments, a sub-
set of the user’s devices are notified, whereas in other embodi-
ments, all of the user’s devices are notified. In addition, some
embodiments notify devices other than the user’s devices, for
example, a spouse’s device, a parent’s device, a co-worker’s
device, or the like. Authorizations can be received from one or
more devices (1718) but typically, the authorizations will not
result in completion of the transaction. In some implementa-
tions, an affirmative reply from all notified devices can result
in transmission of authorization for the transaction.
[0716] Additionally, rejections can optionally be received
from one or more of the notified devices (1730), which will
result in a transmission of a transaction rejection message to
the transaction processor (1732). Assuming that no rejections
are received, after a predetermined time period has expired,
for example, 24 hours, the requested transaction is authorized
(1720). In some embodiments, the transaction processor
monitors the time from the request of the authorization pref-
erences (1712), which may provide enough information on
the transaction for the transaction processor to complete the
transaction after the expiration of the waiting time assuming
no rejections have been submitted. Thus, if no objection is
raised by any of the devices within the predetermined time
period, the proposed transaction is completed.
[0717] Insome implementations, a provisional approval is
provided and transmitted to the user. Additionally, although
the implementation illustrated in FIG. 17 channels commu-
nications through the identity server, this is not required by
the present invention and the user can interact directly with
the transaction processor to submit authorizations and rejec-
tions. Thus, some of the processing can be shifted to the
transaction processor as appropriate to the particular applica-
tion. One of ordinary skill in the art would recognize many
variations, modifications, and alternatives.
[0718] Itis also understood that the examples and embodi-
ments described herein are for illustrative purposes only and
that various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application and scope of
the appended claims.

What is claimed is:

1. A method of authorizing a transaction, the method com-
prising:

providing a processor;

receiving a request for a proposed transaction from an

entity;
retrieving a list of devices associated with the entity;

US 2012/0323786 Al

transmitting a notification related to the proposed transac-
tion to the devices associated with the entity;
determining, using the processor,
(a) that an approval is received from all the devices
associated with the entity; or
(b) that a predetermined time period has expired; and
(c) transmitting an approval of the proposed transaction
to a transaction processor; or

determining, using the processor,

(a) that a rejection is received from one or more of the
devices associated with the entity; and

(b) transmitting a disapproval of the proposed transac-
tion to the transaction processor.

2. The method of claim 1 wherein the request is received at
an identity management system.

3. The method of claim 1 further comprising transmitting
information related to the proposed transaction to the trans-
action processor.

4. The method of claim 1 wherein the transaction processor
comprises a financial institution.

5. The method of claim 1 wherein the determining that a
predetermined time period has expired occurs following an
approval by one or more devices associated with the entity.

6. The method of claim 1 wherein the list of devices asso-
ciated with the entity is predefined by the entity.

7. The method of claim 1 wherein the predetermined time
period is a function of a value of the proposed transaction.

8. The method of claim 1 further comprising transmitting a
notification related to the proposed transaction to the trans-
action processor and information related to the predetermined
time period before transmitting the approval of the proposed
transaction to the transaction processor.

9. A method of processing a transaction, the method com-
prising:

providing a processor;

receiving a request for a proposed transaction from an

entity;

obtaining a list of devices associated with the entity;

transmitting a notification related to the proposed transac-

tion to the devices associated with the entity;
determining, using the processor,
(a) that an approval is received from all the devices
associated with the entity; or
(b) that a predetermined time period has expired; and
(c) processing the proposed transaction; or
determining, using the processor,
(a) that a rejection is received from one or more of the
devices associated with the entity; and
(b) canceling the proposed transaction.

10. The method of claim 9 wherein the request is received
from a first device of the devices associated with the entity
and the rejection is received from a second device of the
devices associated with the entity.

11. The method of claim 9 wherein the request is received
at a transaction processor.

12. The method of claim 11 wherein the transaction pro-
cessor comprises a financial institution system.

Dec. 20,2012

13. The method of claim 9 wherein obtaining a list of
devices associated with the entity comprises:

transmitting a request to an identity server; and

receiving the list of devices from the identity server.

14. The method of claim 11 further comprising transmit-
ting a notification related to the request for a proposed trans-
action to the identity server.

15. The method of claim 9 wherein the predetermined time
period is a function of a value of the proposed transaction.

16. A transaction processing system comprising:

an identity server coupled to a network and including a data

processor and a non-transitory computer-readable stor-
age medium comprising a plurality of computer-read-
able instructions tangibly embodied on the computer-
readable storage medium, which, when executed by a
data processor, provide transaction processing, the plu-
rality of instructions comprising:

instructions that cause the data processor to receive a

request for a proposed transaction from an entity;
instructions that cause the data processor to retrieve a list of
devices associated with the entity;

instructions that cause the data processor to transmit a

notification related to the proposed transaction to the
devices associated with the entity;

instructions that cause the data processor to determine:

(a) that an approval is received from all the devices
associated with the entity; or

(b) that a predetermined time period has expired; and

(c) instructions that cause the data processor to transmit
an approval of the proposed transaction to a transac-
tion processor; or

instructions that cause the data processor to determine:

(a) that a rejection is received from one or more of the
devices associated with the entity; and

(b) instructions that cause the data processor to transmit
a disapproval of the proposed transaction to the trans-
action processor.

17. The system of claim 16 wherein the request is received
at an identity management system.

18. The method of claim 16 further comprising instructions
that cause the data processor to transmit information related
to the proposed transaction to the transaction processor.

19. The method of claim 16 wherein the transaction pro-
cessor comprises a financial institution.

20. The method of claim 16 wherein the list of devices
associated with the entity is predefined by the entity.

21. The method of claim 16 wherein the predetermined
time period is a function of a value of the proposed transac-
tion.

22. The method of claim 16 further comprising instructions
that cause the data processor to transmit a notification related
to the proposed transaction and information related to the
predetermined time period to the transaction processor before
transmitting the approval of the proposed transaction to the
transaction processor.

